/* Interprocedural analyses. Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "langhooks.h" #include "ggc.h" #include "target.h" #include "cgraph.h" #include "ipa-prop.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-inline.h" #include "flags.h" #include "timevar.h" #include "flags.h" #include "diagnostic.h" /* Vector where the parameter infos are actually stored. */ VEC (ipa_node_params_t, heap) *ipa_node_params_vector; /* Vector where the parameter infos are actually stored. */ VEC (ipa_edge_args_t, heap) *ipa_edge_args_vector; /* Holders of ipa cgraph hooks: */ static struct cgraph_edge_hook_list *edge_removal_hook_holder; static struct cgraph_node_hook_list *node_removal_hook_holder; static struct cgraph_2edge_hook_list *edge_duplication_hook_holder; static struct cgraph_2node_hook_list *node_duplication_hook_holder; /* Initialize worklist to contain all functions. */ struct ipa_func_list * ipa_init_func_list (void) { struct cgraph_node *node; struct ipa_func_list * wl; wl = NULL; for (node = cgraph_nodes; node; node = node->next) if (node->analyzed) { /* Unreachable nodes should have been eliminated before ipcp and inlining. */ gcc_assert (node->needed || node->reachable); ipa_push_func_to_list (&wl, node); } return wl; } /* Add cgraph node MT to the worklist. Set worklist element WL to point to MT. */ void ipa_push_func_to_list (struct ipa_func_list **wl, struct cgraph_node *mt) { struct ipa_func_list *temp; temp = XCNEW (struct ipa_func_list); temp->node = mt; temp->next = *wl; *wl = temp; } /* Remove a function from the worklist. WL points to the first element in the list, which is removed. */ struct cgraph_node * ipa_pop_func_from_list (struct ipa_func_list ** wl) { struct ipa_func_list *first; struct cgraph_node *return_func; first = *wl; *wl = (*wl)->next; return_func = first->node; free (first); return return_func; } /* Return index of the formal whose tree is PTREE in function which corresponds to INFO. */ static int ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree) { int i, count; count = ipa_get_param_count (info); for (i = 0; i < count; i++) if (ipa_get_param(info, i) == ptree) return i; return -1; } /* Populate the param_decl field in parameter descriptors of INFO that corresponds to NODE. */ static void ipa_populate_param_decls (struct cgraph_node *node, struct ipa_node_params *info) { tree fndecl; tree fnargs; tree parm; int param_num; fndecl = node->decl; fnargs = DECL_ARGUMENTS (fndecl); param_num = 0; for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) { info->params[param_num].decl = parm; param_num++; } } /* Count number of formal parameters in NOTE. Store the result to the appropriate field of INFO. */ static void ipa_count_formal_params (struct cgraph_node *node, struct ipa_node_params *info) { tree fndecl; tree fnargs; tree parm; int param_num; fndecl = node->decl; fnargs = DECL_ARGUMENTS (fndecl); param_num = 0; for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) param_num++; ipa_set_param_count (info, param_num); } /* Initialize the ipa_node_params structure associated with NODE by counting the function parameters, creating the descriptors and populating their param_decls. */ void ipa_initialize_node_params (struct cgraph_node *node) { struct ipa_node_params *info = IPA_NODE_REF (node); if (!info->params) { ipa_count_formal_params (node, info); info->params = XCNEWVEC (struct ipa_param_descriptor, ipa_get_param_count (info)); ipa_populate_param_decls (node, info); } } /* Check STMT to detect whether a formal parameter is directly modified within STMT, the appropriate entry is updated in the modified flags of INFO. Directly means that this function does not check for modifications through pointers or escaping addresses because all TREE_ADDRESSABLE parameters are considered modified anyway. */ static void ipa_check_stmt_modifications (struct ipa_node_params *info, gimple stmt) { int j; int index; tree