/* Graphite polyhedral representation. Copyright (C) 2009 Free Software Foundation, Inc. Contributed by Sebastian Pop and Tobias Grosser . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "rtl.h" #include "output.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-flow.h" #include "toplev.h" #include "tree-dump.h" #include "timevar.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-pass.h" #include "domwalk.h" #include "value-prof.h" #include "pointer-set.h" #include "gimple.h" #include "params.h" #ifdef HAVE_cloog #include "cloog/cloog.h" #include "ppl_c.h" #include "sese.h" #include "graphite-ppl.h" #include "graphite.h" #include "graphite-poly.h" #include "graphite-dependences.h" /* Return the maximal loop depth in SCOP. */ int scop_max_loop_depth (scop_p scop) { int i; poly_bb_p pbb; int max_nb_loops = 0; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) { int nb_loops = pbb_dim_iter_domain (pbb); if (max_nb_loops < nb_loops) max_nb_loops = nb_loops; } return max_nb_loops; } /* Extend the scattering matrix of PBB to MAX_SCATTERING scattering dimensions. */ static void extend_scattering (poly_bb_p pbb, int max_scattering) { ppl_dimension_type nb_old_dims, nb_new_dims; int nb_added_dims, i; ppl_Coefficient_t coef; Value one; nb_added_dims = max_scattering - pbb_nb_scattering_transform (pbb); value_init (one); value_set_si (one, 1); ppl_new_Coefficient (&coef); ppl_assign_Coefficient_from_mpz_t (coef, one); gcc_assert (nb_added_dims >= 0); nb_old_dims = pbb_nb_scattering_transform (pbb) + pbb_dim_iter_domain (pbb) + scop_nb_params (PBB_SCOP (pbb)); nb_new_dims = nb_old_dims + nb_added_dims; ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), pbb_nb_scattering_transform (pbb), nb_added_dims); PBB_NB_SCATTERING_TRANSFORM (pbb) += nb_added_dims; /* Add identity matrix for the added dimensions. */ for (i = max_scattering - nb_added_dims; i < max_scattering; i++) { ppl_Constraint_t cstr; ppl_Linear_Expression_t expr; ppl_new_Linear_Expression_with_dimension (&expr, nb_new_dims); ppl_Linear_Expression_add_to_coefficient (expr, i, coef); ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL); ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr); ppl_delete_Constraint (cstr); ppl_delete_Linear_Expression (expr); } ppl_delete_Coefficient (coef); value_clear (one); } /* All scattering matrices in SCOP will have the same number of scattering dimensions. */ int unify_scattering_dimensions (scop_p scop) { int i; poly_bb_p pbb; graphite_dim_t max_scattering = 0; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) max_scattering = MAX (pbb_nb_scattering_transform (pbb), max_scattering); for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) extend_scattering (pbb, max_scattering); return max_scattering; } /* Prints to FILE the scattering function of PBB. */ void print_scattering_function (FILE *file, poly_bb_p pbb) { graphite_dim_t i; if (!PBB_TRANSFORMED (pbb)) return; fprintf (file, "scattering bb_%d (\n", pbb_index (pbb)); fprintf (file, "# eq"); for (i = 0; i < pbb_nb_scattering_transform (pbb); i++) fprintf (file, " s%d", (int) i); for (i = 0; i < pbb_nb_local_vars (pbb); i++) fprintf (file, " lv%d", (int) i); for (i = 0; i < pbb_dim_iter_domain (pbb); i++) fprintf (file, " i%d", (int) i); for (i = 0; i < pbb_nb_params (pbb); i++) fprintf (file, " p%d", (int) i); fprintf (file, " cst\n"); ppl_print_polyhedron_matrix (file, PBB_TRANSFORMED_SCATTERING (pbb)); fprintf (file, ")\n"); } /* Prints to FILE the iteration domain of PBB. */ void print_iteration_domain (FILE *file, poly_bb_p pbb) { print_pbb_domain (file, pbb); } /* Prints to FILE the scattering functions of every PBB of SCOP. */ void print_scattering_functions (FILE *file, scop_p scop) { int i; poly_bb_p pbb; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) print_scattering_function (file, pbb); } /* Prints to FILE the iteration domains of every PBB of SCOP. */ void print_iteration_domains (FILE *file, scop_p scop) { int i; poly_bb_p pbb; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) print_iteration_domain (file, pbb); } /* Prints to STDERR the scattering function of PBB. */ void debug_scattering_function (poly_bb_p pbb) { print_scattering_function (stderr, pbb); } /* Prints to STDERR the iteration domain of PBB. */ void debug_iteration_domain (poly_bb_p pbb) { print_iteration_domain (stderr, pbb); } /* Prints to STDERR the scattering functions of every PBB of SCOP. */ void debug_scattering_functions (scop_p scop) { print_scattering_functions (stderr, scop); } /* Prints to STDERR the iteration domains of every PBB of SCOP. */ void debug_iteration_domains (scop_p scop) { print_iteration_domains (stderr, scop); } /* Apply graphite transformations to all the basic blocks of SCOP. */ bool apply_poly_transforms (scop_p scop) { bool transform_done = false; /* Generate code even if we did not apply any real transformation. This also allows to check the performance for the identity transformation: GIMPLE -> GRAPHITE -> GIMPLE Keep in mind that CLooG optimizes in control, so the loop structure may change, even if we only use -fgraphite-identity. */ if (flag_graphite_identity) transform_done = true; if (flag_loop_parallelize_all) transform_done = true; if (flag_loop_block) transform_done |= scop_do_block (scop); else { if (flag_loop_strip_mine) transform_done |= scop_do_strip_mine (scop); if (flag_loop_interchange) transform_done |= scop_do_interchange (scop); } return transform_done; } /* Returns true when it PDR1 is a duplicate of PDR2: same PBB, and their ACCESSES, TYPE, and NB_SUBSCRIPTS are the same. */ static inline bool can_collapse_pdrs (poly_dr_p pdr1, poly_dr_p pdr2) { bool res; ppl_Pointset_Powerset_C_Polyhedron_t af1, af2, diff; if (PDR_PBB (pdr1) != PDR_PBB (pdr2) || PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2) || PDR_TYPE (pdr1) != PDR_TYPE (pdr2)) return false; af1 = PDR_ACCESSES (pdr1); af2 = PDR_ACCESSES (pdr2); ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&diff, af1); ppl_Pointset_Powerset_C_Polyhedron_difference_assign (diff, af2); res = ppl_Pointset_Powerset_C_Polyhedron_is_empty (diff); ppl_delete_Pointset_Powerset_C_Polyhedron (diff); return res; } /* Removes duplicated data references in PBB. */ void pbb_remove_duplicate_pdrs (poly_bb_p pbb) { int i, j; poly_dr_p pdr1, pdr2; unsigned n = VEC_length (poly_dr_p, PBB_DRS (pbb)); VEC (poly_dr_p, heap) *collapsed = VEC_alloc (poly_dr_p, heap, n); for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr1); i++) for (j = 0; VEC_iterate (poly_dr_p, collapsed, j, pdr2); j++) if (!can_collapse_pdrs (pdr1, pdr2)) VEC_quick_push (poly_dr_p, collapsed, pdr1); VEC_free (poly_dr_p, heap, collapsed); PBB_PDR_DUPLICATES_REMOVED (pbb) = true; } /* Create a new polyhedral data reference and add it to PBB. It is defined by its ACCESSES, its TYPE, and the number of subscripts NB_SUBSCRIPTS. */ void new_poly_dr (poly_bb_p pbb, int dr_base_object_set, ppl_Pointset_Powerset_C_Polyhedron_t accesses, enum poly_dr_type type, void *cdr, graphite_dim_t nb_subscripts) { static int id = 0; poly_dr_p pdr = XNEW (struct poly_dr); PDR_ID (pdr) = id++; PDR_BASE_OBJECT_SET (pdr) = dr_base_object_set; PDR_NB_REFS (pdr) = 1; PDR_PBB (pdr) = pbb; PDR_ACCESSES (pdr) = accesses; PDR_TYPE (pdr) = type; PDR_CDR (pdr) = cdr; PDR_NB_SUBSCRIPTS (pdr) = nb_subscripts; VEC_safe_push (poly_dr_p, heap, PBB_DRS (pbb), pdr); } /* Free polyhedral data reference PDR. */ void free_poly_dr (poly_dr_p pdr) { ppl_delete_Pointset_Powerset_C_Polyhedron (PDR_ACCESSES (pdr)); XDELETE (pdr); } /* Create a new polyhedral black box. */ void new_poly_bb (scop_p scop, void *black_box, bool reduction) { poly_bb_p pbb = XNEW (struct poly_bb); PBB_DOMAIN (pbb) = NULL; PBB_SCOP (pbb) = scop; pbb_set_black_box (pbb, black_box); PBB_TRANSFORMED (pbb) = NULL; PBB_SAVED (pbb) = NULL; PBB_ORIGINAL (pbb) = NULL; PBB_DRS (pbb) = VEC_alloc (poly_dr_p, heap, 3); PBB_IS_REDUCTION (pbb) = reduction; PBB_PDR_DUPLICATES_REMOVED (pbb) = false; VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb); } /* Free polyhedral black box. */ void free_poly_bb (poly_bb_p pbb) { int i; poly_dr_p pdr; ppl_delete_Pointset_Powerset_C_Polyhedron (PBB_DOMAIN (pbb)); if (PBB_TRANSFORMED (pbb)) poly_scattering_free (PBB_TRANSFORMED (pbb)); if (PBB_SAVED (pbb)) poly_scattering_free (PBB_SAVED (pbb)); if (PBB_ORIGINAL (pbb)) poly_scattering_free (PBB_ORIGINAL (pbb)); if (PBB_DRS (pbb)) for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++) free_poly_dr (pdr); VEC_free (poly_dr_p, heap, PBB_DRS (pbb)); XDELETE (pbb); } static void print_pdr_access_layout (FILE *file, poly_dr_p pdr) { graphite_dim_t i; fprintf (file, "# eq"); for (i = 0; i < pdr_dim_iter_domain (pdr); i++) fprintf (file, " i%d", (int) i); for (i = 0; i < pdr_nb_params (pdr); i++) fprintf (file, " p%d", (int) i); fprintf (file, " alias"); for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++) fprintf (file, " sub%d", (int) i); fprintf (file, " cst\n"); } /* Prints to FILE the polyhedral data reference PDR. */ void print_pdr (FILE *file, poly_dr_p pdr) { fprintf (file, "pdr_%d (", PDR_ID (pdr)); switch (PDR_TYPE (pdr)) { case PDR_READ: fprintf (file, "read \n"); break; case PDR_WRITE: fprintf (file, "write \n"); break; case PDR_MAY_WRITE: fprintf (file, "may_write \n"); break; default: gcc_unreachable (); } dump_data_reference (file, (data_reference_p) PDR_CDR (pdr)); fprintf (file, "data accesses (\n"); print_pdr_access_layout (file, pdr); ppl_print_powerset_matrix (file, PDR_ACCESSES (pdr)); fprintf (file, ")\n"); fprintf (file, ")\n"); } /* Prints to STDERR the polyhedral data reference PDR. */ void debug_pdr (poly_dr_p pdr) { print_pdr (stderr, pdr); } /* Creates a new SCOP containing REGION. */ scop_p new_scop (void *region) { scop_p scop = XNEW (struct scop); SCOP_CONTEXT (scop) = NULL; scop_set_region (scop, region); SCOP_BBS (scop) = VEC_alloc (poly_bb_p, heap, 3); SCOP_ORIGINAL_PDDRS (scop) = htab_create (10, hash_poly_ddr_p, eq_poly_ddr_p, free_poly_ddr); SCOP_ORIGINAL_SCHEDULE (scop) = NULL; SCOP_TRANSFORMED_SCHEDULE (scop) = NULL; SCOP_SAVED_SCHEDULE (scop) = NULL; POLY_SCOP_P (scop) = false; return scop; } /* Deletes SCOP. */ void free_scop (scop_p scop) { int i; poly_bb_p pbb; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) free_poly_bb (pbb); VEC_free (poly_bb_p, heap, SCOP_BBS (scop)); if (SCOP_CONTEXT (scop)) ppl_delete_Pointset_Powerset_C_Polyhedron (SCOP_CONTEXT (scop)); htab_delete (SCOP_ORIGINAL_PDDRS (scop)); free_lst (SCOP_ORIGINAL_SCHEDULE (scop)); free_lst (SCOP_TRANSFORMED_SCHEDULE (scop)); free_lst (SCOP_SAVED_SCHEDULE (scop)); XDELETE (scop); } /* Print to FILE the domain of PBB. */ void print_pbb_domain (FILE *file, poly_bb_p pbb) { graphite_dim_t i; gimple_bb_p gbb = PBB_BLACK_BOX (pbb); if (!PBB_DOMAIN (pbb)) return; fprintf (file, "domains bb_%d (\n", GBB_BB (gbb)->index); fprintf (file, "# eq"); for (i = 0; i < pbb_dim_iter_domain (pbb); i++) fprintf (file, " i%d", (int) i); for (i = 0; i < pbb_nb_params (pbb); i++) fprintf (file, " p%d", (int) i); fprintf (file, " cst\n"); if (PBB_DOMAIN (pbb)) ppl_print_powerset_matrix (file, PBB_DOMAIN (pbb)); fprintf (file, ")\n"); } /* Dump the cases of a graphite basic block GBB on FILE. */ static void dump_gbb_cases (FILE *file, gimple_bb_p gbb) { int i; gimple stmt; VEC (gimple, heap) *cases; if (!gbb) return; cases = GBB_CONDITION_CASES (gbb); if (VEC_empty (gimple, cases)) return; fprintf (file, "cases bb_%d (", GBB_BB (gbb)->index); for (i = 0; VEC_iterate (gimple, cases, i, stmt); i++) print_gimple_stmt (file, stmt, 0, 0); fprintf (file, ")\n"); } /* Dump conditions of a graphite basic block GBB on FILE. */ static void dump_gbb_conditions (FILE *file, gimple_bb_p gbb) { int i; gimple stmt; VEC (gimple, heap) *conditions; if (!gbb) return; conditions = GBB_CONDITIONS (gbb); if (VEC_empty (gimple, conditions)) return; fprintf (file, "conditions bb_%d (", GBB_BB (gbb)->index); for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++) print_gimple_stmt (file, stmt, 0, 0); fprintf (file, ")\n"); } /* Print to FILE all the data references of PBB. */ void print_pdrs (FILE *file, poly_bb_p pbb) { int i; poly_dr_p pdr; for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++) print_pdr (file, pdr); } /* Print to STDERR all the data references of PBB. */ void debug_pdrs (poly_bb_p pbb) { print_pdrs (stderr, pbb); } /* Print to FILE the domain and scattering function of PBB. */ void print_pbb (FILE *file, poly_bb_p pbb) { fprintf (file, "pbb_%d (\n", pbb_index (pbb)); dump_gbb_conditions (file, PBB_BLACK_BOX (pbb)); dump_gbb_cases (file, PBB_BLACK_BOX (pbb)); print_pdrs (file, pbb); print_pbb_domain (file, pbb); print_scattering_function (file, pbb); fprintf (file, ")\n"); } /* Print to FILE the parameters of SCOP. */ void print_scop_params (FILE *file, scop_p scop) { int i; tree t; fprintf (file, "parameters (\n"); for (i = 0; VEC_iterate (tree, SESE_PARAMS (SCOP_REGION (scop)), i, t); i++) { fprintf (file, "p_%d -> ", i); print_generic_expr (file, t, 0); fprintf (file, "\n"); } fprintf (file, ")\n"); } /* Print to FILE the context of SCoP. */ void print_scop_context (FILE *file, scop_p scop) { graphite_dim_t i; fprintf (file, "context (\n"); fprintf (file, "# eq"); for (i = 0; i < scop_nb_params (scop); i++) fprintf (file, " p%d", (int) i); fprintf (file, " cst\n"); if (SCOP_CONTEXT (scop)) ppl_print_powerset_matrix (file, SCOP_CONTEXT (scop)); fprintf (file, ")\n"); } /* Print to FILE the SCOP. */ void print_scop (FILE *file, scop_p scop) { int i; poly_bb_p pbb; fprintf (file, "scop (\n"); print_scop_params (file, scop); print_scop_context (file, scop); for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) print_pbb (file, pbb); fprintf (file, "original_lst (\n"); print_lst (file, SCOP_ORIGINAL_SCHEDULE (scop), 0); fprintf (file, ")\n"); fprintf (file, "transformed_lst (\n"); print_lst (file, SCOP_TRANSFORMED_SCHEDULE (scop), 0); fprintf (file, ")\n"); fprintf (file, ")\n"); } /* Print to STDERR the domain of PBB. */ void debug_pbb_domain (poly_bb_p pbb) { print_pbb_domain (stderr, pbb); } /* Print to FILE the domain and scattering function of PBB. */ void debug_pbb (poly_bb_p pbb) { print_pbb (stderr, pbb); } /* Print to STDERR the context of SCOP. */ void debug_scop_context (scop_p scop) { print_scop_context (stderr, scop); } /* Print to STDERR