/* Interprocedural analyses.
Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "langhooks.h"
#include "ggc.h"
#include "target.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-inline.h"
#include "flags.h"
#include "timevar.h"
#include "flags.h"
#include "diagnostic.h"
/* Vector where the parameter infos are actually stored. */
VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
/* Vector where the parameter infos are actually stored. */
VEC (ipa_edge_args_t, heap) *ipa_edge_args_vector;
/* Holders of ipa cgraph hooks: */
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
static struct cgraph_node_hook_list *node_removal_hook_holder;
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
/* Initialize worklist to contain all functions. */
struct ipa_func_list *
ipa_init_func_list (void)
{
struct cgraph_node *node;
struct ipa_func_list * wl;
wl = NULL;
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed)
{
/* Unreachable nodes should have been eliminated before ipcp and
inlining. */
gcc_assert (node->needed || node->reachable);
ipa_push_func_to_list (&wl, node);
}
return wl;
}
/* Add cgraph node MT to the worklist. Set worklist element WL
to point to MT. */
void
ipa_push_func_to_list (struct ipa_func_list **wl, struct cgraph_node *mt)
{
struct ipa_func_list *temp;
temp = XCNEW (struct ipa_func_list);
temp->node = mt;
temp->next = *wl;
*wl = temp;
}
/* Remove a function from the worklist. WL points to the first
element in the list, which is removed. */
struct cgraph_node *
ipa_pop_func_from_list (struct ipa_func_list ** wl)
{
struct ipa_func_list *first;
struct cgraph_node *return_func;
first = *wl;
*wl = (*wl)->next;
return_func = first->node;
free (first);
return return_func;
}
/* Return index of the formal whose tree is PTREE in function which corresponds
to INFO. */
static int
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
{
int i, count;
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
if (ipa_get_param(info, i) == ptree)
return i;
return -1;
}
/* Populate the param_decl field in parameter descriptors of INFO that
corresponds to NODE. */
static void
ipa_populate_param_decls (struct cgraph_node *node,
struct ipa_node_params *info)
{
tree fndecl;
tree fnargs;
tree parm;
int param_num;
fndecl = node->decl;
fnargs = DECL_ARGUMENTS (fndecl);
param_num = 0;
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
{
info->params[param_num].decl = parm;
param_num++;
}
}
/* Count number of formal parameters in NOTE. Store the result to the
appropriate field of INFO. */
static void
ipa_count_formal_params (struct cgraph_node *node,
struct ipa_node_params *info)
{
tree fndecl;
tree fnargs;
tree parm;
int param_num;
fndecl = node->decl;
fnargs = DECL_ARGUMENTS (fndecl);
param_num = 0;
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
param_num++;
ipa_set_param_count (info, param_num);
}
/* Initialize the ipa_node_params structure associated with NODE by counting
the function parameters, creating the descriptors and populating their
param_decls. */
void
ipa_initialize_node_params (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
if (!info->params)
{
ipa_count_formal_params (node, info);
info->params = XCNEWVEC (struct ipa_param_descriptor,
ipa_get_param_count (info));
ipa_populate_param_decls (node, info);
}
}
/* Callback of walk_stmt_load_store_addr_ops for the visit_store and visit_addr
parameters. If OP is a parameter declaration, mark it as modified in the
info structure passed in DATA. */
static bool
visit_store_addr_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
tree op, void *data)
{
struct ipa_node_params *info = (struct ipa_node_params *) data;
if (TREE_CODE (op) == PARM_DECL)
{
int index = ipa_get_param_decl_index (info, op);
gcc_assert (index >= 0);
info->params[index].modified = true;
}
return false;
}
