/* Gimple range inference implementation. Copyright (C) 2022-2023 Free Software Foundation, Inc. Contributed by Andrew MacLeod . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "gimple-pretty-print.h" #include "gimple-range.h" #include "value-range-storage.h" #include "tree-cfg.h" #include "target.h" #include "attribs.h" #include "gimple-iterator.h" #include "gimple-walk.h" #include "cfganal.h" #include "tree-dfa.h" // Adapted from infer_nonnull_range_by_dereference and check_loadstore // to process nonnull ssa_name OP in S. DATA contains a pointer to a // stmt range inference instance. static bool non_null_loadstore (gimple *, tree op, tree, void *data) { if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF) { /* Some address spaces may legitimately dereference zero. */ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op)); if (!targetm.addr_space.zero_address_valid (as)) { tree ssa = TREE_OPERAND (op, 0); ((gimple_infer_range *)data)->add_nonzero (ssa); } } return false; } // Process an ASSUME call to see if there are any inferred ranges available. void gimple_infer_range::check_assume_func (gcall *call) { tree arg; unsigned i; tree assume_id = TREE_OPERAND (gimple_call_arg (call, 0), 0); if (!assume_id) return; struct function *fun = DECL_STRUCT_FUNCTION (assume_id); if (!fun) return; // Loop over arguments, matching them to the assume parameters. for (arg = DECL_ARGUMENTS (assume_id), i = 1; arg && i < gimple_call_num_args (call); i++, arg = DECL_CHAIN (arg)) { tree op = gimple_call_arg (call, i); tree type = TREE_TYPE (op); if (gimple_range_ssa_p (op) && Value_Range::supports_type_p (type)) { tree default_def = ssa_default_def (fun, arg); if (!default_def || type != TREE_TYPE (default_def)) continue; // Query the global range of the default def in the assume function. Value_Range assume_range (type); gimple_range_global (assume_range, default_def, fun); // If there is a non-varying result, add it as an inferred range. if (!assume_range.varying_p ()) { add_range (op, assume_range); if (dump_file) { print_generic_expr (dump_file, assume_id, TDF_SLIM); fprintf (dump_file, " assume inferred range of "); print_generic_expr (dump_file, op, TDF_SLIM); fprintf (dump_file, " (param "); print_generic_expr (dump_file, arg, TDF_SLIM); fprintf (dump_file, ") = "); assume_range.dump (dump_file); fputc ('\n', dump_file); } } } } } // Add NAME and RANGE to the range inference summary. void gimple_infer_range::add_range (tree name, vrange &range) { m_names[num_args] = name; m_ranges[num_args] = range; if (num_args < size_limit - 1) num_args++; } // Add a nonzero range for NAME to the range inference summary. void gimple_infer_range::add_nonzero (tree name) { if (!gimple_range_ssa_p (name)) return; int_range<2> nz; nz.set_nonzero (TREE_TYPE (name)); add_range (name, nz); } // Process S for range inference and fill in the summary list. // This is the routine where new inferred ranges should be added. gimple_infer_range::gimple_infer_range (gimple *s) { num_args = 0; if (is_a (s)) return; if (is_a (s) && flag_delete_null_pointer_checks) { tree fntype = gimple_call_fntype (s); bitmap nonnullargs = get_nonnull_args (fntype); // Process any non-null arguments if (nonnullargs) { for (unsigned i = 0; i < gimple_call_num_args (s); i++) { if (bitmap_empty_p (nonnullargs) || bitmap_bit_p (nonnullargs, i)) { tree op = gimple_call_arg (s, i); if (POINTER_TYPE_P (TREE_TYPE (op))) add_nonzero (op); } } BITMAP_FREE (nonnullargs); } // Fallthru and walk load/store ops now. } // Check for inferred ranges from ASSUME calls. if (is_a (s) && gimple_call_internal_p (s) && gimple_call_internal_fn (s) == IFN_ASSUME) check_assume_func (as_a (s)); // Look for possible non-null values. if (flag_delete_null_pointer_checks && gimple_code (s) != GIMPLE_ASM && !gimple_clobber_p (s)) walk_stmt_load_store_ops (s, (void *)this, non_null_loadstore, non_null_loadstore); } // ------------------------------------------------------------------------- // This class is an element in the list of inferred ranges. class exit_range { public: tree name; vrange_storage *range; exit_range *next; }; // If there is an element which matches SSA, return a pointer to the element. // Otherwise return NULL. exit_range * infer_range_manager::exit_range_head::find_ptr (tree ssa) { // Return NULL if SSA is not in this list. if (!m_names || !bitmap_bit_p (m_names, SSA_NAME_VERSION (ssa))) return NULL; for (exit_range *ptr = head; ptr != NULL; ptr = ptr->next) if (ptr->name == ssa) return ptr; // Should be unreachable. gcc_unreachable (); return NULL; } // Construct a range infer manager. DO_SEARCH indicates whether an immediate // use scan should be made the first time a name is processed. This is for // on-demand clients who may not visit every statement and may miss uses. infer_range_manager::infer_range_manager (bool do_search) { bitmap_obstack_initialize (&m_bitmaps); m_on_exit.create (0); m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); // m_seen == NULL indicates no scanning. Otherwise the bit indicates a // scan has been performed on NAME. if (do_search) m_seen = BITMAP_ALLOC (&m_bitmaps); else m_seen = NULL; obstack_init (&m_list_obstack); // Non-zero elements are very common, so cache them for each ssa-name. m_nonzero.create (0); m_nonzero.safe_grow_cleared (num_ssa_names + 1); m_range_allocator = new vrange_allocator; } // Destruct a range infer manager. infer_range_manager::~infer_range_manager () { m_nonzero.release (); obstack_free (&m_list_obstack, NULL); m_on_exit.release (); bitmap_obstack_release (&m_bitmaps); delete m_range_allocator; } // Return a non-zero range value of the appropriate type for NAME from // the cache, creating it if necessary. const vrange& infer_range_manager::get_nonzero (tree name) { unsigned v = SSA_NAME_VERSION (name); if (v >= m_nonzero.length ()) m_nonzero.safe_grow_cleared (num_ssa_names + 20); if (!m_nonzero[v]) { m_nonzero[v] = (irange *) m_range_allocator->alloc (sizeof (int_range <2>)); m_nonzero[v]->set_nonzero (TREE_TYPE (name)); } return *(m_nonzero[v]); } // Return TRUE if there are any range inferences in block BB. bool infer_range_manager::has_range_p (basic_block bb) { if (bb->index >= (int)m_on_exit.length ()) return false; bitmap b = m_on_exit[bb->index].m_names; return b && !bitmap_empty_p (b); } // Return TRUE if NAME has a range inference in block BB. bool infer_range_manager::has_range_p (tree name, basic_block bb) { // Check if this is an immediate use search model. if (m_seen && !bitmap_bit_p (m_seen, SSA_NAME_VERSION (name))) register_all_uses (name); if (bb->index >= (int)m_on_exit.length ()) return false; if (!m_on_exit[bb->index].m_names) return false; if (!bitmap_bit_p (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name))) return false; return true; } // Return TRUE if NAME has a range inference in block BB, and adjust range R // to include it. bool infer_range_manager::maybe_adjust_range (vrange &r, tree name, basic_block bb) { if (!has_range_p (name, bb)) return false; exit_range *ptr = m_on_exit[bb->index].find_ptr (name); gcc_checking_assert (ptr); // Return true if this exit range changes R, otherwise false. tree type = TREE_TYPE (name); Value_Range tmp (type); ptr->range->get_vrange (tmp, type); return r.intersect (tmp); } // Add range R as an inferred range for NAME in block BB. void infer_range_manager::add_range (tree name, basic_block bb, const vrange &r) { if (bb->index >= (int)m_on_exit.length ()) m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); // Create the summary list bitmap if it doesn't exist. if (!m_on_exit[bb->index].m_names) m_on_exit[bb->index].m_names = BITMAP_ALLOC (&m_bitmaps); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " on-exit update "); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, " in BB%d : ",bb->index); r.dump (dump_file); fprintf (dump_file, "\n"); } // If NAME already has a range, intersect them and done. exit_range *ptr = m_on_exit[bb->index].find_ptr (name); if (ptr) { tree type = TREE_TYPE (name); Value_Range cur (r), name_range (type); ptr->range->get_vrange (name_range, type); // If no new info is added, just return. if (!cur.intersect (name_range)) return; if (ptr->range->fits_p (cur)) ptr->range->set_vrange (cur); else ptr->range = m_range_allocator->clone (cur); return; } // Otherwise create a record. bitmap_set_bit (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name)); ptr = (exit_range *)obstack_alloc (&m_list_obstack, sizeof (exit_range)); ptr->range = m_range_allocator->clone (r); ptr->name = name; ptr->next = m_on_exit[bb->index].head; m_on_exit[bb->index].head = ptr; } // Add a non-zero inferred range for NAME in block BB. void infer_range_manager::add_nonzero (tree name, basic_block bb) { add_range (name, bb, get_nonzero (name)); } // Follow immediate use chains and find all inferred ranges for NAME. void infer_range_manager::register_all_uses (tree name) { gcc_checking_assert (m_seen); // Check if we've already processed this name. unsigned v = SSA_NAME_VERSION (name); if (bitmap_bit_p (m_seen, v)) return; bitmap_set_bit (m_seen, v); use_operand_p use_p; imm_use_iterator iter; // Loop over each immediate use and see if it has an inferred range. FOR_EACH_IMM_USE_FAST (use_p, iter, name) { gimple *s = USE_STMT (use_p); gimple_infer_range infer (s); for (unsigned x = 0; x < infer.num (); x++) { if (name == infer.name (x)) add_range (name, gimple_bb (s), infer.range (x)); } } }