the SCOP. */ void debug_scop (scop_p scop) { print_scop (stderr, scop); } /* Print to STDERR the parameters of SCOP. */ void debug_scop_params (scop_p scop) { print_scop_params (stderr, scop); } /* The dimension in the transformed scattering polyhedron of PBB containing the scattering iterator for the loop at depth LOOP_DEPTH. */ ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p pbb, graphite_dim_t loop_depth) { ppl_const_Constraint_System_t pcs; ppl_Constraint_System_const_iterator_t cit, cend; ppl_const_Constraint_t cstr; ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb); ppl_dimension_type iter = psct_iterator_dim (pbb, loop_depth); ppl_Linear_Expression_t expr; ppl_Coefficient_t coef; Value val; graphite_dim_t i; value_init (val); ppl_new_Coefficient (&coef); ppl_Polyhedron_get_constraints (ph, &pcs); ppl_new_Constraint_System_const_iterator (&cit); ppl_new_Constraint_System_const_iterator (&cend); for (ppl_Constraint_System_begin (pcs, cit), ppl_Constraint_System_end (pcs, cend); !ppl_Constraint_System_const_iterator_equal_test (cit, cend); ppl_Constraint_System_const_iterator_increment (cit)) { ppl_Constraint_System_const_iterator_dereference (cit, &cstr); ppl_new_Linear_Expression_from_Constraint (&expr, cstr); ppl_Linear_Expression_coefficient (expr, iter, coef); ppl_Coefficient_to_mpz_t (coef, val); if (value_zero_p (val)) { ppl_delete_Linear_Expression (expr); continue; } for (i = 0; i < pbb_nb_scattering_transform (pbb); i++) { ppl_dimension_type scatter = psct_scattering_dim (pbb, i); ppl_Linear_Expression_coefficient (expr, scatter, coef); ppl_Coefficient_to_mpz_t (coef, val); if (value_notzero_p (val)) { value_clear (val); ppl_delete_Linear_Expression (expr); ppl_delete_Coefficient (coef); ppl_delete_Constraint_System_const_iterator (cit); ppl_delete_Constraint_System_const_iterator (cend); return scatter; } } } gcc_unreachable (); } /* Returns the number of iterations NITER of the loop around PBB at depth LOOP_DEPTH. */ void pbb_number_of_iterations (poly_bb_p pbb, graphite_dim_t loop_depth, Value niter) { ppl_Linear_Expression_t le; ppl_dimension_type dim; ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim); ppl_new_Linear_Expression_with_dimension (&le, dim); ppl_set_coef (le, pbb_iterator_dim (pbb, loop_depth), 1); value_set_si (niter, -1); ppl_max_for_le_pointset (PBB_DOMAIN (pbb), le, niter); ppl_delete_Linear_Expression (le); } /* Returns the number of iterations NITER of the loop around PBB at time(scattering) dimension TIME_DEPTH. */ void pbb_number_of_iterations_at_time (poly_bb_p pbb, graphite_dim_t time_depth, Value niter) { ppl_Pointset_Powerset_C_Polyhedron_t ext_domain, sctr; ppl_Linear_Expression_t le; ppl_dimension_type dim; /* Takes together domain and scattering polyhedrons, and composes them into the bigger polyhedron that has the following format: t0..t_{n-1} | l0..l_{nlcl-1} | i0..i_{niter-1} | g0..g_{nparm-1} where | t0..t_{n-1} are time dimensions (scattering dimensions) | l0..l_{nclc-1} are local variables in scattering function | i0..i_{niter-1} are original iteration variables | g0..g_{nparam-1} are global parameters. */ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sctr, PBB_TRANSFORMED_SCATTERING (pbb)); /* Extend the iteration domain with the scattering dimensions: 0..0 | 0..0 | i0..i_{niter-1} | g0..g_{nparm-1}. */ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&ext_domain, PBB_DOMAIN (pbb)); ppl_insert_dimensions_pointset (ext_domain, 0, pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb)); /* Add to sctr the extended