/* Statement simplification on GIMPLE. Copyright (C) 2010 Free Software Foundation, Inc. Split out from tree-ssa-ccp.c. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "function.h" #include "tree-dump.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" #include "target.h" #include "gimple-fold.h" /* Return true when DECL can be referenced from current unit. We can get declarations that are not possible to reference for various reasons: 1) When analyzing C++ virtual tables. C++ virtual tables do have known constructors even when they are keyed to other compilation unit. Those tables can contain pointers to methods and vars in other units. Those methods have both STATIC and EXTERNAL set. 2) In WHOPR mode devirtualization might lead to reference to method that was partitioned elsehwere. In this case we have static VAR_DECL or FUNCTION_DECL that has no corresponding callgraph/varpool node declaring the body. 3) COMDAT functions referred by external vtables that we devirtualize only during final copmilation stage. At this time we already decided that we will not output the function body and thus we can't reference the symbol directly. */ static bool can_refer_decl_in_current_unit_p (tree decl) { struct varpool_node *vnode; struct cgraph_node *node; if (!TREE_STATIC (decl) && !DECL_EXTERNAL (decl)) return true; /* External flag is set, so we deal with C++ reference to static object from other file. */ if (DECL_EXTERNAL (decl) && TREE_STATIC (decl) && TREE_CODE (decl) == VAR_DECL) { /* Just be sure it is not big in frontend setting flags incorrectly. Those variables should never be finalized. */ gcc_checking_assert (!(vnode = varpool_get_node (decl)) || !vnode->finalized); return false; } /* When function is public, we always can introduce new reference. Exception are the COMDAT functions where introducing a direct reference imply need to include function body in the curren tunit. */ if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl)) return true; /* We are not at ltrans stage; so don't worry about WHOPR. Also when still gimplifying all referred comdat functions will be produced. */ if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready)) return true; /* If we already output the function body, we are safe. */ if (TREE_ASM_WRITTEN (decl)) return true; if (TREE_CODE (decl) == FUNCTION_DECL) { node = cgraph_get_node (decl); /* Check that we still have function body and that we didn't took the decision to eliminate offline copy of the function yet. The second is important when devirtualization happens during final compilation stage when making a new reference no longer makes callee to be compiled. */ if (!node || !node->analyzed || node->global.inlined_to) return false; } else if (TREE_CODE (decl) == VAR_DECL) { vnode = varpool_get_node (decl); if (!vnode || !vnode->finalized) return false; } return true; } /* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into acceptable form for is_gimple_min_invariant. */ tree canonicalize_constructor_val (tree cval) { STRIP_NOPS (cval); if (TREE_CODE (cval) == POINTER_PLUS_EXPR) { tree t = maybe_fold_offset_to_address (EXPR_LOCATION (cval), TREE_OPERAND (cval, 0), TREE_OPERAND (cval, 1), TREE_TYPE (cval)); if (t) cval = t; } if (TREE_CODE (cval) == ADDR_EXPR) { tree base = get_base_address (TREE_OPERAND (cval, 0)); if (base && (TREE_CODE (base) == VAR_DECL || TREE_CODE (base) == FUNCTION_DECL) && !can_refer_decl_in_current_unit_p (base)) return NULL_TREE; if (cfun && base && TREE_CODE (base) == VAR_DECL) add_referenced_var (base); /* Fixup types in global initializers. */ if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0))) cval = build_fold_addr_expr (TREE_OPERAND (cval, 0)); } return cval; } /* If SYM is a constant variable with known value, return the value. NULL_TREE is returned otherwise. */ tree get_symbol_constant_value (tree sym) { if (const_value_known_p (sym)) { tree val = DECL_INITIAL (sym); if (val) { val = canonicalize_constructor_val (val); if (val && is_gimple_min_invariant (val)) return val; else return NULL_TREE; } /* Variables declared 'const' without an initializer have zero as the initializer if they may not be overridden at link or run time. */ if (!val && (INTEGRAL_TYPE_P (TREE_TYPE (sym)) || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym)))) return build_zero_cst (TREE_TYPE (sym)); } return NULL_TREE; } /* Return true if we may propagate the address expression ADDR into the dereference DEREF and cancel them. */ bool may_propagate_address_into_dereference (tree addr, tree deref) { gcc_assert (TREE_CODE (deref) == MEM_REF && TREE_CODE (addr) == ADDR_EXPR); /* Don't propagate if ADDR's operand has incomplete type. */ if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_OPERAND (addr, 0)))) return false; /* If the address is invariant then we do not need to preserve restrict qualifications. But we do need to preserve volatile qualifiers until we can annotate the folded dereference itself properly. */ if (is_gimple_min_invariant (addr) && (!TREE_THIS_VOLATILE (deref) || TYPE_VOLATILE (TREE_TYPE (addr)))) return useless_type_conversion_p (TREE_TYPE (deref), TREE_TYPE (TREE_OPERAND (addr, 0))); /* Else both the address substitution and the folding must result in a valid useless type conversion sequence. */ return (useless_type_conversion_p (TREE_TYPE (TREE_OPERAND (deref, 0)), TREE_TYPE (addr)) && useless_type_conversion_p (TREE_TYPE (deref), TREE_TYPE (TREE_OPERAND (addr, 0)))); } /* A subroutine of fold_stmt. Attempts to fold *(A+O) to A[X]. BASE is an array type. OFFSET is a byte displacement. LOC is the location of the original expression. */ static tree maybe_fold_offset_to_array_ref (location_t loc, tree base, tree offset) { tree min_idx, idx, idx_type, elt_offset = integer_zero_node; tree array_type, elt_type, elt_size; tree domain_type; /* If BASE is an ARRAY_REF, we can pick up another offset (this time measured in units of the size of elements type) from that ARRAY_REF). We can't do anything if either is variable. The case we handle here is *(&A[N]+O). */ if (TREE_CODE (base) == ARRAY_REF) { tree low_bound = array_ref_low_bound (base); elt_offset = TREE_OPERAND (base, 1); if (TREE_CODE (low_bound) != INTEGER_CST || TREE_CODE (elt_offset) != INTEGER_CST) return NULL_TREE; elt_offset = int_const_binop (MINUS_EXPR, elt_offset, low_bound, 0); base = TREE_OPERAND (base, 0); } /* Ignore stupid user tricks of indexing non-array variables. */ array_type = TREE_TYPE (base); if (TREE_CODE (array_type) != ARRAY_TYPE) return NULL_TREE; elt_type = TREE_TYPE (array_type); /* Use signed size type for intermediate computation on the index. */ idx_type = ssizetype; /* If OFFSET and ELT_OFFSET are zero, we don't care about the size of the element type (so we can use the alignment if it's not constant). Otherwise, compute the offset as an index by using a division. If the division isn't exact, then don't do anything. */ elt_size = TYPE_SIZE_UNIT (elt_type); if (!elt_size) return NULL; if (integer_zerop (offset)) { if (TREE_CODE (elt_size) != INTEGER_CST) elt_size = size_int (TYPE_ALIGN (elt_type)); idx = build_int_cst (idx_type, 0); } else { unsigned HOST_WIDE_INT lquo, lrem; HOST_WIDE_INT hquo, hrem; double_int soffset; /* The final array offset should be signed, so we need to sign-extend the (possibly pointer) offset here and use signed division. */ soffset = double_int_sext (tree_to_double_int (offset), TYPE_PRECISION (TREE_TYPE (offset))); if (TREE_CODE (elt_size) != INTEGER_CST || div_and_round_double (TRUNC_DIV_EXPR, 0, soffset.low, soffset.high, TREE_INT_CST_LOW (elt_size), TREE_INT_CST_HIGH (elt_size), &lquo, &hquo, &lrem, &hrem) || lrem || hrem) return NULL_TREE; idx = build_int_cst_wide (idx_type, lquo, hquo); } /* Assume the low bound is zero. If there is a domain type, get the low bound, if any, convert the index into that type, and add the low bound. */ min_idx = build_int_cst (idx_type, 0); domain_type = TYPE_DOMAIN (array_type); if (domain_type) { idx_type = domain_type; if (TYPE_MIN_VALUE (idx_type)) min_idx = TYPE_MIN_VALUE (idx_type); else min_idx = fold_convert (idx_type, min_idx); if (TREE_CODE (min_idx) != INTEGER_CST) return NULL_TREE; elt_offset = fold_convert (idx_type, elt_offset); } if (!integer_zerop (min_idx)) idx = int_const_binop (PLUS_EXPR, idx, min_idx, 0); if (!integer_zerop (elt_offset)) idx = int_const_binop (PLUS_EXPR, idx, elt_offset, 0); /* Make sure to possibly truncate late after offsetting. */ idx = fold_convert (idx_type, idx); /* We don't want to construct access past array bounds. For example char *(c[4]); c[3][2]; should