/* File format for coverage information Copyright (C) 1996, 1997, 1998, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2011, 2012 Free Software Foundation, Inc. Contributed by Bob Manson . Completely remangled by Nathan Sidwell . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* Routines declared in gcov-io.h. This file should be #included by another source file, after having #included gcov-io.h. */ #if !IN_GCOV static void gcov_write_block (unsigned); static gcov_unsigned_t *gcov_write_words (unsigned); #endif static const gcov_unsigned_t *gcov_read_words (unsigned); #if !IN_LIBGCOV static void gcov_allocate (unsigned); #endif static inline gcov_unsigned_t from_file (gcov_unsigned_t value) { #if !IN_LIBGCOV if (gcov_var.endian) { value = (value >> 16) | (value << 16); value = ((value & 0xff00ff) << 8) | ((value >> 8) & 0xff00ff); } #endif return value; } /* Open a gcov file. NAME is the name of the file to open and MODE indicates whether a new file should be created, or an existing file opened. If MODE is >= 0 an existing file will be opened, if possible, and if MODE is <= 0, a new file will be created. Use MODE=0 to attempt to reopen an existing file and then fall back on creating a new one. If MODE < 0, the file will be opened in read-only mode. Otherwise it will be opened for modification. Return zero on failure, >0 on opening an existing file and <0 on creating a new one. */ GCOV_LINKAGE int #if IN_LIBGCOV gcov_open (const char *name) #else gcov_open (const char *name, int mode) #endif { #if IN_LIBGCOV const int mode = 0; #endif #if GCOV_LOCKED struct flock s_flock; int fd; s_flock.l_whence = SEEK_SET; s_flock.l_start = 0; s_flock.l_len = 0; /* Until EOF. */ s_flock.l_pid = getpid (); #endif gcc_assert (!gcov_var.file); gcov_var.start = 0; gcov_var.offset = gcov_var.length = 0; gcov_var.overread = -1u; gcov_var.error = 0; #if !IN_LIBGCOV gcov_var.endian = 0; #endif #if GCOV_LOCKED if (mode > 0) { /* Read-only mode - acquire a read-lock. */ s_flock.l_type = F_RDLCK; /* pass mode (ignored) for compatibility */ fd = open (name, O_RDONLY, S_IRUSR | S_IWUSR); } else { /* Write mode - acquire a write-lock. */ s_flock.l_type = F_WRLCK; fd = open (name, O_RDWR | O_CREAT, 0666); } if (fd < 0) return 0; while (fcntl (fd, F_SETLKW, &s_flock) && errno == EINTR) continue; gcov_var.file = fdopen (fd, (mode > 0) ? "rb" : "r+b"); if (!gcov_var.file) { close (fd); return 0; } if (mode > 0) gcov_var.mode = 1; else if (mode == 0) { struct stat st; if (fstat (fd, &st) < 0) { fclose (gcov_var.file); gcov_var.file = 0; return 0; } if (st.st_size != 0) gcov_var.mode = 1; else gcov_var.mode = mode * 2 + 1; } else gcov_var.mode = mode * 2 + 1; #else if (mode >= 0) gcov_var.file = fopen (name, (mode > 0) ? "rb" : "r+b"); if (gcov_var.file) gcov_var.mode = 1; else if (mode <= 0) { gcov_var.file = fopen (name, "w+b"); if (gcov_var.file) gcov_var.mode = mode * 2 + 1; } if (!gcov_var.file) return 0; #endif setbuf (gcov_var.file, (char *)0); return 1; } /* Close the current gcov file. Flushes data to disk. Returns nonzero on failure or error flag set. */ GCOV_LINKAGE int gcov_close (void) { if (gcov_var.file) { #if !IN_GCOV if (gcov_var.offset && gcov_var.mode < 0) gcov_write_block (gcov_var.offset); #endif fclose (gcov_var.file); gcov_var.file = 0; gcov_var.length = 0; } #if !IN_LIBGCOV free (gcov_var.buffer); gcov_var.alloc = 0; gcov_var.buffer = 0; #endif gcov_var.mode = 0; return gcov_var.error; } #if !IN_LIBGCOV /* Check if MAGIC is EXPECTED. Use it to