/* Sets (bit vectors) of hard registers, and operations on them.
Copyright (C) 1987-2014 Free Software Foundation, Inc.
This file is part of GCC
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#ifndef GCC_HARD_REG_SET_H
#define GCC_HARD_REG_SET_H
#include "hash-table.h"
/* Define the type of a set of hard registers. */
/* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
will be used for hard reg sets, either alone or in an array.
If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
and it has enough bits to represent all the target machine's hard
registers. Otherwise, it is a typedef for a suitably sized array
of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many.
Note that lots of code assumes that the first part of a regset is
the same format as a HARD_REG_SET. To help make sure this is true,
we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
instead of all the smaller types. This approach loses only if
there are very few registers and then only in the few cases where
we have an array of HARD_REG_SETs, so it needn't be as complex as
it used to be. */
typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;
#if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
#define HARD_REG_SET HARD_REG_ELT_TYPE
#else
#define HARD_REG_SET_LONGS \
((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \
/ HOST_BITS_PER_WIDEST_FAST_INT)
typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS];
#endif
/* HARD_REG_SET wrapped into a structure, to make it possible to
use HARD_REG_SET even in APIs that should not include
hard-reg-set.h. */
struct hard_reg_set_container
{
HARD_REG_SET set;
};
/* HARD_CONST is used to cast a constant to the appropriate type
for use with a HARD_REG_SET. */
#define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
/* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
All three take two arguments: the set and the register number.
In the case where sets are arrays of longs, the first argument
is actually a pointer to a long.
Define two macros for initializing a set:
CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
These take just one argument.
Also define macros for copying hard reg sets:
COPY_HARD_REG_SET and COMPL_HARD_REG_SET.
These take two arguments TO and FROM; they read from FROM
and store into TO. COMPL_HARD_REG_SET complements each bit.
Also define macros for combining hard reg sets:
IOR_HARD_REG_SET and AND_HARD_REG_SET.
These take two arguments TO and FROM; they read from FROM
and combine bitwise into TO. Define also two variants
IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET
which use the complement of the set FROM.
Also define:
hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal.
hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
hard_reg_set_empty_p (X), which returns true if X is empty. */
#define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
#ifdef HARD_REG_SET
#define SET_HARD_REG_BIT(SET, BIT) \
((SET) |= HARD_CONST (1) << (BIT))
#define CLEAR_HARD_REG_BIT(SET, BIT) \
((SET) &= ~(HARD_CONST (1) << (BIT)))
#define TEST_HARD_REG_BIT(SET, BIT) \
(!!((SET) & (HARD_CONST (1) << (BIT))))
#define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
#define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
#define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM))
#define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM))
#define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM))
#define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM))
#define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM))
#define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM))
static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return (x & ~y) == HARD_CONST (0);
}
static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return x == y;
}
static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return (x & y) != HARD_CONST (0);
}
static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
return x == HARD_CONST (0);
}
#else
#define SET_HARD_REG_BIT(SET, BIT) \
((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
|= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))
#define CLEAR_HARD_REG_BIT(SET, BIT) \
((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
&= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))
#define TEST_HARD_REG_BIT(SET, BIT) \
(!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
& (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))))
#if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = 0; \
scan_tp_[1] = 0; } while (0)
#define SET_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = -1; \
scan_tp_[1] = -1; } while (0)
