/* Graphite polyhedral representation. Copyright (C) 2009-2015 Free Software Foundation, Inc. Contributed by Sebastian Pop and Tobias Grosser . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_GRAPHITE_POLY_H #define GCC_GRAPHITE_POLY_H #include "sese.h" #ifndef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS # define isl_stat int # define isl_stat_ok 0 #endif typedef struct poly_dr *poly_dr_p; typedef struct poly_bb *poly_bb_p; typedef struct scop *scop_p; typedef unsigned graphite_dim_t; static inline graphite_dim_t scop_nb_params (scop_p); /* A data reference can write or read some memory or we just know it may write some memory. */ enum poly_dr_type { PDR_READ, /* PDR_MAY_READs are represented using PDR_READS. This does not limit the expressiveness. */ PDR_WRITE, PDR_MAY_WRITE }; struct poly_dr { /* An identifier for this PDR. */ int id; /* The number of data refs identical to this one in the PBB. */ int nb_refs; /* A pointer to compiler's data reference description. */ data_reference_p compiler_dr; /* A pointer to the PBB that contains this data reference. */ poly_bb_p pbb; enum poly_dr_type type; /* The access polyhedron contains the polyhedral space this data reference will access. The polyhedron contains these dimensions: - The alias set (a): Every memory access is classified in at least one alias set. - The subscripts (s_0, ..., s_n): The memory is accessed using zero or more subscript dimensions. - The iteration domain (variables and parameters) Do not hardcode the dimensions. Use the following accessor functions: - pdr_alias_set_dim - pdr_subscript_dim - pdr_iterator_dim - pdr_parameter_dim Example: | int A[1335][123]; | int *p = malloc (); | | k = ... | for i | { | if (unknown_function ()) | p = A; | ... = p[?][?]; | for j | A[i][j+k] = m; | } The data access A[i][j+k] in alias set "5" is described like this: | i j k a s0 s1 1 | 0 0 0 1 0 0 -5 = 0 |-1 0 0 0 1 0 0 = 0 | 0 -1 -1 0 0 1 0 = 0 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the | 0 0 0 0 0 1 0 >= 0 # array size. | 0 0 0 0 -1 0 1335 >= 0 | 0 0 0 0 0 -1 123 >= 0 The pointer "*p" in alias set "5" and "7" is described as a union of polyhedron: | i k a s0 1 | 0 0 1 0 -5 = 0 | 0 0 0 1 0 >= 0 "or" | i k a s0 1 | 0 0 1 0 -7 = 0 | 0 0 0 1 0 >= 0 "*p" accesses all of the object allocated with 'malloc'. The scalar data access "m" is represented as an array with zero subscript dimensions. | i j k a 1 | 0 0 0 -1 15 = 0 The difference between the graphite internal format for access data and the OpenSop format is in the order of columns. Instead of having: | i j k a s0 s1 1 | 0 0 0 1 0 0 -5 = 0 |-1 0 0 0 1 0 0 = 0 | 0 -1 -1 0 0 1 0 = 0 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the | 0 0 0 0 0 1 0 >= 0 # array size. | 0 0 0 0 -1 0 1335 >= 0 | 0 0 0 0 0 -1 123 >= 0 In OpenScop we have: | a s0 s1 i j k 1 | 1 0 0 0 0 0 -5 = 0 | 0 1 0 -1 0 0 0 = 0 | 0 0 1 0 -1 -1 0 = 0 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the | 0 0 1 0 0 0 0 >= 0 # array size. | 0 -1 0 0 0 0 1335 >= 0 | 0 0 -1 0 0 0 123 >= 0 The OpenScop access function is printed as follows: | 1 # The number of disjunct components in a union of access functions. | R C O I L P # Described bellow. | a s0 s1 i j k 1 | 1 0 0 0 0 0 -5 = 0 | 0 1 0 -1 0 0 0 = 0 | 0 0 1 0 -1 -1 0 = 0 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the | 0 0 1 0 0 0 0 >= 0 # array size. | 0 -1 0 0 0 0 1335 >= 0 | 0 0 -1 0 0 0 123 >= 0 Where: - R: Number of rows. - C: Number of columns. - O: Number of output dimensions = alias set + number of subscripts. - I: Number of input dimensions (iterators). - L: Number of local (existentially quantified) dimensions. - P: Number of parameters. In the example, the vector "R C O I L P" is "7 7 3 2 0 1". */ isl_map *accesses; isl_set *subscript_sizes; /* The number of subscripts. */ graphite_dim_t nb_subscripts; }; #define