/* Compute which formal parameters of function associated with NODE are locally
modified or their address is taken. Note that this does not apply on
parameters with SSA names but those can and should be analyzed
differently. */
void
ipa_detect_param_modifications (struct cgraph_node *node)
{
tree decl = node->decl;
basic_block bb;
struct function *func;
gimple_stmt_iterator gsi;
struct ipa_node_params *info = IPA_NODE_REF (node);
if (ipa_get_param_count (info) == 0 || info->modification_analysis_done)
return;
func = DECL_STRUCT_FUNCTION (decl);
FOR_EACH_BB_FN (bb, func)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info, NULL,
visit_store_addr_for_mod_analysis,
visit_store_addr_for_mod_analysis);
info->modification_analysis_done = 1;
}
/* Count number of arguments callsite CS has and store it in
ipa_edge_args structure corresponding to this callsite. */
void
ipa_count_arguments (struct cgraph_edge *cs)
{
gimple stmt;
int arg_num;
stmt = cs->call_stmt;
gcc_assert (is_gimple_call (stmt));
arg_num = gimple_call_num_args (stmt);
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
<= (unsigned) cgraph_edge_max_uid)
VEC_safe_grow_cleared (ipa_edge_args_t, heap,
ipa_edge_args_vector, cgraph_edge_max_uid + 1);
ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
}
/* Print the jump functions of all arguments on all call graph edges going from
NODE to file F. */
void
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
{
int i, count;
struct cgraph_edge *cs;
struct ipa_jump_func *jump_func;
enum jump_func_type type;
fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
for (cs = node->callees; cs; cs = cs->next_callee)
{
if (!ipa_edge_args_info_available_for_edge_p (cs))
continue;
fprintf (f, " callsite %s ", cgraph_node_name (node));
fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee));
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
for (i = 0; i < count; i++)
{
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
type = jump_func->type;
fprintf (f, " param %d: ", i);
if (type == IPA_JF_UNKNOWN)
fprintf (f, "UNKNOWN\n");
else if (type == IPA_JF_CONST)
{
tree val = jump_func->value.constant;
fprintf (f, "CONST: ");
print_generic_expr (f, val, 0);
fprintf (f, "\n");
}
else if (type == IPA_JF_CONST_MEMBER_PTR)
{
fprintf (f, "CONST MEMBER PTR: ");
print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
fprintf (f, ", ");
print_generic_expr (f, jump_func->value.member_cst.delta, 0);
fprintf (f, "\n");
}
else if (type == IPA_JF_PASS_THROUGH)
{
fprintf (f, "PASS THROUGH: ");
fprintf (f, "%d\n", jump_func->value.formal_id);
}
}
}
}
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
void
ipa_print_all_jump_functions (FILE *f)
{
struct cgraph_node *node;
fprintf (f, "\nJump functions:\n");
for (node = cgraph_nodes; node; node = node->next)
{
ipa_print_node_jump_functions (f, node);
}
}
/* Determine the jump functions of scalar arguments. Scalar means SSA names
and constants of a number of selected types. INFO is the ipa_node_params
structure associated with the caller, FUNCTIONS is a pointer to an array of
jump function structures associated with CALL which is the call statement
being examined.*/
static void
compute_scalar_jump_functions (struct ipa_node_params *info,
struct ipa_jump_func *functions,
gimple call)
{
tree arg;
unsigned num = 0;
for (num = 0; num < gimple_call_num_args (call); num++)
{
arg = gimple_call_arg (call, num);
if (is_gimple_ip_invariant (arg))
{
functions[num].type = IPA_JF_CONST;
functions[num].value.constant = arg;
}
else if ((TREE_CODE (arg) == SSA_NAME) && SSA_NAME_IS_DEFAULT_DEF (arg))
{
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
if (index >= 0)
{
functions[num].type = IPA_JF_PASS_THROUGH;
functions[num].value.formal_id = index;
}
}
}
}
/* Inspect the given TYPE and return true iff it has the same structure (the
same number of fields of the same types) as a C++ member pointer. If