not be simplified into (*c)[14] or tree-vrp will give false warnings. This is only an issue for multi-dimensional arrays. */ if (TREE_CODE (elt_type) == ARRAY_TYPE && domain_type) { if (TYPE_MAX_VALUE (domain_type) && TREE_CODE (TYPE_MAX_VALUE (domain_type)) == INTEGER_CST && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type), idx)) return NULL_TREE; else if (TYPE_MIN_VALUE (domain_type) && TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST && tree_int_cst_lt (idx, TYPE_MIN_VALUE (domain_type))) return NULL_TREE; else if (compare_tree_int (idx, 0) < 0) return NULL_TREE; } { tree t = build4 (ARRAY_REF, elt_type, base, idx, NULL_TREE, NULL_TREE); SET_EXPR_LOCATION (t, loc); return t; } } /* Attempt to express (ORIG_TYPE)BASE+OFFSET as BASE[index]. LOC is the location of original expression. Before attempting the conversion strip off existing ADDR_EXPRs. */ tree maybe_fold_offset_to_reference (location_t loc, tree base, tree offset, tree orig_type) { tree ret; STRIP_NOPS (base); if (TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); if (types_compatible_p (orig_type, TREE_TYPE (base)) && integer_zerop (offset)) return base; ret = maybe_fold_offset_to_array_ref (loc, base, offset); if (ret && types_compatible_p (orig_type, TREE_TYPE (ret))) return ret; return NULL_TREE; } /* Attempt to express (ORIG_TYPE)ADDR+OFFSET as (*ADDR)[index]. LOC is the location of the original expression. */ tree maybe_fold_offset_to_address (location_t loc, tree addr, tree offset, tree orig_type) { tree base, ret; STRIP_NOPS (addr); if (TREE_CODE (addr) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (addr, 0); ret = maybe_fold_offset_to_array_ref (loc, base, offset); if (ret) { ret = build_fold_addr_expr (ret); if (!useless_type_conversion_p (orig_type, TREE_TYPE (ret))) return NULL_TREE; SET_EXPR_LOCATION (ret, loc); } return ret; } /* A quaint feature extant in our address arithmetic is that there can be hidden type changes here. The type of the result need not be the same as the type of the input pointer. What we're after here is an expression of the form (T *)(&array + const) where array is OP0, const is OP1, RES_TYPE is T and the cast doesn't actually exist, but is implicit in the type of the POINTER_PLUS_EXPR. We'd like to turn this into &array[x] which may be able to propagate further. */ tree maybe_fold_stmt_addition (location_t loc, tree res_type, tree op0, tree op1) { tree ptd_type; tree t; /* The first operand should be an ADDR_EXPR. */ if (TREE_CODE (op0) != ADDR_EXPR) return NULL_TREE; op0 = TREE_OPERAND (op0, 0); /* It had better be a constant. */ if (TREE_CODE (op1) != INTEGER_CST) { /* Or op0 should now be A[0] and the non-constant offset defined via a multiplication by the array element size. */ if (TREE_CODE (op0) == ARRAY_REF /* As we will end up creating a variable index array access in the outermost array dimension make sure there isn't a more inner array that the index could overflow to. */ && TREE_CODE (TREE_OPERAND (op0, 0)) != ARRAY_REF && integer_zerop (TREE_OPERAND (op0, 1)) && TREE_CODE (op1) == SSA_NAME) { gimple offset_def = SSA_NAME_DEF_STMT (op1); tree elsz = TYPE_SIZE_UNIT (TREE_TYPE (op0)); if (!host_integerp (elsz, 1) || !is_gimple_assign (offset_def)) return NULL_TREE; /* Do not build array references of something that we can't see the true number of array dimensions for. */ if (!DECL_P (TREE_OPERAND (op0, 0)) && !handled_component_p (TREE_OPERAND (op0, 0))) return NULL_TREE; if (gimple_assign_rhs_code (offset_def) == MULT_EXPR && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), elsz)) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (op0), TREE_OPERAND (op0, 0), gimple_assign_rhs1 (offset_def), TREE_OPERAND (op0, 2), TREE_OPERAND (op0, 3))); else if (integer_onep (elsz) && gimple_assign_rhs_code (offset_def) != MULT_EXPR) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (op0), TREE_OPERAND (op0, 0), op1, TREE_OPERAND (op0, 2), TREE_OPERAND (op0, 3))); } else if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE /* Dto. */ && TREE_CODE (TREE_TYPE (TREE_TYPE (op0))) != ARRAY_TYPE && TREE_CODE (op1) == SSA_NAME) { gimple offset_def = SSA_NAME_DEF_STMT (op1); tree elsz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op0))); if (!host_integerp (elsz, 1) || !is_gimple_assign (offset_def)) return NULL_TREE; /* Do not build array references of something that we can't see the true number of array dimensions for. */ if (!DECL_P (op0) && !handled_component_p (op0)) return NULL_TREE; if (gimple_assign_rhs_code (offset_def) == MULT_EXPR && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), elsz)) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (op0)), op0, gimple_assign_rhs1 (offset_def), integer_zero_node, NULL_TREE)); else if (integer_onep (elsz) && gimple_assign_rhs_code (offset_def) != MULT_EXPR) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (op0)), op0, op1, integer_zero_node, NULL_TREE)); } return NULL_TREE; } /* If the first operand is an ARRAY_REF, expand it so that we can fold the offset into it. */ while (TREE_CODE (op0) == ARRAY_REF) { tree array_obj = TREE_OPERAND (op0, 0); tree array_idx = TREE_OPERAND (op0, 1); tree elt_type = TREE_TYPE (op0); tree elt_size = TYPE_SIZE_UNIT (elt_type); tree min_idx; if (TREE_CODE (array_idx) != INTEGER_CST) break; if (TREE_CODE (elt_size) != INTEGER_CST) break; /* Un-bias the index by the min index of the array type. */ min_idx = TYPE_DOMAIN (TREE_TYPE (array_obj)); if (min_idx) { min_idx = TYPE_MIN_VALUE (min_idx); if (min_idx) { if (TREE_CODE (min_idx) != INTEGER_CST) break; array_idx = fold_convert (TREE_TYPE (min_idx), array_idx); if (!integer_zerop (min_idx)) array_idx = int_const_binop (MINUS_EXPR, array_idx, min_idx, 0); } } /* Convert the index to a byte offset. */ array_idx = fold_convert (sizetype, array_idx); array_idx = int_const_binop (MULT_EXPR, array_idx, elt_size, 0); /* Update the operands for the next round, or for folding. */ op1 = int_const_binop (PLUS_EXPR, array_idx, op1, 0); op0 = array_obj; } ptd_type = TREE_TYPE (res_type); /* If we want a pointer to void, reconstruct the reference from the array element type. A pointer to that can be trivially converted to void *. This happens as we fold (void *)(ptr p+ off). */ if (VOID_TYPE_P (ptd_type) && TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE) ptd_type = TREE_TYPE (TREE_TYPE (op0)); /* At which point we can try some of the same things as for indirects. */ t = maybe_fold_offset_to_array_ref (loc, op0, op1); if (t) { t = build_fold_addr_expr (t); if (!useless_type_conversion_p (res_type, TREE_TYPE (t))) return NULL_TREE; SET_EXPR_LOCATION (t, loc); } return t; } /* Subroutine of fold_stmt. We perform several simplifications of the memory reference tree EXPR and make sure to re-gimplify them properly after propagation of constant addresses. IS_LHS is true if the reference is supposed to be an lvalue. */ static tree maybe_fold_reference (tree expr, bool is_lhs) { tree *t = &expr; tree result; if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR || TREE_CODE (expr) == REALPART_EXPR || TREE_CODE (expr) == IMAGPART_EXPR) && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0))) return fold_unary_loc (EXPR_LOCATION (expr), TREE_CODE (expr), TREE_TYPE (expr), TREE_OPERAND (expr, 0)); else if (TREE_CODE (expr) == BIT_FIELD_REF && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0))) return fold_ternary_loc (EXPR_LOCATION (expr), TREE_CODE (expr), TREE_TYPE (expr), TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2)); while (handled_component_p (*t)) t = &TREE_OPERAND (*t, 0); /* Canonicalize MEM_REFs invariant address operand. Do this first to avoid feeding non-canonical MEM_REFs elsewhere. */ if (TREE_CODE (*t) == MEM_REF && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0))) { bool volatile_p = TREE_THIS_VOLATILE (*t); tree tem = fold_binary (MEM_REF, TREE_TYPE (*t), TREE_OPERAND (*t, 0), TREE_OPERAND (*t, 1)); if (tem) { TREE_THIS_VOLATILE (tem) = volatile_p; *t = tem; tem = maybe_fold_reference (expr, is_lhs); if (tem) return tem; return expr; } } if (!is_lhs && (result = fold_const_aggregate_ref (expr)) && is_gimple_min_invariant (result)) return result; /* Fold back MEM_REFs to reference trees. */ if (TREE_CODE (*t) == MEM_REF && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR && integer_zerop (TREE_OPERAND (*t, 1)) && (TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0))) && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1))) && (TYPE_MAIN_VARIANT (TREE_TYPE (*t)) == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1))))) /* We