lhs; switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: lhs = gimple_assign_lhs (stmt); while (handled_component_p (lhs)) lhs = TREE_OPERAND (lhs, 0); if (TREE_CODE (lhs) == SSA_NAME) lhs = SSA_NAME_VAR (lhs); index = ipa_get_param_decl_index (info, lhs); if (index >= 0) info->params[index].modified = true; break; case GIMPLE_ASM: /* Asm code could modify any of the parameters. */ for (j = 0; j < ipa_get_param_count (info); j++) info->params[j].modified = true; break; default: break; } } /* Compute which formal parameters of function associated with NODE are locally modified. Parameters may be modified in NODE if they are TREE_ADDRESSABLE, if they appear on the left hand side of an assignment or if there is an ASM_EXPR in the function. */ void ipa_detect_param_modifications (struct cgraph_node *node) { tree decl = node->decl; basic_block bb; struct function *func; gimple_stmt_iterator gsi; gimple stmt; struct ipa_node_params *info = IPA_NODE_REF (node); int i, count; if (ipa_get_param_count (info) == 0 || info->modification_analysis_done) return; func = DECL_STRUCT_FUNCTION (decl); FOR_EACH_BB_FN (bb, func) { for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { stmt = gsi_stmt (gsi); ipa_check_stmt_modifications (info, stmt); } } count = ipa_get_param_count (info); for (i = 0; i < count; i++) if (TREE_ADDRESSABLE (ipa_get_param (info, i))) info->params[i].modified = true; info->modification_analysis_done = 1; } /* Count number of arguments callsite CS has and store it in ipa_edge_args structure corresponding to this callsite. */ void ipa_count_arguments (struct cgraph_edge *cs) { gimple stmt; int arg_num; stmt = cs->call_stmt; gcc_assert (is_gimple_call (stmt)); arg_num = gimple_call_num_args (stmt); if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector) <= (unsigned) cgraph_edge_max_uid) VEC_safe_grow_cleared (ipa_edge_args_t, heap, ipa_edge_args_vector, cgraph_edge_max_uid + 1); ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num); } /* Print the jump functions of all arguments on all call graph edges going from NODE to file F. */ void ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node) { int i, count; struct cgraph_edge *cs; struct ipa_jump_func *jump_func; enum jump_func_type type; fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node)); for (cs = node->callees; cs; cs = cs->next_callee) { if (!ipa_edge_args_info_available_for_edge_p (cs)) continue; fprintf (f, " callsite %s ", cgraph_node_name (node)); fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee)); count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs)); for (i = 0; i < count; i++) { jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i); type = jump_func->type; fprintf (f, " param %d: ", i); if (type == IPA_JF_UNKNOWN) fprintf (f, "UNKNOWN\n"); else if (type == IPA_JF_CONST) { tree val = jump_func->value.constant; fprintf (f, "CONST: "); print_generic_expr (f, val, 0); fprintf (f, "\n"); } else if (type == IPA_JF_CONST_MEMBER_PTR) { fprintf (f, "CONST MEMBER PTR: "); print_generic_expr (f, jump_func->value.member_cst.pfn, 0); fprintf (f, ", "); print_generic_expr (f, jump_func->value.member_cst.delta, 0); fprintf (f, "\n"); } else if (type == IPA_JF_PASS_THROUGH) { fprintf (f, "PASS THROUGH: "); fprintf (f, "%d\n", jump_func->value.formal_id); } } } } /* Print ipa_jump_func data structures of all nodes in the call graph to F. */ void ipa_print_all_jump_functions (FILE *f) { struct cgraph_node *node; fprintf (f, "\nJump functions:\n"); for (node = cgraph_nodes; node; node = node->next) { ipa_print_node_jump_functions (f, node); } } /* Determine the jump functions of scalar arguments. Scalar means SSA names and constants of a number of selected types. INFO is the ipa_node_params structure associated with the caller, FUNCTIONS is a pointer to an array of jump function structures associated with CALL which is the call statement being examined.