METHOD_PTR and DELTA are non-NULL, store the trees representing the
corresponding fields there. */
static bool
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
{
tree fld;
if (TREE_CODE (type) != RECORD_TYPE)
return false;
fld = TYPE_FIELDS (type);
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
return false;
if (method_ptr)
*method_ptr = fld;
fld = TREE_CHAIN (fld);
if (!fld || INTEGRAL_TYPE_P (fld))
return false;
if (delta)
*delta = fld;
if (TREE_CHAIN (fld))
return false;
return true;
}
/* Go through arguments of the CALL and for every one that looks like a member
pointer, check whether it can be safely declared pass-through and if so,
mark that to the corresponding item of jump FUNCTIONS. Return true iff
there are non-pass-through member pointers within the arguments. INFO
describes formal parameters of the caller. */
static bool
compute_pass_through_member_ptrs (struct ipa_node_params *info,
struct ipa_jump_func *functions,
gimple call)
{
bool undecided_members = false;
unsigned num;
tree arg;
for (num = 0; num < gimple_call_num_args (call); num++)
{
arg = gimple_call_arg (call, num);
if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
{
if (TREE_CODE (arg) == PARM_DECL)
{
int index = ipa_get_param_decl_index (info, arg);
gcc_assert (index >=0);
if (!ipa_is_param_modified (info, index))
{
functions[num].type = IPA_JF_PASS_THROUGH;
functions[num].value.formal_id = index;
}
else
undecided_members = true;
}
else
undecided_members = true;
}
}
return undecided_members;
}
/* Simple function filling in a member pointer constant jump function (with PFN
and DELTA as the constant value) into JFUNC. */
static void
fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
tree pfn, tree delta)
{
jfunc->type = IPA_JF_CONST_MEMBER_PTR;
jfunc->value.member_cst.pfn = pfn;
jfunc->value.member_cst.delta = delta;
}
/* If RHS is an SSA_NAMe and it is defined by a simple copy assign statement,
return the rhs of its defining statement. */
static inline tree
get_ssa_def_if_simple_copy (tree rhs)
{
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
{
gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
if (gimple_assign_single_p (def_stmt))
rhs = gimple_assign_rhs1 (def_stmt);
else
break;
}
return rhs;
}
/* Traverse statements from CALL backwards, scanning whether the argument ARG
which is a member pointer is filled in with constant values. If it is, fill
the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
fields of the record type of the member pointer. To give an example, we
look for a pattern looking like the following:
D.2515.__pfn ={v} printStuff;
D.2515.__delta ={v} 0;
i_1 = doprinting (D.2515); */
static void
determine_cst_member_ptr (gimple call, tree arg, tree method_field,
tree delta_field, struct ipa_jump_func *jfunc)
{
gimple_stmt_iterator gsi;
tree method = NULL_TREE;
tree delta = NULL_TREE;
gsi = gsi_for_stmt (call);
gsi_prev (&gsi);
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree lhs, rhs, fld;
if (!gimple_assign_single_p (stmt))
return;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (lhs) != COMPONENT_REF
|| TREE_OPERAND (lhs, 0) != arg)
continue;
fld = TREE_OPERAND (lhs, 1);
if (!method && fld == method_field)
{
rhs = get_ssa_def_if_simple_copy (rhs);
if (TREE_CODE (rhs) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
{
method = TREE_OPERAND (rhs, 0);
if (delta)
{
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
return;
}
}
else
return;
}
if (!delta && fld == delta_field)
{
rhs = get_ssa_def_if_simple_copy (rhs);
if (TREE_CODE (rhs) == INTEGER_CST)
{
delta = rhs;
if (method)
{
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
return;
}
}
else
return;
}
}
return;
}
/* Go through the arguments of the CALL and for every member pointer within
tries determine whether it is a constant. If it is, create a corresponding