determine endianness of the file. Returns +1 for same endian, -1 for other endian and zero for not EXPECTED. */ GCOV_LINKAGE int gcov_magic (gcov_unsigned_t magic, gcov_unsigned_t expected) { if (magic == expected) return 1; magic = (magic >> 16) | (magic << 16); magic = ((magic & 0xff00ff) << 8) | ((magic >> 8) & 0xff00ff); if (magic == expected) { gcov_var.endian = 1; return -1; } return 0; } #endif #if !IN_LIBGCOV static void gcov_allocate (unsigned length) { size_t new_size = gcov_var.alloc; if (!new_size) new_size = GCOV_BLOCK_SIZE; new_size += length; new_size *= 2; gcov_var.alloc = new_size; gcov_var.buffer = XRESIZEVAR (gcov_unsigned_t, gcov_var.buffer, new_size << 2); } #endif #if !IN_GCOV /* Write out the current block, if needs be. */ static void gcov_write_block (unsigned size) { if (fwrite (gcov_var.buffer, size << 2, 1, gcov_var.file) != 1) gcov_var.error = 1; gcov_var.start += size; gcov_var.offset -= size; } /* Allocate space to write BYTES bytes to the gcov file. Return a pointer to those bytes, or NULL on failure. */ static gcov_unsigned_t * gcov_write_words (unsigned words) { gcov_unsigned_t *result; gcc_assert (gcov_var.mode < 0); #if IN_LIBGCOV if (gcov_var.offset >= GCOV_BLOCK_SIZE) { gcov_write_block (GCOV_BLOCK_SIZE); if (gcov_var.offset) { gcc_assert (gcov_var.offset == 1); memcpy (gcov_var.buffer, gcov_var.buffer + GCOV_BLOCK_SIZE, 4); } } #else if (gcov_var.offset + words > gcov_var.alloc) gcov_allocate (gcov_var.offset + words); #endif result = &gcov_var.buffer[gcov_var.offset]; gcov_var.offset += words; return result; } /* Write unsigned VALUE to coverage file. Sets error flag appropriately. */ GCOV_LINKAGE void gcov_write_unsigned (gcov_unsigned_t value) { gcov_unsigned_t *buffer = gcov_write_words (1); buffer[0] = value; } /* Write counter VALUE to coverage file. Sets error flag appropriately. */ #if IN_LIBGCOV GCOV_LINKAGE void gcov_write_counter (gcov_type value) { gcov_unsigned_t *buffer = gcov_write_words (2); buffer[0] = (gcov_unsigned_t) value; if (sizeof (value) > sizeof (gcov_unsigned_t)) buffer[1] = (gcov_unsigned_t) (value >> 32); else buffer[1] = 0; } #endif /* IN_LIBGCOV */ #if !IN_LIBGCOV /* Write STRING to coverage file. Sets error flag on file error, overflow flag on overflow */ GCOV_LINKAGE void gcov_write_string (const char *string) { unsigned length = 0; unsigned alloc = 0; gcov_unsigned_t *buffer; if (string) { length = strlen (string); alloc = (length + 4) >> 2; } buffer = gcov_write_words (1 + alloc); buffer[0] = alloc; buffer[alloc] = 0; memcpy (&buffer[1], string, length); } #endif #if !IN_LIBGCOV /* Write a tag TAG and reserve space for the record length. Return a value to be used for gcov_write_length. */ GCOV_LINKAGE gcov_position_t gcov_write_tag (gcov_unsigned_t tag) { gcov_position_t result = gcov_var.start + gcov_var.offset; gcov_unsigned_t *buffer = gcov_write_words (2); buffer[0] = tag; buffer[1] = 0; return result; } /* Write a record length using POSITION, which was returned by gcov_write_tag. The current file position is the end of the record, and is restored before returning. Returns nonzero on overflow. */ GCOV_LINKAGE void gcov_write_length (gcov_position_t position) { unsigned offset; gcov_unsigned_t length; gcov_unsigned_t *buffer; gcc_assert (gcov_var.mode < 0); gcc_assert (position + 2 <= gcov_var.start + gcov_var.offset); gcc_assert (position >= gcov_var.start); offset = position - gcov_var.start; length = gcov_var.offset - offset - 2; buffer = (gcov_unsigned_t *) &gcov_var.buffer[offset]; buffer[1] = length; if (gcov_var.offset >= GCOV_BLOCK_SIZE) gcov_write_block (gcov_var.offset); } #else /* IN_LIBGCOV */ /* Write a tag TAG and length LENGTH. */ GCOV_LINKAGE void gcov_write_tag_length (gcov_unsigned_t tag, gcov_unsigned_t length) { gcov_unsigned_t *buffer = gcov_write_words (2); buffer[0] = tag; buffer[1] = length; } /* Write a summary structure to the gcov file. Return nonzero on overflow. */ GCOV_LINKAGE void gcov_write_summary (gcov_unsigned_t tag, const struct gcov_summary *summary) { unsigned ix, h_ix, bv_ix, h_cnt = 0; const struct gcov_ctr_summary *csum; unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE]; /* Count number of non-zero histogram entries, and fill in a bit vector of non-zero indices. The histogram is only currently computed for arc counters. */ for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++) histo_bitvector[bv_ix] = 0; csum = &summary->ctrs[GCOV_COUNTER_ARCS]; for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++) { if (csum->histogram[h_ix].num_counters > 0) { histo_bitvector[h_ix / 32] |= 1 << (h_ix % 32); h_cnt++; } } gcov_write_tag_length (tag, GCOV_TAG_SUMMARY_LENGTH(h_cnt)); gcov_write_unsigned (summary->checksum); for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++) { gcov_write_unsigned (csum->num); gcov_write_unsigned (csum->runs); gcov_write_counter (csum->sum_all); gcov_write_counter (csum->run_max); gcov_write_counter (csum->sum_max); if (ix != GCOV_COUNTER_ARCS) { for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++) gcov_write_unsigned (0); continue; } for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++) gcov_write_unsigned (histo_bitvector[bv_ix]); for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++) { if (!csum->histogram[h_ix].num_counters) continue; gcov_write_unsigned (csum->histogram[h_ix].num_counters); gcov_write_counter (csum->histogram[h_ix].min_value); gcov_write_counter (csum->histogram[h_ix].cum_value); } } } #endif /* IN_LIBGCOV */ #endif /*!IN_GCOV */ /* Return a pointer to read BYTES bytes from the gcov file. Returns NULL on failure (read past EOF). */ static const gcov_unsigned_t * gcov_read_words (unsigned words) { const gcov_unsigned_t *result; unsigned excess = gcov_var.length - gcov_var.offset; gcc_assert (gcov_var.mode > 0); if (excess < words) { gcov_var.start += gcov_var.offset; #if IN_LIBGCOV if (excess) { gcc_assert (excess == 1); memcpy (gcov_var.buffer, gcov_var.buffer + gcov_var.offset, 4); } #else memmove (gcov_var.buffer, gcov_var.buffer + gcov_var.offset, excess * 4); #endif gcov_var.offset = 0; gcov_var.length = excess; #if IN_LIBGCOV gcc_assert (!gcov_var.length || gcov_var.length == 1); excess = GCOV_BLOCK_SIZE; #else if (gcov_var.length + words > gcov_var.alloc) gcov_allocate (gcov_var.length + words); excess = gcov_var.alloc - gcov_var.length; #endif excess = fread (gcov_var.buffer + gcov_var.length, 1, excess << 2, gcov_var.file) >> 2; gcov_var.length += excess; if (gcov_var.length < words) { gcov_var.overread += words - gcov_var.length; gcov_var.length = 0; return 0; } } result = &gcov_var.buffer[gcov_var.offset]; gcov_var.offset += words; return result; } /* Read unsigned value from a coverage file. Sets error flag on file error, overflow flag on overflow */ GCOV_LINKAGE gcov_unsigned_t gcov_read_unsigned (void) { gcov_unsigned_t value; const gcov_unsigned_t *buffer = gcov_read_words (1); if (!buffer) return 0; value = from_file (buffer[0]); return value; } /* Read counter value from a