*/ static void compute_scalar_jump_functions (struct ipa_node_params *info, struct ipa_jump_func *functions, gimple call) { tree arg; unsigned num = 0; for (num = 0; num < gimple_call_num_args (call); num++) { arg = gimple_call_arg (call, num); if (is_gimple_ip_invariant (arg)) { functions[num].type = IPA_JF_CONST; functions[num].value.constant = arg; } else if ((TREE_CODE (arg) == SSA_NAME) && SSA_NAME_IS_DEFAULT_DEF (arg)) { int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg)); if (index >= 0) { functions[num].type = IPA_JF_PASS_THROUGH; functions[num].value.formal_id = index; } } } } /* Inspect the given TYPE and return true iff it has the same structure (the same number of fields of the same types) as a C++ member pointer. If METHOD_PTR and DELTA are non-NULL, store the trees representing the corresponding fields there. */ static bool type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta) { tree fld; if (TREE_CODE (type) != RECORD_TYPE) return false; fld = TYPE_FIELDS (type); if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld)) || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE) return false; if (method_ptr) *method_ptr = fld; fld = TREE_CHAIN (fld); if (!fld || INTEGRAL_TYPE_P (fld)) return false; if (delta) *delta = fld; if (TREE_CHAIN (fld)) return false; return true; } /* Go through arguments of the CALL and for every one that looks like a member pointer, check whether it can be safely declared pass-through and if so, mark that to the corresponding item of jump FUNCTIONS. Return true iff there are non-pass-through member pointers within the arguments. INFO describes formal parameters of the caller. */ static bool compute_pass_through_member_ptrs (struct ipa_node_params *info, struct ipa_jump_func *functions, gimple call) { bool undecided_members = false; unsigned num; tree arg; for (num = 0; num < gimple_call_num_args (call); num++) { arg = gimple_call_arg (call, num); if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL)) { if (TREE_CODE (arg) == PARM_DECL) { int index = ipa_get_param_decl_index (info, arg); gcc_assert (index >=0); if (!ipa_is_param_modified (info, index)) { functions[num].type = IPA_JF_PASS_THROUGH; functions[num].value.formal_id = index; } else undecided_members = true; } else undecided_members = true; } } return undecided_members; } /* Simple function filling in a member pointer constant jump function (with PFN and DELTA as the constant value) into JFUNC. */ static void fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc, tree pfn, tree delta) { jfunc->type = IPA_JF_CONST_MEMBER_PTR; jfunc->value.member_cst.pfn = pfn; jfunc->value.member_cst.delta = delta; } /* Traverse statements from CALL backwards, scanning whether the argument ARG which is a member pointer is filled in with constant values. If it is, fill the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are fields of the record type of the member pointer. To give an example, we look for a pattern looking like the following: D.2515.__pfn ={v} printStuff; D.2515.__delta ={v} 0; i_1 = doprinting (D.2515); */ static void determine_cst_member_ptr (gimple call, tree arg, tree method_field, tree delta_field, struct ipa_jump_func *jfunc) { gimple_stmt_iterator gsi; tree method = NULL_TREE; tree delta = NULL_TREE; gsi = gsi_for_stmt (call); gsi_prev (&gsi); for (; !gsi_end_p (gsi); gsi_prev (&gsi)) { gimple stmt = gsi_stmt (gsi); tree lhs, rhs, fld; if (!is_gimple_assign (stmt) || gimple_num_ops (stmt) != 2) return; lhs = gimple_assign_lhs (stmt); rhs = gimple_assign_rhs1 (stmt); if (TREE_CODE (lhs) != COMPONENT_REF || TREE_OPERAND (lhs, 0) != arg) continue; fld = TREE_OPERAND (lhs, 1); if (!method && fld == method_field) { if (TREE_CODE (rhs) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE) { method = TREE_OPERAND (rhs, 0); if (delta) { fill_member_ptr_cst_jump_function (jfunc, rhs, delta); return; } } else return; } if (!delta && fld == delta_field) { if (TREE_CODE (rhs) == INTEGER_CST) { delta = rhs; if (method) { fill_member_ptr_cst_jump_function (jfunc, rhs, delta); return; } } else return; } } return; } /* Go through the arguments of the CALL and for every member pointer within tries determine whether it is a constant. If it is, create a corresponding constant jump function in FUNCTIONS which is an array of jump functions associated with the call. */ static void compute_cst_member_ptr_arguments (struct ipa_jump_func *functions, gimple call) { unsigned num; tree arg, method_field, delta_field; for (num = 0; num < gimple_call_num_args (call); num++) { arg = gimple_call_arg (call, num); if (functions[num].type == IPA_JF_UNKNOWN && type_like_member_ptr_p (TREE_TYPE (arg), &method_field, &delta_field)) determine_cst_member_ptr (call, arg, method_field, delta_field, &functions[num]); } } /* Compute jump function for all arguments of callsite CS and insert the information in the jump_functions array in the ipa_edge_args corresponding to this callsite. */ void ipa_compute_jump_functions (struct cgraph_edge *cs) { struct ipa_node_params *info = IPA_NODE_REF (cs->caller); struct ipa_edge_args *arguments = IPA_EDGE_REF (cs); gimple call; if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions) return; arguments->jump_functions = XCNEWVEC (struct ipa_jump_func, ipa_get_cs_argument_count (arguments)); call = cs->call_stmt; gcc_assert (is_gimple_call (call)); /* We will deal with constants and SSA scalars first: */ compute_scalar_jump_functions (info, arguments->jump_functions, call); /* Let's check whether there are any potential member pointers and if so, whether we can determine their functions as pass_through. */ if (!compute_pass_through_member_ptrs (info, arguments->jump_functions, call)) return; /* Finally, let's check whether we actually pass a new constant member pointer here... */ compute_cst_member_ptr_arguments (arguments->jump_functions, call); } /* If RHS looks like a rhs of a statement loading pfn from a member pointer formal parameter, return the parameter, otherwise return NULL. */ static tree ipa_get_member_ptr_load_param (tree rhs) { tree rec, fld; tree ptr_field; if (TREE_CODE (rhs) != COMPONENT_REF) return NULL_TREE; rec = TREE_OPERAND (rhs, 0); if (TREE_CODE (rec) != PARM_DECL || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, NULL)) return NULL_TREE; fld = TREE_OPERAND (rhs, 1); if (fld == ptr_field) return rec; else return NULL_TREE; } /* If STMT looks like a statement loading a value from a member pointer formal parameter, this function returns that parameter. */ static tree ipa_get_stmt_member_ptr_load_param (gimple stmt) { tree rhs; if (!is_gimple_assign (stmt) || gimple_num_ops (stmt) != 2) return NULL_TREE; rhs = gimple_assign_rhs1 (stmt); return ipa_get_member_ptr_load_param (rhs); } /* Returns true iff T is an SSA_NAME defined by a statement. */ static bool ipa_is_ssa_with_stmt_def (tree t) { if (TREE_CODE (t) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (t)) return true; else return false; } /* Creates a new note describing a call to a parameter number FORMAL_ID and attaches it to the linked list of INFO. It also sets the called flag of the parameter. STMT is the corresponding call statement. */ static void ipa_note_param_call (struct ipa_node_params *info, int formal_id, gimple stmt) { struct ipa_param_call_note *note; basic_block bb = gimple_bb (stmt); info->params[formal_id].called = 1; note = XCNEW (struct ipa_param_call_note); note->formal_id = formal_id; note->stmt = stmt; note->count = bb->count; note->frequency = compute_call_stmt_bb_frequency (bb); note->next = info->param_calls; info->param_calls = note; return; } /* Analyze the CALL and examine uses of formal parameters of the caller (described by INFO). Currently it checks whether the call calls a pointer that is a formal parameter and if so, the parameter is marked with the called flag and a note describing the call is created. This is very simple for ordinary pointers represented in SSA but not-so-nice when it comes to member pointers. The ugly part of this function does nothing more than tries to match the pattern of such a call. An example of such a pattern is the gimple dump below, the call is on the last line: : f$__delta_5 = f.