/* Expands front end tree to back end RTL for GCC. Copyright (C) 1987-2015 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file handles the generation of rtl code from tree structure at the level of the function as a whole. It creates the rtl expressions for parameters and auto variables and has full responsibility for allocating stack slots. `expand_function_start' is called at the beginning of a function, before the function body is parsed, and `expand_function_end' is called after parsing the body. Call `assign_stack_local' to allocate a stack slot for a local variable. This is usually done during the RTL generation for the function body, but it can also be done in the reload pass when a pseudo-register does not get a hard register. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl-error.h" #include "alias.h" #include "symtab.h" #include "tree.h" #include "fold-const.h" #include "stor-layout.h" #include "varasm.h" #include "stringpool.h" #include "flags.h" #include "except.h" #include "hard-reg-set.h" #include "function.h" #include "rtl.h" #include "insn-config.h" #include "expmed.h" #include "dojump.h" #include "explow.h" #include "calls.h" #include "emit-rtl.h" #include "stmt.h" #include "expr.h" #include "insn-codes.h" #include "optabs.h" #include "libfuncs.h" #include "regs.h" #include "recog.h" #include "output.h" #include "tm_p.h" #include "langhooks.h" #include "target.h" #include "common/common-target.h" #include "gimple-expr.h" #include "gimplify.h" #include "tree-pass.h" #include "predict.h" #include "dominance.h" #include "cfg.h" #include "cfgrtl.h" #include "cfganal.h" #include "cfgbuild.h" #include "cfgcleanup.h" #include "basic-block.h" #include "df.h" #include "params.h" #include "bb-reorder.h" #include "shrink-wrap.h" #include "toplev.h" #include "rtl-iter.h" #include "tree-chkp.h" #include "rtl-chkp.h" /* So we can assign to cfun in this file. */ #undef cfun #ifndef STACK_ALIGNMENT_NEEDED #define STACK_ALIGNMENT_NEEDED 1 #endif #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) /* Round a value to the lowest integer less than it that is a multiple of the required alignment. Avoid using division in case the value is negative. Assume the alignment is a power of two. */ #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) /* Similar, but round to the next highest integer that meets the alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) /* Nonzero once virtual register instantiation has been done. assign_stack_local uses frame_pointer_rtx when this is nonzero. calls.c:emit_library_call_value_1 uses it to set up post-instantiation libcalls. */ int virtuals_instantiated; /* Assign unique numbers to labels generated for profiling, debugging, etc. */ static GTY(()) int funcdef_no; /* These variables hold pointers to functions to create and destroy target specific, per-function data structures. */ struct machine_function * (*init_machine_status) (void); /* The currently compiled function. */ struct function *cfun = 0; /* These hashes record the prologue and epilogue insns. */ struct insn_cache_hasher : ggc_cache_ptr_hash { static hashval_t hash (rtx x) { return htab_hash_pointer (x); } static bool equal (rtx a, rtx b) { return a == b; } }; static GTY((cache)) hash_table *prologue_insn_hash; static GTY((cache)) hash_table *epilogue_insn_hash; hash_table *types_used_by_vars_hash = NULL; vec *types_used_by_cur_var_decl; /* Forward declarations. */ static struct temp_slot *find_temp_slot_from_address (rtx); static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); static void pad_below (struct args_size *, machine_mode, tree); static void reorder_blocks_1 (rtx_insn *, tree, vec *); static int all_blocks (tree, tree *); static tree *get_block_vector (tree, int *); extern tree debug_find_var_in_block_tree (tree, tree); /* We always define `record_insns' even if it's not used so that we can always export `prologue_epilogue_contains'. */ static void record_insns (rtx_insn *, rtx, hash_table **) ATTRIBUTE_UNUSED; static bool contains (const_rtx, hash_table *); static void prepare_function_start (void); static void do_clobber_return_reg (rtx, void *); static void do_use_return_reg (rtx, void *); /* Stack of nested functions. */ /* Keep track of the cfun stack. */ typedef struct function *function_p; static vec function_context_stack; /* Save the current context for compilation of a nested function. This is called from language-specific code. */ void push_function_context (void) { if (cfun == 0) allocate_struct_function (NULL, false); function_context_stack.safe_push (cfun); set_cfun (NULL); } /* Restore the last saved context, at the end of a nested function. This function is called from language-specific code. */ void pop_function_context (void) { struct function *p = function_context_stack.pop (); set_cfun (p); current_function_decl = p->decl; /* Reset variables that have known state during rtx generation. */ virtuals_instantiated = 0; generating_concat_p = 1; } /* Clear out all parts of the state in F that can safely be discarded after the function has been parsed, but not compiled, to let garbage collection reclaim the memory. */ void free_after_parsing (struct function *f) { f->language = 0; } /* Clear out all parts of the state in F that can safely be discarded after the function has been compiled, to let garbage collection reclaim the memory. */ void free_after_compilation (struct function *f) { prologue_insn_hash = NULL; epilogue_insn_hash = NULL; free (crtl->emit.regno_pointer_align); memset (crtl, 0, sizeof (struct rtl_data)); f->eh = NULL; f->machine = NULL; f->cfg = NULL; regno_reg_rtx = NULL; } /* Return size needed for stack frame based on slots so far allocated. This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; the caller may have to do that. */ HOST_WIDE_INT get_frame_size (void) { if (FRAME_GROWS_DOWNWARD) return -frame_offset; else return frame_offset; } /* Issue an error message and return TRUE if frame OFFSET overflows in the signed target pointer arithmetics for function FUNC. Otherwise return FALSE. */ bool frame_offset_overflow (HOST_WIDE_INT offset, tree func) { unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset; if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1)) /* Leave room for the fixed part of the frame. */ - 64 * UNITS_PER_WORD) { error_at (DECL_SOURCE_LOCATION (func), "total size of local objects too large"); return TRUE; } return FALSE; } /* Return stack slot alignment in bits for TYPE and MODE. */ static unsigned int get_stack_local_alignment (tree type, machine_mode mode) { unsigned int alignment; if (mode == BLKmode) alignment = BIGGEST_ALIGNMENT; else alignment = GET_MODE_ALIGNMENT (mode); /* Allow the frond-end to (possibly) increase the alignment of this stack slot. */ if (! type) type = lang_hooks.types.type_for_mode (mode, 0); return STACK_SLOT_ALIGNMENT (type, mode, alignment); } /* Determine whether it is possible to fit a stack slot of size SIZE and alignment ALIGNMENT into an area in the stack frame that starts at frame offset START and has a length of LENGTH. If so, store the frame offset to be used for the stack slot in *POFFSET and return true; return false otherwise. This function will extend the frame size when given a start/length pair that lies at the end of the frame. */ static bool try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length, HOST_WIDE_INT size, unsigned int alignment, HOST_WIDE_INT *poffset) { HOST_WIDE_INT this_frame_offset; int frame_off, frame_alignment, frame_phase; /* Calculate how many bytes the start of local variables is off from stack alignment. */ frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; frame_off = STARTING_FRAME_OFFSET % frame_alignment; frame_phase = frame_off ? frame_alignment - frame_off : 0; /* Round the frame offset to the specified alignment. */ /* We must be careful here, since FRAME_OFFSET might be negative and division with a negative dividend isn't as well defined as we might like. So we instead assume that ALIGNMENT is a power of two and use logical operations which are unambiguous. */ if (FRAME_GROWS_DOWNWARD) this_frame_offset = (FLOOR_ROUND (start + length - size - frame_phase, (unsigned HOST_WIDE_INT) alignment) + frame_phase); else this_frame_offset = (CEIL_ROUND (start - frame_phase, (unsigned HOST_WIDE_INT) alignment) + frame_phase); /* See if it fits. If this space is at the edge of the frame, consider extending the frame to make it fit. Our caller relies on this when allocating a new slot. */ if (frame_offset == start && this_frame_offset < frame_offset) frame_offset = this_frame_offset; else if (this_frame_offset < start) return false; else if (start + length == frame_offset && this_frame_offset + size > start + length) frame_offset = this_frame_offset + size; else if (this_frame_offset + size > start + length) return false; *poffset = this_frame_offset; return true; } /* Create a new frame_space structure describing free space in the stack frame beginning at START and ending at END, and chain it into the function's frame_space_list. */ static void add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end) { struct frame_space *space = ggc_alloc (); space->next = crtl->frame_space_list; crtl->frame_space_list = space; space->start = start; space->length = end - start; } /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it with machine mode MODE. ALIGN controls the amount of alignment for the address of the slot: 0 means according to MODE, -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, -2 means use BITS_PER_UNIT, positive specifies alignment boundary in bits. KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce alignment and ASLK_RECORD_PAD bit set if we should remember extra space we allocated for alignment purposes. When we are called from assign_stack_temp_for_type, it is not set so we don't track the same stack slot in two independent lists. We do not round to stack_boundary here. */ rtx assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size, int align, int kind) { rtx x, addr; int bigend_correction = 0; HOST_WIDE_INT slot_offset = 0, old_frame_offset; unsigned int alignment, alignment_in_bits; if (align == 0) { alignment = get_stack_local_alignment (NULL, mode); alignment /= BITS_PER_UNIT; } else if (align == -1) { alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; size = CEIL_ROUND (size, alignment); } else if (align == -2) alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */ else alignment = align / BITS_PER_UNIT; alignment_in_bits = alignment * BITS_PER_UNIT; /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */ if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT) { alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT; alignment = alignment_in_bits / BITS_PER_UNIT; } if (SUPPORTS_STACK_ALIGNMENT) { if (crtl->stack_alignment_estimated < alignment_in_bits) { if (!crtl->stack_realign_processed) crtl->stack_alignment_estimated = alignment_in_bits; else { /* If stack is realigned and stack alignment value hasn't been finalized, it is OK not to increase stack_alignment_estimated. The bigger alignment requirement is recorded in stack_alignment_needed below. */ gcc_assert (!crtl->stack_realign_finalized); if (!crtl->stack_realign_needed) { /* It is OK to reduce the alignment as long as the requested size is 0 or the estimated stack alignment >= mode alignment. */ gcc_assert ((kind & ASLK_REDUCE_ALIGN) || size == 0 || (crtl->stack_alignment_estimated >= GET_MODE_ALIGNMENT (mode))); alignment_in_bits = crtl->stack_alignment_estimated; alignment = alignment_in_bits / BITS_PER_UNIT; } } } } if (crtl->stack_alignment_needed < alignment_in_bits) crtl->stack_alignment_needed = alignment_in_bits; if (crtl->max_used_stack_slot_alignment < alignment_in_bits) crtl->max_used_stack_slot_alignment = alignment_in_bits; if (mode != BLKmode || size != 0) { if (kind & ASLK_RECORD_PAD) { struct frame_space **psp; for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next) { struct frame_space *space = *psp; if (!try_fit_stack_local (space->start, space->length, size, alignment, &slot_offset)) continue; *psp = space->next; if (slot_offset > space->start) add_frame_space (space->start, slot_offset); if (slot_offset + size < space->start + space->length) add_frame_space (slot_offset + size, space->start + space->length); goto found_space; } } } else if (!STACK_ALIGNMENT_NEEDED) { slot_offset = frame_offset; goto found_space; } old_frame_offset = frame_offset; if (FRAME_GROWS_DOWNWARD) { frame_offset -= size; try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset); if (kind & ASLK_RECORD_PAD) { if (slot_offset > frame_offset) add_frame_space (frame_offset, slot_offset); if (slot_offset + size < old_frame_offset) add_frame_space (slot_offset + size, old_frame_offset); } } else { frame_offset += size; try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset); if (kind & ASLK_RECORD_PAD) { if (slot_offset > old_frame_offset) add_frame_space (old_frame_offset, slot_offset); if (slot_offset + size < frame_offset) add_frame_space (slot_offset + size, frame_offset); } } found_space: /* On a big-endian machine, if we are allocating more space than we will use, use the least significant bytes of those that are allocated. */ if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size) bigend_correction = size - GET_MODE_SIZE (mode); /* If we have already instantiated virtual registers, return the actual address relative to the frame pointer. */ if (virtuals_instantiated) addr = plus_constant (Pmode, frame_pointer_rtx, trunc_int_for_mode (slot_offset + bigend_correction + STARTING_FRAME_OFFSET, Pmode)); else addr = plus_constant (Pmode, virtual_stack_vars_rtx, trunc_int_for_mode (slot_offset + bigend_correction, Pmode)); x = gen_rtx_MEM (mode, addr); set_mem_align (x, alignment_in_bits); MEM_NOTRAP_P (x) = 1; stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list); if (frame_offset_overflow (frame_offset, current_function_decl)) frame_offset = 0; return x; } /* Wrap up assign_stack_local_1 with last parameter as false. */ rtx assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align) { return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD); } /* In order to evaluate some expressions, such as function calls returning structures in memory, we need to temporarily allocate stack locations. We record each allocated temporary in the following structure. Associated with each temporary slot is a nesting level. When we pop up one level, all temporaries associated with the previous level are freed. Normally, all temporaries are freed after the execution of the statement in which they were created. However, if we are inside a ({...