/* Graphite polyhedral representation. Copyright (C) 2009 Free Software Foundation, Inc. Contributed by Sebastian Pop and Tobias Grosser . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_GRAPHITE_POLY_H #define GCC_GRAPHITE_POLY_H typedef struct poly_dr *poly_dr_p; DEF_VEC_P(poly_dr_p); DEF_VEC_ALLOC_P (poly_dr_p, heap); typedef struct poly_bb *poly_bb_p; DEF_VEC_P(poly_bb_p); DEF_VEC_ALLOC_P (poly_bb_p, heap); typedef struct scop *scop_p; DEF_VEC_P(scop_p); DEF_VEC_ALLOC_P (scop_p, heap); typedef ppl_dimension_type graphite_dim_t; static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *); static inline graphite_dim_t pbb_nb_params (const struct poly_bb *); static inline graphite_dim_t scop_nb_params (scop_p); /* A data reference can write or read some memory or we just know it may write some memory. */ enum poly_dr_type { PDR_READ, /* PDR_MAY_READs are represented using PDR_READS. This does not limit the expressiveness. */ PDR_WRITE, PDR_MAY_WRITE }; struct poly_dr { /* An identifier for this PDR. */ int id; /* The number of data refs identical to this one in the PBB. */ int nb_refs; /* A pointer to compiler's data reference description. */ void *compiler_dr; /* A pointer to the PBB that contains this data reference. */ poly_bb_p pbb; enum poly_dr_type type; /* The access polyhedron contains the polyhedral space this data reference will access. The polyhedron contains these dimensions: - The alias set (a): Every memory access is classified in at least one alias set. - The subscripts (s_0, ..., s_n): The memory is accessed using zero or more subscript dimensions. - The iteration domain (variables and parameters) Do not hardcode the dimensions. Use the following accessor functions: - pdr_alias_set_dim - pdr_subscript_dim - pdr_iterator_dim - pdr_parameter_dim Example: | int A[1335][123]; | int *p = malloc (); | | k = ... | for i | { | if (unknown_function ()) | p = A; | ... = p[?][?]; | for j | A[i][j+k] = m; | } The data access A[i][j+k] in alias set "5" is described like this: | i j k a s0 s1 1 | 0 0 0 1 0 0 -5 = 0 |-1 0 0 0 1 0 0 = 0 | 0 -1 -1 0 0 1 0 = 0 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the | 0 0 0 0 0 1 0 >= 0 # array size. | 0 0 0 0 -1 0 1335 >= 0 | 0 0 0 0 0 -1 123 >= 0 The pointer "*p" in alias set "5" and "7" is described as a union of polyhedron: | i k a s0 1 | 0 0 1 0 -5 = 0 | 0 0 0 1 0 >= 0 "or" | i k a s0 1 | 0 0 1 0 -7 = 0 | 0 0 0 1 0 >= 0 "*p" accesses all of the object allocated with 'malloc'. The scalar data access "m" is represented as an array with zero subscript dimensions. | i j k a 1 | 0 0 0 -1 15 = 0 */ ppl_Pointset_Powerset_C_Polyhedron_t accesses; /* The number of subscripts. */ graphite_dim_t nb_subscripts; }; #define PDR_ID(PDR) (PDR->id) #define PDR_NB_REFS(PDR) (PDR->nb_refs) #define PDR_CDR(PDR) (PDR->compiler_dr) #define PDR_PBB(PDR) (PDR->pbb) #define PDR_TYPE(PDR) (PDR->type) #define PDR_ACCESSES(PDR) (PDR->accesses) #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts) void new_poly_dr (poly_bb_p, ppl_Pointset_Powerset_C_Polyhedron_t, enum poly_dr_type, void *, graphite_dim_t); void free_poly_dr (poly_dr_p); void debug_pdr (poly_dr_p); void print_pdr (FILE *, poly_dr_p); static inline scop_p pdr_scop (poly_dr_p pdr); /* The dimension of the PDR_ACCESSES polyhedron of PDR. */ static inline ppl_dimension_type pdr_dim (poly_dr_p pdr) { ppl_dimension_type dim; ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr), &dim); return dim; } /* The dimension of the iteration domain of the scop of PDR. */ static inline ppl_dimension_type pdr_dim_iter_domain (poly_dr_p pdr) { return pbb_dim_iter_domain (PDR_PBB (pdr)); } /* The number of parameters of the scop of PDR. */ static inline ppl_dimension_type pdr_nb_params (poly_dr_p pdr) { return scop_nb_params (pdr_scop (pdr)); } /* The dimension of the alias set in PDR. */ static inline ppl_dimension_type pdr_alias_set_dim (poly_dr_p pdr) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb); } /* The dimension in PDR containing subscript S. */ static inline ppl_dimension_type pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s; } /* The dimension in PDR containing the loop iterator ITER. */ static inline ppl_dimension_type pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter) { return iter; } /* The dimension