PDR_ID(PDR) (PDR->id) #define PDR_NB_REFS(PDR) (PDR->nb_refs) #define PDR_CDR(PDR) (PDR->compiler_dr) #define PDR_PBB(PDR) (PDR->pbb) #define PDR_TYPE(PDR) (PDR->type) #define PDR_ACCESSES(PDR) (NULL) #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts) void new_poly_dr (poly_bb_p, enum poly_dr_type, data_reference_p, graphite_dim_t, isl_map *, isl_set *); void free_poly_dr (poly_dr_p); void debug_pdr (poly_dr_p, int); void print_pdr (FILE *, poly_dr_p, int); static inline bool pdr_read_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_READ; } /* Returns true when PDR is a "write". */ static inline bool pdr_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_WRITE; } /* Returns true when PDR is a "may write". */ static inline bool pdr_may_write_p (poly_dr_p pdr) { return PDR_TYPE (pdr) == PDR_MAY_WRITE; } /* POLY_BB represents a blackbox in the polyhedral model. */ struct poly_bb { /* Pointer to a basic block or a statement in the compiler. */ gimple_poly_bb_p black_box; /* Pointer to the SCOP containing this PBB. */ scop_p scop; /* The iteration domain of this bb. The layout of this polyhedron is I|G with I the iteration domain, G the context parameters. Example: for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++) for (j = 2; j <= 2*i + 5; j++) for (k = 0; k <= 5; k++) S (i,j,k) Loop iterators: i, j, k Parameters: a, b | i >= a - 7b + 8 | i <= 3a + 13b + 20 | j >= 2 | j <= 2i + 5 | k >= 0 | k <= 5 The number of variables in the DOMAIN may change and is not related to the number of loops in the original code. */ isl_set *domain; /* The data references we access. */ vec drs; /* The original scattering. */ isl_map *schedule; /* The transformed scattering. */ isl_map *transformed; /* A copy of the transformed scattering. */ isl_map *saved; /* True when this PBB contains only a reduction statement. */ bool is_reduction; }; #define PBB_BLACK_BOX(PBB) ((gimple_poly_bb_p) PBB->black_box) #define PBB_SCOP(PBB) (PBB->scop) #define PBB_DRS(PBB) (PBB->drs) #define PBB_IS_REDUCTION(PBB) (PBB->is_reduction) extern poly_bb_p new_poly_bb (scop_p, gimple_poly_bb_p); extern void free_poly_bb (poly_bb_p); extern void debug_loop_vec (poly_bb_p); extern void print_pbb_domain (FILE *, poly_bb_p, int); extern void print_pbb (FILE *, poly_bb_p, int); extern void print_scop_context (FILE *, scop_p, int); extern void print_scop (FILE *, scop_p, int); extern void debug_pbb_domain (poly_bb_p, int); extern void debug_pbb (poly_bb_p, int); extern void print_pdrs (FILE *, poly_bb_p, int); extern void debug_pdrs (poly_bb_p, int); extern void debug_scop_context (scop_p, int); extern void debug_scop (scop_p, int); extern void print_scop_params (FILE *, scop_p, int); extern void debug_scop_params (scop_p, int); extern void print_iteration_domain (FILE *, poly_bb_p, int); extern void print_iteration_domains (FILE *, scop_p, int); extern void debug_iteration_domain (poly_bb_p, int); extern void debug_iteration_domains (scop_p, int); extern void print_isl_set (FILE *, isl_set *); extern void print_isl_map (FILE *, isl_map *); extern void print_isl_aff (FILE *, isl_aff *); extern void print_isl_constraint (FILE *, isl_constraint *); extern void debug_isl_set (isl_set *); extern void debug_isl_map (isl_map *); extern void debug_isl_aff (isl_aff *); extern void debug_isl_constraint (isl_constraint *); extern int scop_do_interchange (scop_p); extern int scop_do_strip_mine (scop_p, int); extern bool scop_do_block (scop_p); extern bool flatten_all_loops (scop_p); extern bool optimize_isl (scop_p); extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t); extern void debug_gmp_value (mpz_t); /* Returns a gimple_bb from BB. */ static inline gimple_poly_bb_p gbb_from_bb (basic_block bb) { return (gimple_poly_bb_p) bb->aux; } /* The poly_bb of the BB. */ static inline poly_bb_p pbb_from_bb (basic_block bb) { return GBB_PBB (gbb_from_bb (bb)); } /* The basic block of the PBB. */ static inline basic_block pbb_bb (poly_bb_p pbb) { return GBB_BB (PBB_BLACK_BOX (pbb)); } static inline int pbb_index (poly_bb_p pbb) { return pbb_bb (pbb)->index; } /* The loop of the PBB. */ static inline loop_p pbb_loop (poly_bb_p pbb) { return gbb_loop (PBB_BLACK_BOX (pbb)); } /* The scop that contains the PDR. */ static inline scop_p pdr_scop (poly_dr_p pdr) { return PBB_SCOP (PDR_PBB (pdr)); } /* Set black box of PBB to BLACKBOX. */ static inline void pbb_set_black_box (poly_bb_p pbb, gimple_poly_bb_p black_box) { pbb->black_box = black_box; } /* A helper structure to keep track of data references, polyhedral BBs, and alias sets. */ struct dr_info { /* The data reference. */ data_reference_p dr; /* ALIAS_SET is the SCC number assigned by a graph_dfs of the alias graph. -1 is an invalid alias set. */ int alias_set; /* The polyhedral BB containing this DR. */ poly_bb_p pbb; /* Construct a DR_INFO from a data reference DR, an ALIAS_SET, and a PBB. */ dr_info (data_reference_p dr, int alias_set, poly_bb_p pbb) : dr (dr), alias_set (alias_set), pbb (pbb) {} /* A simpler constructor to be able to push these objects in a vec. */ dr_info (int i) : dr (NULL), alias_set (-1), pbb (NULL) { gcc_assert (i == 0); } /* Assignment operator, to be able to iterate over a vec of these objects. */ const dr_info & operator= (const dr_info &p) { dr = p.dr; alias_set = p.alias_set; pbb = p.pbb; return *this; } }; /* A SCOP is a Static Control Part of the program, simple enough to be represented in polyhedral form. */ struct scop { /* A SCOP is defined as a SESE region. */ sese_info_p region; /* Number of parameters in SCoP. */ graphite_dim_t nb_params; /* All the basic blocks in this scop that contain memory references and that will be represented as statements in the polyhedral representation. */ vec pbbs; /* All the data references in this scop. */ vec drs; /* The context describes known restrictions concerning the parameters and relations in between the parameters. void f (int8_t a, uint_16_t b) { c = 2 a + b; ... } Here we can add these restrictions to the context: -128 >= a >= 127 0 >= b >= 65,535 c = 2a + b */ isl_set *param_context; /* The context used internally by ISL. */ isl_ctx *isl_context; /* The original dependence relations: RAW are read after write dependences, WAR are write after read dependences, WAW are write after write dependences. */ isl_union_map *must_raw, *may_raw, *must_raw_no_source, *may_raw_no_source, *must_war, *may_war, *must_war_no_source, *may_war_no_source, *must_waw, *may_waw, *must_waw_no_source, *may_waw_no_source; /* True when the scop has been converted to its polyhedral representation. */ bool poly_scop_p; }; #define SCOP_REGION(S) (S->region) #define SCOP_CONTEXT(S) (NULL) #define POLY_SCOP_P(S) (S->poly_scop_p) extern scop_p new_scop (edge, edge); extern void free_scop (scop_p); extern gimple_poly_bb_p new_gimple_poly_bb (basic_block, vec); extern void free_gimple_poly_bb (gimple_poly_bb_p); extern void print_generated_program (FILE *, scop_p); extern void debug_generated_program (scop_p); extern int unify_scattering_dimensions (scop_p); extern bool apply_poly_transforms (scop_p); /* Set the region of SCOP to REGION. */ static inline void scop_set_region (scop_p scop, sese_info_p region) { scop->region = region; } /* Returns the number of parameters for SCOP. */ static inline graphite_dim_t scop_nb_params (scop_p scop) { return scop->nb_params; } /* Set the number of params of SCOP to NB_PARAMS. */ static inline void scop_set_nb_params (scop_p scop, graphite_dim_t nb_params) { scop->nb_params = nb_params; } isl_union_map * scop_get_dependences (scop_p scop); bool carries_deps (__isl_keep isl_union_map *schedule, __isl_keep isl_union_map *deps, int depth); #endif