have to look out here to not drop a required conversion from the rhs to the lhs if is_lhs, but we don't have the rhs here to verify that. Thus require strict type compatibility. */ && types_compatible_p (TREE_TYPE (*t), TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))) { tree tem; *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); tem = maybe_fold_reference (expr, is_lhs); if (tem) return tem; return expr; } else if (TREE_CODE (*t) == TARGET_MEM_REF) { tree tem = maybe_fold_tmr (*t); if (tem) { *t = tem; tem = maybe_fold_reference (expr, is_lhs); if (tem) return tem; return expr; } } return NULL_TREE; } /* Attempt to fold an assignment statement pointed-to by SI. Returns a replacement rhs for the statement or NULL_TREE if no simplification could be made. It is assumed that the operands have been previously folded. */ static tree fold_gimple_assign (gimple_stmt_iterator *si) { gimple stmt = gsi_stmt (*si); enum tree_code subcode = gimple_assign_rhs_code (stmt); location_t loc = gimple_location (stmt); tree result = NULL_TREE; switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); /* Try to fold a conditional expression. */ if (TREE_CODE (rhs) == COND_EXPR) { tree op0 = COND_EXPR_COND (rhs); tree tem; bool set = false; location_t cond_loc = EXPR_LOCATION (rhs); if (COMPARISON_CLASS_P (op0)) { fold_defer_overflow_warnings (); tem = fold_binary_loc (cond_loc, TREE_CODE (op0), TREE_TYPE (op0), TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); /* This is actually a conditional expression, not a GIMPLE conditional statement, however, the valid_gimple_rhs_p test still applies. */ set = (tem && is_gimple_condexpr (tem) && valid_gimple_rhs_p (tem)); fold_undefer_overflow_warnings (set, stmt, 0); } else if (is_gimple_min_invariant (op0)) { tem = op0; set = true; } else return NULL_TREE; if (set) result = fold_build3_loc (cond_loc, COND_EXPR, TREE_TYPE (rhs), tem, COND_EXPR_THEN (rhs), COND_EXPR_ELSE (rhs)); } else if (REFERENCE_CLASS_P (rhs)) return maybe_fold_reference (rhs, false); else if (TREE_CODE (rhs) == ADDR_EXPR) { tree ref = TREE_OPERAND (rhs, 0); tree tem = maybe_fold_reference (ref, true); if (tem && TREE_CODE (tem) == MEM_REF && integer_zerop (TREE_OPERAND (tem, 1))) result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0)); else if (tem) result = fold_convert (TREE_TYPE (rhs), build_fold_addr_expr_loc (loc, tem)); else if (TREE_CODE (ref) == MEM_REF && integer_zerop (TREE_OPERAND (ref, 1))) result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0)); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */ unsigned i; tree val; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) if (TREE_CODE (val) != INTEGER_CST && TREE_CODE (val) != REAL_CST && TREE_CODE (val) != FIXED_CST) return NULL_TREE; return build_vector_from_ctor (TREE_TYPE (rhs), CONSTRUCTOR_ELTS (rhs)); } else if (DECL_P (rhs)) return unshare_expr (get_symbol_constant_value (rhs)); /* If we couldn't fold the RHS, hand over to the generic fold routines. */ if (result == NULL_TREE) result = fold (rhs); /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that may have been added by fold, and "useless" type conversions that might now be apparent due to propagation. */ STRIP_USELESS_TYPE_CONVERSION (result); if (result != rhs && valid_gimple_rhs_p (result)) return result; return NULL_TREE; } break; case GIMPLE_UNARY_RHS: { tree rhs = gimple_assign_rhs1 (stmt); result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs); if (result) { /* If the operation was a conversion do _not_ mark a resulting constant with TREE_OVERFLOW if the original constant was not. These conversions have implementation defined behavior and retaining the TREE_OVERFLOW flag here would confuse later passes such as VRP. */ if (CONVERT_EXPR_CODE_P (subcode) && TREE_CODE (result) == INTEGER_CST && TREE_CODE (rhs) == INTEGER_CST) TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs); STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; } else if (CONVERT_EXPR_CODE_P (subcode) && POINTER_TYPE_P (gimple_expr_type (stmt)) && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))) { tree type = gimple_expr_type (stmt); tree t = maybe_fold_offset_to_address (loc, gimple_assign_rhs1 (stmt), integer_zero_node, type); if (t) return t; } } break; case GIMPLE_BINARY_RHS: /* Try to fold pointer addition. */ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree type = TREE_TYPE (gimple_assign_rhs1 (stmt)); if (TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) { type = build_pointer_type (TREE_TYPE (TREE_TYPE (type))); if (!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)), type)) type = TREE_TYPE (gimple_assign_rhs1 (stmt)); } result = maybe_fold_stmt_addition (gimple_location (stmt), type, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); } if (!result) result = fold_binary_loc (loc, subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; /* Fold might have produced non-GIMPLE, so if we trust it blindly we lose canonicalization opportunities. Do not go again through fold here though, or the same non-GIMPLE will be produced. */ if (commutative_tree_code (subcode) && tree_swap_operands_p (gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), false)) return build2 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs2 (stmt), gimple_assign_rhs1 (stmt)); } break; case GIMPLE_TERNARY_RHS: result = fold_ternary_loc (loc, subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), gimple_assign_rhs3 (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; /* Fold might have produced non-GIMPLE, so if we trust it blindly we lose canonicalization opportunities. Do not go again through fold here though, or the same non-GIMPLE will be produced. */ if (commutative_ternary_tree_code (subcode) && tree_swap_operands_p (gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), false)) return build3 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs2 (stmt), gimple_assign_rhs1 (stmt), gimple_assign_rhs3 (stmt)); } break; case GIMPLE_INVALID_RHS: gcc_unreachable (); } return NULL_TREE; } /* Attempt to fold a conditional statement. Return true if any changes were made. We only attempt to fold the condition expression, and do not perform any transformation that would require alteration of the cfg. It is assumed that the operands have been previously folded. */ static bool fold_gimple_cond (gimple stmt) { tree result = fold_binary_loc (gimple_location (stmt), gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result)) { gimple_cond_set_condition_from_tree (stmt, result); return true; } } return false; } /* Convert EXPR into a GIMPLE value suitable for substitution on the RHS of an assignment. Insert the necessary statements before iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL is replaced. If the call is expected to produces a result, then it is replaced by an assignment of the new RHS to the result variable. If the result is to be ignored, then the call is replaced by a GIMPLE_NOP. A proper VDEF chain is retained by making the first VUSE and the last VDEF of the whole sequence be the same as the replaced statement and using new SSA names for stores in between. */ void gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) { tree lhs; tree tmp = NULL_TREE; /* Silence warning. */ gimple stmt, new_stmt; gimple_stmt_iterator i; gimple_seq stmts = gimple_seq_alloc(); struct gimplify_ctx gctx; gimple last = NULL; gimple laststore = NULL; tree reaching_vuse; stmt = gsi_stmt (*si_p); gcc_assert (is_gimple_call (stmt)); lhs = gimple_call_lhs (stmt); reaching_vuse = gimple_vuse (stmt); push_gimplify_context (&gctx); if (lhs == NULL_TREE) { gimplify_and_add (expr, &stmts); /* We can end up with folding a memcpy of an empty class assignment which gets optimized away by C++ gimplification. */ if (gimple_seq_empty_p (stmts)) { pop_gimplify_context (NULL); if (gimple_in_ssa_p (cfun)) { unlink_stmt_vdef (stmt); release_defs (stmt); } gsi_remove (si_p, true); return; } } else tmp = get_initialized_tmp_var (expr, &stmts, NULL); pop_gimplify_context (NULL); if (gimple_has_location (stmt)) annotate_all_with_location (stmts, gimple_location (stmt)); /* The replacement can expose previously unreferenced variables. */ for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) { if (last) { gsi_insert_before (si_p, last, GSI_NEW_STMT); gsi_next (si_p); } new_stmt = gsi_stmt (i); if (gimple_in_ssa_p (cfun)) { find_new_referenced_vars (new_stmt); mark_symbols_for_renaming (new_stmt); } /* If the new statement has a VUSE, update it with exact SSA name we know will reach