in PDR containing parameter PARAM. */ static inline ppl_dimension_type pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param) { poly_bb_p pbb = PDR_PBB (pdr); return pbb_dim_iter_domain (pbb) + param; } /* Returns true when PDR is a "read". */ static inline bool pdr_read_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_READ; } /* Returns true when PDR is a "write". */ static inline bool pdr_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_WRITE; } /* Returns true when PDR is a "may write". */ static inline bool pdr_may_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_MAY_WRITE; } typedef struct poly_scattering *poly_scattering_p; struct poly_scattering { /* The scattering function containing the transformations. */ ppl_Polyhedron_t scattering; /* The number of local variables. */ int nb_local_variables; /* The number of scattering dimensions. */ int nb_scattering; }; /* POLY_BB represents a blackbox in the polyhedral model. */ struct poly_bb { void *black_box; scop_p scop; /* The iteration domain of this bb. Example: for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++) for (j = 2; j <= 2*i + 5; j++) for (k = 0; k <= 5; k++) S (i,j,k) Loop iterators: i, j, k Parameters: a, b | i >= a - 7b + 8 | i <= 3a + 13b + 20 | j >= 2 | j <= 2i + 5 | k >= 0 | k <= 5 The number of variables in the DOMAIN may change and is not related to the number of loops in the original code. */ ppl_Pointset_Powerset_C_Polyhedron_t domain; /* The data references we access. */ VEC (poly_dr_p, heap) *drs; /* The original scattering. */ poly_scattering_p original; /* The transformed scattering. */ poly_scattering_p transformed; /* A copy of the transformed scattering. */ poly_scattering_p saved; /* True when the PDR duplicates have already been removed. */ bool pdr_duplicates_removed; }; #define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box) #define PBB_SCOP(PBB) (PBB->scop) #define PBB_DOMAIN(PBB) (PBB->domain) #define PBB_DRS(PBB) (PBB->drs) #define PBB_ORIGINAL(PBB) (PBB->original) #define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering) #define PBB_TRANSFORMED(PBB) (PBB->transformed) #define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering) #define PBB_SAVED(PBB) (PBB->saved) #define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables) #define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering) #define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed) extern void new_poly_bb (scop_p, void *); extern void free_poly_bb (poly_bb_p); extern void debug_loop_vec (poly_bb_p); extern void schedule_to_scattering (poly_bb_p, int); extern void print_pbb_domain (FILE *, poly_bb_p); extern void print_pbb (FILE *, poly_bb_p); extern void print_scop_context (FILE *, scop_p); extern void print_scop (FILE *, scop_p); extern void debug_pbb_domain (poly_bb_p); extern void debug_pbb (poly_bb_p); extern void print_pdrs (FILE *, poly_bb_p); extern void debug_pdrs (poly_bb_p); extern void debug_scop_context (scop_p); extern void debug_scop (scop_p); extern void print_scop_params (FILE *, scop_p); extern void debug_scop_params (scop_p); extern void print_iteration_domain (FILE *, poly_bb_p); extern void print_iteration_domains (FILE *, scop_p); extern void debug_iteration_domain (poly_bb_p); extern void debug_iteration_domains (scop_p); extern bool scop_do_interchange (scop_p); extern bool scop_do_strip_mine (scop_p); extern void pbb_number_of_iterations (poly_bb_p, graphite_dim_t, Value); extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, Value); extern void pbb_remove_duplicate_pdrs (poly_bb_p); /* The index of the PBB. */ static inline int pbb_index (poly_bb_p pbb) { return GBB_BB (PBB_BLACK_BOX (pbb))->index; } /* The scop that contains the PDR. */ static inline scop_p pdr_scop (poly_dr_p pdr) { return PBB_SCOP (PDR_PBB (pdr)); } /* Set black box of PBB to BLACKBOX. */ static inline void pbb_set_black_box (poly_bb_p pbb, void *black_box) { pbb->black_box = black_box; } /* The number of loops around PBB: the dimension of the iteration domain. */ static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *pbb) { scop_p scop = PBB_SCOP (pbb); ppl_dimension_type dim; ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim); return dim - scop_nb_params (scop); } /* The number of params defined