/* Sets (bit vectors) of hard registers, and operations on them. Copyright (C) 1987-2014 Free Software Foundation, Inc. This file is part of GCC GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_HARD_REG_SET_H #define GCC_HARD_REG_SET_H #include "hash-table.h" /* Define the type of a set of hard registers. */ /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which will be used for hard reg sets, either alone or in an array. If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE, and it has enough bits to represent all the target machine's hard registers. Otherwise, it is a typedef for a suitably sized array of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many. Note that lots of code assumes that the first part of a regset is the same format as a HARD_REG_SET. To help make sure this is true, we only try the widest fast integer mode (HOST_WIDEST_FAST_INT) instead of all the smaller types. This approach loses only if there are very few registers and then only in the few cases where we have an array of HARD_REG_SETs, so it needn't be as complex as it used to be. */ typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE; #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT #define HARD_REG_SET HARD_REG_ELT_TYPE #else #define HARD_REG_SET_LONGS \ ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \ / HOST_BITS_PER_WIDEST_FAST_INT) typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS]; #endif /* HARD_REG_SET wrapped into a structure, to make it possible to use HARD_REG_SET even in APIs that should not include hard-reg-set.h. */ struct hard_reg_set_container { HARD_REG_SET set; }; /* HARD_CONST is used to cast a constant to the appropriate type for use with a HARD_REG_SET. */ #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X)) /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT to set, clear or test one bit in a hard reg set of type HARD_REG_SET. All three take two arguments: the set and the register number. In the case where sets are arrays of longs, the first argument is actually a pointer to a long. Define two macros for initializing a set: CLEAR_HARD_REG_SET and SET_HARD_REG_SET. These take just one argument. Also define macros for copying hard reg sets: COPY_HARD_REG_SET and COMPL_HARD_REG_SET. These take two arguments TO and FROM; they read from FROM and store into TO. COMPL_HARD_REG_SET complements each bit. Also define macros for combining hard reg sets: IOR_HARD_REG_SET and AND_HARD_REG_SET. These take two arguments TO and FROM; they read from FROM and combine bitwise into TO. Define also two variants IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET which use the complement of the set FROM. Also define: hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y. hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal. hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect. hard_reg_set_empty_p (X), which returns true if X is empty. */ #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT) #ifdef HARD_REG_SET #define SET_HARD_REG_BIT(SET, BIT) \ ((SET) |= HARD_CONST (1) << (BIT)) #define CLEAR_HARD_REG_BIT(SET, BIT) \ ((SET) &= ~(HARD_CONST (1) << (BIT))) #define TEST_HARD_REG_BIT(SET, BIT) \ (!!((SET) & (HARD_CONST (1) << (BIT)))) #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0)) #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0)) #define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM)) #define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM)) #define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM)) #define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM)) #define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM)) #define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM)) static inline bool hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) { return (x & ~y) == HARD_CONST (0); } static inline bool hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) { return x == y; } static inline bool hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) { return (x & y) != HARD_CONST (0); } static inline bool hard_reg_set_empty_p (const HARD_REG_SET x) { return x == HARD_CONST (0); } #else #define SET_HARD_REG_BIT(SET, BIT) \ ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)) #define CLEAR_HARD_REG_BIT(SET, BIT) \ ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))) #define TEST_HARD_REG_BIT(SET, BIT) \ (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))) #if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT #define CLEAR_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = 0; \ scan_tp_[1] = 0; } while (0) #define SET_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = -1; \ scan_tp_[1] = -1; } while (0) #define