}) grouping, the result may be in a temporary and hence must be preserved. If the result could be in a temporary, we preserve it if we can determine which one it is in. If we cannot determine which temporary may contain the result, all temporaries are preserved. A temporary is preserved by pretending it was allocated at the previous nesting level. */ struct GTY(()) temp_slot { /* Points to next temporary slot. */ struct temp_slot *next; /* Points to previous temporary slot. */ struct temp_slot *prev; /* The rtx to used to reference the slot. */ rtx slot; /* The size, in units, of the slot. */ HOST_WIDE_INT size; /* The type of the object in the slot, or zero if it doesn't correspond to a type. We use this to determine whether a slot can be reused. It can be reused if objects of the type of the new slot will always conflict with objects of the type of the old slot. */ tree type; /* The alignment (in bits) of the slot. */ unsigned int align; /* Nonzero if this temporary is currently in use. */ char in_use; /* Nesting level at which this slot is being used. */ int level; /* The offset of the slot from the frame_pointer, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT base_offset; /* The size of the slot, including extra space for alignment. This info is for combine_temp_slots. */ HOST_WIDE_INT full_size; }; /* Entry for the below hash table. */ struct GTY((for_user)) temp_slot_address_entry { hashval_t hash; rtx address; struct temp_slot *temp_slot; }; struct temp_address_hasher : ggc_ptr_hash { static hashval_t hash (temp_slot_address_entry *); static bool equal (temp_slot_address_entry *, temp_slot_address_entry *); }; /* A table of addresses that represent a stack slot. The table is a mapping from address RTXen to a temp slot. */ static GTY(()) hash_table *temp_slot_address_table; static size_t n_temp_slots_in_use; /* Removes temporary slot TEMP from LIST. */ static void cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list) { if (temp->next) temp->next->prev = temp->prev; if (temp->prev) temp->prev->next = temp->next; else *list = temp->next; temp->prev = temp->next = NULL; } /* Inserts temporary slot TEMP to LIST. */ static void insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list) { temp->next = *list; if (*list) (*list)->prev = temp; temp->prev = NULL; *list = temp; } /* Returns the list of used temp slots at LEVEL. */ static struct temp_slot ** temp_slots_at_level (int level) { if (level >= (int) vec_safe_length (used_temp_slots)) vec_safe_grow_cleared (used_temp_slots, level + 1); return &(*used_temp_slots)[level]; } /* Returns the maximal temporary slot level. */ static int max_slot_level (void) { if (!used_temp_slots) return -1; return used_temp_slots->length () - 1; } /* Moves temporary slot TEMP to LEVEL. */ static void move_slot_to_level (struct temp_slot *temp, int level) { cut_slot_from_list (temp, temp_slots_at_level (temp->level)); insert_slot_to_list (temp, temp_slots_at_level (level)); temp->level = level; } /* Make temporary slot TEMP available. */ static void make_slot_available (struct temp_slot *temp) { cut_slot_from_list (temp, temp_slots_at_level (temp->level)); insert_slot_to_list (temp, &avail_temp_slots); temp->in_use = 0; temp->level = -1; n_temp_slots_in_use--; } /* Compute the hash value for an address -> temp slot mapping. The value is cached on the mapping entry. */ static hashval_t temp_slot_address_compute_hash (struct temp_slot_address_entry *t) { int do_not_record = 0; return hash_rtx (t->address, GET_MODE (t->address), &do_not_record, NULL, false); } /* Return the hash value for an address -> temp slot mapping. */ hashval_t temp_address_hasher::hash (temp_slot_address_entry *t) { return t->hash; } /* Compare two address -> temp slot mapping entries. */ bool temp_address_hasher::equal (temp_slot_address_entry *t1, temp_slot_address_entry *t2) { return exp_equiv_p (t1->address, t2->address, 0, true); } /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */ static void insert_temp_slot_address (rtx address, struct temp_slot *temp_slot) { struct temp_slot_address_entry *t = ggc_alloc (); t->address = address; t->temp_slot = temp_slot; t->hash = temp_slot_address_compute_hash (t); *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t; } /* Remove an address -> temp slot mapping entry if the temp slot is not in use anymore. Callback for remove_unused_temp_slot_addresses. */ int remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *) { const struct temp_slot_address_entry *t = *slot; if (! t->temp_slot->in_use) temp_slot_address_table->clear_slot (slot); return 1; } /* Remove all mappings of addresses to unused temp slots. */ static void remove_unused_temp_slot_addresses (void) { /* Use quicker clearing if there aren't any active temp slots. */ if (n_temp_slots_in_use) temp_slot_address_table->traverse (NULL); else temp_slot_address_table->empty (); } /* Find the temp slot corresponding to the object at address X. */ static struct temp_slot * find_temp_slot_from_address (rtx x) { struct temp_slot *p; struct temp_slot_address_entry tmp, *t; /* First try the easy way: See if X exists in the address -> temp slot mapping. */ tmp.address = x; tmp.temp_slot = NULL; tmp.hash = temp_slot_address_compute_hash (&tmp); t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash); if (t) return t->temp_slot; /* If we have a sum involving a register, see if it points to a temp slot. */ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) return p; else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) return p; /* Last resort: Address is a virtual stack var address. */ if (GET_CODE (x) == PLUS && XEXP (x, 0) == virtual_stack_vars_rtx && CONST_INT_P (XEXP (x, 1))) { int i; for (i = max_slot_level (); i >= 0; i--) for (p = *temp_slots_at_level (i); p; p = p->next) { if (INTVAL (XEXP (x, 1)) >= p->base_offset && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size) return p; } } return NULL; } /* Allocate a temporary stack slot and record it for possible later reuse. MODE is the machine mode to be given to the returned rtx. SIZE is the size in units of the space required. We do no rounding here since assign_stack_local will do any required rounding. TYPE is the type that will be used for the stack slot. */ rtx assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size, tree type) { unsigned int align; struct temp_slot *p, *best_p = 0, *selected = NULL, **pp; rtx slot; /* If SIZE is -1 it means that somebody tried to allocate a temporary of a variable size. */ gcc_assert (size != -1); align = get_stack_local_alignment (type, mode); /* Try to find an available, already-allocated temporary of the proper mode which meets the size and alignment requirements. Choose the smallest one with the closest alignment. If assign_stack_temp is called outside of the tree->rtl expansion, we cannot reuse the stack slots (that may still refer to VIRTUAL_STACK_VARS_REGNUM). */ if (!virtuals_instantiated) { for (p = avail_temp_slots; p; p = p->next) { if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode && objects_must_conflict_p (p->type, type) && (best_p == 0 || best_p->size > p->size || (best_p->size == p->size && best_p->align > p->align))) { if (p->align == align && p->size == size) { selected = p; cut_slot_from_list (selected, &avail_temp_slots); best_p = 0; break; } best_p = p; } } } /* Make our best, if any, the one to use. */ if (best_p) { selected = best_p; cut_slot_from_list (selected, &avail_temp_slots); /* If there are enough aligned bytes left over, make them into a new temp_slot so that the extra bytes don't get wasted. Do this only for BLKmode slots, so that we can be sure of the alignment. */ if (GET_MODE (best_p->slot) == BLKmode) { int alignment = best_p->align / BITS_PER_UNIT; HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment); if (best_p->size - rounded_size >= alignment) { p = ggc_alloc (); p->in_use = 0; p->size = best_p->size - rounded_size; p->base_offset = best_p->base_offset + rounded_size; p->full_size = best_p->full_size - rounded_size; p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); p->align = best_p->align; p->type = best_p->type; insert_slot_to_list (p, &avail_temp_slots); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot, stack_slot_list); best_p->size = rounded_size; best_p->full_size = rounded_size; } } } /* If we still didn't find one, make a new temporary. */ if (selected == 0) { HOST_WIDE_INT frame_offset_old = frame_offset; p = ggc_alloc (); /* We are passing an explicit alignment request to assign_stack_local. One side effect of that is assign_stack_local will not round SIZE to ensure the frame offset remains suitably aligned. So for requests which depended on the rounding of SIZE, we go ahead and round it now. We also make sure ALIGNMENT is at least BIGGEST_ALIGNMENT. */ gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); p->slot = assign_stack_local_1 (mode, (mode == BLKmode ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT) : size), align, 0); p->align = align; /* The following slot size computation is necessary because we don't know the actual size of the temporary slot until assign_stack_local has performed all the frame alignment and size rounding for the requested temporary. Note that extra space added for alignment can be either above or below this stack slot depending on which way the frame grows. We include the extra space if and only if it is above this slot. */ if (FRAME_GROWS_DOWNWARD) p->size = frame_offset_old - frame_offset; else p->size = size; /* Now define the fields used by combine_temp_slots. */ if (FRAME_GROWS_DOWNWARD) { p->base_offset = frame_offset; p->full_size = frame_offset_old - frame_offset; } else { p->base_offset = frame_offset_old; p->full_size = frame_offset - frame_offset_old; } selected = p; } p = selected; p->in_use = 1; p->type = type; p->level = temp_slot_level; n_temp_slots_in_use++; pp = temp_slots_at_level (p->level); insert_slot_to_list (p, pp); insert_temp_slot_address (XEXP (p->slot, 0), p); /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list); /* If we know the alias set for the memory that will be used, use it. If there's no TYPE, then we don't know anything about the alias set for the memory. */ set_mem_alias_set (slot, type ? get_alias_set (type) : 0); set_mem_align (slot, align); /* If a type is specified, set the relevant flags. */ if (type != 0) MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); MEM_NOTRAP_P (slot) = 1; return slot; } /* Allocate a temporary stack slot and record it for possible later reuse. First two arguments are same as in preceding function. */ rtx assign_stack_temp (machine_mode mode, HOST_WIDE_INT size) { return assign_stack_temp_for_type (mode, size, NULL_TREE); } /* Assign a temporary. If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl and so that should be used in error messages. In either case, we allocate of the given type. MEMORY_REQUIRED is 1 if the result must be addressable stack memory; it is 0 if a register is OK. DONT_PROMOTE is 1 if we should not promote values in register to wider modes. */ rtx assign_temp (tree type_or_decl, int memory_required, int dont_promote ATTRIBUTE_UNUSED) { tree type, decl; machine_mode mode; #ifdef PROMOTE_MODE int unsignedp; #endif if (DECL_P (type_or_decl)) decl = type_or_decl, type = TREE_TYPE (decl); else decl = NULL, type = type_or_decl; mode = TYPE_MODE (type); #ifdef PROMOTE_MODE unsignedp = TYPE_UNSIGNED (type); #endif if (mode == BLKmode || memory_required) { HOST_WIDE_INT size = int_size_in_bytes (type); rtx tmp; /* Zero sized arrays are GNU C extension. Set size to 1 to avoid problems with allocating the stack space. */ if (size == 0) size = 1; /* Unfortunately, we don't yet know how to allocate variable-sized temporaries. However, sometimes we can find a fixed upper limit on the size, so try that instead. */ else if (size == -1) size = max_int_size_in_bytes (type); /* The size of the temporary may be too large to fit into an integer. */ /* ??? Not sure this should happen except for user silliness, so limit this to things that aren't compiler-generated temporaries. The rest of the time we'll die in assign_stack_temp_for_type. */ if (decl && size == -1 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) { error ("size of variable %q+D is too large", decl); size = 1; } tmp = assign_stack_temp_for_type (mode, size, type); return tmp; } #ifdef PROMOTE_MODE if (! dont_promote) mode = promote_mode (type, mode, &unsignedp); #endif return gen_reg_rtx (mode); } /* Combine temporary stack slots which are adjacent on the stack. This allows for better use of already allocated stack space. This is only done for BLKmode slots because we can be sure that we won't have alignment problems in this case. */ static void combine_temp_slots (void) { struct temp_slot *p, *q, *next, *next_q; int num_slots; /* We can't combine slots, because the information about which slot is in which alias set will be lost. */ if (flag_strict_aliasing) return; /* If there are a lot of temp slots, don't do anything unless high levels of optimization. */ if (! flag_expensive_optimizations) for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) if (num_slots > 100 || (num_slots > 10 && optimize == 0)) return; for (p = avail_temp_slots; p; p = next) { int delete_p = 0; next = p->next; if (GET_MODE (p->slot) != BLKmode) continue; for (q = p->next; q; q = next_q) { int delete_q = 0; next_q = q->next; if (GET_MODE (q->slot) != BLKmode) continue; if (p->base_offset + p->full_size == q->base_offset) { /* Q comes after P; combine Q into P. */ p->size += q->size; p->full_size += q->full_size; delete_q = 1; } else if (q->base_offset + q->full_size == p->base_offset) { /* P comes after Q; combine P into Q. */ q->size += p->size; q->full_size += p->full_size; delete_p = 1; break; } if (delete_q) cut_slot_from_list (q, &avail_temp_slots); } /* Either delete P or advance past it. */ if (delete_p) cut_slot_from_list (p, &avail_temp_slots); } } /* Indicate that NEW_RTX is an alternate way of referring to the temp slot that previously was known by OLD_RTX. */ void update_temp_slot_address (rtx old_rtx, rtx new_rtx) { struct temp_slot *p; if (rtx_equal_p (old_rtx, new_rtx)) return; p = find_temp_slot_from_address (old_rtx); /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and NEW_RTX is a register, see if one operand of the PLUS is a temporary location. If so, NEW_RTX points into it. Otherwise, if both OLD_RTX and NEW_RTX are a PLUS and if there is a register in common between them. If so, try a recursive call on those values. */ if (p == 0) { if (GET_CODE (old_rtx) != PLUS) return; if (REG_P (new_rtx)) { update_temp_slot_address (XEXP (old_rtx, 0), new_rtx); update_temp_slot_address (XEXP (old_rtx, 1), new_rtx); return; } else if (GET_CODE (new_rtx) != PLUS) return; if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0))) update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1)); else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0))) update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1)); else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1))) update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0)); else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1))) update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0)); return; } /* Otherwise add an alias for the temp's address. */ insert_temp_slot_address (new_rtx, p); } /* If X could be a reference to a temporary slot, mark that slot as belonging to the to one level higher than the current level. If X matched one of our slots, just mark that one. Otherwise, we can't easily predict which it is, so upgrade all of them. This is called when an ({...}) construct occurs and a statement returns a value in memory. */ void preserve_temp_slots (rtx x) { struct temp_slot *p = 0, *next; if (x == 0) return; /* If X is a register that is being used as a pointer, see if we have a temporary slot we know it points to. */ if (REG_P (x) && REG_POINTER (x)) p = find_temp_slot_from_address (x); /* If X is not in memory or is at a constant address, it cannot be in a temporary slot. */ if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) return; /* First see if we can find a match. */ if (p == 0) p = find_temp_slot_from_address (XEXP (x, 0)); if (p != 0) { if (p->level == temp_slot_level) move_slot_to_level (p, temp_slot_level - 1); return; } /* Otherwise, preserve all non-kept slots at this level. */ for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; move_slot_to_level (p, temp_slot_level - 1); } } /* Free all temporaries used so far. This is normally called at the end of generating code for a statement. */ void free_temp_slots (void) { struct temp_slot *p, *next; bool some_available = false; for (p = *temp_slots_at_level (temp_slot_level); p; p = next) { next = p->next; make_slot_available (p); some_available = true; } if (some_available) { remove_unused_temp_slot_addresses (); combine_temp_slots (); } } /* Push deeper into the nesting level for stack temporaries. */ void push_temp_slots (void) { temp_slot_level++; } /* Pop a temporary nesting level. All slots in use in the current level are freed. */ void pop_temp_slots (void) { free_temp_slots (); temp_slot_level--; } /* Initialize temporary slots. */ void init_temp_slots (void) { /* We have not allocated any temporaries yet. */ avail_temp_slots = 0; vec_alloc (used_temp_slots, 0); temp_slot_level = 0; n_temp_slots_in_use = 0; /* Set up the table to map addresses to temp slots. */ if (! temp_slot_address_table) temp_slot_address_table = hash_table::create_ggc (32); else temp_slot_address_table->empty (); } /* Functions and data structures to keep track of the values hard regs had at the start of the function. */ /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val, and has_hard_reg_initial_val.. */ typedef struct GTY(()) initial_value_pair { rtx hard_reg; rtx pseudo; } initial_value_pair; /* ??? This could be a VEC but there is currently no way to define an opaque VEC type. This could be worked around by defining struct initial_value_pair in function.h. */ typedef struct GTY(()) initial_value_struct { int num_entries; int max_entries; initial_value_pair * GTY ((length ("%h.num_entries"))) entries; } initial_value_struct; /* If a pseudo represents an initial hard reg (or expression), return it, else return NULL_RTX. */ rtx get_hard_reg_initial_reg (rtx reg) { struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; int i; if (ivs == 0) return NULL_RTX; for (i = 0; i < ivs->num_entries; i++) if (rtx_equal_p (ivs->entries[i].pseudo, reg)) return ivs->entries[i].hard_reg; return NULL_RTX; } /* Make sure that there's a pseudo register of mode MODE that stores the initial value of hard register REGNO. Return an rtx for such a pseudo. */ rtx get_hard_reg_initial_val (machine_mode mode, unsigned int regno) { struct initial_value_struct *ivs; rtx rv; rv = has_hard_reg_initial_val (mode, regno); if (rv) return rv; ivs = crtl->hard_reg_initial_vals; if (ivs == 0) { ivs = ggc_alloc (); ivs->num_entries = 0; ivs->max_entries = 5; ivs->entries = ggc_vec_alloc (5); crtl->hard_reg_initial_vals = ivs; } if (ivs->num_entries >= ivs->max_entries) { ivs->max_entries += 5; ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries, ivs->max_entries); } ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno); ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode); return ivs->entries[ivs->num_entries++].pseudo; } /* See if get_hard_reg_initial_val has been used to create a pseudo for the initial value of hard register REGNO in mode MODE. Return the associated pseudo if so, otherwise return NULL. */ rtx has_hard_reg_initial_val (machine_mode mode, unsigned int regno) { struct initial_value_struct *ivs; int i; ivs = crtl->hard_reg_initial_vals; if (ivs != 0) for (i = 0; i < ivs->num_entries; i++) if (GET_MODE (ivs->entries[i].hard_reg) == mode && REGNO (ivs->entries[i].hard_reg) == regno) return ivs->entries[i].pseudo; return NULL_RTX; } unsigned int emit_initial_value_sets (void) { struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; int i; rtx_insn *seq; if (ivs == 0) return 0; start_sequence (); for (i = 0; i < ivs->num_entries; i++) emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg); seq = get_insns (); end_sequence (); emit_insn_at_entry (seq); return 0; } /* Return the hardreg-pseudoreg initial values pair entry I and TRUE if I is a valid entry, or FALSE if I is not a valid entry. */ bool initial_value_entry (int i, rtx *hreg, rtx *preg) { struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; if (!ivs || i >= ivs->num_entries) return false; *hreg = ivs->entries[i].hard_reg; *preg = ivs->entries[i].pseudo; return true; } /* These routines are responsible for converting virtual register references to the actual hard register references once RTL generation is complete. The following four variables are used for communication between the routines. They contain the offsets of the virtual registers from their respective hard registers. */ static int in_arg_offset; static int var_offset; static int dynamic_offset; static int out_arg_offset; static int cfa_offset; /* In most machines, the stack pointer register is equivalent to the bottom of the stack. */ #ifndef STACK_POINTER_OFFSET #define STACK_POINTER_OFFSET 0 #endif #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE) #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE #endif /* If not defined, pick an appropriate default for the offset of dynamically allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ #ifndef STACK_DYNAMIC_OFFSET /* The bottom of the stack points to the actual arguments. If REG_PARM_STACK_SPACE is defined, this includes the space for the register parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, stack space for register parameters is not pushed by the caller, but rather part of the fixed stack areas and hence not included in `crtl->outgoing_args_size'. Nevertheless, we must allow for it when allocating stack dynamic objects. */ #ifdef INCOMING_REG_PARM_STACK_SPACE #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS \ ? (crtl->outgoing_args_size \ + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \ : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \ : 0) + (STACK_POINTER_OFFSET)) #else #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \ + (STACK_POINTER_OFFSET)) #endif #endif /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX is a virtual register, return the equivalent hard register and set the offset indirectly through the pointer. Otherwise, return 0. */ static rtx instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset) { rtx new_rtx; HOST_WIDE_INT offset; if (x == virtual_incoming_args_rtx) { if (stack_realign_drap) { /* Replace virtual_incoming_args_rtx with internal arg pointer if DRAP is used to realign stack. */ new_rtx = crtl->args.internal_arg_pointer; offset = 0; } else new_rtx = arg_pointer_rtx, offset = in_arg_offset; } else if (x == virtual_stack_vars_rtx) new_rtx = frame_pointer_rtx, offset = var_offset; else if (x == virtual_stack_dynamic_rtx) new_rtx = stack_pointer_rtx, offset = dynamic_offset; else if (x == virtual_outgoing_args_rtx) new_rtx = stack_pointer_rtx, offset = out_arg_offset; else if (x == virtual_cfa_rtx) { #ifdef FRAME_POINTER_CFA_OFFSET new_rtx = frame_pointer_rtx; #else new_rtx = arg_pointer_rtx; #endif offset = cfa_offset; } else if (x == virtual_preferred_stack_boundary_rtx) { new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT); offset = 0; } else return NULL_RTX; *poffset = offset; return new_rtx; } /* A subroutine of instantiate_virtual_regs. Instantiate any virtual registers present inside of *LOC. The expression is simplified, as much as possible, but is not to be considered "valid" in any sense implied by the target. Return true if any change is made. */ static bool instantiate_virtual_regs_in_rtx (rtx *loc) { if (!