__delta; f$__pfn_24 = f.__pfn; D.2496_3 = (int) f$__pfn_24; D.2497_4 = D.2496_3 & 1; if (D.2497_4 != 0) goto ; else goto ; : D.2500_7 = (unsigned int) f$__delta_5; D.2501_8 = &S + D.2500_7; D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8; D.2503_10 = *D.2502_9; D.2504_12 = f$__pfn_24 + -1; D.2505_13 = (unsigned int) D.2504_12; D.2506_14 = D.2503_10 + D.2505_13; D.2507_15 = *D.2506_14; iftmp.11_16 = (String:: *) D.2507_15; : # iftmp.11_1 = PHI D.2500_19 = (unsigned int) f$__delta_5; D.2508_20 = &S + D.2500_19; D.2493_21 = iftmp.11_1 (D.2508_20, 4); Such patterns are results of simple calls to a member pointer: int doprinting (int (MyString::* f)(int) const) { MyString S ("somestring"); return (S.*f)(4); } */ static void ipa_analyze_call_uses (struct ipa_node_params *info, gimple call) { tree target = gimple_call_fn (call); gimple def; tree var; tree n1, n2; gimple d1, d2; tree rec, rec2, cond; gimple branch; int index; basic_block bb, virt_bb, join; if (TREE_CODE (target) != SSA_NAME) return; var = SSA_NAME_VAR (target); if (SSA_NAME_IS_DEFAULT_DEF (target)) { /* assuming TREE_CODE (var) == PARM_DECL */ index = ipa_get_param_decl_index (info, var); if (index >= 0) ipa_note_param_call (info, index, call); return; } /* Now we need to try to match the complex pattern of calling a member pointer. */ if (!POINTER_TYPE_P (TREE_TYPE (target)) || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE) return; def = SSA_NAME_DEF_STMT (target); if (gimple_code (def) != GIMPLE_PHI) return; if (gimple_phi_num_args (def) != 2) return; /* First, we need to check whether one of these is a load from a member pointer that is a parameter to this function. */ n1 = PHI_ARG_DEF (def, 0); n2 = PHI_ARG_DEF (def, 1); if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2)) return; d1 = SSA_NAME_DEF_STMT (n1); d2 = SSA_NAME_DEF_STMT (n2); if ((rec = ipa_get_stmt_member_ptr_load_param (d1))) { if (ipa_get_stmt_member_ptr_load_param (d2)) return; bb = gimple_bb (d1); virt_bb = gimple_bb (d2); } else if ((rec = ipa_get_stmt_member_ptr_load_param (d2))) { bb = gimple_bb (d2); virt_bb = gimple_bb (d1); } else return; /* Second, we need to check that the basic blocks are laid out in the way corresponding to the pattern. */ join = gimple_bb (def); if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb) || single_pred (virt_bb) != bb || single_succ (virt_bb) != join) return; /* Third, let's see that the branching is done depending on the least significant bit of the pfn. */ branch = last_stmt (bb); if (gimple_code (branch) != GIMPLE_COND) return; if (gimple_cond_code (branch) != NE_EXPR || !integer_zerop (gimple_cond_rhs (branch))) return; cond = gimple_cond_lhs (branch); if (!ipa_is_ssa_with_stmt_def (cond)) return; def = SSA_NAME_DEF_STMT (cond); if (!is_gimple_assign (def) || gimple_num_ops (def) != 3 || gimple_assign_rhs_code (def) != BIT_AND_EXPR || !integer_onep (gimple_assign_rhs2 (def))) return; cond = gimple_assign_rhs1 (def); if (!ipa_is_ssa_with_stmt_def (cond)) return; def = SSA_NAME_DEF_STMT (cond); if (is_gimple_assign (def) && gimple_num_ops (def) == 2 && gimple_assign_rhs_code (def) == NOP_EXPR) { cond = gimple_assign_rhs1 (def); if (!ipa_is_ssa_with_stmt_def (cond)) return; def = SSA_NAME_DEF_STMT (cond); } rec2 = ipa_get_stmt_member_ptr_load_param (def); if (rec != rec2) return; index = ipa_get_param_decl_index (info, rec); if (index >= 0 && !ipa_is_param_modified (info, index)) ipa_note_param_call (info, index, call); return; } /* Analyze the statement STMT with respect to formal parameters (described in INFO) and their uses. Currently it only checks whether formal parameters are called. */ static void ipa_analyze_stmt_uses (struct ipa_node_params *info, gimple