in PBB. */ static inline graphite_dim_t pbb_nb_params (const struct poly_bb *pbb) { scop_p scop = PBB_SCOP (pbb); return scop_nb_params (scop); } /* The number of scattering dimensions in the SCATTERING polyhedron of a PBB for a given SCOP. */ static inline graphite_dim_t pbb_nb_scattering_orig (const struct poly_bb *pbb) { return 2 * pbb_dim_iter_domain (pbb) + 1; } /* The number of scattering dimensions in PBB. */ static inline graphite_dim_t pbb_nb_scattering_transform (const struct poly_bb *pbb) { return PBB_NB_SCATTERING_TRANSFORM (pbb); } /* The number of dynamic scattering dimensions in PBB. */ static inline graphite_dim_t pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb) { /* This function requires the 2d + 1 scattering format to be invariant during all transformations. */ gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2); return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2; } /* Returns the number of local variables used in the transformed scattering polyhedron of PBB. */ static inline graphite_dim_t pbb_nb_local_vars (const struct poly_bb *pbb) { /* For now we do not have any local variables, as we do not do strip mining for example. */ return PBB_NB_LOCAL_VARIABLES (pbb); } /* The dimension in the domain of PBB containing the iterator ITER. */ static inline ppl_dimension_type pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter) { return iter; } /* The dimension in the domain of PBB containing the iterator ITER. */ static inline ppl_dimension_type pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { return param + pbb_dim_iter_domain (pbb); } /* The dimension in the original scattering polyhedron of PBB containing the scattering iterator SCATTER. */ static inline ppl_dimension_type psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter) { gcc_assert (scatter < pbb_nb_scattering_orig (pbb)); return scatter; } /* The dimension in the transformed scattering polyhedron of PBB containing the scattering iterator SCATTER. */ static inline ppl_dimension_type psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter) { gcc_assert (scatter <= pbb_nb_scattering_transform (pbb)); return scatter; } ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p, graphite_dim_t); /* The dimension in the transformed scattering polyhedron of PBB of the local variable LV. */ static inline ppl_dimension_type psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv) { gcc_assert (lv <= pbb_nb_local_vars (pbb)); return lv + pbb_nb_scattering_transform (pbb); } /* The dimension in the original scattering polyhedron of PBB containing the loop iterator ITER. */ static inline ppl_dimension_type psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter) { gcc_assert (iter < pbb_dim_iter_domain (pbb)); return iter + pbb_nb_scattering_orig (pbb); } /* The dimension in the transformed scattering polyhedron of PBB containing the loop iterator ITER. */ static inline ppl_dimension_type psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter) { gcc_assert (iter < pbb_dim_iter_domain (pbb)); return iter + pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb); } /* The dimension in the original scattering polyhedron of PBB containing parameter PARAM. */ static inline ppl_dimension_type psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { gcc_assert (param < pbb_nb_params (pbb)); return param + pbb_nb_scattering_orig (pbb) + pbb_dim_iter_domain (pbb); } /* The dimension in the transformed scattering polyhedron of PBB containing parameter PARAM. */ static inline ppl_dimension_type psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param) { gcc_assert (param < pbb_nb_params (pbb)); return param + pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb) + pbb_dim_iter_domain (pbb); } /* The scattering dimension of PBB corresponding to the dynamic level LEVEL. */ static inline ppl_dimension_type psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level) { graphite_dim_t result; result = 1 + 2 * level; gcc_assert (result < pbb_nb_scattering_transform (pbb)); return result; } /* Adds to the transformed scattering polyhedron of PBB a new local variable and returns its index. */ static inline graphite_dim_t psct_add_local_variable (poly_bb_p pbb) { graphite_dim_t nlv = pbb_nb_local_vars (pbb); ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv); ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1); PBB_NB_LOCAL_VARIABLES (pbb) += 1; return nlv; } /* Adds a dimension to the transformed scattering polyhedron of PBB at INDEX. */ static inline void psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index) { gcc_assert (index < pbb_nb_scattering_transform (pbb)); ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1); PBB_NB_SCATTERING_TRANSFORM (pbb) += 1; } /* A SCOP is a Static Control Part of the program, simple enough to be represented in polyhedral form. */ struct scop { /* A SCOP is defined as a SESE region. */ void *region; /* Number of parameters in SCoP. */ graphite_dim_t nb_params; /* All the basic blocks in this scop that contain memory references and that will be represented as statements in the polyhedral representation. */ VEC (poly_bb_p, heap) *bbs; /* Data dependence graph for this SCoP. */ struct graph *dep_graph; /* The context describes known restrictions concerning the parameters and relations in between the parameters. void f (int8_t a, uint_16_t b) { c = 2 a + b; ... } Here we can add these restrictions to the context: -128 >= a >= 127 0 >= b >= 65,535 c = 2a + b */ ppl_Pointset_Powerset_C_Polyhedron_t context; /* A hashtable of the data dependence relations for the original scattering. */ htab_t original_pddrs; }; #define SCOP_BBS(S) (S->bbs) #define SCOP_REGION(S) ((sese) S->region) #define SCOP_DEP_GRAPH(S) (S->dep_graph) #define SCOP_CONTEXT(S) (S->context) #define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs) extern scop_p new_scop (void *); extern void free_scop (scop_p); extern void free_scops (VEC (scop_p, heap) *); extern void print_generated_program (FILE *, scop_p); extern void debug_generated_program (scop_p); extern void print_scattering_function (FILE *, poly_bb_p); extern void print_scattering_functions (FILE *, scop_p); extern void debug_scattering_function (poly_bb_p); extern void debug_scattering_functions (scop_p); extern int scop_max_loop_depth (scop_p); extern int unify_scattering_dimensions (scop_p); extern bool apply_poly_transforms (scop_p); extern bool graphite_legal_transform (scop_p); /* Set the region of SCOP to REGION. */ static inline void scop_set_region (scop_p scop, void *region) { scop->region = region; } /* Returns the number of parameters for SCOP. */ static inline graphite_dim_t scop_nb_params (scop_p scop) { return scop->nb_params; } /* Set the number of params of SCOP to NB_PARAMS. */ static inline void scop_set_nb_params (scop_p scop, graphite_dim_t nb_params) { scop->nb_params = nb_params; } /* Allocates a new empty poly_scattering structure. */ static inline poly_scattering_p poly_scattering_new (void) { poly_scattering_p res = XNEW (struct poly_scattering); res->scattering = NULL; res->nb_local_variables = 0; res->nb_scattering = 0; return res; } /* Free a poly_scattering structure. */ static inline void poly_scattering_free (poly_scattering_p s) { ppl_delete_Polyhedron (s->scattering); free (s); } /* Copies S and return a new scattering. */ static inline poly_scattering_p poly_scattering_copy (poly_scattering_p s) { poly_scattering_p res = poly_scattering_new (); ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering); res->nb_local_variables = s->nb_local_variables; res->nb_scattering = s->nb_scattering; return res; } /* Saves the transformed scattering of PBB. */ static inline void store_scattering_pbb (poly_bb_p pbb) { gcc_assert (PBB_TRANSFORMED (pbb)); if (PBB_SAVED (pbb)) poly_scattering_free (PBB_SAVED (pbb)); PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb)); } /* Saves the scattering for all the pbbs in the SCOP. */ static inline void store_scattering (scop_p scop) { int i; poly_bb_p pbb; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) store_scattering_pbb (pbb); } /* Restores the scattering of PBB. */ static inline void restore_scattering_pbb (poly_bb_p pbb) { gcc_assert (PBB_SAVED (pbb)); poly_scattering_free (PBB_TRANSFORMED (pbb)); PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb)); } /* Restores the scattering for all the pbbs in the SCOP. */ static inline void restore_scattering (scop_p scop) { int i; poly_bb_p pbb; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) restore_scattering_pbb (pbb); } #endif