constant jump function in FUNCTIONS which is an array of jump functions
associated with the call. */
static void
compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
gimple call)
{
unsigned num;
tree arg, method_field, delta_field;
for (num = 0; num < gimple_call_num_args (call); num++)
{
arg = gimple_call_arg (call, num);
if (functions[num].type == IPA_JF_UNKNOWN
&& type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
&delta_field))
determine_cst_member_ptr (call, arg, method_field, delta_field,
&functions[num]);
}
}
/* Compute jump function for all arguments of callsite CS and insert the
information in the jump_functions array in the ipa_edge_args corresponding
to this callsite. */
void
ipa_compute_jump_functions (struct cgraph_edge *cs)
{
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
gimple call;
if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
return;
arguments->jump_functions = XCNEWVEC (struct ipa_jump_func,
ipa_get_cs_argument_count (arguments));
call = cs->call_stmt;
gcc_assert (is_gimple_call (call));
/* We will deal with constants and SSA scalars first: */
compute_scalar_jump_functions (info, arguments->jump_functions, call);
/* Let's check whether there are any potential member pointers and if so,
whether we can determine their functions as pass_through. */
if (!compute_pass_through_member_ptrs (info, arguments->jump_functions, call))
return;
/* Finally, let's check whether we actually pass a new constant member
pointer here... */
compute_cst_member_ptr_arguments (arguments->jump_functions, call);
}
/* If RHS looks like a rhs of a statement loading pfn from a member pointer
formal parameter, return the parameter, otherwise return NULL. */
static tree
ipa_get_member_ptr_load_param (tree rhs)
{
tree rec, fld;
tree ptr_field;
if (TREE_CODE (rhs) != COMPONENT_REF)
return NULL_TREE;
rec = TREE_OPERAND (rhs, 0);
if (TREE_CODE (rec) != PARM_DECL
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, NULL))
return NULL_TREE;
fld = TREE_OPERAND (rhs, 1);
if (fld == ptr_field)
return rec;
else
return NULL_TREE;
}
/* If STMT looks like a statement loading a value from a member pointer formal
parameter, this function returns that parameter. */
static tree
ipa_get_stmt_member_ptr_load_param (gimple stmt)
{
tree rhs;
if (!gimple_assign_single_p (stmt))
return NULL_TREE;
rhs = gimple_assign_rhs1 (stmt);
return ipa_get_member_ptr_load_param (rhs);
}
/* Returns true iff T is an SSA_NAME defined by a statement. */
static bool
ipa_is_ssa_with_stmt_def (tree t)
{
if (TREE_CODE (t) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (t))
return true;
else
return false;
}
/* Creates a new note describing a call to a parameter number FORMAL_ID and
attaches it to the linked list of INFO. It also sets the called flag of the
parameter. STMT is the corresponding call statement. */
static void
ipa_note_param_call (struct ipa_node_params *info, int formal_id,
gimple stmt)
{
struct ipa_param_call_note *note;
basic_block bb = gimple_bb (stmt);
info->params[formal_id].called = 1;
note = XCNEW (struct ipa_param_call_note);
note->formal_id = formal_id;
note->stmt = stmt;
note->count = bb->count;
note->frequency = compute_call_stmt_bb_frequency (current_function_decl, bb);
note->next = info->param_calls;
info->param_calls = note;
return;
}
/* Analyze the CALL and examine uses of formal parameters of the caller
(described by INFO). Currently it checks whether the call calls a pointer
that is a formal parameter and if so, the parameter is marked with the
called flag and a note describing the call is created. This is very simple
for ordinary pointers represented in SSA but not-so-nice when it comes to
member pointers. The ugly part of this function does nothing more than
tries to match the pattern of such a call. An example of such a pattern is