coverage file. Sets error flag on file error, overflow flag on overflow */ GCOV_LINKAGE gcov_type gcov_read_counter (void) { gcov_type value; const gcov_unsigned_t *buffer = gcov_read_words (2); if (!buffer) return 0; value = from_file (buffer[0]); if (sizeof (value) > sizeof (gcov_unsigned_t)) value |= ((gcov_type) from_file (buffer[1])) << 32; else if (buffer[1]) gcov_var.error = -1; return value; } /* Read string from coverage file. Returns a pointer to a static buffer, or NULL on empty string. You must copy the string before calling another gcov function. */ #if !IN_LIBGCOV GCOV_LINKAGE const char * gcov_read_string (void) { unsigned length = gcov_read_unsigned (); if (!length) return 0; return (const char *) gcov_read_words (length); } #endif GCOV_LINKAGE void gcov_read_summary (struct gcov_summary *summary) { unsigned ix, h_ix, bv_ix, h_cnt = 0; struct gcov_ctr_summary *csum; unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE]; unsigned cur_bitvector; summary->checksum = gcov_read_unsigned (); for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++) { csum->num = gcov_read_unsigned (); csum->runs = gcov_read_unsigned (); csum->sum_all = gcov_read_counter (); csum->run_max = gcov_read_counter (); csum->sum_max = gcov_read_counter (); memset (csum->histogram, 0, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE); for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++) { histo_bitvector[bv_ix] = gcov_read_unsigned (); #if IN_LIBGCOV /* When building libgcov we don't include system.h, which includes hwint.h (where popcount_hwi is declared). However, libgcov.a is built by the bootstrapped compiler and therefore the builtins are always available. */ h_cnt += __builtin_popcount (histo_bitvector[bv_ix]); #else h_cnt += popcount_hwi (histo_bitvector[bv_ix]); #endif } bv_ix = 0; h_ix = 0; cur_bitvector = 0; while (h_cnt--) { /* Find the index corresponding to the next entry we will read in. First find the next non-zero bitvector and re-initialize the histogram index accordingly, then right shift and increment the index until we find a set bit. */ while (!cur_bitvector) { h_ix = bv_ix * 32; gcc_assert(bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE); cur_bitvector = histo_bitvector[bv_ix++]; } while (!(cur_bitvector & 0x1)) { h_ix++; cur_bitvector >>= 1; } gcc_assert(h_ix < GCOV_HISTOGRAM_SIZE); csum->histogram[h_ix].num_counters = gcov_read_unsigned (); csum->histogram[h_ix].min_value = gcov_read_counter (); csum->histogram[h_ix].cum_value = gcov_read_counter (); /* Shift off the index we are done with and increment to the corresponding next histogram entry. */ cur_bitvector >>= 1; h_ix++; } } } #if !IN_LIBGCOV /* Reset to a known position. BASE should have been obtained from gcov_position, LENGTH should be a record length. */ GCOV_LINKAGE void gcov_sync (gcov_position_t base, gcov_unsigned_t length) { gcc_assert (gcov_var.mode > 0); base += length; if (base - gcov_var.start <= gcov_var.length) gcov_var.offset = base - gcov_var.start; else { gcov_var.offset = gcov_var.length = 0; fseek (gcov_var.file, base << 2, SEEK_SET); gcov_var.start = ftell (gcov_var.file) >> 2; } } #endif #if IN_LIBGCOV /* Move to a given position in a gcov file. */ GCOV_LINKAGE void gcov_seek (gcov_position_t base) { gcc_assert (gcov_var.mode < 0); if (gcov_var.offset) gcov_write_block (gcov_var.offset); fseek (gcov_var.file, base << 2, SEEK_SET); gcov_var.start = ftell (gcov_var.file) >> 2; } #endif #if IN_GCOV > 0 /* Return the modification time of the