domain. */ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (sctr, ext_domain); /* Extract the number of iterations. */ ppl_Pointset_Powerset_C_Polyhedron_space_dimension (sctr, &dim); ppl_new_Linear_Expression_with_dimension (&le, dim); ppl_set_coef (le, time_depth, 1); value_set_si (niter, -1); ppl_max_for_le_pointset (sctr, le, niter); ppl_delete_Linear_Expression (le); ppl_delete_Pointset_Powerset_C_Polyhedron (sctr); ppl_delete_Pointset_Powerset_C_Polyhedron (ext_domain); } /* Translates LOOP to LST. */ static lst_p loop_to_lst (loop_p loop, VEC (poly_bb_p, heap) *bbs, int *i) { poly_bb_p pbb; VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5); for (; VEC_iterate (poly_bb_p, bbs, *i, pbb); (*i)++) { lst_p stmt; basic_block bb = GBB_BB (PBB_BLACK_BOX (pbb)); if (bb->loop_father == loop) stmt = new_lst_stmt (pbb); else if (flow_bb_inside_loop_p (loop, bb)) { loop_p next = loop->inner; while (next && !flow_bb_inside_loop_p (next, bb)) next = next->next; stmt = loop_to_lst (next, bbs, i); } else { (*i)--; return new_lst_loop (seq); } VEC_safe_push (lst_p, heap, seq, stmt); } return new_lst_loop (seq); } /* Reads the original scattering of the SCOP and returns an LST representing it. */ void scop_to_lst (scop_p scop) { lst_p res; int i, n = VEC_length (poly_bb_p, SCOP_BBS (scop)); VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5); sese region = SCOP_REGION (scop); for (i = 0; i < n; i++) { poly_bb_p pbb = VEC_index (poly_bb_p, SCOP_BBS (scop), i); loop_p loop = outermost_loop_in_sese (region, GBB_BB (PBB_BLACK_BOX (pbb))); if (loop_in_sese_p (loop, region)) res = loop_to_lst (loop, SCOP_BBS (scop), &i); else res = new_lst_stmt (pbb); VEC_safe_push (lst_p, heap, seq, res); } res = new_lst_loop (seq); SCOP_ORIGINAL_SCHEDULE (scop) = res; SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (res); } /* Print LST to FILE with INDENT spaces of indentation. */ void print_lst (FILE *file, lst_p lst, int indent) { if (!lst) return; indent_to (file, indent); if (LST_LOOP_P (lst)) { int i; lst_p l; if (LST_LOOP_FATHER (lst)) fprintf (file, "%d (loop", lst_dewey_number (lst)); else fprintf (file, "(root"); for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++) print_lst (file, l, indent + 2); fprintf (file, ")"); } else fprintf (file, "%d stmt_%d", lst_dewey_number (lst), pbb_index (LST_PBB (lst))); } /* Print LST to STDERR. */ void debug_lst (lst_p lst) { print_lst (stderr, lst, 0); } /* Pretty print to FILE the loop statement tree LST in DOT format. */ static void dot_lst_1 (FILE *file, lst_p lst) { if (!lst) return; if (LST_LOOP_P (lst)) { int i; lst_p l; if (!LST_LOOP_FATHER (lst)) fprintf (file, "L -> L_%d_%d\n", lst_depth (lst), lst_dewey_number (lst)); else fprintf (file, "L_%d_%d -> L_%d_%d\n", lst_depth (LST_LOOP_FATHER (lst)), lst_dewey_number (LST_LOOP_FATHER (lst)), lst_depth (lst), lst_dewey_number (lst)); for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++) dot_lst_1 (file, l); } else fprintf (file, "L_%d_%d -> S_%d\n", lst_depth (LST_LOOP_FATHER (lst)), lst_dewey_number (LST_LOOP_FATHER (lst)), pbb_index (LST_PBB (lst))); } /* Display the LST using dotty. */ void dot_lst (lst_p lst) { /* When debugging, enable the following code. This cannot be used in production compilers because it calls "system". */ #if 0 int x; FILE *stream = fopen ("/tmp/lst.dot", "w"); gcc_assert (stream); fputs ("digraph all {\n", stream); dot_lst_1 (stream, lst); fputs ("}\n\n", stream); fclose (stream); x = system ("dotty /tmp/lst.dot"); #else fputs ("digraph all {\n", stderr); dot_lst_1 (stderr, lst); fputs ("}\n\n", stderr); #endif } #endif