the gimple dump below, the call is on the last line:
:
f$__delta_5 = f.__delta;
f$__pfn_24 = f.__pfn;
D.2496_3 = (int) f$__pfn_24;
D.2497_4 = D.2496_3 & 1;
if (D.2497_4 != 0)
goto ;
else
goto ;
:
D.2500_7 = (unsigned int) f$__delta_5;
D.2501_8 = &S + D.2500_7;
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
D.2503_10 = *D.2502_9;
D.2504_12 = f$__pfn_24 + -1;
D.2505_13 = (unsigned int) D.2504_12;
D.2506_14 = D.2503_10 + D.2505_13;
D.2507_15 = *D.2506_14;
iftmp.11_16 = (String:: *) D.2507_15;
:
# iftmp.11_1 = PHI
D.2500_19 = (unsigned int) f$__delta_5;
D.2508_20 = &S + D.2500_19;
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
Such patterns are results of simple calls to a member pointer:
int doprinting (int (MyString::* f)(int) const)
{
MyString S ("somestring");
return (S.*f)(4);
}
*/
static void
ipa_analyze_call_uses (struct ipa_node_params *info, gimple call)
{
tree target = gimple_call_fn (call);
gimple def;
tree var;
tree n1, n2;
gimple d1, d2;
tree rec, rec2, cond;
gimple branch;
int index;
basic_block bb, virt_bb, join;
if (TREE_CODE (target) != SSA_NAME)
return;
var = SSA_NAME_VAR (target);
if (SSA_NAME_IS_DEFAULT_DEF (target))
{
/* assuming TREE_CODE (var) == PARM_DECL */
index = ipa_get_param_decl_index (info, var);
if (index >= 0)
ipa_note_param_call (info, index, call);
return;
}
/* Now we need to try to match the complex pattern of calling a member
pointer. */
if (!POINTER_TYPE_P (TREE_TYPE (target))
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
return;
def = SSA_NAME_DEF_STMT (target);
if (gimple_code (def) != GIMPLE_PHI)
return;
if (gimple_phi_num_args (def) != 2)
return;
/* First, we need to check whether one of these is a load from a member
pointer that is a parameter to this function. */
n1 = PHI_ARG_DEF (def, 0);
n2 = PHI_ARG_DEF (def, 1);
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
return;
d1 = SSA_NAME_DEF_STMT (n1);
d2 = SSA_NAME_DEF_STMT (n2);
if ((rec = ipa_get_stmt_member_ptr_load_param (d1)))
{
if (ipa_get_stmt_member_ptr_load_param (d2))
return;
bb = gimple_bb (d1);
virt_bb = gimple_bb (d2);
}
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2)))
{
bb = gimple_bb (d2);
virt_bb = gimple_bb (d1);
}
else
return;
/* Second, we need to check that the basic blocks are laid out in the way
corresponding to the pattern. */
join = gimple_bb (def);
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|| single_pred (virt_bb) != bb
|| single_succ (virt_bb) != join)
return;
/* Third, let's see that the branching is done depending on the least
significant bit of the pfn. */
branch = last_stmt (bb);
if (gimple_code (branch) != GIMPLE_COND)
return;
if (gimple_cond_code (branch) != NE_EXPR
|| !integer_zerop (gimple_cond_rhs (branch)))
return;
cond = gimple_cond_lhs (branch);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
if (!is_gimple_assign (def)
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|| !integer_onep (gimple_assign_rhs2 (def)))
return;
cond = gimple_assign_rhs1 (def);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
if (is_gimple_assign (def)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
{
cond = gimple_assign_rhs1 (def);
if (!ipa_is_ssa_with_stmt_def (cond))
return;
def = SSA_NAME_DEF_STMT (cond);
}
rec2 = ipa_get_stmt_member_ptr_load_param (def);
if (rec != rec2)
return;
index = ipa_get_param_decl_index (info, rec);
if (index >= 0 && !ipa_is_param_modified (info, index))
ipa_note_param_call (info, index, call);
return;
}
/* Analyze the statement STMT with respect to formal parameters (described in
INFO) and their uses. Currently it only checks whether formal parameters
are called. */
static void
ipa_analyze_stmt_uses (struct ipa_node_params *info, gimple stmt)
{
if (is_gimple_call (stmt))
ipa_analyze_call_uses (info, stmt);
}
/* Scan the function body of NODE and inspect the uses of formal parameters.