COPY_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = scan_fp_[0]; \ scan_tp_[1] = scan_fp_[1]; } while (0) #define COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = ~ scan_fp_[0]; \ scan_tp_[1] = ~ scan_fp_[1]; } while (0) #define AND_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= scan_fp_[0]; \ scan_tp_[1] &= scan_fp_[1]; } while (0) #define AND_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= ~ scan_fp_[0]; \ scan_tp_[1] &= ~ scan_fp_[1]; } while (0) #define IOR_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= scan_fp_[0]; \ scan_tp_[1] |= scan_fp_[1]; } while (0) #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= ~ scan_fp_[0]; \ scan_tp_[1] |= ~ scan_fp_[1]; } while (0) static inline bool hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) { return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0; } static inline bool hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) { return x[0] == y[0] && x[1] == y[1]; } static inline bool hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) { return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0; } static inline bool hard_reg_set_empty_p (const HARD_REG_SET x) { return x[0] == 0 && x[1] == 0; } #else #if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT #define CLEAR_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = 0; \ scan_tp_[1] = 0; \ scan_tp_[2] = 0; } while (0) #define SET_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = -1; \ scan_tp_[1] = -1; \ scan_tp_[2] = -1; } while (0) #define COPY_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = scan_fp_[0]; \ scan_tp_[1] = scan_fp_[1]; \ scan_tp_[2] = scan_fp_[2]; } while (0) #define COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = ~ scan_fp_[0]; \ scan_tp_[1] = ~ scan_fp_[1]; \ scan_tp_[2] = ~ scan_fp_[2]; } while (0) #define AND_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= scan_fp_[0]; \ scan_tp_[1] &= scan_fp_[1]; \ scan_tp_[2] &= scan_fp_[2]; } while (0) #define AND_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= ~ scan_fp_[0]; \ scan_tp_[1] &= ~ scan_fp_[1]; \ scan_tp_[2] &= ~ scan_fp_[2]; } while (0) #define IOR_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= scan_fp_[0]; \ scan_tp_[1] |= scan_fp_[1]; \ scan_tp_[2] |= scan_fp_[2]; } while (0) #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= ~ scan_fp_[0]; \ scan_tp_[1] |= ~ scan_fp_[1]; \ scan_tp_[2] |= ~ scan_fp_[2]; } while (0) static inline bool hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) { return ((x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0 && (x[2] & ~y[2]) == 0); } static inline bool hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) { return x[0] == y[0] && x[1] == y[1] && x[2] == y[2]; } static inline bool hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) { return ((x[0] & y[0]) != 0 || (x[1] & y[1]) != 0 || (x[2] & y[2]) != 0); } static inline bool hard_reg_set_empty_p (const HARD_REG_SET x) { return x[0] == 0 && x[1] == 0 && x[2] == 0; } #else #if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT #define CLEAR_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = 0; \ scan_tp_[1] = 0; \ scan_tp_[2] = 0; \ scan_tp_[3] = 0; } while (0) #define SET_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ scan_tp_[0] = -1; \ scan_tp_[1] = -1; \ scan_tp_[2] = -1; \ scan_tp_[3] = -1; } while (0) #define COPY_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = scan_fp_[0]; \ scan_tp_[1] = scan_fp_[1]; \ scan_tp_[2] = scan_fp_[2]; \ scan_tp_[3] = scan_fp_[3]; } while (0) #define COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] = ~ scan_fp_[0]; \ scan_tp_[1] = ~ scan_fp_[1]; \ scan_tp_[2] = ~ scan_fp_[2]; \ scan_tp_[3] = ~ scan_fp_[3]; } while (0) #define AND_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= scan_fp_[0]; \ scan_tp_[1] &= scan_fp_[1]; \ scan_tp_[2] &= scan_fp_[2]; \ scan_tp_[3] &= scan_fp_[3]; } while (0) #define AND_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] &= ~ scan_fp_[0]; \ scan_tp_[1] &= ~ scan_fp_[1]; \ scan_tp_[2] &= ~ scan_fp_[2]; \ scan_tp_[3] &= ~ scan_fp_[3]; } while (0) #define IOR_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= scan_fp_[0]; \ scan_tp_[1] |= scan_fp_[1]; \ scan_tp_[2] |= scan_fp_[2]; \ scan_tp_[3] |= scan_fp_[3]; } while (0) #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ scan_tp_[0] |= ~ scan_fp_[0]; \ scan_tp_[1] |= ~ scan_fp_[1]; \ scan_tp_[2] |= ~ scan_fp_[2]; \ scan_tp_[3] |= ~ scan_fp_[3]; } while (0) static inline bool hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) { return ((x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0 && (x[2] & ~y[2]) == 0 && (x[3] & ~y[3]) == 0); } static inline bool hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) { return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3]; } static inline bool hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) { return ((x[0] & y[0]) != 0 || (x[1] & y[1]) != 0 || (x[2] & y[2]) != 0 || (x[3] & y[3]) != 0); } static inline bool hard_reg_set_empty_p (const HARD_REG_SET x) { return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0; } #else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */ #define CLEAR_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ = 0; } while (0) #define SET_HARD_REG_SET(TO) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ = -1; } while (0) #define COPY_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ = *scan_fp_++; } while (0) #define COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ = ~ *scan_fp_++; } while (0) #define AND_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ &= *scan_fp_++; } while (0) #define AND_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ &= ~ *scan_fp_++; } while (0) #define IOR_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ |= *scan_fp_++; } while (0) #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ int i; \ for (i = 0; i < HARD_REG_SET_LONGS; i++) \ *scan_tp_++ |= ~ *scan_fp_++; } while (0) static inline bool hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) { int i; for (i = 0; i < HARD_REG_SET_LONGS; i++) if ((x[i] & ~y[i]) != 0) return false; return true; } static inline bool hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) { int i; for (i = 0; i < HARD_REG_SET_LONGS; i++) if (x[i] != y[i]) return false; return true; } static inline bool hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) { int i; for (i = 0; i < HARD_REG_SET_LONGS; i++) if ((x[i] & y[i]) != 0) return true; return false; } static inline bool hard_reg_set_empty_p (const HARD_REG_SET x) { int i; for (i = 0; i < HARD_REG_SET_LONGS; i++) if (x[i] != 0) return false; return true; } #endif #endif #endif #endif /* Iterator for hard register sets. */ struct hard_reg_set_iterator { /* Pointer to the current element. */ HARD_REG_ELT_TYPE *pelt; /* The length of the set. */ unsigned short length; /* Word within the current element. */ unsigned short word_no; /* Contents of the actually processed word. When finding next bit it is shifted right, so that the actual bit is always the least significant bit of ACTUAL. */ HARD_REG_ELT_TYPE bits; }; #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT /* The implementation of the iterator functions is fully analogous to the bitmap iterators. */ static inline void hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set, unsigned min, unsigned *regno) { #ifdef HARD_REG_SET_LONGS iter->pelt = set; iter->length = HARD_REG_SET_LONGS; #else iter->pelt = &set; iter->length = 1; #endif iter->word_no = min / HARD_REG_ELT_BITS; if (iter->word_no < iter->length) { iter->bits = iter->pelt[iter->word_no]; iter->bits >>= min % HARD_REG_ELT_BITS; /* This is required for correct search of the next bit. */ min += !iter->bits; } *regno = min; } static inline bool hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno) { while (1) { /* Return false when we're advanced past the end of the set. */ if (iter->word_no >= iter->length) return false; if (iter->bits) { /* Find the correct bit and return it. */ while (!(iter->bits & 1)) { iter->bits >>= 1; *regno += 1; } return (*regno < FIRST_PSEUDO_REGISTER); } /* Round to the beginning of the next word. */ *regno = (*regno + HARD_REG_ELT_BITS - 1); *regno -= *regno % HARD_REG_ELT_BITS; /* Find the next non-zero word. */ while (++iter->word_no < iter->length) { iter->bits = iter->pelt[iter->word_no]; if (iter->bits) break; *regno += HARD_REG_ELT_BITS; } } } static inline void hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno) { iter->bits >>= 1; *regno += 1; } #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \ for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \ hard_reg_set_iter_set (&(ITER), &(REGNUM)); \ hard_reg_set_iter_next (&(ITER), &(REGNUM))) /* Define some standard sets of registers. */ /* Indexed by hard register number, contains 1 for registers that are being used for global register decls. These must be exempt from ordinary flow analysis and are also considered fixed. */ extern char global_regs[FIRST_PSEUDO_REGISTER]; struct simplifiable_subregs_hasher; struct target_hard_regs { void finalize (); /* The set of registers that actually exist on the current target. */ HARD_REG_SET x_accessible_reg_set; /* The set of registers that should be considered to be register operands. It is a subset of x_accessible_reg_set. */ HARD_REG_SET x_operand_reg_set; /* Indexed by hard register number, contains 1 for registers that are fixed use (stack pointer, pc, frame pointer, etc.;. These are the registers that cannot be used to allocate a pseudo reg whose life does not cross calls. */ char x_fixed_regs[FIRST_PSEUDO_REGISTER]; /* The same info as a HARD_REG_SET. */ HARD_REG_SET x_fixed_reg_set; /* Indexed by hard register number, contains 1 for registers that are fixed use or are clobbered by function calls. These are the registers that cannot be used to allocate a pseudo reg whose life crosses calls. */ char x_call_used_regs[FIRST_PSEUDO_REGISTER]; char x_call_really_used_regs[FIRST_PSEUDO_REGISTER]; /* The same info as a HARD_REG_SET. */ HARD_REG_SET x_call_used_reg_set; /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or a function value return register or TARGET_STRUCT_VALUE_RTX or STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities across calls even if we are willing to save and restore them. */ HARD_REG_SET x_call_fixed_reg_set; /* Contains 1 for registers that are set or clobbered by calls. */ /* ??? Ideally, this would be just call_used_regs plus global_regs, but for someone's bright idea to have call_used_regs strictly include fixed_regs. Which leaves us guessing as to the set of fixed_regs that are actually preserved. We know for sure that those associated with the local stack frame are safe, but scant others. */ HARD_REG_SET x_regs_invalidated_by_call; /* Call used hard registers which can not be saved because there is no insn for this. */ HARD_REG_SET x_no_caller_save_reg_set; /* Table of register numbers in the order in which to try to use them. */ int x_reg_alloc_order[FIRST_PSEUDO_REGISTER]; /* The inverse of reg_alloc_order. */ int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER]; /* For each reg class, a HARD_REG_SET saying which registers are in it. */ HARD_REG_SET x_reg_class_contents[N_REG_CLASSES]; /* For each reg class, a boolean saying whether the class contains only fixed registers. */ bool x_class_only_fixed_regs[N_REG_CLASSES]; /* For each reg class, number of regs it contains. */ unsigned int x_reg_class_size[N_REG_CLASSES]; /* For each reg class, table listing all the classes contained in it. */ enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; /* For each pair of reg classes, a largest reg class contained in their union. */ enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES]; /* For each pair of reg classes, the smallest reg class that contains their union. */ enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES]; /* Vector indexed by hardware reg giving its name. */ const char *x_reg_names[FIRST_PSEUDO_REGISTER]; /* Records which registers can form a particular subreg, with the subreg being identified by its outer mode, inner mode and offset. */ hash_table *x_simplifiable_subregs; }; extern struct target_hard_regs default_target_hard_regs; #if SWITCHABLE_TARGET extern struct target_hard_regs *this_target_hard_regs; #else #define this_target_hard_regs (&default_target_hard_regs) #endif #define accessible_reg_set \ (this_target_hard_regs->x_accessible_reg_set) #define operand_reg_set \ (this_target_hard_regs->x_operand_reg_set) #define fixed_regs \ (this_target_hard_regs->x_fixed_regs) #define fixed_reg_set \ (this_target_hard_regs->x_fixed_reg_set) #define call_used_regs \ (this_target_hard_regs->x_call_used_regs) #define call_really_used_regs \ (this_target_hard_regs->x_call_really_used_regs) #define call_used_reg_set \ (this_target_hard_regs->x_call_used_reg_set) #define call_fixed_reg_set \ (this_target_hard_regs->x_call_fixed_reg_set) #define regs_invalidated_by_call \ (this_target_hard_regs->x_regs_invalidated_by_call) #define no_caller_save_reg_set \ (this_target_hard_regs->x_no_caller_save_reg_set) #define reg_alloc_order \ (this_target_hard_regs->x_reg_alloc_order) #define inv_reg_alloc_order \ (this_target_hard_regs->x_inv_reg_alloc_order) #define reg_class_contents \ (this_target_hard_regs->x_reg_class_contents) #define class_only_fixed_regs \ (this_target_hard_regs->x_class_only_fixed_regs) #define reg_class_size \ (this_target_hard_regs->x_reg_class_size) #define reg_class_subclasses \ (this_target_hard_regs->x_reg_class_subclasses) #define reg_class_subunion \ (this_target_hard_regs->x_reg_class_subunion) #define reg_class_superunion \ (this_target_hard_regs->x_reg_class_superunion) #define reg_names \ (this_target_hard_regs->x_reg_names) /* Vector indexed by reg class giving its name. */ extern const char * reg_class_names[]; /* Given a hard REGN a FROM mode and a TO mode, return nonzero if REGN cannot change modes between the specified modes. */ #define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO) \ CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN)) #endif /* ! GCC_HARD_REG_SET_H */