stmt) { if (is_gimple_call (stmt)) ipa_analyze_call_uses (info, stmt); } /* Scan the function body of NODE and inspect the uses of formal parameters. Store the findings in various structures of the associated ipa_node_params structure, such as parameter flags, notes etc. */ void ipa_analyze_params_uses (struct cgraph_node *node) { tree decl = node->decl; basic_block bb; struct function *func; gimple_stmt_iterator gsi; struct ipa_node_params *info = IPA_NODE_REF (node); if (ipa_get_param_count (info) == 0 || info->uses_analysis_done) return; func = DECL_STRUCT_FUNCTION (decl); FOR_EACH_BB_FN (bb, func) { for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); ipa_analyze_stmt_uses (info, stmt); } } info->uses_analysis_done = 1; } /* Update the jump functions associated with call graph edge E when the call graph edge CS is being inlined, assuming that E->caller is already (possibly indirectly) inlined into CS->callee and that E has not been inlined. */ static void update_jump_functions_after_inlining (struct cgraph_edge *cs, struct cgraph_edge *e) { struct ipa_edge_args *top = IPA_EDGE_REF (cs); struct ipa_edge_args *args = IPA_EDGE_REF (e); int count = ipa_get_cs_argument_count (args); int i; for (i = 0; i < count; i++) { struct ipa_jump_func *src, *dst = ipa_get_ith_jump_func (args, i); if (dst->type != IPA_JF_PASS_THROUGH) continue; /* We must check range due to calls with variable number of arguments: */ if (dst->value.formal_id >= (unsigned) ipa_get_cs_argument_count (top)) { dst->type = IPA_BOTTOM; continue; } src = ipa_get_ith_jump_func (top, dst->value.formal_id); *dst = *src; } } /* Print out a debug message to file F that we have discovered that an indirect call described by NT is in fact a call of a known constant function described by JFUNC. NODE is the node where the call is. */ static void print_edge_addition_message (FILE *f, struct ipa_param_call_note *nt, struct ipa_jump_func *jfunc, struct cgraph_node *node) { fprintf (f, "ipa-prop: Discovered an indirect call to a known target ("); if (jfunc->type == IPA_JF_CONST_MEMBER_PTR) { print_node_brief (f, "", jfunc->value.member_cst.pfn, 0); print_node_brief (f, ", ", jfunc->value.member_cst.delta, 0); } else print_node_brief(f, "", jfunc->value.constant, 0); fprintf (f, ") in %s: ", cgraph_node_name (node)); print_gimple_stmt (f, nt->stmt, 2, TDF_SLIM); } /* Update the param called notes associated with NODE when CS is being inlined, assuming NODE is (potentially indirectly) inlined into CS->callee. Moreover, if the callee is discovered to be constant, create a new cgraph edge for it. Newly discovered indirect edges will be added to *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */ static bool update_call_notes_after_inlining (struct cgraph_edge *cs, struct cgraph_node *node, VEC (cgraph_edge_p, heap) **new_edges) { struct ipa_node_params *info = IPA_NODE_REF (node); struct ipa_edge_args *top = IPA_EDGE_REF (cs); struct ipa_param_call_note *nt; bool res = false; for (nt = info->param_calls; nt; nt = nt->next) { struct ipa_jump_func *jfunc; if (nt->processed) continue; /* We must check range due to calls with variable number of arguments: */ if (nt->formal_id >= (unsigned) ipa_get_cs_argument_count (top)) { nt->processed = true; continue; } jfunc = ipa_get_ith_jump_func (top, nt->formal_id); if (jfunc->type == IPA_JF_PASS_THROUGH) nt->formal_id = jfunc->value.formal_id; else if (jfunc->type == IPA_JF_CONST || jfunc->type == IPA_JF_CONST_MEMBER_PTR) { struct cgraph_node *callee; struct cgraph_edge *new_indirect_edge; tree decl; nt->processed = true; if (jfunc->type == IPA_JF_CONST_MEMBER_PTR) decl = jfunc->value.member_cst.pfn; else decl = jfunc->value.constant; if (TREE_CODE (decl) != ADDR_EXPR) continue; decl = TREE_OPERAND (decl, 0); if (TREE_CODE (decl) != FUNCTION_DECL) continue; callee = cgraph_node (decl); if (!callee || !callee->local.inlinable) continue; res = true; if (dump_file) print_edge_addition_message (dump_file, nt, jfunc, node); new_indirect_edge = cgraph_create_edge (node, callee, nt->stmt, nt->count, nt->frequency, nt->loop_nest); new_indirect_edge->indirect_call = 1; ipa_check_create_edge_args (); if (new_edges) VEC_safe_push (cgraph_edge_p, heap, *new_edges, new_indirect_edge); top = IPA_EDGE_REF (cs); } } return res; } /* Recursively traverse subtree of NODE (including node) made of inlined cgraph_edges when CS has been inlined and invoke update_call_notes_after_inlining on all nodes and update_jump_functions_after_inlining on all non-inlined edges that lead out of this subtree. Newly discovered indirect edges will be added to *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */ static bool propagate_info_to_inlined_callees (struct cgraph_edge *cs, struct cgraph_node *node, VEC (cgraph_edge_p, heap) **new_edges) { struct cgraph_edge *e; bool res; res = update_call_notes_after_inlining (cs, node, new_edges); for (e = node->callees; e; e = e->next_callee) if (!e->inline_failed) res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges); else update_jump_functions_after_inlining (cs, e); return res; } /* Update jump functions and call note functions on inlining the call site CS. CS is expected to lead to a node already cloned by cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were + created. */ bool ipa_propagate_indirect_call_infos (struct cgraph_edge *cs, VEC (cgraph_edge_p, heap) **new_edges) { /* Do nothing if the preparation phase has not been carried out yet (i.e. during early inlining). */ if (!ipa_node_params_vector) return false; gcc_assert (ipa_edge_args_vector); return propagate_info_to_inlined_callees (cs, cs->callee, new_edges); } /* Frees all dynamically allocated structures that the argument info points to. */ void ipa_free_edge_args_substructures (struct ipa_edge_args *args) { if (args->jump_functions) free (args->jump_functions); memset (args, 0, sizeof (*args)); } /* Free all ipa_edge structures. */ void ipa_free_all_edge_args (void) { int i; struct ipa_edge_args *args; for (i = 0; VEC_iterate (ipa_edge_args_t, ipa_edge_args_vector, i, args); i++) ipa_free_edge_args_substructures (args); VEC_free (ipa_edge_args_t, heap, ipa_edge_args_vector); ipa_edge_args_vector = NULL; } /* Frees all dynamically allocated structures that the param info points to. */ void ipa_free_node_params_substructures (struct ipa_node_params *info) { if (info->params) free (info->params); while (info->param_calls) { struct ipa_param_call_note *note = info->param_calls; info->param_calls = note->next; free (note); } memset (info, 0, sizeof (*info)); } /* Free all ipa_node_params structures. */ void ipa_free_all_node_params (void) { int i; struct ipa_node_params *info; for (i = 0; VEC_iterate (ipa_node_params_t, ipa_node_params_vector, i, info); i++) ipa_free_node_params_substructures (info); VEC_free (ipa_node_params_t, heap, ipa_node_params_vector); ipa_node_params_vector = NULL; } /* Hook that is called by cgraph.c when an edge is removed. */ static void ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED) { /* During IPA-CP updating we can be called on not-yet analyze clones. */ if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector) <= (unsigned)cs->uid) return; ipa_free_edge_args_substructures (IPA_EDGE_REF (cs)); } /* Hook that is called by cgraph.c when a node is removed. */ static void ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED) { ipa_free_node_params_substructures (IPA_NODE_REF (node)); } /* Helper function to duplicate an array of size N that is at SRC and store a pointer to it to DST. Nothing is done if SRC is NULL. */ static void * duplicate_array (void *src, size_t n) { void *p; if (!src) return NULL; p = xcalloc (1, n); memcpy (p, src, n); return p; } /* Hook that is called by cgraph.c when a node is duplicated. */ static void ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst, __attribute__((unused)) void *data) { struct