this one. */ if (gimple_vuse (new_stmt)) { /* If we've also seen a previous store create a new VDEF for the latter one, and make that the new reaching VUSE. */ if (laststore) { reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore); gimple_set_vdef (laststore, reaching_vuse); update_stmt (laststore); laststore = NULL; } gimple_set_vuse (new_stmt, reaching_vuse); gimple_set_modified (new_stmt, true); } if (gimple_assign_single_p (new_stmt) && !is_gimple_reg (gimple_assign_lhs (new_stmt))) { laststore = new_stmt; } last = new_stmt; } if (lhs == NULL_TREE) { /* If we replace a call without LHS that has a VDEF and our new sequence ends with a store we must make that store have the same vdef in order not to break the sequencing. This can happen for instance when folding memcpy calls into assignments. */ if (gimple_vdef (stmt) && laststore) { gimple_set_vdef (laststore, gimple_vdef (stmt)); if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore; update_stmt (laststore); } else if (gimple_in_ssa_p (cfun)) { unlink_stmt_vdef (stmt); release_defs (stmt); } new_stmt = last; } else { if (last) { gsi_insert_before (si_p, last, GSI_NEW_STMT); gsi_next (si_p); } if (laststore && is_gimple_reg (lhs)) { gimple_set_vdef (laststore, gimple_vdef (stmt)); update_stmt (laststore); if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore; laststore = NULL; } else if (laststore) { reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore); gimple_set_vdef (laststore, reaching_vuse); update_stmt (laststore); laststore = NULL; } new_stmt = gimple_build_assign (lhs, tmp); if (!is_gimple_reg (tmp)) gimple_set_vuse (new_stmt, reaching_vuse); if (!is_gimple_reg (lhs)) { gimple_set_vdef (new_stmt, gimple_vdef (stmt)); if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = new_stmt; } else if (reaching_vuse == gimple_vuse (stmt)) unlink_stmt_vdef (stmt); } gimple_set_location (new_stmt, gimple_location (stmt)); gsi_replace (si_p, new_stmt, false); } /* Return the string length, maximum string length or maximum value of ARG in LENGTH. If ARG is an SSA name variable, follow its use-def chains. If LENGTH is not NULL and, for TYPE == 0, its value is not equal to the length we determine or if we are unable to determine the length or value, return false. VISITED is a bitmap of visited variables. TYPE is 0 if string length should be returned, 1 for maximum string length and 2 for maximum value ARG can have. */ static bool get_maxval_strlen (tree arg, tree *length, bitmap visited, int type) { tree var, val; gimple def_stmt; if (TREE_CODE (arg) != SSA_NAME) { if (TREE_CODE (arg) == COND_EXPR) return get_maxval_strlen (COND_EXPR_THEN (arg), length, visited, type) && get_maxval_strlen (COND_EXPR_ELSE (arg), length, visited, type); /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */ else if (TREE_CODE (arg) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1))) { tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); if (TREE_CODE (aop0) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME) return get_maxval_strlen (TREE_OPERAND (aop0, 0), length, visited, type); } if (type == 2) { val = arg; if (TREE_CODE (val) != INTEGER_CST || tree_int_cst_sgn (val) < 0) return false; } else val = c_strlen (arg, 1); if (!val) return false; if (*length) { if (type > 0) { if (TREE_CODE (*length) != INTEGER_CST || TREE_CODE (val) != INTEGER_CST) return false; if (tree_int_cst_lt (*length, val)) *length = val; return true; } else if (simple_cst_equal (val, *length) != 1) return false; } *length = val; return true; } /* If we were already here, break the infinite cycle. */ if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg))) return true; var = arg; def_stmt = SSA_NAME_DEF_STMT (var); switch (gimple_code (def_stmt)) { case GIMPLE_ASSIGN: /* The RHS of the statement defining VAR must either have a constant length or come from another SSA_NAME with a constant length. */ if (gimple_assign_single_p (def_stmt) || gimple_assign_unary_nop_p (def_stmt)) { tree rhs = gimple_assign_rhs1 (def_stmt); return get_maxval_strlen (rhs, length, visited, type); } return false; case GIMPLE_PHI: { /* All the arguments of the PHI node must have the same constant length. */ unsigned i; for (i = 0; i < gimple_phi_num_args (def_stmt); i++) { tree arg = gimple_phi_arg (def_stmt, i)->def; /* If this PHI has itself as an argument, we cannot determine the string length of this argument. However, if we can find a constant string length for the other PHI args then we can still be sure that this is a constant string length. So be optimistic and just continue with the next argument. */ if (arg == gimple_phi_result (def_stmt)) continue; if (!get_maxval_strlen (arg, length, visited, type)) return false; } } return true; default: return false; } } /* Fold builtin call in statement STMT. Returns a simplified tree. We may return a non-constant expression, including another call to a different function and with different arguments, e.g., substituting memcpy for strcpy when the string length is known. Note that some builtins expand into inline code that may not be valid in GIMPLE. Callers must take care. */ tree gimple_fold_builtin (gimple stmt) { tree result, val[3]; tree callee, a; int arg_idx, type; bitmap visited; bool ignore; int nargs; location_t loc = gimple_location (stmt); gcc_assert (is_gimple_call (stmt)); ignore = (gimple_call_lhs (stmt) == NULL); /* First try the generic builtin folder. If that succeeds, return the result directly. */ result = fold_call_stmt (stmt, ignore); if (result) { if (ignore) STRIP_NOPS (result); return result; } /* Ignore MD builtins. */ callee = gimple_call_fndecl (stmt); if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD) return NULL_TREE; /* If the builtin could not be folded, and it has no argument list, we're done. */ nargs = gimple_call_num_args (stmt); if (nargs == 0) return NULL_TREE; /* Limit the work only for builtins we know how to simplify. */ switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_STRLEN: case BUILT_IN_FPUTS: case BUILT_IN_FPUTS_UNLOCKED: arg_idx = 0; type = 0; break; case BUILT_IN_STRCPY: case BUILT_IN_STRNCPY: arg_idx = 1; type = 0; break; case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: case BUILT_IN_STRNCPY_CHK: arg_idx = 2; type = 2; break; case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: arg_idx = 1; type = 1; break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: arg_idx = 1; type = 2; break; default: return NULL_TREE; } if (arg_idx >= nargs) return NULL_TREE; /* Try to use the dataflow information gathered by the CCP process. */ visited = BITMAP_ALLOC (NULL); bitmap_clear (visited); memset (val, 0, sizeof (val)); a = gimple_call_arg (stmt, arg_idx); if (!get_maxval_strlen (a, &val[arg_idx], visited, type)) val[arg_idx] = NULL_TREE; BITMAP_FREE (visited); result = NULL_TREE; switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_STRLEN: if (val[0] && nargs == 1) { tree new_val = fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]); /* If the result is not a valid gimple value, or not a cast of a valid gimple value, then we cannot use the result. */ if (is_gimple_val (new_val) || (CONVERT_EXPR_P (new_val) && is_gimple_val (TREE_OPERAND (new_val, 0)))) return new_val; } break; case BUILT_IN_STRCPY: if (val[1] && is_gimple_val (val[1]) && nargs == 2) result = fold_builtin_strcpy (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), val[1]); break; case BUILT_IN_STRNCPY: if (val[1] && is_gimple_val (val[1]) && nargs == 3) result = fold_builtin_strncpy (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), val[1]); break; case BUILT_IN_FPUTS: if (nargs == 2) result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), ignore, false, val[0]); break; case BUILT_IN_FPUTS_UNLOCKED: if (nargs == 2) result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), ignore, true, val[0]); break; case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: if (val[2] && is_gimple_val (val[2]) && nargs == 4) result = fold_builtin_memory_chk (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), val[2], ignore, DECL_FUNCTION_CODE (callee)); break; case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: if (val[1] && is_gimple_val (val[1]) && nargs == 3) result = fold_builtin_stxcpy_chk (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), val[1], ignore, DECL_FUNCTION_CODE (callee)); break; case BUILT_IN_STRNCPY_CHK: if (val[2] && is_gimple_val (val[2]) && nargs == 4) result = fold_builtin_strncpy_chk (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), val[2]); break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: if (val[1] && is_gimple_val (val[1])) result = gimple_fold_builtin_snprintf_chk (stmt, val[1], DECL_FUNCTION_CODE (callee)); break; default: gcc_unreachable (); } if (result && ignore) result = fold_ignored_result (result); return result; } /* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN is integer form of OBJ_TYPE_REF_TOKEN of the reference expression. KNOWN_BINFO carries the binfo describing the true type of OBJ_TYPE_REF_OBJECT(REF). If a call to the function must be accompanied with a this adjustment, the constant which should be added to this pointer is stored to *DELTA. If REFUSE_THUNKS is true, return NULL if the function is a thunk (other than a this adjustment which is dealt with by DELTA). */ tree gimple_get_virt_mehtod_for_binfo (HOST_WIDE_INT token, tree known_binfo, tree *delta, bool refuse_thunks) { HOST_WIDE_INT i; tree v, fndecl; struct cgraph_node *node; v = BINFO_VIRTUALS (known_binfo); /* If there is no virtual methods leave the OBJ_TYPE_REF alone. */ if (!v) return NULL_TREE; i = 0; while (i != token) { i += (TARGET_VTABLE_USES_DESCRIPTORS ? TARGET_VTABLE_USES_DESCRIPTORS : 1); v = TREE_CHAIN (v); } fndecl = TREE_VALUE (v); node = cgraph_get_node_or_alias (fndecl); if (refuse_thunks && (!node /* Bail out if it is a thunk declaration. Since simple this_adjusting thunks are represented by a constant in TREE_PURPOSE of items in BINFO_VIRTUALS, this is a more complicate type which we cannot handle as yet. FIXME: Remove the following condition once we are able to represent thunk information on call graph edges. */ || (node->same_body_alias && node->thunk.thunk_p))) return NULL_TREE; /* When cgraph node is missing and function is not public, we cannot devirtualize. This can happen in WHOPR when the actual method ends up in other partition, because we found devirtualization possibility too late. */ if (!can_refer_decl_in_current_unit_p (TREE_VALUE (v))) return NULL_TREE; *delta = TREE_PURPOSE (v); gcc_checking_assert (host_integerp (*delta, 0)); return fndecl; } /* Generate code adjusting the first parameter of a call statement determined by GSI by DELTA. */ void gimple_adjust_this_by_delta (gimple_stmt_iterator *gsi, tree delta) { gimple call_stmt = gsi_stmt (*gsi); tree parm, tmp; gimple new_stmt; delta = fold_convert (sizetype, delta); gcc_assert (gimple_call_num_args (call_stmt) >= 1); parm = gimple_call_arg (call_stmt, 0); gcc_assert (POINTER_TYPE_P (TREE_TYPE (parm))); tmp = create_tmp_var (TREE_TYPE (parm), NULL); add_referenced_var (tmp); tmp = make_ssa_name (tmp, NULL); new_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, tmp, parm, delta); SSA_NAME_DEF_STMT (tmp) = new_stmt; gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); gimple_call_set_arg (call_stmt, 0, tmp); } /* Attempt to fold a call statement referenced by the statement iterator GSI. The statement may be replaced by another statement, e.g., if the call simplifies to a constant value. Return true if any changes were made. It is assumed that the operands have been previously folded. */ bool gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace) { gimple stmt = gsi_stmt (*gsi); tree callee = gimple_call_fndecl (stmt); /* Check for builtins that CCP can handle using information not available in the generic fold routines. */ if (!inplace && callee && DECL_BUILT_IN (callee)) { tree result = gimple_fold_builtin (stmt); if (result) { if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); return true; } } return false; } /* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument distinguishes both cases. */ static bool fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace) { bool changed = false; gimple stmt = gsi_stmt (*gsi); unsigned i; /* Fold the main computation performed by the statement. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { unsigned old_num_ops = gimple_num_ops (stmt); tree new_rhs = fold_gimple_assign (gsi); tree lhs = gimple_assign_lhs (stmt); if (new_rhs && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs))) new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); if (new_rhs && (!inplace || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops)) { gimple_assign_set_rhs_from_tree (gsi, new_rhs); changed = true; } break; } case GIMPLE_COND: changed |= fold_gimple_cond (stmt); break; case GIMPLE_CALL: /* Fold *& in call arguments. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i))) { tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false); if (tmp) { gimple_call_set_arg (stmt, i, tmp); changed = true; } } changed |= gimple_fold_call (gsi, inplace); break; case GIMPLE_ASM: /* Fold *& in asm operands. */ for (i = 0; i < gimple_asm_noutputs (stmt); ++i) { tree link = gimple_asm_output_op (stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, true)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } for (i = 0; i < gimple_asm_ninputs (stmt); ++i) { tree link = gimple_asm_input_op (stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, false)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } break; case GIMPLE_DEBUG: if (gimple_debug_bind_p (stmt)) { tree val = gimple_debug_bind_get_value (stmt); if (val && REFERENCE_CLASS_P (val)) { tree tem = maybe_fold_reference (val, false); if (tem) { gimple_debug_bind_set_value (stmt, tem); changed = true; } } } break; default:; } stmt = gsi_stmt (*gsi); /* Fold *& on the lhs. */ if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); if (lhs && REFERENCE_CLASS_P (lhs)) { tree new_lhs = maybe_fold_reference (lhs, true); if (new_lhs) { gimple_set_lhs (stmt, new_lhs); changed = true; } } } return changed; } /* Fold the statement pointed to by GSI. In some cases, this function may replace the whole statement with a new one. Returns true iff folding makes any changes. The statement pointed to by GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt (gimple_stmt_iterator *gsi) { return fold_stmt_1 (gsi, false); } /* Perform the minimal folding on statement STMT. Only operations like *&x created by constant propagation are handled. The statement cannot be replaced with a new one. Return true if the statement was changed, false otherwise. The statement STMT should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt_inplace (gimple stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); bool changed = fold_stmt_1 (&gsi, true); gcc_assert (gsi_stmt (gsi) == stmt); return changed; } /* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE if EXPR is null or we don't know how. If non-null, the result always has boolean type. */ static tree canonicalize_bool (tree expr, bool invert) { if (!expr) return NULL_TREE; else if (invert) { if (integer_nonzerop (expr)) return boolean_false_node; else if (integer_zerop (expr)) return boolean_true_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (EQ_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } else { if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) return expr; if (integer_nonzerop (expr)) return boolean_true_node; else if (integer_zerop (expr)) return boolean_false_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (NE_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) return fold_build2 (TREE_CODE (expr), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } } /* Check to see if a boolean expression EXPR is logically equivalent to the comparison (OP1 CODE OP2). Check for various identities involving SSA_NAMEs. */ static bool same_bool_comparison_p (const_tree expr, enum tree_code code, const_tree op1, const_tree op2) { gimple s; /* The obvious case. */ if (TREE_CODE (expr) == code && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0) && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0)) return true; /* Check for comparing (name, name != 0) and the case where expr is an SSA_NAME with a definition matching the comparison. */ if (TREE_CODE (expr) == SSA_NAME && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) { if (operand_equal_p (expr, op1, 0)) return ((code == NE_EXPR && integer_zerop (op2)) || (code == EQ_EXPR && integer_nonzerop (op2))); s = SSA_NAME_DEF_STMT (expr); if (is_gimple_assign (s) && gimple_assign_rhs_code (s) == code && operand_equal_p (gimple_assign_rhs1 (s), op1, 0) && operand_equal_p (gimple_assign_rhs2 (s), op2, 0)) return true; } /* If op1 is of the form (name != 0) or (name == 0), and the definition of name is a comparison, recurse. */ if (TREE_CODE (op1) == SSA_NAME && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE) { s = SSA_NAME_DEF_STMT (op1); if (is_gimple_assign (s) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) { enum tree_code c = gimple_assign_rhs_code (s); if ((c == NE_EXPR && integer_zerop (op2)) || (c == EQ_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, c, gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); if ((c == EQ_EXPR && integer_zerop (op2)) || (c == NE_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, invert_tree_comparison (c, false), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); } } return false; } /* Check to see if two boolean expressions OP1 and OP2 are logically equivalent. */ static bool same_bool_result_p (const_tree op1, const_tree op2) { /* Simple cases first. */ if (operand_equal_p (op1, op2, 0)) return true; /* Check the cases where at least one of the operands is a comparison. These are a bit smarter than operand_equal_p in that they apply some identifies on SSA_NAMEs. */ if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison && same_bool_comparison_p (op1, TREE_CODE (op2), TREE_OPERAND (op2, 0), TREE_OPERAND (op2, 1))) return true; if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison && same_bool_comparison_p (op2, TREE_CODE (op1), TREE_OPERAND (op1, 0), TREE_OPERAND (op1, 1))) return true; /* Default case. */ return false; } /* Forward declarations for some mutually recursive functions. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b); static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b); /* Helper function for and_comparisons_1: try to simplify the AND of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of the VAR before doing the AND. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = or_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = and_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the AND of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var AND (var == 0)) => false. */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_false_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = and_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (innercode == TRUTH_AND_EXPR || innercode == TRUTH_OR_EXPR || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple s; tree t; tree partial = NULL_TREE; bool is_and = (innercode == TRUTH_AND_EXPR || innercode == BIT_AND_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var inner1 AND (inner1 OR inner2) => inner1 !inner1 AND (inner1 AND inner2) => false !inner1 AND (inner1 OR inner2) => !inner1 AND inner2 Likewise for similar cases involving inner2. */ if (inner1 == true_test_var) return (is_and ? var : inner1); else if (inner2 == true_test_var) return (is_and ? var : inner2); else if (inner1 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the AND across the inner tests. Compute the first partial result, (inner1 AND (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (t AND inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_and) { if (integer_onep (t)) return inner2; else if (integer_zerop (t)) return boolean_false_node; } /* Handle the OR case, where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner2 AND (op2a code2 op2b))) */ else if (integer_onep (t)) return boolean_true_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 AND (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (inner1 AND t) */ if (is_and) { if (integer_onep (t)) return inner1; else if (integer_zerop (t)) return boolean_false_node; /* If both are the same, we can apply the identity (x AND x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the OR case. where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner1 AND (op2a code2 op2b))) => (t OR partial) */ else { if (integer_onep (t)) return boolean_true_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed OR expression. The interesting case is when at least one is false. Or, if both are the same, we can apply the identity (x OR x) == x. */ if (integer_zerop (partial)) return t; else if (integer_zerop (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the AND of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { /* First check for ((x CODE1 y) AND (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, code2, boolean_type_node, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, swap_tree_comparison (code2), boolean_type_node, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a == op1b), we should either be able to return that or FALSE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == EQ_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return boolean_false_node; } } /* Likewise if the second comparison is an == comparison. */ else if (code2 == EQ_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return boolean_false_node; } } /* Same business with inequality tests. */ else if (code1 == NE_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp != 0); break; case NE_EXPR: val = (cmp == 0); break; case LT_EXPR: val = (cmp >= 0); break; case GT_EXPR: val = (cmp <= 0); break; case LE_EXPR: val = (cmp > 0); break; case GE_EXPR: val = (cmp < 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == NE_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp <= 0); break; case GT_EXPR: val = (cmp >= 0); break; case LE_EXPR: val = (cmp < 0); break; case GE_EXPR: val = (cmp > 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the more restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Likewise chose the more restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LE_EXPR && code2 == GE_EXPR) || (code1 == GE_EXPR && code2 == LE_EXPR))) return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b); /* Check for disjoint ranges. */ else if (cmp <= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_false_node; else if (cmp >= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_false_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return and_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ANDed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_nonzerop (arg) : integer_zerop (arg)) { if (!result) result = boolean_false_node; else if (!integer_zerop (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME) { tree temp = and_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the AND of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Helper function for or_comparisons_1: try to simplify the OR of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of VAR before doing the OR. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = and_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = or_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the OR of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var OR (var != 0)) => true . */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_true_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = or_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (innercode == TRUTH_AND_EXPR || innercode == TRUTH_OR_EXPR || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple s; tree t; tree partial = NULL_TREE; bool is_or = (innercode == TRUTH_OR_EXPR || innercode == BIT_IOR_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var inner1 OR (inner1 AND inner2) => inner1 !inner1 OR (inner1 OR inner2) => true !inner1 OR (inner1 AND inner2) => !inner1 OR inner2 */ if (inner1 == true_test_var) return (is_or ? var : inner1); else if (inner2 == true_test_var) return (is_or ? var : inner2); else if (inner1 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the OR across the inner tests. Compute the first partial result, (inner1 OR (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (t OR inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_or) { if (integer_onep (t)) return boolean_true_node; else if (integer_zerop (t)) return inner2; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner2 OR (op2a code op2b))) */ else if (integer_zerop (t)) return boolean_false_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 OR (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (inner1 OR t) => (t OR partial) */ if (is_or) { if (integer_zerop (t)) return inner1; else if (integer_onep (t)) return boolean_true_node; /* If both are the same, we can apply the identity (x OR x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner1 OR (op2a code2 op2b))) => (t AND partial) */ else { if (integer_zerop (t)) return boolean_false_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed AND expression. The interesting case is when at least one is true. Or, if both are the same, we can apply the identity (x AND x) == x. */ if (integer_onep (partial)) return t; else if (integer_onep (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the OR of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { /* First check for ((x CODE1 y) OR (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, code2, boolean_type_node, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, swap_tree_comparison (code2), boolean_type_node, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a != op1b), we should either be able to return that or TRUE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == NE_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code1, boolean_type_node, op1a, op1b); } } /* Likewise if the second comparison is a != comparison. */ else if (code2 == NE_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code2, boolean_type_node, op2a, op2b); } } /* See if an equality test is redundant with the other comparison. */ else if (code1 == EQ_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == EQ_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the less restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Likewise chose the less restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LT_EXPR && code2 == GT_EXPR) || (code1 == GT_EXPR && code2 == LT_EXPR))) return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b); /* Check for less/greater pairs that don't restrict the range at all. */ else if (cmp >= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_true_node; else if (cmp <= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_true_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return or_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ORed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_zerop (arg) : integer_nonzerop (arg)) { if (!result) result = boolean_true_node; else if (!integer_onep (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME) { tree temp = or_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the OR of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Either NULL_TREE, a simplified but non-constant or a constant is returned. ??? This should go into a gimple-fold-inline.h file to be eventually privatized with the single valueize function used in the various TUs to avoid the indirect function call overhead. */ tree gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree)) { location_t loc = gimple_location (stmt); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { enum tree_code subcode = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); enum tree_code_class kind = TREE_CODE_CLASS (subcode); if (TREE_CODE (rhs) == SSA_NAME) { /* If the RHS is an SSA_NAME, return its known constant value, if any. */ return (*valueize) (rhs); } /* Handle propagating invariant addresses into address operations. */ else if (TREE_CODE (rhs) == ADDR_EXPR && !is_gimple_min_invariant (rhs)) { HOST_WIDE_INT offset; tree base; base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0), &offset, valueize); if (base && (CONSTANT_CLASS_P (base) || decl_address_invariant_p (base))) return build_invariant_address (TREE_TYPE (rhs), base, offset); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { unsigned i; tree val, list; list = NULL_TREE; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) { val = (*valueize) (val); if (TREE_CODE (val) == INTEGER_CST || TREE_CODE (val) == REAL_CST || TREE_CODE (val) == FIXED_CST) list = tree_cons (NULL_TREE, val, list); else return NULL_TREE; } return build_vector (TREE_TYPE (rhs), nreverse (list)); } if (kind == tcc_reference) { if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR || TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR) && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_unary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val); } else if (TREE_CODE (rhs) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_ternary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val, TREE_OPERAND (rhs, 1), TREE_OPERAND (rhs, 2)); } else if (TREE_CODE (rhs) == MEM_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); if (TREE_CODE (val) == ADDR_EXPR && is_gimple_min_invariant (val)) { tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs), unshare_expr (val), TREE_OPERAND (rhs, 1)); if (tem) rhs = tem; } } return fold_const_aggregate_ref_1 (rhs, valueize); } else if (kind == tcc_declaration) return get_symbol_constant_value (rhs); return rhs; } case GIMPLE_UNARY_RHS: { /* Handle unary operators that can appear in GIMPLE form. Note that we know the single operand must be a constant, so this should almost always return a simplified RHS. */ tree lhs = gimple_assign_lhs (stmt); tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); /* Conversions are useless for CCP purposes if they are value-preserving. Thus the restrictions that useless_type_conversion_p places for pointer type conversions do not apply here. Substitution later will only substitute to allowed places. */ if (CONVERT_EXPR_CODE_P (subcode) && POINTER_TYPE_P (TREE_TYPE (lhs)) && POINTER_TYPE_P (TREE_TYPE (op0))) { tree tem; /* Try to re-construct array references on-the-fly. */ if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)) && ((tem = maybe_fold_offset_to_address (loc, op0, integer_zero_node, TREE_TYPE (lhs))) != NULL_TREE)) return tem; return op0; } return fold_unary_ignore_overflow_loc (loc, subcode, gimple_expr_type (stmt), op0); } case GIMPLE_BINARY_RHS: { /* Handle binary operators that can appear in GIMPLE form. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); /* Translate &x + CST into an invariant form suitable for further propagation. */ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR && TREE_CODE (op0) == ADDR_EXPR && TREE_CODE (op1) == INTEGER_CST) { tree off = fold_convert (ptr_type_node, op1); return build_fold_addr_expr (fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)), unshare_expr (op0), off)); } return fold_binary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1); } case GIMPLE_TERNARY_RHS: { /* Handle ternary operators that can appear in GIMPLE form. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); tree op2 = (*valueize) (gimple_assign_rhs3 (stmt)); return fold_ternary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1, op2); } default: gcc_unreachable (); } } case GIMPLE_CALL: { tree fn = (*valueize) (gimple_call_fn (stmt)); if (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (fn, 0))) { tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt)); tree call, retval; unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) args[i] = (*valueize) (gimple_call_arg (stmt, i)); call = build_call_array_loc (loc, gimple_call_return_type (stmt), fn, gimple_call_num_args (stmt), args); retval = fold_call_expr (EXPR_LOCATION (call), call, false); if (retval) /* fold_call_expr wraps the result inside a NOP_EXPR. */ STRIP_NOPS (retval); return retval; } return NULL_TREE; } default: return NULL_TREE; } } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Returns NULL_TREE if folding to a constant is not possible, otherwise returns a constant according to is_gimple_min_invariant. */ tree gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree)) { tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize); if (res && is_gimple_min_invariant (res)) return res; return NULL_TREE; } /* The following set of functions are supposed to fold references using their constant initializers. */ static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size); /* See if we can find constructor defining value of BASE. When we know the consructor with constant offset (such as base is array[40] and we do know constructor of array), then BIT_OFFSET is adjusted accordingly. As a special case, return error_mark_node when constructor is not explicitly available, but it is known to be zero such as 'static const int a;'. */ static tree get_base_constructor (tree base, HOST_WIDE_INT *bit_offset, tree (*valueize)(tree)) { HOST_WIDE_INT bit_offset2, size, max_size; if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) { if (!host_integerp (TREE_OPERAND (base, 1), 0)) return NULL_TREE; *bit_offset += (mem_ref_offset (base).low * BITS_PER_UNIT); } if (valueize && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) base = valueize (TREE_OPERAND (base, 0)); if (!base || TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); } /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its DECL_INITIAL. If BASE is a nested reference into another ARRAY_REF or COMPONENT_REF, make a recursive call to resolve the inner reference. */ switch (TREE_CODE (base)) { case VAR_DECL: if (!const_value_known_p (base)) return NULL_TREE; /* Fallthru. */ case CONST_DECL: if (!DECL_INITIAL (base) && (TREE_STATIC (base) || DECL_EXTERNAL (base))) return error_mark_node; return DECL_INITIAL (base); case ARRAY_REF: case COMPONENT_REF: base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size); if (max_size == -1 || size != max_size) return NULL_TREE; *bit_offset += bit_offset2; return get_base_constructor (base, bit_offset, valueize); case STRING_CST: case CONSTRUCTOR: return base; default: return NULL_TREE; } } /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. We do only simple job of folding byte accesses. */ static tree fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { if (INTEGRAL_TYPE_P (type) && (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == MODE_INT) && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1 && size == BITS_PER_UNIT && !