Store the findings in various structures of the associated ipa_node_params
structure, such as parameter flags, notes etc. */
void
ipa_analyze_params_uses (struct cgraph_node *node)
{
tree decl = node->decl;
basic_block bb;
struct function *func;
gimple_stmt_iterator gsi;
struct ipa_node_params *info = IPA_NODE_REF (node);
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
return;
func = DECL_STRUCT_FUNCTION (decl);
FOR_EACH_BB_FN (bb, func)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
ipa_analyze_stmt_uses (info, stmt);
}
}
info->uses_analysis_done = 1;
}
/* Update the jump functions associated with call graph edge E when the call
graph edge CS is being inlined, assuming that E->caller is already (possibly
indirectly) inlined into CS->callee and that E has not been inlined. */
static void
update_jump_functions_after_inlining (struct cgraph_edge *cs,
struct cgraph_edge *e)
{
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
struct ipa_edge_args *args = IPA_EDGE_REF (e);
int count = ipa_get_cs_argument_count (args);
int i;
for (i = 0; i < count; i++)
{
struct ipa_jump_func *src, *dst = ipa_get_ith_jump_func (args, i);
if (dst->type != IPA_JF_PASS_THROUGH)
continue;
/* We must check range due to calls with variable number of arguments: */
if (dst->value.formal_id >= (unsigned) ipa_get_cs_argument_count (top))
{
dst->type = IPA_JF_UNKNOWN;
continue;
}
src = ipa_get_ith_jump_func (top, dst->value.formal_id);
*dst = *src;
}
}
/* Print out a debug message to file F that we have discovered that an indirect
call described by NT is in fact a call of a known constant function described
by JFUNC. NODE is the node where the call is. */
static void
print_edge_addition_message (FILE *f, struct ipa_param_call_note *nt,
struct ipa_jump_func *jfunc,
struct cgraph_node *node)
{
fprintf (f, "ipa-prop: Discovered an indirect call to a known target (");
if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
{
print_node_brief (f, "", jfunc->value.member_cst.pfn, 0);
print_node_brief (f, ", ", jfunc->value.member_cst.delta, 0);
}
else
print_node_brief(f, "", jfunc->value.constant, 0);
fprintf (f, ") in %s: ", cgraph_node_name (node));
print_gimple_stmt (f, nt->stmt, 2, TDF_SLIM);
}
/* Update the param called notes associated with NODE when CS is being inlined,
assuming NODE is (potentially indirectly) inlined into CS->callee.
Moreover, if the callee is discovered to be constant, create a new cgraph
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
static bool
update_call_notes_after_inlining (struct cgraph_edge *cs,
struct cgraph_node *node,
VEC (cgraph_edge_p, heap) **new_edges)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
struct ipa_param_call_note *nt;
bool res = false;
for (nt = info->param_calls; nt; nt = nt->next)
{
struct ipa_jump_func *jfunc;
if (nt->processed)
continue;
/* We must check range due to calls with variable number of arguments: */
if (nt->formal_id >= (unsigned) ipa_get_cs_argument_count (top))
{
nt->processed = true;
continue;
}
jfunc = ipa_get_ith_jump_func (top, nt->formal_id);
if (jfunc->type == IPA_JF_PASS_THROUGH)
nt->formal_id = jfunc->value.formal_id;
else if (jfunc->type == IPA_JF_CONST
|| jfunc->type == IPA_JF_CONST_MEMBER_PTR)
{
struct cgraph_node *callee;
struct cgraph_edge *new_indirect_edge;
tree decl;
nt->processed = true;
if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
decl = jfunc->value.member_cst.pfn;
else
decl = jfunc->value.constant;
if (TREE_CODE (decl) != ADDR_EXPR)
continue;
decl = TREE_OPERAND (decl, 0);
if (TREE_CODE (decl) != FUNCTION_DECL)
continue;
callee = cgraph_node (decl);
if (!callee || !callee->local.inlinable)
continue;
res = true;
if (dump_file)
print_edge_addition_message (dump_file, nt, jfunc, node);
new_indirect_edge = cgraph_create_edge (node, callee, nt->stmt,
nt->count, nt->frequency,