ipa_edge_args *old_args, *new_args; int arg_count; ipa_check_create_edge_args (); old_args = IPA_EDGE_REF (src); new_args = IPA_EDGE_REF (dst); arg_count = ipa_get_cs_argument_count (old_args); ipa_set_cs_argument_count (new_args, arg_count); new_args->jump_functions = (struct ipa_jump_func *) duplicate_array (old_args->jump_functions, sizeof (struct ipa_jump_func) * arg_count); } /* Hook that is called by cgraph.c when a node is duplicated. */ static void ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst, __attribute__((unused)) void *data) { struct ipa_node_params *old_info, *new_info; struct ipa_param_call_note *note; int param_count; ipa_check_create_node_params (); old_info = IPA_NODE_REF (src); new_info = IPA_NODE_REF (dst); param_count = ipa_get_param_count (old_info); ipa_set_param_count (new_info, param_count); new_info->params = (struct ipa_param_descriptor *) duplicate_array (old_info->params, sizeof (struct ipa_param_descriptor) * param_count); new_info->ipcp_orig_node = old_info->ipcp_orig_node; new_info->count_scale = old_info->count_scale; for (note = old_info->param_calls; note; note = note->next) { struct ipa_param_call_note *nn; nn = (struct ipa_param_call_note *) xcalloc (1, sizeof (struct ipa_param_call_note)); memcpy (nn, note, sizeof (struct ipa_param_call_note)); nn->next = new_info->param_calls; new_info->param_calls = nn; } } /* Register our cgraph hooks if they are not already there. */ void ipa_register_cgraph_hooks (void) { if (!edge_removal_hook_holder) edge_removal_hook_holder = cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL); if (!node_removal_hook_holder) node_removal_hook_holder = cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL); if (!edge_duplication_hook_holder) edge_duplication_hook_holder = cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL); if (!node_duplication_hook_holder) node_duplication_hook_holder = cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL); } /* Unregister our cgraph hooks if they are not already there. */ static void ipa_unregister_cgraph_hooks (void) { cgraph_remove_edge_removal_hook (edge_removal_hook_holder); edge_removal_hook_holder = NULL; cgraph_remove_node_removal_hook (node_removal_hook_holder); node_removal_hook_holder = NULL; cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder); edge_duplication_hook_holder = NULL; cgraph_remove_node_duplication_hook (node_duplication_hook_holder); node_duplication_hook_holder = NULL; } /* Free all ipa_node_params and all ipa_edge_args structures if they are no longer needed after ipa-cp. */ void free_all_ipa_structures_after_ipa_cp (void) { if (!flag_indirect_inlining) { ipa_free_all_edge_args (); ipa_free_all_node_params (); ipa_unregister_cgraph_hooks (); } } /* Free all ipa_node_params and all ipa_edge_args structures if they are no longer needed after indirect inlining. */ void free_all_ipa_structures_after_iinln (void) { ipa_free_all_edge_args (); ipa_free_all_node_params (); ipa_unregister_cgraph_hooks (); } /* Print ipa_tree_map data structures of all functions in the callgraph to F. */ void ipa_print_node_params (FILE * f, struct cgraph_node *node) { int i, count; tree temp; struct ipa_node_params *info; if (!node->analyzed) return; info = IPA_NODE_REF (node); fprintf (f, " function %s Trees :: \n", cgraph_node_name (node)); count = ipa_get_param_count (info); for (i = 0; i < count; i++) { temp = ipa_get_param (info, i); if (TREE_CODE (temp) == PARM_DECL) fprintf (f, " param %d : %s", i, (*lang_hooks.decl_printable_name) (temp, 2)); if (ipa_is_param_modified (info, i)) fprintf (f, " modified"); if (ipa_is_param_called (info, i)) fprintf (f, " called"); fprintf (f, "\n"); } } /* Print ipa_tree_map data structures of all functions in the callgraph to F. */ void ipa_print_all_params (FILE * f) { struct cgraph_node *node; fprintf (f, "\nFunction parameters:\n"); for (node = cgraph_nodes; node; node = node->next) ipa_print_node_params (f, node); }