(offset % BITS_PER_UNIT)) { offset /= BITS_PER_UNIT; if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor)) return build_int_cst_type (type, (TREE_STRING_POINTER (ctor) [offset])); /* Folding const char a[20]="hello"; return a[10]; might lead to offset greater than string length. In this case we know value is either initialized to 0 or out of bounds. Return 0 in both cases. */ return build_zero_cst (type); } return NULL_TREE; } /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_array_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; double_int low_bound, elt_size; double_int index, max_index; double_int access_index; tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); HOST_WIDE_INT inner_offset; /* Compute low bound and elt size. */ if (domain_type && TYPE_MIN_VALUE (domain_type)) { /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type)); } else low_bound = double_int_zero; /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) == INTEGER_CST); elt_size = tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))); /* We can handle only constantly sized accesses that are known to not be larger than size of array element. */ if (!TYPE_SIZE_UNIT (type) || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST || double_int_cmp (elt_size, tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0) return NULL_TREE; /* Compute the array index we look for. */ access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT), elt_size, TRUNC_DIV_EXPR); access_index = double_int_add (access_index, low_bound); /* And offset within the access. */ inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT); /* See if the array field is large enough to span whole access. We do not care to fold accesses spanning multiple array indexes. */ if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT) return NULL_TREE; index = double_int_sub (low_bound, double_int_one); FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { /* Array constructor might explicitely set index, or specify range or leave index NULL meaning that it is next index after previous one. */ if (cfield) { if (TREE_CODE (cfield) == INTEGER_CST) max_index = index = tree_to_double_int (cfield); else { gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); index = tree_to_double_int (TREE_OPERAND (cfield, 0)); max_index = tree_to_double_int (TREE_OPERAND (cfield, 1)); } } else max_index = index = double_int_add (index, double_int_one); /* Do we have match? */ if (double_int_cmp (access_index, index, 1) >= 0 && double_int_cmp (access_index, max_index, 1) <= 0) return fold_ctor_reference (type, cval, inner_offset, size); } /* When memory is not explicitely mentioned in constructor, it is 0 (or out of range). */ return build_zero_cst (type); } /* CTOR is CONSTRUCTOR of an aggregate or vector. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_nonarray_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { tree byte_offset = DECL_FIELD_OFFSET (cfield); tree field_offset = DECL_FIELD_BIT_OFFSET (cfield); tree field_size = DECL_SIZE (cfield); double_int bitoffset; double_int byte_offset_cst = tree_to_double_int (byte_offset); double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT); double_int bitoffset_end; /* Variable sized objects in static constructors makes no sense, but field_size can be NULL for flexible array members. */ gcc_assert (TREE_CODE (field_offset) == INTEGER_CST && TREE_CODE (byte_offset) == INTEGER_CST && (field_size != NULL_TREE ? TREE_CODE (field_size) == INTEGER_CST : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE)); /* Compute bit offset of the field. */ bitoffset = double_int_add (tree_to_double_int (field_offset), double_int_mul (byte_offset_cst, bits_per_unit_cst)); /* Compute bit offset where the field ends. */ if (field_size != NULL_TREE) bitoffset_end = double_int_add (bitoffset, tree_to_double_int (field_size)); else bitoffset_end = double_int_zero; /* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */ if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0 && (field_size == NULL_TREE || double_int_cmp (uhwi_to_double_int (offset), bitoffset_end, 0) < 0)) { double_int access_end = double_int_add (uhwi_to_double_int (offset), uhwi_to_double_int (size)); double_int inner_offset = double_int_sub (uhwi_to_double_int (offset), bitoffset); /* We do have overlap. Now see if field is large enough to cover the access. Give up for accesses spanning multiple fields. */ if (double_int_cmp (access_end, bitoffset_end, 0) > 0) return NULL_TREE; return fold_ctor_reference (type, cval, double_int_to_uhwi (inner_offset), size); } } /* When memory is not explicitely mentioned in constructor, it is 0. */ return build_zero_cst (type); } /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size) { tree ret; /* We found the field with exact match. */ if (useless_type_conversion_p (type, TREE_TYPE (ctor)) && !offset) return canonicalize_constructor_val (ctor); /* We are at the end of walk, see if we can view convert the result. */ if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset /* VIEW_CONVERT_EXPR is defined only for matching sizes. */ && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (ctor)), 0)) { ret = canonicalize_constructor_val (ctor); ret = fold_unary (VIEW_CONVERT_EXPR, type, ret); if (ret) STRIP_NOPS (ret); return ret; } if (TREE_CODE (ctor) == STRING_CST) return fold_string_cst_ctor_reference (type, ctor, offset, size); if (TREE_CODE (ctor) == CONSTRUCTOR) { if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) return fold_array_ctor_reference (type, ctor, offset, size); else return fold_nonarray_ctor_reference (type, ctor, offset, size); } return NULL_TREE; } /* Return the tree representing the element referenced by T if T is an ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA names using VALUEIZE. Return NULL_TREE otherwise. */ tree fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree)) { tree ctor, idx, base; HOST_WIDE_INT offset, size, max_size; tree tem; if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration) return get_symbol_constant_value (t); tem = fold_read_from_constant_string (t); if (tem) return tem; switch (TREE_CODE (t)) { case ARRAY_REF: case ARRAY_RANGE_REF: /* Constant indexes are handled well by get_base_constructor. Only special case variable offsets. FIXME: This code can't handle nested references with variable indexes (they will be handled only by iteration of ccp). Perhaps we can bring get_ref_base_and_extent here and make it use a valueize callback. */ if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME && valueize && (idx = (*valueize) (TREE_OPERAND (t, 1))) && host_integerp (idx, 0)) { tree low_bound, unit_size; /* If the resulting bit-offset is constant, track it. */ if ((low_bound = array_ref_low_bound (t), host_integerp (low_bound, 0)) && (unit_size = array_ref_element_size (t), host_integerp (unit_size, 1))) { offset = TREE_INT_CST_LOW (idx); offset -= TREE_INT_CST_LOW (low_bound); offset *= TREE_INT_CST_LOW (unit_size); offset *= BITS_PER_UNIT; base = TREE_OPERAND (t, 0); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, TREE_INT_CST_LOW (unit_size) * BITS_PER_UNIT); } } /* Fallthru. */ case COMPONENT_REF: case BIT_FIELD_REF: case TARGET_MEM_REF: case MEM_REF: base = get_ref_base_and_extent (t, &offset, &size, &max_size); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* We do not know precise address. */ if (max_size == -1 || max_size != size) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size); case REALPART_EXPR: case IMAGPART_EXPR: { tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize); if (c && TREE_CODE (c) == COMPLEX_CST) return fold_build1_loc (EXPR_LOCATION (t), TREE_CODE (t), TREE_TYPE (t), c); break; } default: break; } return NULL_TREE; } tree fold_const_aggregate_ref (tree t) { return fold_const_aggregate_ref_1 (t, NULL); }