nt->loop_nest);
new_indirect_edge->indirect_call = 1;
ipa_check_create_edge_args ();
if (new_edges)
VEC_safe_push (cgraph_edge_p, heap, *new_edges, new_indirect_edge);
top = IPA_EDGE_REF (cs);
}
}
return res;
}
/* Recursively traverse subtree of NODE (including node) made of inlined
cgraph_edges when CS has been inlined and invoke
update_call_notes_after_inlining on all nodes and
update_jump_functions_after_inlining on all non-inlined edges that lead out
of this subtree. Newly discovered indirect edges will be added to
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
created. */
static bool
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
struct cgraph_node *node,
VEC (cgraph_edge_p, heap) **new_edges)
{
struct cgraph_edge *e;
bool res;
res = update_call_notes_after_inlining (cs, node, new_edges);
for (e = node->callees; e; e = e->next_callee)
if (!e->inline_failed)
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
else
update_jump_functions_after_inlining (cs, e);
return res;
}
/* Update jump functions and call note functions on inlining the call site CS.
CS is expected to lead to a node already cloned by
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
created. */
bool
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
VEC (cgraph_edge_p, heap) **new_edges)
{
/* Do nothing if the preparation phase has not been carried out yet
(i.e. during early inlining). */
if (!ipa_node_params_vector)
return false;
gcc_assert (ipa_edge_args_vector);
return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
}
/* Frees all dynamically allocated structures that the argument info points
to. */
void
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
{
if (args->jump_functions)
free (args->jump_functions);
memset (args, 0, sizeof (*args));
}
/* Free all ipa_edge structures. */
void
ipa_free_all_edge_args (void)
{
int i;
struct ipa_edge_args *args;
for (i = 0;
VEC_iterate (ipa_edge_args_t, ipa_edge_args_vector, i, args);
i++)
ipa_free_edge_args_substructures (args);
VEC_free (ipa_edge_args_t, heap, ipa_edge_args_vector);
ipa_edge_args_vector = NULL;
}
/* Frees all dynamically allocated structures that the param info points
to. */
void
ipa_free_node_params_substructures (struct ipa_node_params *info)
{
if (info->params)
free (info->params);
while (info->param_calls)
{
struct ipa_param_call_note *note = info->param_calls;
info->param_calls = note->next;
free (note);
}
memset (info, 0, sizeof (*info));
}
/* Free all ipa_node_params structures. */
void
ipa_free_all_node_params (void)
{
int i;
struct ipa_node_params *info;
for (i = 0;
VEC_iterate (ipa_node_params_t, ipa_node_params_vector, i, info);
i++)
ipa_free_node_params_substructures (info);
VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
ipa_node_params_vector = NULL;
}
/* Hook that is called by cgraph.c when an edge is removed. */
static void
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
{
/* During IPA-CP updating we can be called on not-yet analyze clones. */
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
<= (unsigned)cs->uid)
return;
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
}
/* Hook that is called by cgraph.c when a node is removed. */
static void
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
ipa_free_node_params_substructures (IPA_NODE_REF (node));
}
/* Helper function to duplicate an array of size N that is at SRC and store a
pointer to it to DST. Nothing is done if SRC is NULL. */
static void *
duplicate_array (void *src, size_t n)
{
void *p;
if (!src)
return NULL;
p = xcalloc (1, n);
memcpy (p, src, n);
return p;
}
/* Hook that is called by cgraph.c when a node is duplicated. */
static void
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
__attribute__((unused)) void *data)
{
struct ipa_edge_args *old_args, *new_args;
