/* A scheduling optimizer for Graphite Copyright (C) 2012-2016 Free Software Foundation, Inc. Contributed by Tobias Grosser . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define USES_ISL #include "config.h" #ifdef HAVE_isl #include "system.h" #include "coretypes.h" #include "backend.h" #include "cfghooks.h" #include "tree.h" #include "gimple.h" #include "fold-const.h" #include "gimple-iterator.h" #include "tree-ssa-loop.h" #include "cfgloop.h" #include "tree-data-ref.h" #include "params.h" #include "dumpfile.h" #include "graphite.h" #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS /* isl 0.15 or later. */ /* get_schedule_for_node_st - Improve schedule for the schedule node. Only Simple loop tiling is considered. */ static __isl_give isl_schedule_node * get_schedule_for_node_st (__isl_take isl_schedule_node *node, void *user) { if (user) return node; if (isl_schedule_node_get_type (node) != isl_schedule_node_band || isl_schedule_node_n_children (node) != 1) return node; isl_space *space = isl_schedule_node_band_get_space (node); unsigned dims = isl_space_dim (space, isl_dim_set); isl_schedule_node *child = isl_schedule_node_get_child (node, 0); isl_schedule_node_type type = isl_schedule_node_get_type (child); isl_space_free (space); isl_schedule_node_free (child); if (type != isl_schedule_node_leaf) return node; if (dims <= 1 || !isl_schedule_node_band_get_permutable (node)) { if (dump_file && dump_flags) fprintf (dump_file, "not tiled\n"); return node; } /* Tile loops. */ space = isl_schedule_node_band_get_space (node); isl_multi_val *sizes = isl_multi_val_zero (space); long tile_size = PARAM_VALUE (PARAM_LOOP_BLOCK_TILE_SIZE); isl_ctx *ctx = isl_schedule_node_get_ctx (node); for (unsigned i = 0; i < dims; i++) { sizes = isl_multi_val_set_val (sizes, i, isl_val_int_from_si (ctx, tile_size)); if (dump_file && dump_flags) fprintf (dump_file, "tiled by %ld\n", tile_size); } node = isl_schedule_node_band_tile (node, sizes); node = isl_schedule_node_child (node, 0); return node; } static isl_union_set * scop_get_domains (scop_p scop) { int i; poly_bb_p pbb; isl_space *space = isl_set_get_space (scop->param_context); isl_union_set *res = isl_union_set_empty (space); FOR_EACH_VEC_ELT (scop->pbbs, i, pbb) res = isl_union_set_add_set (res, isl_set_copy (pbb->domain)); return res; } /* Compute the schedule for SCOP based on its parameters, domain and set of constraints. Then apply the schedule to SCOP. */ static bool optimize_isl (scop_p scop) { int old_max_operations = isl_ctx_get_max_operations (scop->isl_context); int max_operations = PARAM_VALUE (PARAM_MAX_ISL_OPERATIONS); if (max_operations) isl_ctx_set_max_operations (scop->isl_context, max_operations); isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE); isl_union_set *domain = scop_get_domains (scop); /* Simplify the dependences on the domain. */ scop_get_dependences (scop); isl_union_map *dependences = isl_union_map_gist_domain (isl_union_map_copy (scop->dependence), isl_union_set_copy (domain)); isl_union_map *validity = isl_union_map_gist_range (dependences, isl_union_set_copy (domain)); /* FIXME: proximity should not be validity. */ isl_union_map *proximity = isl_union_map_copy (validity); isl_schedule_constraints *sc = isl_schedule_constraints_on_domain (domain); sc = isl_schedule_constraints_set_proximity (sc, proximity); sc = isl_schedule_constraints_set_validity (sc, isl_union_map_copy (validity)); sc = isl_schedule_constraints_set_coincidence (sc, validity); isl_options_set_schedule_serialize_sccs (scop->isl_context, 0); isl_options_set_schedule_maximize_band_depth (scop->isl_context, 1); isl_options_set_schedule_max_constant_term (scop->isl_context, 20); isl_options_set_schedule_max_coefficient (scop->isl_context, 20); isl_options_set_tile_scale_tile_loops (scop->isl_context, 0); /* Generate loop upper bounds that consist of the current loop iterator, an operator (< or <=) and an expression not involving the iterator. If this option is not set, then the current loop iterator may appear several times in the upper bound. See the isl manual for more details. */ isl_options_set_ast_build_atomic_upper_bound (scop->isl_context, 1); scop->transformed_schedule = isl_schedule_constraints_compute_schedule (sc); scop->transformed_schedule = isl_schedule_map_schedule_node_bottom_up (scop->transformed_schedule, get_schedule_for_node_st, NULL); isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_ABORT); isl_ctx_reset_operations (scop->isl_context); isl_ctx_set_max_operations (scop->isl_context, old_max_operations); if (!scop->transformed_schedule || isl_ctx_last_error (scop->isl_context) == isl_error_quota) { if (dump_file && dump_flags) fprintf (dump_file, "isl timed out --param max-isl-operations=%d\n", max_operations); return false; } gcc_assert (scop->original_schedule); isl_union_map *original = isl_schedule_get_map (scop->original_schedule); isl_union_map *transformed = isl_schedule_get_map (scop->transformed_schedule); bool same_schedule = isl_union_map_is_equal (original, transformed); isl_union_map_free (original); isl_union_map_free (transformed); if (same_schedule) { if (dump_file) { fprintf (dump_file, "[scheduler] isl optimized schedule is " "identical to the original schedule.\n"); print_schedule_ast (dump_file, scop->original_schedule, scop); } isl_schedule_free (scop->transformed_schedule); scop->transformed_schedule = isl_schedule_copy (scop->original_schedule); return false; } return true; } /* Apply graphite transformations to all the basic blocks of SCOP. */ bool apply_poly_transforms (scop_p scop) { if (flag_loop_nest_optimize) return optimize_isl (scop); if (!flag_graphite_identity && !flag_loop_parallelize_all) return false; /* Generate code even if we did not apply any real transformation. This also allows to check the performance for the identity transformation: GIMPLE -> GRAPHITE -> GIMPLE. */ gcc_assert (scop->original_schedule); scop->transformed_schedule = isl_schedule_copy (scop->original_schedule); return true; } #else /* get_tile_map - Create a map that describes a n-dimensonal tiling. get_tile_map creates a map from a n-dimensional scattering space into an 2*n-dimensional scattering space. The map describes a rectangular tiling. Example: SCHEDULE_DIMENSIONS = 2, PARAMETER_DIMENSIONS = 1, TILE_SIZE = 32 tile_map := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]: t0 % 32 = 0 and t0 <= s0 < t0 + 32 and t1 % 32 = 0 and t1 <= s1 < t1 + 32} Before tiling: for (i = 0; i < N; i++) for (j = 0; j < M; j++) S(i,j) After tiling: for (t_i = 0; t_i < N; i+=32) for (t_j = 0; t_j < M; j+=32) for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0 for (j = t_j; j < t_j + 32; j++) | Known that M % 32 = 0 S(i,j) */ static isl_basic_map * get_tile_map (isl_ctx *ctx, int schedule_dimensions, int tile_size) { /* We construct tile_map := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]: s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 32 and s1 = a1 * 32 and s1 = p1 and t1 <= p1 < t1 + 32} and project out the auxilary dimensions a0 and a1. */ isl_space *space = isl_space_alloc (ctx, 0, schedule_dimensions, schedule_dimensions * 3); isl_basic_map *tile_map = isl_basic_map_universe (isl_space_copy (space)); isl_local_space *local_space = isl_local_space_from_space (space); for (int x = 0; x < schedule_dimensions; x++) { int sX = x; int tX = x; int pX = schedule_dimensions + x; int aX = 2 * schedule_dimensions + x; isl_constraint *c; /* sX = aX * tile_size; */ c = isl_equality_alloc (isl_local_space_copy (local_space)); isl_constraint_set_coefficient_si (c, isl_dim_out, sX, 1); isl_constraint_set_coefficient_si (c, isl_dim_out, aX, -tile_size); tile_map = isl_basic_map_add_constraint (tile_map, c); /* pX = sX; */ c = isl_equality_alloc (isl_local_space_copy (local_space)); isl_constraint_set_coefficient_si (c, isl_dim_out, pX, 1); isl_constraint_set_coefficient_si (c, isl_dim_in, sX, -1); tile_map = isl_basic_map_add_constraint (tile_map, c); /* tX <= pX */ c = isl_inequality_alloc (isl_local_space_copy (local_space)); isl_constraint_set_coefficient_si (c, isl_dim_out, pX, 1); isl_constraint_set_coefficient_si (c, isl_dim_out, tX, -1); tile_map = isl_basic_map_add_constraint (tile_map, c); /* pX <= tX + (tile_size - 1) */ c = isl_inequality_alloc (isl_local_space_copy (local_space)); isl_constraint_set_coefficient_si (c, isl_dim_out, tX, 1); isl_constraint_set_coefficient_si (c, isl_dim_out, pX, -1); isl_constraint_set_constant_si (c, tile_size - 1); tile_map = isl_basic_map_add_constraint (tile_map, c); } /* Project out auxiliary dimensions. The auxiliary dimensions are transformed into existentially quantified ones. This reduces the number of visible scattering dimensions and allows isl to produces better code. */ tile_map = isl_basic_map_project_out (tile_map, isl_dim_out, 2 * schedule_dimensions, schedule_dimensions); isl_local_space_free (local_space); return tile_map; } /* get_schedule_for_band - Get the schedule for this BAND. Polly applies transformations like tiling on top of the isl calculated value. This can influence the number of scheduling dimension. The number of schedule dimensions is returned in DIMENSIONS. */ static isl_union_map * get_schedule_for_band (isl_band *band, int *dimensions) { isl_union_map *partial_schedule; isl_ctx *ctx; isl_space *space; isl_basic_map *tile_map; isl_union_map *tile_umap; partial_schedule = isl_band_get_partial_schedule (band); *dimensions = isl_band_n_member (band); /* It does not make any sense to tile a band with just one dimension. */ if (*dimensions == 1) { if (dump_file && dump_flags) fprintf (dump_file, "not tiled\n"); return partial_schedule; } if (dump_file && dump_flags) fprintf (dump_file, "tiled by %d\n", PARAM_VALUE (PARAM_LOOP_BLOCK_TILE_SIZE)); ctx = isl_union_map_get_ctx (partial_schedule); space = isl_union_map_get_space (partial_schedule); tile_map = get_tile_map (ctx, *dimensions, PARAM_VALUE (PARAM_LOOP_BLOCK_TILE_SIZE)); tile_umap = isl_union_map_from_map (isl_map_from_basic_map (tile_map)); tile_umap = isl_union_map_align_params (tile_umap, space); tile_umap = isl_union_map_coalesce (tile_umap); *dimensions = 2 * *dimensions; return isl_union_map_apply_range (partial_schedule, tile_umap); } /* get_schedule_for_band_list - Get the scheduling map for a list of bands. We walk recursively the forest of bands to combine the schedules of the individual bands to the overall schedule. In case tiling is requested, the individual bands are tiled. */ static isl_union_map * get_schedule_for_band_list (isl_band_list *band_list) { int num_bands, i; isl_union_map *schedule; isl_ctx *ctx; ctx = isl_band_list_get_ctx (band_list); num_bands = isl_band_list_n_band (band_list); schedule = isl_union_map_empty (isl_space_params_alloc (ctx, 0)); for (i = 0; i < num_bands; i++) { isl_band *band; isl_union_map *partial_schedule; int schedule_dimensions; isl_space *space; band = isl_band_list_get_band (band_list, i); partial_schedule = get_schedule_for_band (band, &schedule_dimensions); space = isl_union_map_get_space (partial_schedule); if (isl_band_has_children (band)) { isl_band_list *children = isl_band_get_children (band); isl_union_map *suffixSchedule = get_schedule_for_band_list (children); partial_schedule = isl_union_map_flat_range_product (partial_schedule, suffixSchedule); isl_band_list_free (children); } schedule = isl_union_map_union (schedule, partial_schedule); isl_band_free (band); isl_space_free (space); } return isl_union_map_coalesce (schedule); } static isl_union_map * get_schedule_map (isl_schedule *schedule) { isl_band_list *band_list = isl_schedule_get_band_forest (schedule); isl_union_map *schedule_map = get_schedule_for_band_list (band_list); isl_band_list_free (band_list); return schedule_map; } static isl_stat get_single_map (__isl_take isl_map *map, void *user) { isl_map **single_map = (isl_map **)user; *single_map = map; return isl_stat_ok; } static void apply_schedule_map_to_scop (scop_p scop, isl_union_map *schedule_map) { int i; poly_bb_p pbb; FOR_EACH_VEC_ELT (scop->pbbs, i, pbb) { isl_set *domain = isl_set_copy (pbb->domain); isl_map *stmt_schedule; isl_union_map *stmt_band = isl_union_map_intersect_domain (isl_union_map_copy (schedule_map), isl_union_set_from_set (domain)); stmt_band = isl_union_map_coalesce (stmt_band); isl_union_map_foreach_map (stmt_band, get_single_map, &stmt_schedule); isl_map_free (pbb->transformed); pbb->transformed = isl_map_coalesce (stmt_schedule); isl_union_map_free (stmt_band); } } static isl_union_set * scop_get_domains (scop_p scop) { int i; poly_bb_p pbb; isl_space *space = isl_set_get_space (scop->param_context); isl_union_set *res = isl_union_set_empty (space); FOR_EACH_VEC_ELT (scop->pbbs, i, pbb) res = isl_union_set_add_set (res, isl_set_copy (pbb->domain)); return res; } /* Compute the schedule for SCOP based on its parameters, domain and set of constraints. Then apply the schedule to SCOP. */ static bool optimize_isl (scop_p scop) { int old_max_operations = isl_ctx_get_max_operations (scop->isl_context); int max_operations = PARAM_VALUE (PARAM_MAX_ISL_OPERATIONS); if (max_operations) isl_ctx_set_max_operations (scop->isl_context, max_operations); isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE); isl_union_set *domain = scop_get_domains (scop); scop_get_dependences (scop); scop->dependence = isl_union_map_gist_domain (scop->dependence, isl_union_set_copy (domain)); scop->dependence = isl_union_map_gist_range (scop->dependence, isl_union_set_copy (domain)); isl_union_map *validity = isl_union_map_copy (scop->dependence); isl_union_map *proximity = isl_union_map_copy (validity); isl_options_set_schedule_fuse (scop->isl_context, ISL_SCHEDULE_FUSE_MIN); isl_schedule *schedule = isl_union_set_compute_schedule (domain, validity, proximity); isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_ABORT); isl_ctx_reset_operations (scop->isl_context); isl_ctx_set_max_operations (scop->isl_context, old_max_operations); if (!schedule || isl_ctx_last_error (scop->isl_context) == isl_error_quota) { if (dump_file && dump_flags) { if (!schedule) fprintf (dump_file, "isl did not return any schedule.\n"); else fprintf (dump_file, "isl timed out --param max-isl-operations=%d\n", max_operations); } if (schedule) isl_schedule_free (schedule); return false; } scop->schedule = schedule; isl_union_map *schedule_map = get_schedule_map (schedule); apply_schedule_map_to_scop (scop, schedule_map); isl_union_map_free (schedule_map); if (dump_file) { fprintf (dump_file, "isl end schedule:\n"); print_isl_schedule (dump_file, scop->schedule); } return true; } /* Apply graphite transformations to all the basic blocks of SCOP. */ bool apply_poly_transforms (scop_p scop) { if (flag_loop_nest_optimize) return optimize_isl (scop); if (!flag_graphite_identity && !flag_loop_parallelize_all) return false; /* Generate code even if we did not apply any real transformation. This also allows to check the performance for the identity transformation: GIMPLE -> GRAPHITE -> GIMPLE. */ return true; } #endif /* HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS */ #endif /* HAVE_isl */