current gcov file. */ GCOV_LINKAGE time_t gcov_time (void) { struct stat status; if (fstat (fileno (gcov_var.file), &status)) return 0; else return status.st_mtime; } #endif /* IN_GCOV */ #if !IN_GCOV /* Determine the index into histogram for VALUE. */ #if IN_LIBGCOV static unsigned #else GCOV_LINKAGE unsigned #endif gcov_histo_index (gcov_type value) { gcov_type_unsigned v = (gcov_type_unsigned)value; unsigned r = 0; unsigned prev2bits = 0; /* Find index into log2 scale histogram, where each of the log2 sized buckets is divided into 4 linear sub-buckets for better focus in the higher buckets. */ /* Find the place of the most-significant bit set. */ if (v > 0) { #if IN_LIBGCOV /* When building libgcov we don't include system.h, which includes hwint.h (where floor_log2 is declared). However, libgcov.a is built by the bootstrapped compiler and therefore the builtins are always available. */ r = sizeof (long long) * __CHAR_BIT__ - 1 - __builtin_clzll (v); #else /* We use floor_log2 from hwint.c, which takes a HOST_WIDE_INT that is either 32 or 64 bits, and gcov_type_unsigned may be 64 bits. Need to check for the case where gcov_type_unsigned is 64 bits and HOST_WIDE_INT is 32 bits and handle it specially. */ #if HOST_BITS_PER_WIDEST_INT == HOST_BITS_PER_WIDE_INT r = floor_log2 (v); #elif HOST_BITS_PER_WIDEST_INT == 2 * HOST_BITS_PER_WIDE_INT HOST_WIDE_INT hwi_v = v >> HOST_BITS_PER_WIDE_INT; if (hwi_v) r = floor_log2 (hwi_v) + HOST_BITS_PER_WIDE_INT; else r = floor_log2 ((HOST_WIDE_INT)v); #else gcc_unreachable (); #endif #endif } /* If at most the 2 least significant bits are set (value is 0 - 3) then that value is our index into the lowest set of four buckets. */ if (r < 2) return (unsigned)value; gcc_assert (r < 64); /* Find the two next most significant bits to determine which of the four linear sub-buckets to select. */ prev2bits = (v >> (r - 2)) & 0x3; /* Finally, compose the final bucket index from the log2 index and the next 2 bits. The minimum r value at this point is 2 since we returned above if r was 2 or more, so the minimum bucket at this point is 4. */ return (r - 1) * 4 + prev2bits; } /* Merge SRC_HISTO into TGT_HISTO. The counters are assumed to be in the same relative order in both histograms, and are matched up and merged in reverse order. Each counter is assigned an equal portion of its entry's original cumulative counter value when computing the new merged cum_value. */ static void gcov_histogram_merge (gcov_bucket_type *tgt_histo, gcov_bucket_type *src_histo) { int src_i, tgt_i, tmp_i = 0; unsigned src_num, tgt_num, merge_num; gcov_type src_cum, tgt_cum, merge_src_cum, merge_tgt_cum, merge_cum; gcov_type merge_min; gcov_bucket_type tmp_histo[GCOV_HISTOGRAM_SIZE]; int src_done = 0; memset(tmp_histo, 0, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE); /* Assume that the counters are in the same relative order in both histograms. Walk the histograms from largest to smallest entry, matching up and combining counters in order. */ src_num = 0; src_cum = 0; src_i = GCOV_HISTOGRAM_SIZE - 1; for (tgt_i = GCOV_HISTOGRAM_SIZE - 1; tgt_i >= 0 && !src_done; tgt_i--) { tgt_num = tgt_histo[tgt_i].num_counters; tgt_cum = tgt_histo[tgt_i].cum_value; /* Keep going until all of the target histogram's counters at this position have been matched and merged with counters from the source histogram. */ while (tgt_num > 0 && !src_done) { /* If this is either the first time through this loop or we just exhausted the previous non-zero source histogram