#define COPY_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = scan_fp_[0]; \
scan_tp_[1] = scan_fp_[1]; } while (0)
#define COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = ~ scan_fp_[0]; \
scan_tp_[1] = ~ scan_fp_[1]; } while (0)
#define AND_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= scan_fp_[0]; \
scan_tp_[1] &= scan_fp_[1]; } while (0)
#define AND_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= ~ scan_fp_[0]; \
scan_tp_[1] &= ~ scan_fp_[1]; } while (0)
#define IOR_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= scan_fp_[0]; \
scan_tp_[1] |= scan_fp_[1]; } while (0)
#define IOR_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= ~ scan_fp_[0]; \
scan_tp_[1] |= ~ scan_fp_[1]; } while (0)
static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0;
}
static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return x[0] == y[0] && x[1] == y[1];
}
static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0;
}
static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
return x[0] == 0 && x[1] == 0;
}
#else
#if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = 0; \
scan_tp_[1] = 0; \
scan_tp_[2] = 0; } while (0)
#define SET_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = -1; \
scan_tp_[1] = -1; \
scan_tp_[2] = -1; } while (0)
#define COPY_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = scan_fp_[0]; \
scan_tp_[1] = scan_fp_[1]; \
scan_tp_[2] = scan_fp_[2]; } while (0)
#define COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = ~ scan_fp_[0]; \
scan_tp_[1] = ~ scan_fp_[1]; \
scan_tp_[2] = ~ scan_fp_[2]; } while (0)
#define AND_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= scan_fp_[0]; \
scan_tp_[1] &= scan_fp_[1]; \
scan_tp_[2] &= scan_fp_[2]; } while (0)
#define AND_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= ~ scan_fp_[0]; \
scan_tp_[1] &= ~ scan_fp_[1]; \
scan_tp_[2] &= ~ scan_fp_[2]; } while (0)
#define IOR_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= scan_fp_[0]; \
scan_tp_[1] |= scan_fp_[1]; \
scan_tp_[2] |= scan_fp_[2]; } while (0)
#define IOR_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= ~ scan_fp_[0]; \
scan_tp_[1] |= ~ scan_fp_[1]; \
scan_tp_[2] |= ~ scan_fp_[2]; } while (0)
static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return ((x[0] & ~y[0]) == 0
&& (x[1] & ~y[1]) == 0
&& (x[2] & ~y[2]) == 0);
}
static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return x[0] == y[0] && x[1] == y[1] && x[2] == y[2];
}
static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return ((x[0] & y[0]) != 0
|| (x[1] & y[1]) != 0
|| (x[2] & y[2]) != 0);
}
static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
return x[0] == 0 && x[1] == 0 && x[2] == 0;
}
#else
#if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT
#define CLEAR_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = 0; \
scan_tp_[1] = 0; \
scan_tp_[2] = 0; \
scan_tp_[3] = 0; } while (0)
#define SET_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
scan_tp_[0] = -1; \
scan_tp_[1] = -1; \
scan_tp_[2] = -1; \
scan_tp_[3] = -1; } while (0)
#define COPY_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = scan_fp_[0]; \
scan_tp_[1] = scan_fp_[1]; \
scan_tp_[2] = scan_fp_[2]; \
scan_tp_[3] = scan_fp_[3]; } while (0)
#define COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] = ~ scan_fp_[0]; \
scan_tp_[1] = ~ scan_fp_[1]; \
scan_tp_[2] = ~ scan_fp_[2]; \
scan_tp_[3] = ~ scan_fp_[3]; } while (0)
#define AND_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= scan_fp_[0]; \
scan_tp_[1] &= scan_fp_[1]; \
scan_tp_[2] &= scan_fp_[2]; \
scan_tp_[3] &= scan_fp_[3]; } while (0)
#define AND_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] &= ~ scan_fp_[0]; \
scan_tp_[1] &= ~ scan_fp_[1]; \
scan_tp_[2] &= ~ scan_fp_[2]; \
scan_tp_[3] &= ~ scan_fp_[3]; } while (0)
#define IOR_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= scan_fp_[0]; \
scan_tp_[1] |= scan_fp_[1]; \
scan_tp_[2] |= scan_fp_[2]; \
scan_tp_[3] |= scan_fp_[3]; } while (0)
#define IOR_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
scan_tp_[0] |= ~ scan_fp_[0]; \
scan_tp_[1] |= ~ scan_fp_[1]; \
scan_tp_[2] |= ~ scan_fp_[2]; \
scan_tp_[3] |= ~ scan_fp_[3]; } while (0)
static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return ((x[0] & ~y[0]) == 0
&& (x[1] & ~y[1]) == 0
&& (x[2] & ~y[2]) == 0
&& (x[3] & ~y[3]) == 0);
}
static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3];
}
static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
return ((x[0] & y[0]) != 0
|| (x[1] & y[1]) != 0
|| (x[2] & y[2]) != 0
|| (x[3] & y[3]) != 0);
}
static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0;
}
#else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */
#define CLEAR_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ = 0; } while (0)
#define SET_HARD_REG_SET(TO) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ = -1; } while (0)
#define COPY_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ = *scan_fp_++; } while (0)
#define COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ = ~ *scan_fp_++; } while (0)
#define AND_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ &= *scan_fp_++; } while (0)
#define AND_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ &= ~ *scan_fp_++; } while (0)
#define IOR_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ |= *scan_fp_++; } while (0)
#define IOR_COMPL_HARD_REG_SET(TO, FROM) \
do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \
int i; \
for (i = 0; i < HARD_REG_SET_LONGS; i++) \
*scan_tp_++ |= ~ *scan_fp_++; } while (0)
static inline bool
hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
int i;
for (i = 0; i < HARD_REG_SET_LONGS; i++)
if ((x[i] & ~y[i]) != 0)
return false;
return true;
}
static inline bool
hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
int i;
for (i = 0; i < HARD_REG_SET_LONGS; i++)
if (x[i] != y[i])
return false;
return true;
}
static inline bool
hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
{
int i;
for (i = 0; i < HARD_REG_SET_LONGS; i++)
if ((x[i] & y[i]) != 0)
return true;
return false;
}
static inline bool
hard_reg_set_empty_p (const HARD_REG_SET x)
{
int i;
for (i = 0; i < HARD_REG_SET_LONGS; i++)
if (x[i] != 0)
return false;
return true;
}
#endif
#endif
#endif
#endif
/* Iterator for hard register sets. */
struct hard_reg_set_iterator
{
/* Pointer to the current element. */
HARD_REG_ELT_TYPE *pelt;
/* The length of the set. */
unsigned short length;
/* Word within the current element. */
unsigned short word_no;
/* Contents of the actually processed word. When finding next bit
it is shifted right, so that the actual bit is always the least
significant bit of ACTUAL. */
HARD_REG_ELT_TYPE bits;
};
#define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
/* The implementation of the iterator functions is fully analogous to
the bitmap iterators. */
static inline void
hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set,
unsigned min, unsigned *regno)
{
#ifdef HARD_REG_SET_LONGS
iter->pelt = set;
iter->length = HARD_REG_SET_LONGS;
#else
iter->pelt = &set;
iter->length = 1;
#endif
iter->word_no = min / HARD_REG_ELT_BITS;
if (iter->word_no < iter->length)
{
iter->bits = iter->pelt[iter->word_no];
iter->bits >>= min % HARD_REG_ELT_BITS;
/* This is required for correct search of the next bit. */
min += !iter->bits;
}
*regno = min;
}
static inline bool
hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
{
while (1)
{
/* Return false when we're advanced past the end of the set. */
if (iter->word_no >= iter->length)
return false;
if (iter->bits)
{
/* Find the correct bit and return it. */
while (!(iter->bits & 1))
{
iter->bits >>= 1;
*regno += 1;
}
return (*regno < FIRST_PSEUDO_REGISTER);
}
/* Round to the beginning of the next word. */
*regno = (*regno + HARD_REG_ELT_BITS - 1);
*regno -= *regno % HARD_REG_ELT_BITS;
/* Find the next non-zero word. */
while (++iter->word_no < iter->length)
{
iter->bits = iter->pelt[iter->word_no];
if (iter->bits)
break;
*regno += HARD_REG_ELT_BITS;
}
}
}
static inline void
hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
{
iter->bits >>= 1;
*regno += 1;
}
#define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \
for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \
hard_reg_set_iter_set (&(ITER), &(REGNUM)); \
hard_reg_set_iter_next (&(ITER), &(REGNUM)))
/* Define some standard sets of registers. */
/* Indexed by hard register number, contains 1 for registers
that are being used for global register decls.
These must be exempt from ordinary flow analysis
and are also considered fixed. */
extern char global_regs[FIRST_PSEUDO_REGISTER];
struct simplifiable_subregs_hasher;
struct target_hard_regs {
void finalize ();
/* The set of registers that actually exist on the current target. */
HARD_REG_SET x_accessible_reg_set;
/* The set of registers that should be considered to be register
operands. It is a subset of x_accessible_reg_set. */
HARD_REG_SET x_operand_reg_set;
/* Indexed by hard register number, contains 1 for registers
that are fixed use (stack pointer, pc, frame pointer, etc.;.
These are the registers that cannot be used to allocate
a pseudo reg whose life does not cross calls. */
char x_fixed_regs[FIRST_PSEUDO_REGISTER];
/* The same info as a HARD_REG_SET. */
HARD_REG_SET x_fixed_reg_set;
/* Indexed by hard register number, contains 1 for registers
that are fixed use or are clobbered by function calls.