*loc) return false; bool changed = false; subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) { rtx *loc = *iter; if (rtx x = *loc) { rtx new_rtx; HOST_WIDE_INT offset; switch (GET_CODE (x)) { case REG: new_rtx = instantiate_new_reg (x, &offset); if (new_rtx) { *loc = plus_constant (GET_MODE (x), new_rtx, offset); changed = true; } iter.skip_subrtxes (); break; case PLUS: new_rtx = instantiate_new_reg (XEXP (x, 0), &offset); if (new_rtx) { XEXP (x, 0) = new_rtx; *loc = plus_constant (GET_MODE (x), x, offset, true); changed = true; iter.skip_subrtxes (); break; } /* FIXME -- from old code */ /* If we have (plus (subreg (virtual-reg)) (const_int)), we know we can commute the PLUS and SUBREG because pointers into the frame are well-behaved. */ break; default: break; } } } return changed; } /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X matches the predicate for insn CODE operand OPERAND. */ static int safe_insn_predicate (int code, int operand, rtx x) { return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x); } /* A subroutine of instantiate_virtual_regs. Instantiate any virtual registers present inside of insn. The result will be a valid insn. */ static void instantiate_virtual_regs_in_insn (rtx_insn *insn) { HOST_WIDE_INT offset; int insn_code, i; bool any_change = false; rtx set, new_rtx, x; rtx_insn *seq; /* There are some special cases to be handled first. */ set = single_set (insn); if (set) { /* We're allowed to assign to a virtual register. This is interpreted to mean that the underlying register gets assigned the inverse transformation. This is used, for example, in the handling of non-local gotos. */ new_rtx = instantiate_new_reg (SET_DEST (set), &offset); if (new_rtx) { start_sequence (); instantiate_virtual_regs_in_rtx (&SET_SRC (set)); x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set), gen_int_mode (-offset, GET_MODE (new_rtx))); x = force_operand (x, new_rtx); if (x != new_rtx) emit_move_insn (new_rtx, x); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } /* Handle a straight copy from a virtual register by generating a new add insn. The difference between this and falling through to the generic case is avoiding a new pseudo and eliminating a move insn in the initial rtl stream. */ new_rtx = instantiate_new_reg (SET_SRC (set), &offset); if (new_rtx && offset != 0 && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) { start_sequence (); x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx, gen_int_mode (offset, GET_MODE (SET_DEST (set))), SET_DEST (set), 1, OPTAB_LIB_WIDEN); if (x != SET_DEST (set)) emit_move_insn (SET_DEST (set), x); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } extract_insn (insn); insn_code = INSN_CODE (insn); /* Handle a plus involving a virtual register by determining if the operands remain valid if they're modified in place. */ if (GET_CODE (SET_SRC (set)) == PLUS && recog_data.n_operands >= 3 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) && CONST_INT_P (recog_data.operand[2]) && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset))) { offset += INTVAL (recog_data.operand[2]); /* If the sum is zero, then replace with a plain move. */ if (offset == 0 && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) { start_sequence (); emit_move_insn (SET_DEST (set), new_rtx); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); delete_insn (insn); return; } x = gen_int_mode (offset, recog_data.operand_mode[2]); /* Using validate_change and apply_change_group here leaves recog_data in an invalid state. Since we know exactly what we want to check, do those two by hand. */ if (safe_insn_predicate (insn_code, 1, new_rtx) && safe_insn_predicate (insn_code, 2, x)) { *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx; *recog_data.operand_loc[2] = recog_data.operand[2] = x; any_change = true; /* Fall through into the regular operand fixup loop in order to take care of operands other than 1 and 2. */ } } } else { extract_insn (insn); insn_code = INSN_CODE (insn); } /* In the general case, we expect virtual registers to appear only in operands, and then only as either bare registers or inside memories. */ for (i = 0; i < recog_data.n_operands; ++i) { x = recog_data.operand[i]; switch (GET_CODE (x)) { case MEM: { rtx addr = XEXP (x, 0); if (!instantiate_virtual_regs_in_rtx (&addr)) continue; start_sequence (); x = replace_equiv_address (x, addr, true); /* It may happen that the address with the virtual reg was valid (e.g. based on the virtual stack reg, which might be acceptable to the predicates with all offsets), whereas the address now isn't anymore, for instance when the address is still offsetted, but the base reg isn't virtual-stack-reg anymore. Below we would do a force_reg on the whole operand, but this insn might actually only accept memory. Hence, before doing that last resort, try to reload the address into a register, so this operand stays a MEM. */ if (!safe_insn_predicate (insn_code, i, x)) { addr = force_reg (GET_MODE (addr), addr); x = replace_equiv_address (x, addr, true); } seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); } break; case REG: new_rtx = instantiate_new_reg (x, &offset); if (new_rtx == NULL) continue; if (offset == 0) x = new_rtx; else { start_sequence (); /* Careful, special mode predicates may have stuff in insn_data[insn_code].operand[i].mode that isn't useful to us for computing a new value. */ /* ??? Recognize address_operand and/or "p" constraints to see if (plus new offset) is a valid before we put this through expand_simple_binop. */ x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx, gen_int_mode (offset, GET_MODE (x)), NULL_RTX, 1, OPTAB_LIB_WIDEN); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); } break; case SUBREG: new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset); if (new_rtx == NULL) continue; if (offset != 0) { start_sequence (); new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx, gen_int_mode (offset, GET_MODE (new_rtx)), NULL_RTX, 1, OPTAB_LIB_WIDEN); seq = get_insns (); end_sequence (); emit_insn_before (seq, insn); } x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx, GET_MODE (new_rtx), SUBREG_BYTE (x)); gcc_assert (x); break; default: continue; } /* At this point, X contains the new value for the operand. Validate the new value vs the insn predicate. Note that asm insns will have insn_code -1 here. */ if (!safe_insn_predicate (insn_code, i, x)) { start_sequence (); if (REG_P (x)) { gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER); x = copy_to_reg (x); } else x = force_reg (insn_data[insn_code].operand[i].mode, x); seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); } *recog_data.operand_loc[i] = recog_data.operand[i] = x; any_change = true; } if (any_change) { /* Propagate operand changes into the duplicates. */ for (i = 0; i < recog_data.n_dups; ++i) *recog_data.dup_loc[i] = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]); /* Force re-recognition of the instruction for validation. */ INSN_CODE (insn) = -1; } if (asm_noperands (PATTERN (insn)) >= 0) { if (!check_asm_operands (PATTERN (insn))) { error_for_asm (insn, "impossible constraint in %"); /* For asm goto, instead of fixing up all the edges just clear the template and clear input operands (asm goto doesn't have any output operands). */ if (JUMP_P (insn)) { rtx asm_op = extract_asm_operands (PATTERN (insn)); ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup (""); ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0); ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0); } else delete_insn (insn); } } else { if (recog_memoized (insn) < 0) fatal_insn_not_found (insn); } } /* Subroutine of instantiate_decls. Given RTL representing a decl, do any instantiation required. */ void instantiate_decl_rtl (rtx x) { rtx addr; if (x == 0) return; /* If this is a CONCAT, recurse for the pieces. */ if (GET_CODE (x) == CONCAT) { instantiate_decl_rtl (XEXP (x, 0)); instantiate_decl_rtl (XEXP (x, 1)); return; } /* If this is not a MEM, no need to do anything. Similarly if the address is a constant or a register that is not a virtual register. */ if (!MEM_P (x)) return; addr = XEXP (x, 0); if (CONSTANT_P (addr) || (REG_P (addr) && (REGNO (addr) < FIRST_VIRTUAL_REGISTER || REGNO (addr) > LAST_VIRTUAL_REGISTER))) return; instantiate_virtual_regs_in_rtx (&XEXP (x, 0)); } /* Helper for instantiate_decls called via walk_tree: Process all decls in the given DECL_VALUE_EXPR. */ static tree instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { tree t = *tp; if (! EXPR_P (t)) { *walk_subtrees = 0; if (DECL_P (t)) { if (DECL_RTL_SET_P (t)) instantiate_decl_rtl (DECL_RTL (t)); if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t) && DECL_INCOMING_RTL (t)) instantiate_decl_rtl (DECL_INCOMING_RTL (t)); if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == RESULT_DECL) && DECL_HAS_VALUE_EXPR_P (t)) { tree v = DECL_VALUE_EXPR (t); walk_tree (&v, instantiate_expr, NULL, NULL); } } } return NULL; } /* Subroutine of instantiate_decls: Process all decls in the given BLOCK node and all its subblocks. */ static void instantiate_decls_1 (tree let) { tree t; for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t)) { if (DECL_RTL_SET_P (t)) instantiate_decl_rtl (DECL_RTL (t)); if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t)) { tree v = DECL_VALUE_EXPR (t); walk_tree (&v, instantiate_expr, NULL, NULL); } } /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t)) instantiate_decls_1 (t); } /* Scan all decls in FNDECL (both variables and parameters) and instantiate all virtual registers in their DECL_RTL's. */ static void instantiate_decls (tree fndecl) { tree decl; unsigned ix; /* Process all parameters of the function. */ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl)) { instantiate_decl_rtl (DECL_RTL (decl)); instantiate_decl_rtl (DECL_INCOMING_RTL (decl)); if (DECL_HAS_VALUE_EXPR_P (decl)) { tree v = DECL_VALUE_EXPR (decl); walk_tree (&v, instantiate_expr, NULL, NULL); } } if ((decl = DECL_RESULT (fndecl)) && TREE_CODE (decl) == RESULT_DECL) { if (DECL_RTL_SET_P (decl)) instantiate_decl_rtl (DECL_RTL (decl)); if (DECL_HAS_VALUE_EXPR_P (decl)) { tree v = DECL_VALUE_EXPR (decl); walk_tree (&v, instantiate_expr, NULL, NULL); } } /* Process the saved static chain if it exists. */ decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl; if (decl && DECL_HAS_VALUE_EXPR_P (decl)) instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl))); /* Now process all variables defined in the function or its subblocks. */ instantiate_decls_1 (DECL_INITIAL (fndecl)); FOR_EACH_LOCAL_DECL (cfun, ix, decl) if (DECL_RTL_SET_P (decl)) instantiate_decl_rtl (DECL_RTL (decl)); vec_free (cfun->local_decls); } /* Pass through the INSNS of function FNDECL and convert virtual register references to hard register references. */ static unsigned int instantiate_virtual_regs (void) { rtx_insn *insn; /* Compute the offsets to use for this function. */ in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); var_offset = STARTING_FRAME_OFFSET; dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); out_arg_offset = STACK_POINTER_OFFSET; #ifdef FRAME_POINTER_CFA_OFFSET cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); #else cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); #endif /* Initialize recognition, indicating that volatile is OK. */ init_recog (); /* Scan through all the insns, instantiating every virtual register still present. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { /* These patterns in the instruction stream can never be recognized. Fortunately, they shouldn't contain virtual registers either. */ if (GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == ASM_INPUT) continue; else if (DEBUG_INSN_P (insn)) instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn)); else instantiate_virtual_regs_in_insn (insn); if (insn->deleted ()) continue; instantiate_virtual_regs_in_rtx (®_NOTES (insn)); /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ if (CALL_P (insn)) instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn)); } /* Instantiate the virtual registers in the DECLs for debugging purposes. */ instantiate_decls (current_function_decl); targetm.instantiate_decls (); /* Indicate that, from now on, assign_stack_local should use frame_pointer_rtx. */ virtuals_instantiated = 1; return 0; } namespace { const pass_data pass_data_instantiate_virtual_regs = { RTL_PASS, /* type */ "vregs", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_instantiate_virtual_regs : public rtl_opt_pass { public: pass_instantiate_virtual_regs (gcc::context *ctxt) : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *) { return instantiate_virtual_regs (); } }; // class pass_instantiate_virtual_regs } // anon namespace rtl_opt_pass * make_pass_instantiate_virtual_regs (gcc::context *ctxt) { return new pass_instantiate_virtual_regs (ctxt); } /* Return 1 if EXP is an aggregate type (or a value with aggregate type). This means a type for which function calls must pass an address to the function or get an address back from the function. EXP may be a type node or an expression (whose type is tested). */ int aggregate_value_p (const_tree exp, const_tree fntype) { const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); int i, regno, nregs; rtx reg; if (fntype) switch (TREE_CODE (fntype)) { case CALL_EXPR: { tree fndecl = get_callee_fndecl (fntype); if (fndecl) fntype = TREE_TYPE (fndecl); else if (CALL_EXPR_FN (fntype)) fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))); else /* For internal functions, assume nothing needs to be returned in memory. */ return 0; } break; case FUNCTION_DECL: fntype = TREE_TYPE (fntype); break; case FUNCTION_TYPE: case METHOD_TYPE: break; case IDENTIFIER_NODE: fntype = NULL_TREE; break; default: /* We don't expect other tree types here. */ gcc_unreachable (); } if (VOID_TYPE_P (type)) return 0; /* If a record should be passed the same as its first (and only) member don't pass it as an aggregate. */ if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type)) return aggregate_value_p (first_field (type), fntype); /* If the front end has decided that this needs to be passed by reference, do so. */ if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) && DECL_BY_REFERENCE (exp)) return 1; /* Function types that are TREE_ADDRESSABLE force return in memory. */ if (fntype && TREE_ADDRESSABLE (fntype)) return 1; /* Types that are TREE_ADDRESSABLE must be constructed in memory, and thus can't be returned in registers. */ if (TREE_ADDRESSABLE (type)) return 1; if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) return 1; if (targetm.calls.return_in_memory (type, fntype)) return 1; /* Make sure we have suitable call-clobbered regs to return the value in; if not, we must return it in memory. */ reg = hard_function_value (type, 0, fntype, 0); /* If we have something other than a REG (e.g. a PARALLEL), then assume it is OK. */ if (!REG_P (reg)) return 0; regno = REGNO (reg); nregs = hard_regno_nregs[regno][TYPE_MODE (type)]; for (i = 0; i < nregs; i++) if (! call_used_regs[regno + i]) return 1; return 0; } /* Return true if we should assign DECL a pseudo register; false if it should live on the local stack. */ bool use_register_for_decl (const_tree decl) { if (!targetm.calls.allocate_stack_slots_for_args ()) return true; /* Honor volatile. */ if (TREE_SIDE_EFFECTS (decl)) return false; /* Honor addressability. */ if (TREE_ADDRESSABLE (decl)) return false; /* Decl is implicitly addressible by bound stores and loads if it is an aggregate holding bounds. */ if (chkp_function_instrumented_p (current_function_decl) && TREE_TYPE (decl) && !BOUNDED_P (decl) && chkp_type_has_pointer (TREE_TYPE (decl))) return false; /* Only register-like things go in registers. */ if (DECL_MODE (decl) == BLKmode) return false; /* If -ffloat-store specified, don't put explicit float variables into registers. */ /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa propagates values across these stores, and it probably shouldn't. */ if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) return false; /* If we're not interested in tracking debugging information for this decl, then we can certainly put it in a register. */ if (DECL_IGNORED_P (decl)) return true; if (optimize) return true; if (!DECL_REGISTER (decl)) return false; switch (TREE_CODE (TREE_TYPE (decl))) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: /* When not optimizing, disregard register keyword for variables with types containing methods, otherwise the methods won't be callable from the debugger. */ if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl)))) return false; break; default: break; } return true; } /* Structures to communicate between the subroutines of assign_parms. The first holds data persistent across all parameters, the second is cleared out for each parameter. */ struct assign_parm_data_all { /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS should become a job of the target or otherwise encapsulated. */ CUMULATIVE_ARGS args_so_far_v; cumulative_args_t args_so_far; struct args_size stack_args_size; tree function_result_decl; tree orig_fnargs; rtx_insn *first_conversion_insn; rtx_insn *last_conversion_insn; HOST_WIDE_INT pretend_args_size; HOST_WIDE_INT extra_pretend_bytes; int reg_parm_stack_space; }; struct assign_parm_data_one { tree nominal_type; tree passed_type; rtx entry_parm; rtx stack_parm; machine_mode nominal_mode; machine_mode passed_mode; machine_mode promoted_mode; struct locate_and_pad_arg_data locate; int partial; BOOL_BITFIELD named_arg : 1; BOOL_BITFIELD passed_pointer : 1; BOOL_BITFIELD on_stack : 1; BOOL_BITFIELD loaded_in_reg : 1; }; struct bounds_parm_data { assign_parm_data_one parm_data; tree bounds_parm; tree ptr_parm; rtx ptr_entry; int bound_no; }; /* A subroutine of assign_parms. Initialize ALL. */ static void assign_parms_initialize_all (struct assign_parm_data_all *all) { tree fntype ATTRIBUTE_UNUSED; memset (all, 0, sizeof (*all)); fntype = TREE_TYPE (current_function_decl); #ifdef INIT_CUMULATIVE_INCOMING_ARGS INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX); #else INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX, current_function_decl, -1); #endif all->args_so_far = pack_cumulative_args (&all->args_so_far_v); #ifdef INCOMING_REG_PARM_STACK_SPACE all->reg_parm_stack_space = INCOMING_REG_PARM_STACK_SPACE (current_function_decl); #endif } /* If ARGS contains entries with complex types, split the entry into two entries of the component type. Return a new list of substitutions are needed, else the old list. */ static void split_complex_args (vec *args) { unsigned i; tree p; FOR_EACH_VEC_ELT (*args, i, p) { tree type = TREE_TYPE (p); if (TREE_CODE (type) == COMPLEX_TYPE && targetm.calls.split_complex_arg (type)) { tree decl; tree subtype = TREE_TYPE (type); bool addressable = TREE_ADDRESSABLE (p); /* Rewrite the PARM_DECL's type with its component. */ p = copy_node (p); TREE_TYPE (p) = subtype; DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p)); DECL_MODE (p) = VOIDmode; DECL_SIZE (p) = NULL; DECL_SIZE_UNIT (p) = NULL; /* If this arg must go in memory, put it in a pseudo here. We can't allow it to go in memory as per normal parms, because the usual place might not have the imag part adjacent to the real part. */ DECL_ARTIFICIAL (p) = addressable; DECL_IGNORED_P (p) = addressable; TREE_ADDRESSABLE (p) = 0; layout_decl (p, 0); (*args)[i] = p; /* Build a second synthetic decl. */ decl = build_decl (EXPR_LOCATION (p), PARM_DECL, NULL_TREE, subtype); DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); DECL_ARTIFICIAL (decl) = addressable; DECL_IGNORED_P (decl) = addressable; layout_decl (decl, 0); args->safe_insert (++i, decl); } } } /* A subroutine of assign_parms. Adjust the parameter list to incorporate the hidden struct return argument, and (abi willing) complex args. Return the new parameter list. */ static vec assign_parms_augmented_arg_list (struct assign_parm_data_all *all) { tree fndecl = current_function_decl; tree fntype = TREE_TYPE (fndecl); vec fnargs = vNULL; tree arg; for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg)) fnargs.safe_push (arg); all->orig_fnargs = DECL_ARGUMENTS (fndecl); /* If struct value address is treated as the first argument, make it so. */ if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) && ! cfun->returns_pcc_struct && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) { tree type = build_pointer_type (TREE_TYPE (fntype)); tree decl; decl = build_decl (DECL_SOURCE_LOCATION (fndecl), PARM_DECL, get_identifier (".result_ptr"), type); DECL_ARG_TYPE (decl) = type; DECL_ARTIFICIAL (decl) = 1; DECL_NAMELESS (decl) = 1; TREE_CONSTANT (decl) = 1; DECL_CHAIN (decl) = all->orig_fnargs; all->orig_fnargs = decl; fnargs.safe_insert (0, decl); all->function_result_decl = decl; /* If function is instrumented then bounds of the passed structure address is the second argument. */ if (chkp_function_instrumented_p (fndecl)) { decl = build_decl (DECL_SOURCE_LOCATION (fndecl), PARM_DECL, get_identifier (".result_bnd"), pointer_bounds_type_node); DECL_ARG_TYPE (decl) = pointer_bounds_type_node; DECL_ARTIFICIAL (decl) = 1; DECL_NAMELESS (decl) = 1; TREE_CONSTANT (decl) = 1; DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs); DECL_CHAIN (all->orig_fnargs) = decl; fnargs.safe_insert (1, decl); } } /* If the target wants to split complex arguments into scalars, do so. */ if (targetm.calls.split_complex_arg) split_complex_args (&fnargs); return fnargs; } /* A subroutine of assign_parms. Examine PARM and pull out type and mode data for the parameter. Incorporate ABI specifics such as pass-by- reference and type promotion. */ static void assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { tree nominal_type, passed_type; machine_mode nominal_mode, passed_mode, promoted_mode; int unsignedp; memset (data, 0, sizeof (*data)); /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */ if (!cfun->stdarg) data->named_arg = 1; /* No variadic parms. */ else if (DECL_CHAIN (parm)) data->named_arg = 1; /* Not the last non-variadic parm. */ else if (targetm.calls.strict_argument_naming (all->args_so_far)) data->named_arg = 1; /* Only variadic ones are unnamed. */ else data->named_arg = 0; /* Treat as variadic. */ nominal_type = TREE_TYPE (parm); passed_type = DECL_ARG_TYPE (parm); /* Look out for errors propagating this far. Also, if the parameter's type is void then its value doesn't matter. */ if (TREE_TYPE (parm) == error_mark_node /* This can happen after weird syntax errors or if an enum type is defined among the parms. */ || TREE_CODE (parm) != PARM_DECL || passed_type == NULL || VOID_TYPE_P (nominal_type)) { nominal_type = passed_type = void_type_node; nominal_mode = passed_mode = promoted_mode = VOIDmode; goto egress; } /* Find mode of arg as it is passed, and mode of arg as it should be during execution of this function. */ passed_mode = TYPE_MODE (passed_type); nominal_mode = TYPE_MODE (nominal_type); /* If the parm is to be passed as a transparent union or record, use the type of the first field for the tests below. We have already verified that the modes are the same. */ if ((TREE_CODE (passed_type) == UNION_TYPE || TREE_CODE (passed_type) == RECORD_TYPE) && TYPE_TRANSPARENT_AGGR (passed_type)) passed_type = TREE_TYPE (first_field (passed_type)); /* See if this arg was passed by invisible reference. */ if (pass_by_reference (&all->args_so_far_v, passed_mode, passed_type, data->named_arg)) { passed_type = nominal_type = build_pointer_type (passed_type); data->passed_pointer = true; passed_mode = nominal_mode = TYPE_MODE (nominal_type); } /* Find mode as it is passed by the ABI. */ unsignedp = TYPE_UNSIGNED (passed_type); promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp, TREE_TYPE (current_function_decl), 0); egress: data->nominal_type = nominal_type; data->passed_type = passed_type; data->nominal_mode = nominal_mode; data->passed_mode = passed_mode; data->promoted_mode = promoted_mode; } /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ static void assign_parms_setup_varargs (struct assign_parm_data_all *all, struct assign_parm_data_one *data, bool no_rtl) { int varargs_pretend_bytes = 0; targetm.calls.setup_incoming_varargs (all->args_so_far, data->promoted_mode, data->passed_type, &varargs_pretend_bytes, no_rtl); /* If the back-end has requested extra stack space, record how much is needed. Do not change pretend_args_size otherwise since it may be nonzero from an earlier partial argument. */ if (varargs_pretend_bytes > 0) all->pretend_args_size = varargs_pretend_bytes; } /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to the incoming location of the current parameter. */ static void assign_parm_find_entry_rtl (struct assign_parm_data_all *all, struct assign_parm_data_one *data) { HOST_WIDE_INT pretend_bytes = 0; rtx entry_parm; bool in_regs; if (data->promoted_mode == VOIDmode) { data->entry_parm = data->stack_parm = const0_rtx; return; } entry_parm = targetm.calls.function_incoming_arg (all->args_so_far, data->promoted_mode, data->passed_type, data->named_arg); if (entry_parm == 0) data->promoted_mode = data->passed_mode; /* Determine parm's home in the stack, in case it arrives in the stack or we should pretend it did. Compute the stack position and rtx where the argument arrives and its size. There is one complexity here: If this was a parameter that would have been passed in registers, but wasn't only because it is __builtin_va_alist, we want locate_and_pad_parm to treat it as if it came in a register so that REG_PARM_STACK_SPACE isn't skipped. In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 as it was the previous time. */ in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type); #ifdef