entry, look for the next non-zero source histogram entry. */ if (!src_num) { /* Locate the next non-zero entry. */ while (src_i >= 0 && !src_histo[src_i].num_counters) src_i--; /* If source histogram has fewer counters, then just copy over the remaining target counters and quit. */ if (src_i < 0) { tmp_histo[tgt_i].num_counters += tgt_num; tmp_histo[tgt_i].cum_value += tgt_cum; if (!tmp_histo[tgt_i].min_value || tgt_histo[tgt_i].min_value < tmp_histo[tgt_i].min_value) tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value; while (--tgt_i >= 0) { tmp_histo[tgt_i].num_counters += tgt_histo[tgt_i].num_counters; tmp_histo[tgt_i].cum_value += tgt_histo[tgt_i].cum_value; if (!tmp_histo[tgt_i].min_value || tgt_histo[tgt_i].min_value < tmp_histo[tgt_i].min_value) tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value; } src_done = 1; break; } src_num = src_histo[src_i].num_counters; src_cum = src_histo[src_i].cum_value; } /* The number of counters to merge on this pass is the minimum of the remaining counters from the current target and source histogram entries. */ merge_num = tgt_num; if (src_num < merge_num) merge_num = src_num; /* The merged min_value is the sum of the min_values from target and source. */ merge_min = tgt_histo[tgt_i].min_value + src_histo[src_i].min_value; /* Compute the portion of source and target entries' cum_value that will be apportioned to the counters being merged. The total remaining cum_value from each entry is divided equally among the counters from that histogram entry if we are not merging all of them. */ merge_src_cum = src_cum; if (merge_num < src_num) merge_src_cum = merge_num * src_cum / src_num; merge_tgt_cum = tgt_cum; if (merge_num < tgt_num) merge_tgt_cum = merge_num * tgt_cum / tgt_num; /* The merged cum_value is the sum of the source and target components. */ merge_cum = merge_src_cum + merge_tgt_cum; /* Update the remaining number of counters and cum_value left to be merged from this source and target entry. */ src_cum -= merge_src_cum; tgt_cum -= merge_tgt_cum; src_num -= merge_num; tgt_num -= merge_num; /* The merged counters get placed in the new merged histogram at the entry for the merged min_value. */ tmp_i = gcov_histo_index(merge_min); gcc_assert (tmp_i < GCOV_HISTOGRAM_SIZE); tmp_histo[tmp_i].num_counters += merge_num; tmp_histo[tmp_i].cum_value += merge_cum; if (!tmp_histo[tmp_i].min_value || merge_min < tmp_histo[tmp_i].min_value) tmp_histo[tmp_i].min_value = merge_min; /* Ensure the search for the next non-zero src_histo entry starts at the next smallest histogram bucket. */ if (!src_num) src_i--; } } gcc_assert (tgt_i < 0); /* In the case where there were more counters in the source histogram, accumulate the remaining unmerged cumulative counter values. Add those to the smallest non-zero target histogram entry. Otherwise, the total cumulative counter values in the histogram will be smaller than the sum_all stored in the summary, which will complicate computing the working set information from the histogram later on. */ if (src_num) src_i--; while (src_i >= 0) { src_cum += src_histo[src_i].cum_value; src_i--; } /* At this point, tmp_i should be the smallest non-zero entry in the tmp_histo. */ gcc_assert(tmp_i >= 0 && tmp_i < GCOV_HISTOGRAM_SIZE && tmp_histo[tmp_i].num_counters > 0); tmp_histo[tmp_i].cum_value += src_cum; /* Finally, copy the merged histogram into tgt_histo. */ memcpy(tgt_histo, tmp_histo, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE); } #endif /* !IN_GCOV */