These are the registers that cannot be used to allocate
a pseudo reg whose life crosses calls. */
char x_call_used_regs[FIRST_PSEUDO_REGISTER];
char x_call_really_used_regs[FIRST_PSEUDO_REGISTER];
/* The same info as a HARD_REG_SET. */
HARD_REG_SET x_call_used_reg_set;
/* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
a function value return register or TARGET_STRUCT_VALUE_RTX or
STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities
across calls even if we are willing to save and restore them. */
HARD_REG_SET x_call_fixed_reg_set;
/* Contains 1 for registers that are set or clobbered by calls. */
/* ??? Ideally, this would be just call_used_regs plus global_regs, but
for someone's bright idea to have call_used_regs strictly include
fixed_regs. Which leaves us guessing as to the set of fixed_regs
that are actually preserved. We know for sure that those associated
with the local stack frame are safe, but scant others. */
HARD_REG_SET x_regs_invalidated_by_call;
/* Call used hard registers which can not be saved because there is no
insn for this. */
HARD_REG_SET x_no_caller_save_reg_set;
/* Table of register numbers in the order in which to try to use them. */
int x_reg_alloc_order[FIRST_PSEUDO_REGISTER];
/* The inverse of reg_alloc_order. */
int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
/* For each reg class, a HARD_REG_SET saying which registers are in it. */
HARD_REG_SET x_reg_class_contents[N_REG_CLASSES];
/* For each reg class, a boolean saying whether the class contains only
fixed registers. */
bool x_class_only_fixed_regs[N_REG_CLASSES];
/* For each reg class, number of regs it contains. */
unsigned int x_reg_class_size[N_REG_CLASSES];
/* For each reg class, table listing all the classes contained in it. */
enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
/* For each pair of reg classes,
a largest reg class contained in their union. */
enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
/* For each pair of reg classes,
the smallest reg class that contains their union. */
enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
/* Vector indexed by hardware reg giving its name. */
const char *x_reg_names[FIRST_PSEUDO_REGISTER];
/* Records which registers can form a particular subreg, with the subreg
being identified by its outer mode, inner mode and offset. */
hash_table *x_simplifiable_subregs;
};
extern struct target_hard_regs default_target_hard_regs;
#if SWITCHABLE_TARGET
extern struct target_hard_regs *this_target_hard_regs;
#else
#define this_target_hard_regs (&default_target_hard_regs)
#endif
#define accessible_reg_set \
(this_target_hard_regs->x_accessible_reg_set)
#define operand_reg_set \
(this_target_hard_regs->x_operand_reg_set)
#define fixed_regs \
(this_target_hard_regs->x_fixed_regs)
#define fixed_reg_set \
(this_target_hard_regs->x_fixed_reg_set)
#define call_used_regs \
(this_target_hard_regs->x_call_used_regs)
#define call_really_used_regs \
(this_target_hard_regs->x_call_really_used_regs)
#define call_used_reg_set \
(this_target_hard_regs->x_call_used_reg_set)
#define call_fixed_reg_set \
(this_target_hard_regs->x_call_fixed_reg_set)
#define regs_invalidated_by_call \
(this_target_hard_regs->x_regs_invalidated_by_call)
#define no_caller_save_reg_set \
(this_target_hard_regs->x_no_caller_save_reg_set)
#define reg_alloc_order \
(this_target_hard_regs->x_reg_alloc_order)
#define inv_reg_alloc_order \
(this_target_hard_regs->x_inv_reg_alloc_order)
#define reg_class_contents \
(this_target_hard_regs->x_reg_class_contents)
#define class_only_fixed_regs \
(this_target_hard_regs->x_class_only_fixed_regs)
#define reg_class_size \
(this_target_hard_regs->x_reg_class_size)
#define reg_class_subclasses \
(this_target_hard_regs->x_reg_class_subclasses)
#define reg_class_subunion \
(this_target_hard_regs->x_reg_class_subunion)
#define reg_class_superunion \
(this_target_hard_regs->x_reg_class_superunion)
#define reg_names \
(this_target_hard_regs->x_reg_names)
/* Vector indexed by reg class giving its name. */
extern const char * reg_class_names[];
/* Given a hard REGN a FROM mode and a TO mode, return nonzero if
REGN cannot change modes between the specified modes. */
#define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO) \
CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN))
#endif /* ! GCC_HARD_REG_SET_H */