int arg_count;
ipa_check_create_edge_args ();
old_args = IPA_EDGE_REF (src);
new_args = IPA_EDGE_REF (dst);
arg_count = ipa_get_cs_argument_count (old_args);
ipa_set_cs_argument_count (new_args, arg_count);
new_args->jump_functions = (struct ipa_jump_func *)
duplicate_array (old_args->jump_functions,
sizeof (struct ipa_jump_func) * arg_count);
}
/* Hook that is called by cgraph.c when a node is duplicated. */
static void
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
__attribute__((unused)) void *data)
{
struct ipa_node_params *old_info, *new_info;
struct ipa_param_call_note *note;
int param_count;
ipa_check_create_node_params ();
old_info = IPA_NODE_REF (src);
new_info = IPA_NODE_REF (dst);
param_count = ipa_get_param_count (old_info);
ipa_set_param_count (new_info, param_count);
new_info->params = (struct ipa_param_descriptor *)
duplicate_array (old_info->params,
sizeof (struct ipa_param_descriptor) * param_count);
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
new_info->count_scale = old_info->count_scale;
for (note = old_info->param_calls; note; note = note->next)
{
struct ipa_param_call_note *nn;
nn = (struct ipa_param_call_note *)
xcalloc (1, sizeof (struct ipa_param_call_note));
memcpy (nn, note, sizeof (struct ipa_param_call_note));
nn->next = new_info->param_calls;
new_info->param_calls = nn;
}
}
/* Register our cgraph hooks if they are not already there. */
void
ipa_register_cgraph_hooks (void)
{
if (!edge_removal_hook_holder)
edge_removal_hook_holder =
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
if (!node_removal_hook_holder)
node_removal_hook_holder =
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
if (!edge_duplication_hook_holder)
edge_duplication_hook_holder =
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
if (!node_duplication_hook_holder)
node_duplication_hook_holder =
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
}
/* Unregister our cgraph hooks if they are not already there. */
static void
ipa_unregister_cgraph_hooks (void)
{
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
edge_removal_hook_holder = NULL;
cgraph_remove_node_removal_hook (node_removal_hook_holder);
node_removal_hook_holder = NULL;
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
edge_duplication_hook_holder = NULL;
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
node_duplication_hook_holder = NULL;
}
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
longer needed after ipa-cp. */
void
free_all_ipa_structures_after_ipa_cp (void)
{
if (!flag_indirect_inlining)
{
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
ipa_unregister_cgraph_hooks ();
}
}
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
longer needed after indirect inlining. */
void
free_all_ipa_structures_after_iinln (void)
{
ipa_free_all_edge_args ();
ipa_free_all_node_params ();
ipa_unregister_cgraph_hooks ();
}
/* Print ipa_tree_map data structures of all functions in the
callgraph to F. */
void
ipa_print_node_params (FILE * f, struct cgraph_node *node)
{
int i, count;
tree temp;
struct ipa_node_params *info;
if (!node->analyzed)
return;
info = IPA_NODE_REF (node);
fprintf (f, " function %s Trees :: \n", cgraph_node_name (node));
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
temp = ipa_get_param (info, i);
if (TREE_CODE (temp) == PARM_DECL)
fprintf (f, " param %d : %s", i,
(*lang_hooks.decl_printable_name) (temp, 2));
if (ipa_is_param_modified (info, i))
fprintf (f, " modified");
if (ipa_is_param_called (info, i))
fprintf (f, " called");
fprintf (f, "\n");
}
}
/* Print ipa_tree_map data structures of all functions in the
callgraph to F. */
void
ipa_print_all_params (FILE * f)
{
struct cgraph_node *node;
fprintf (f, "\nFunction parameters:\n");
for (node = cgraph_nodes; node; node = node->next)
ipa_print_node_params (f, node);
}