STACK_PARMS_IN_REG_PARM_AREA in_regs = true; #endif if (!in_regs && !data->named_arg) { if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far)) { rtx tem; tem = targetm.calls.function_incoming_arg (all->args_so_far, data->promoted_mode, data->passed_type, true); in_regs = tem != NULL; } } /* If this parameter was passed both in registers and in the stack, use the copy on the stack. */ if (targetm.calls.must_pass_in_stack (data->promoted_mode, data->passed_type)) entry_parm = 0; if (entry_parm) { int partial; partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->promoted_mode, data->passed_type, data->named_arg); data->partial = partial; /* The caller might already have allocated stack space for the register parameters. */ if (partial != 0 && all->reg_parm_stack_space == 0) { /* Part of this argument is passed in registers and part is passed on the stack. Ask the prologue code to extend the stack part so that we can recreate the full value. PRETEND_BYTES is the size of the registers we need to store. CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra stack space that the prologue should allocate. Internally, gcc assumes that the argument pointer is aligned to STACK_BOUNDARY bits. This is used both for alignment optimizations (see init_emit) and to locate arguments that are aligned to more than PARM_BOUNDARY bits. We must preserve this invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack boundary. */ /* We assume at most one partial arg, and it must be the first argument on the stack. */ gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); pretend_bytes = partial; all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); /* We want to align relative to the actual stack pointer, so don't include this in the stack size until later. */ all->extra_pretend_bytes = all->pretend_args_size; } } locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs, all->reg_parm_stack_space, entry_parm ? data->partial : 0, current_function_decl, &all->stack_args_size, &data->locate); /* Update parm_stack_boundary if this parameter is passed in the stack. */ if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary) crtl->parm_stack_boundary = data->locate.boundary; /* Adjust offsets to include the pretend args. */ pretend_bytes = all->extra_pretend_bytes - pretend_bytes; data->locate.slot_offset.constant += pretend_bytes; data->locate.offset.constant += pretend_bytes; data->entry_parm = entry_parm; } /* A subroutine of assign_parms. If there is actually space on the stack for this parm, count it in stack_args_size and return true. */ static bool assign_parm_is_stack_parm (struct assign_parm_data_all *all, struct assign_parm_data_one *data) { /* Bounds are never passed on the stack to keep compatibility with not instrumented code. */ if (POINTER_BOUNDS_TYPE_P (data->passed_type)) return false; /* Trivially true if we've no incoming register. */ else if (data->entry_parm == NULL) ; /* Also true if we're partially in registers and partially not, since we've arranged to drop the entire argument on the stack. */ else if (data->partial != 0) ; /* Also true if the target says that it's passed in both registers and on the stack. */ else if (GET_CODE (data->entry_parm) == PARALLEL && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) ; /* Also true if the target says that there's stack allocated for all register parameters. */ else if (all->reg_parm_stack_space > 0) ; /* Otherwise, no, this parameter has no ABI defined stack slot. */ else return false; all->stack_args_size.constant += data->locate.size.constant; if (data->locate.size.var) ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); return true; } /* A subroutine of assign_parms. Given that this parameter is allocated stack space by the ABI, find it. */ static void assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) { rtx offset_rtx, stack_parm; unsigned int align, boundary; /* If we're passing this arg using a reg, make its stack home the aligned stack slot. */ if (data->entry_parm) offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); else offset_rtx = ARGS_SIZE_RTX (data->locate.offset); stack_parm = crtl->args.internal_arg_pointer; if (offset_rtx != const0_rtx) stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm); if (!data->passed_pointer) { set_mem_attributes (stack_parm, parm, 1); /* set_mem_attributes could set MEM_SIZE to the passed mode's size, while promoted mode's size is needed. */ if (data->promoted_mode != BLKmode && data->promoted_mode != DECL_MODE (parm)) { set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode)); if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm)) { int offset = subreg_lowpart_offset (DECL_MODE (parm), data->promoted_mode); if (offset) set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset); } } } boundary = data->locate.boundary; align = BITS_PER_UNIT; /* If we're padding upward, we know that the alignment of the slot is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're intentionally forcing upward padding. Otherwise we have to come up with a guess at the alignment based on OFFSET_RTX. */ if (data->locate.where_pad != downward || data->entry_parm) align = boundary; else if (CONST_INT_P (offset_rtx)) { align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary; align = align & -align; } set_mem_align (stack_parm, align); if (data->entry_parm) set_reg_attrs_for_parm (data->entry_parm, stack_parm); data->stack_parm = stack_parm; } /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's always valid and contiguous. */ static void assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) { rtx entry_parm = data->entry_parm; rtx stack_parm = data->stack_parm; /* If this parm was passed part in regs and part in memory, pretend it arrived entirely in memory by pushing the register-part onto the stack. In the special case of a DImode or DFmode that is split, we could put it together in a pseudoreg directly, but for now that's not worth bothering with. */ if (data->partial != 0) { /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm, data->passed_type, int_size_in_bytes (data->passed_type)); else { gcc_assert (data->partial % UNITS_PER_WORD == 0); move_block_from_reg (REGNO (entry_parm), validize_mem (copy_rtx (stack_parm)), data->partial / UNITS_PER_WORD); } entry_parm = stack_parm; } /* If we didn't decide this parm came in a register, by default it came on the stack. */ else if (entry_parm == NULL) entry_parm = stack_parm; /* When an argument is passed in multiple locations, we can't make use of this information, but we can save some copying if the whole argument is passed in a single register. */ else if (GET_CODE (entry_parm) == PARALLEL && data->nominal_mode != BLKmode && data->passed_mode != BLKmode) { size_t i, len = XVECLEN (entry_parm, 0); for (i = 0; i < len; i++) if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == data->passed_mode) && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) { entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); break; } } data->entry_parm = entry_parm; } /* A subroutine of assign_parms. Reconstitute any values which were passed in multiple registers and would fit in a single register. */ static void assign_parm_remove_parallels (struct assign_parm_data_one *data) { rtx entry_parm = data->entry_parm; /* Convert the PARALLEL to a REG of the same mode as the parallel. This can be done with register operations rather than on the stack, even if we will store the reconstituted parameter on the stack later. */ if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode) { rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm)); emit_group_store (parmreg, entry_parm, data->passed_type, GET_MODE_SIZE (GET_MODE (entry_parm))); entry_parm = parmreg; } data->entry_parm = entry_parm; } /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's always valid and properly aligned. */ static void assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) { rtx stack_parm = data->stack_parm; /* If we can't trust the parm stack slot to be aligned enough for its ultimate type, don't use that slot after entry. We'll make another stack slot, if we need one. */ if (stack_parm && ((STRICT_ALIGNMENT && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)) || (data->nominal_type && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) stack_parm = NULL; /* If parm was passed in memory, and we need to convert it on entry, don't store it back in that same slot. */ else if (data->entry_parm == stack_parm && data->nominal_mode != BLKmode && data->nominal_mode != data->passed_mode) stack_parm = NULL; /* If stack protection is in effect for this function, don't leave any pointers in their passed stack slots. */ else if (crtl->stack_protect_guard && (flag_stack_protect == 2 || data->passed_pointer || POINTER_TYPE_P (data->nominal_type))) stack_parm = NULL; data->stack_parm = stack_parm; } /* A subroutine of assign_parms. Return true if the current parameter should be stored as a BLKmode in the current frame. */ static bool assign_parm_setup_block_p (struct assign_parm_data_one *data) { if (data->nominal_mode == BLKmode) return true; if (GET_MODE (data->entry_parm) == BLKmode) return true; #ifdef BLOCK_REG_PADDING /* Only assign_parm_setup_block knows how to deal with register arguments that are padded at the least significant end. */ if (REG_P (data->entry_parm) && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1) == (BYTES_BIG_ENDIAN ? upward : downward))) return true; #endif return false; } /* A subroutine of assign_parms. Arrange for the parameter to be present and valid in DATA->STACK_RTL. */ static void assign_parm_setup_block (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { rtx entry_parm = data->entry_parm; rtx stack_parm = data->stack_parm; HOST_WIDE_INT size; HOST_WIDE_INT size_stored; if (GET_CODE (entry_parm) == PARALLEL) entry_parm = emit_group_move_into_temps (entry_parm); size = int_size_in_bytes (data->passed_type); size_stored = CEIL_ROUND (size, UNITS_PER_WORD); if (stack_parm == 0) { DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD); stack_parm = assign_stack_local (BLKmode, size_stored, DECL_ALIGN (parm)); if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size) PUT_MODE (stack_parm, GET_MODE (entry_parm)); set_mem_attributes (stack_parm, parm, 1); } /* If a BLKmode arrives in registers, copy it to a stack slot. Handle calls that pass values in multiple non-contiguous locations. */ if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) { rtx mem; /* Note that we will be storing an integral number of words. So we have to be careful to ensure that we allocate an integral number of words. We do this above when we call assign_stack_local if space was not allocated in the argument list. If it was, this will not work if PARM_BOUNDARY is not a multiple of BITS_PER_WORD. It isn't clear how to fix this if it becomes a problem. Exception is when BLKmode arrives with arguments not conforming to word_mode. */ if (data->stack_parm == 0) ; else if (GET_CODE (entry_parm) == PARALLEL) ; else gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); mem = validize_mem (copy_rtx (stack_parm)); /* Handle values in multiple non-contiguous locations. */ if (GET_CODE (entry_parm) == PARALLEL) { push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); emit_group_store (mem, entry_parm, data->passed_type, size); all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); } else if (size == 0) ; /* If SIZE is that of a mode no bigger than a word, just use that mode's store operation. */ else if (size <= UNITS_PER_WORD) { machine_mode mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); if (mode != BLKmode #ifdef BLOCK_REG_PADDING && (size == UNITS_PER_WORD || (BLOCK_REG_PADDING (mode, data->passed_type, 1) != (BYTES_BIG_ENDIAN ? upward : downward))) #endif ) { rtx reg; /* We are really truncating a word_mode value containing SIZE bytes into a value of mode MODE. If such an operation requires no actual instructions, we can refer to the value directly in mode MODE, otherwise we must start with the register in word_mode and explicitly convert it. */ if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD)) reg = gen_rtx_REG (mode, REGNO (entry_parm)); else { reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); reg = convert_to_mode (mode, copy_to_reg (reg), 1); } emit_move_insn (change_address (mem, mode, 0), reg); } /* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned to the left before storing to memory. Note that the previous test doesn't handle all cases (e.g. SIZE == 3). */ else if (size != UNITS_PER_WORD #ifdef BLOCK_REG_PADDING && (BLOCK_REG_PADDING (mode, data->passed_type, 1) == downward) #else && BYTES_BIG_ENDIAN #endif ) { rtx tem, x; int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1); tem = change_address (mem, word_mode, 0); emit_move_insn (tem, x); } else move_block_from_reg (REGNO (entry_parm), mem, size_stored / UNITS_PER_WORD); } else move_block_from_reg (REGNO (entry_parm), mem, size_stored / UNITS_PER_WORD); } else if (data->stack_parm == 0) { push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), BLOCK_OP_NORMAL); all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); } data->stack_parm = stack_parm; SET_DECL_RTL (parm, stack_parm); } /* A subroutine of assign_parms. Allocate a pseudo to hold the current parameter. Get it there. Perform all ABI specified conversions. */ static void assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { rtx parmreg, validated_mem; rtx equiv_stack_parm; machine_mode promoted_nominal_mode; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); bool did_conversion = false; bool need_conversion, moved; /* Store the parm in a pseudoregister during the function, but we may need to do it in a wider mode. Using 2 here makes the result consistent with promote_decl_mode and thus expand_expr_real_1. */ promoted_nominal_mode = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp, TREE_TYPE (current_function_decl), 2); parmreg = gen_reg_rtx (promoted_nominal_mode); if (!DECL_ARTIFICIAL (parm)) mark_user_reg (parmreg); /* If this was an item that we received a pointer to, set DECL_RTL appropriately. */ if (data->passed_pointer) { rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg); set_mem_attributes (x, parm, 1); SET_DECL_RTL (parm, x); } else SET_DECL_RTL (parm, parmreg); assign_parm_remove_parallels (data); /* Copy the value into the register, thus bridging between assign_parm_find_data_types and expand_expr_real_1. */ equiv_stack_parm = data->stack_parm; validated_mem = validize_mem (copy_rtx (data->entry_parm)); need_conversion = (data->nominal_mode != data->passed_mode || promoted_nominal_mode != data->promoted_mode); moved = false; if (need_conversion && GET_MODE_CLASS (data->nominal_mode) == MODE_INT && data->nominal_mode == data->passed_mode && data->nominal_mode == GET_MODE (data->entry_parm)) { /* ENTRY_PARM has been converted to PROMOTED_MODE, its mode, by the caller. We now have to convert it to NOMINAL_MODE, if different. However, PARMREG may be in a different mode than NOMINAL_MODE if it is being stored promoted. If ENTRY_PARM is a hard register, it might be in a register not valid for operating in its mode (e.g., an odd-numbered register for a DFmode). In that case, moves are the only thing valid, so we can't do a convert from there. This occurs when the calling sequence allow such misaligned usages. In addition, the conversion may involve a call, which could clobber parameters which haven't been copied to pseudo registers yet. First, we try to emit an insn which performs the necessary conversion. We verify that this insn does not clobber any hard registers. */ enum insn_code icode; rtx op0, op1; icode = can_extend_p (promoted_nominal_mode, data->passed_mode, unsignedp); op0 = parmreg; op1 = validated_mem; if (icode != CODE_FOR_nothing && insn_operand_matches (icode, 0, op0) && insn_operand_matches (icode, 1, op1)) { enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND; rtx_insn *insn, *insns; rtx t = op1; HARD_REG_SET hardregs; start_sequence (); /* If op1 is a hard register that is likely spilled, first force it into a pseudo, otherwise combiner might extend its lifetime too much. */ if (GET_CODE (t) == SUBREG) t = SUBREG_REG (t); if (REG_P (t) && HARD_REGISTER_P (t) && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t)) && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t)))) { t = gen_reg_rtx (GET_MODE (op1)); emit_move_insn (t, op1); } else t = op1; rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode, data->passed_mode, unsignedp); emit_insn (pat); insns = get_insns (); moved = true; CLEAR_HARD_REG_SET (hardregs); for (insn = insns; insn && moved; insn = NEXT_INSN (insn)) { if (INSN_P (insn)) note_stores (PATTERN (insn), record_hard_reg_sets, &hardregs); if (!hard_reg_set_empty_p (hardregs)) moved = false; } end_sequence (); if (moved) { emit_insn (insns); if (equiv_stack_parm != NULL_RTX) equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg), equiv_stack_parm); } } } if (moved) /* Nothing to do. */ ; else if (need_conversion) { /* We did not have an insn to convert directly, or the sequence generated appeared unsafe. We must first copy the parm to a pseudo reg, and save the conversion until after all parameters have been moved. */ int save_tree_used; rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); emit_move_insn (tempreg, validated_mem); push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); if (GET_CODE (tempreg) == SUBREG && GET_MODE (tempreg) == data->nominal_mode && REG_P (SUBREG_REG (tempreg)) && data->nominal_mode == data->passed_mode && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm) && GET_MODE_SIZE (GET_MODE (tempreg)) < GET_MODE_SIZE (GET_MODE (data->entry_parm))) { /* The argument is already sign/zero extended, so note it into the subreg. */ SUBREG_PROMOTED_VAR_P (tempreg) = 1; SUBREG_PROMOTED_SET (tempreg, unsignedp); } /* TREE_USED gets set erroneously during expand_assignment. */ save_tree_used = TREE_USED (parm); expand_assignment (parm, make_tree (data->nominal_type, tempreg), false); TREE_USED (parm) = save_tree_used; all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); did_conversion = true; } else emit_move_insn (parmreg, validated_mem); /* If we were passed a pointer but the actual value can safely live in a register, retrieve it and use it directly. */ if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode) { /* We can't use nominal_mode, because it will have been set to Pmode above. We must use the actual mode of the parm. */ if (use_register_for_decl (parm)) { parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); mark_user_reg (parmreg); } else { int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), TYPE_MODE (TREE_TYPE (parm)), TYPE_ALIGN (TREE_TYPE (parm))); parmreg = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)), GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))), align); set_mem_attributes (parmreg, parm, 1); } if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm))) { rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm))); int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); emit_move_insn (tempreg, DECL_RTL (parm)); tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); emit_move_insn (parmreg, tempreg); all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); did_conversion = true; } else emit_move_insn (parmreg, DECL_RTL (parm)); SET_DECL_RTL (parm, parmreg); /* STACK_PARM is the pointer, not the parm, and PARMREG is now the parm. */ data->stack_parm = NULL; } /* Mark the register as eliminable if we did no conversion and it was copied from memory at a fixed offset, and the arg pointer was not copied to a pseudo-reg. If the arg pointer is a pseudo reg or the offset formed an invalid address, such memory-equivalences as we make here would screw up life analysis for it. */ if (data->nominal_mode == data->passed_mode && !did_conversion && data->stack_parm != 0 && MEM_P (data->stack_parm) && data->locate.offset.var == 0 && reg_mentioned_p (virtual_incoming_args_rtx, XEXP (data->stack_parm, 0))) { rtx_insn *linsn = get_last_insn (); rtx_insn *sinsn; rtx set; /* Mark complex types separately. */ if (GET_CODE (parmreg) == CONCAT) { machine_mode submode = GET_MODE_INNER (GET_MODE (parmreg)); int regnor = REGNO (XEXP (parmreg, 0)); int regnoi = REGNO (XEXP (parmreg, 1)); rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); rtx stacki = adjust_address_nv (data->stack_parm, submode, GET_MODE_SIZE (submode)); /* Scan backwards for the set of the real and imaginary parts. */ for (sinsn = linsn; sinsn != 0; sinsn = prev_nonnote_insn (sinsn)) { set = single_set (sinsn); if (set == 0) continue; if (SET_DEST (set) == regno_reg_rtx [regnoi]) set_unique_reg_note (sinsn, REG_EQUIV, stacki); else if (SET_DEST (set) == regno_reg_rtx [regnor]) set_unique_reg_note (sinsn, REG_EQUIV, stackr); } } else set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg); } /* For pointer data type, suggest pointer register. */ if (POINTER_TYPE_P (TREE_TYPE (parm))) mark_reg_pointer (parmreg, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); } /* A subroutine of assign_parms. Allocate stack space to hold the current parameter. Get it there. Perform all ABI specified conversions. */ static void assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, struct assign_parm_data_one *data) { /* Value must be stored in the stack slot STACK_PARM during function execution. */ bool to_conversion = false; assign_parm_remove_parallels (data); if (data->promoted_mode != data->nominal_mode) { /* Conversion is required. */ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm))); push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); to_conversion = true; data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, TYPE_UNSIGNED (TREE_TYPE (parm))); if (data->stack_parm) { int offset = subreg_lowpart_offset (data->nominal_mode, GET_MODE (data->stack_parm)); /* ??? This may need a big-endian conversion on sparc64. */ data->stack_parm = adjust_address (data->stack_parm, data->nominal_mode, 0); if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm)) set_mem_offset (data->stack_parm, MEM_OFFSET (data->stack_parm) + offset); } } if (data->entry_parm != data->stack_parm) { rtx src, dest; if (data->stack_parm == 0) { int align = STACK_SLOT_ALIGNMENT (data->passed_type, GET_MODE (data->entry_parm), TYPE_ALIGN (data->passed_type)); data->stack_parm = assign_stack_local (GET_MODE (data->entry_parm), GET_MODE_SIZE (GET_MODE (data->entry_parm)), align); set_mem_attributes (data->stack_parm, parm, 1); } dest = validize_mem (copy_rtx (data->stack_parm)); src = validize_mem (copy_rtx (data->entry_parm)); if (MEM_P (src)) { /* Use a block move to handle potentially misaligned entry_parm. */ if (!to_conversion) push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); to_conversion = true; emit_block_move (dest, src, GEN_INT (int_size_in_bytes (data->passed_type)), BLOCK_OP_NORMAL); } else emit_move_insn (dest, src); } if (to_conversion) { all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); } SET_DECL_RTL (parm, data->stack_parm); } /* A subroutine of assign_parms. If the ABI splits complex arguments, then undo the frobbing that we did in assign_parms_augmented_arg_list. */ static void assign_parms_unsplit_complex (struct assign_parm_data_all *all, vec fnargs) { tree parm; tree orig_fnargs = all->orig_fnargs; unsigned i = 0; for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i) { if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE && targetm.calls.split_complex_arg (TREE_TYPE (parm))) { rtx tmp, real, imag; machine_mode inner = GET_MODE_INNER (DECL_MODE (parm)); real = DECL_RTL (fnargs[i]); imag = DECL_RTL (fnargs[i + 1]); if (inner != GET_MODE (real)) { real = gen_lowpart_SUBREG (inner, real); imag = gen_lowpart_SUBREG (inner, imag); } if (TREE_ADDRESSABLE (parm)) { rtx rmem, imem; HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), DECL_MODE (parm), TYPE_ALIGN (TREE_TYPE (parm))); /* split_complex_arg put the real and imag parts in pseudos. Move them to memory. */ tmp = assign_stack_local (DECL_MODE (parm), size, align); set_mem_attributes (tmp, parm, 1); rmem = adjust_address_nv (tmp, inner, 0); imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); emit_move_insn (rmem, real); emit_move_insn (imem, imag); all->first_conversion_insn = get_insns (); all->last_conversion_insn = get_last_insn (); end_sequence (); } else tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); SET_DECL_RTL (parm, tmp); real = DECL_INCOMING_RTL (fnargs[i]); imag = DECL_INCOMING_RTL (fnargs[i + 1]); if (inner != GET_MODE (real)) { real = gen_lowpart_SUBREG (inner, real); imag = gen_lowpart_SUBREG (inner, imag); } tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); set_decl_incoming_rtl (parm, tmp, false); i++; } } } /* Load bounds of PARM from bounds table. */ static void assign_parm_load_bounds (struct assign_parm_data_one *data, tree parm, rtx entry, unsigned bound_no) { bitmap_iterator bi; unsigned i, offs = 0; int bnd_no = -1; rtx slot = NULL, ptr = NULL; if (parm) { bitmap slots; bitmap_obstack_initialize (NULL); slots = BITMAP_ALLOC (NULL); chkp_find_bound_slots (TREE_TYPE (parm), slots); EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi) { if (bound_no) bound_no--; else { bnd_no = i; break; } } BITMAP_FREE (slots); bitmap_obstack_release (NULL); } /* We may have bounds not associated with any pointer. */ if (bnd_no != -1) offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT; /* Find associated pointer. */ if (bnd_no == -1) { /* If bounds are not associated with any bounds, then it is passed in a register or special slot. */ gcc_assert (data->entry_parm); ptr = const0_rtx; } else if (MEM_P (entry)) slot = adjust_address (entry, Pmode, offs); else if (REG_P (entry)) ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no); else if (GET_CODE (entry) == PARALLEL) ptr = chkp_get_value_with_offs (entry, GEN_INT (offs)); else gcc_unreachable (); data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr, data->entry_parm); } /* Assign RTL expressions to the function's bounds parameters BNDARGS. */ static void assign_bounds (vec &bndargs, struct assign_parm_data_all &all, bool assign_regs, bool assign_special, bool assign_bt) { unsigned i, pass; bounds_parm_data *pbdata; if (!bndargs.exists ()) return; /* We make few passes to store input bounds. Firstly handle bounds passed in registers. After that we load bounds passed in special slots. Finally we load bounds from Bounds Table. */ for (pass = 0; pass < 3; pass++) FOR_EACH_VEC_ELT (bndargs, i, pbdata) { /* Pass 0 => regs only. */ if (pass == 0 && (!assign_regs ||(!pbdata->parm_data.entry_parm || GET_CODE (pbdata->parm_data.entry_parm) != REG))) continue; /* Pass 1 => slots only. */ else if (pass == 1 && (!assign_special || (!pbdata->parm_data.entry_parm || GET_CODE (pbdata->parm_data.entry_parm) == REG))) continue; /* Pass 2 => BT only. */ else if (pass == 2 && (!assign_bt || pbdata->parm_data.entry_parm)) continue; if (!pbdata->parm_data.entry_parm || GET_CODE (pbdata->parm_data.entry_parm) != REG) assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm, pbdata->ptr_entry, pbdata->bound_no); set_decl_incoming_rtl (pbdata->bounds_parm, pbdata->parm_data.entry_parm, false); if (assign_parm_setup_block_p (&pbdata->parm_data)) assign_parm_setup_block (&all, pbdata->bounds_parm, &pbdata->parm_data); else if (pbdata->parm_data.passed_pointer || use_register_for_decl (pbdata->bounds_parm)) assign_parm_setup_reg (&all, pbdata->bounds_parm, &pbdata->parm_data); else assign_parm_setup_stack (&all, pbdata->bounds_parm, &pbdata->parm_data); } } /* Assign RTL expressions to the function's parameters. This may involve copying them into registers and using those registers as the DECL_RTL. */ static void assign_parms (tree fndecl) { struct assign_parm_data_all all; tree parm; vec fnargs; unsigned i, bound_no = 0; tree last_arg = NULL; rtx last_arg_entry = NULL; vec bndargs = vNULL; bounds_parm_data bdata; crtl->args.internal_arg_pointer = targetm.calls.internal_arg_pointer (); assign_parms_initialize_all (&all); fnargs = assign_parms_augmented_arg_list (&all); FOR_EACH_VEC_ELT (fnargs, i, parm) { struct assign_parm_data_one data; /* Extract the type of PARM; adjust it according to ABI. */ assign_parm_find_data_types (&all, parm, &data); /* Early out for errors and void parameters. */ if (data.passed_mode == VOIDmode) { SET_DECL_RTL (parm, const0_rtx); DECL_INCOMING_RTL (parm) = DECL_RTL (parm); continue; } /* Estimate stack alignment from parameter alignment. */ if (SUPPORTS_STACK_ALIGNMENT) { unsigned int align = targetm.calls.function_arg_boundary (data.promoted_mode, data.passed_type); align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode, align); if (TYPE_ALIGN (data.nominal_type) > align) align = MINIMUM_ALIGNMENT (data.nominal_type, TYPE_MODE (data.nominal_type), TYPE_ALIGN (data.nominal_type)); if (crtl->stack_alignment_estimated < align) { gcc_assert (!crtl->stack_realign_processed); crtl->stack_alignment_estimated = align; } } /* Find out where the parameter arrives in this function. */ assign_parm_find_entry_rtl (&all, &data); /* Find out where stack space for this parameter might be. */ if (assign_parm_is_stack_parm (&all, &data)) { assign_parm_find_stack_rtl (parm, &data); assign_parm_adjust_entry_rtl (&data); } if (!POINTER_BOUNDS_TYPE_P (data.passed_type)) { /* Remember where last non bounds arg was passed in case we have to load associated bounds for it from Bounds Table. */ last_arg = parm; last_arg_entry = data.entry_parm; bound_no = 0; } /* Record permanently how this parm was passed. */ if (data.passed_pointer) { rtx incoming_rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)), data.entry_parm); set_decl_incoming_rtl (parm, incoming_rtl, true); } else set_decl_incoming_rtl (parm, data.entry_parm, false); /* Boudns should be loaded in the particular order to have registers allocated correctly. Collect info about input bounds and load them later. */ if (POINTER_BOUNDS_TYPE_P (data.passed_type)) { /* Expect bounds in instrumented functions only. */ gcc_assert (chkp_function_instrumented_p (fndecl)); bdata.parm_data = data; bdata.bounds_parm = parm; bdata.ptr_parm = last_arg; bdata.ptr_entry = last_arg_entry; bdata.bound_no = bound_no; bndargs.safe_push (bdata); } else { assign_parm_adjust_stack_rtl (&data); if (assign_parm_setup_block_p (&data)) assign_parm_setup_block (&all, parm, &data); else if (data.passed_pointer || use_register_for_decl (parm)) assign_parm_setup_reg (&all, parm, &data); else assign_parm_setup_stack (&all, parm, &data); } if (cfun->stdarg && !DECL_CHAIN (parm)) { int pretend_bytes = 0; assign_parms_setup_varargs (&all, &data, false); if (chkp_function_instrumented_p (fndecl)) { /* We expect this is the last parm. Otherwise it is wrong to assign bounds right now. */ gcc_assert (i == (fnargs.length () - 1)); assign_bounds (bndargs, all, true, false, false); targetm.calls.setup_incoming_vararg_bounds (all.args_so_far, data.promoted_mode, data.passed_type, &pretend_bytes, false); assign_bounds (bndargs, all, false, true, true); bndargs.release (); } } /* Update info on where next arg arrives in registers. */ targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode, data.passed_type, data.named_arg); if (POINTER_BOUNDS_TYPE_P (data.passed_type)) bound_no++; } assign_bounds (bndargs, all, true, true, true); bndargs.release (); if (targetm.calls.split_complex_arg) assign_parms_unsplit_complex (&all, fnargs); fnargs.release (); /* Output all parameter conversion instructions (possibly including calls) now that all parameters have been copied out of hard registers. */ emit_insn (all.first_conversion_insn); /* Estimate reload stack alignment from scalar return mode. */ if (SUPPORTS_STACK_ALIGNMENT) { if (DECL_RESULT (fndecl)) { tree type = TREE_TYPE (DECL_RESULT (fndecl)); machine_mode mode = TYPE_MODE (type); if (mode != BLKmode && mode != VOIDmode && !AGGREGATE_TYPE_P (type)) { unsigned int align = GET_MODE_ALIGNMENT (mode); if (crtl->stack_alignment_estimated < align) { gcc_assert (!crtl->stack_realign_processed); crtl->stack_alignment_estimated = align; } } } } /* If we are receiving a struct value address as the first argument, set up the RTL for the function result. As this might require code to convert the transmitted address to Pmode, we do this here to ensure that possible preliminary conversions of the address have been emitted already. */ if (all.function_result_decl) { tree result = DECL_RESULT (current_function_decl); rtx addr = DECL_RTL (all.function_result_decl); rtx x; if (DECL_BY_REFERENCE (result)) { SET_DECL_VALUE_EXPR (result, all.function_result_decl); x = addr; } else { SET_DECL_VALUE_EXPR (result, build1 (INDIRECT_REF, TREE_TYPE (result), all.function_result_decl)); addr = convert_memory_address (Pmode, addr); x = gen_rtx_MEM (DECL_MODE (result), addr); set_mem_attributes (x, result, 1); } DECL_HAS_VALUE_EXPR_P (result) = 1; SET_DECL_RTL (result, x); } /* We have aligned all the args, so add space for the pretend args. */ crtl->args.pretend_args_size = all.pretend_args_size; all.stack_args_size.constant += all.extra_pretend_bytes; crtl->args.size = all.stack_args_size.constant; /* Adjust function incoming argument size for alignment and minimum length. */ crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space); crtl->args.size = CEIL_ROUND (crtl->args.size, PARM_BOUNDARY / BITS_PER_UNIT); if (ARGS_GROW_DOWNWARD) { crtl->args.arg_offset_rtx = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant) : expand_expr (size_diffop (all.stack_args_size.var, size_int (-all.stack_args_size.constant)), NULL_RTX, VOIDmode, EXPAND_NORMAL)); } else crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); /* See how many bytes, if any, of its args a function should try to pop on return. */ crtl->args.pops_args = targetm.calls.return_pops_args (fndecl, TREE_TYPE (fndecl), crtl->args.size); /* For stdarg.h function, save info about regs and stack space used by the named args. */ crtl->args.info = all.args_so_far_v; /* Set the rtx used for the function return value. Put this in its own variable so any optimizers that need this information don't have to include tree.h. Do this here so it gets done when an inlined function gets output. */ crtl->return_rtx = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); /* If scalar return value was computed in a pseudo-reg, or was a named return value that got dumped to the stack, copy that to the hard return register. */ if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) { tree decl_result = DECL_RESULT (fndecl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER : DECL_REGISTER (decl_result)) { rtx real_decl_rtl; real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), fndecl, true); if (chkp_function_instrumented_p (fndecl)) crtl->return_bnd = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result), fndecl, true); REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; /* The delay slot scheduler assumes that crtl->return_rtx holds the hard register containing the return value, not a temporary pseudo. */ crtl->return_rtx = real_decl_rtl; } } } /* A subroutine of gimplify_parameters, invoked via walk_tree. For all seen types, gimplify their sizes. */ static tree gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) { tree t = *tp; *walk_subtrees = 0; if (TYPE_P (t)) { if (POINTER_TYPE_P (t)) *walk_subtrees = 1; else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) && !TYPE_SIZES_GIMPLIFIED (t)) { gimplify_type_sizes (t, (gimple_seq *) data); *walk_subtrees = 1; } } return NULL; } /* Gimplify the parameter list for current_function_decl. This involves evaluating SAVE_EXPRs of variable sized parameters and generating code to implement callee-copies reference parameters. Returns a sequence of statements to add to the beginning of the function. */ gimple_seq gimplify_parameters (void) { struct assign_parm_data_all all; tree parm; gimple_seq stmts = NULL; vec fnargs; unsigned i; assign_parms_initialize_all (&all); fnargs = assign_parms_augmented_arg_list (&all); FOR_EACH_VEC_ELT (fnargs, i, parm) { struct assign_parm_data_one data; /* Extract the type of PARM; adjust it according to ABI. */ assign_parm_find_data_types (&all, parm, &data); /* Early out for errors and void parameters. */ if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) continue; /* Update info on where next arg arrives in registers. */ targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode, data.passed_type, data.named_arg); /* ??? Once upon a time variable_size stuffed parameter list SAVE_EXPRs (amongst others) onto a pending sizes list. This turned out to be less than manageable in the gimple world. Now we have to hunt them down ourselves. */ walk_tree_without_duplicates (&data.passed_type, gimplify_parm_type, &stmts); if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST) { gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); } if (data.passed_pointer) { tree type = TREE_TYPE (data.passed_type); if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type), type, data.named_arg)) { tree local, t; /* For constant-sized objects, this is trivial; for variable-sized objects, we have to play games. */ if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST && !(flag_stack_check == GENERIC_STACK_CHECK && compare_tree_int (DECL_SIZE_UNIT (parm), STACK_CHECK_MAX_VAR_SIZE) > 0)) { local = create_tmp_var (type, get_name (parm)); DECL_IGNORED_P (local) = 0; /* If PARM was addressable, move that flag over to the local copy, as its address will be taken, not the PARMs. Keep the parms address taken as we'll query that flag during gimplification. */ if (TREE_ADDRESSABLE (parm)) TREE_ADDRESSABLE (local) = 1; else if (TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) DECL_GIMPLE_REG_P (local) = 1; } else { tree ptr_type, addr; ptr_type = build_pointer_type (type); addr = create_tmp_reg (ptr_type, get_name (parm)); DECL_IGNORED_P (addr) = 0; local = build_fold_indirect_ref (addr); t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN); t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm), size_int (DECL_ALIGN (parm))); /* The call has been built for a variable-sized object. */ CALL_ALLOCA_FOR_VAR_P (t) = 1; t = fold_convert (ptr_type, t); t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t); gimplify_and_add (t, &stmts); } gimplify_assign (local, parm, &stmts); SET_DECL_VALUE_EXPR (parm, local); DECL_HAS_VALUE_EXPR_P (parm) = 1; } } } fnargs.release (); return stmts; } /* Compute the size and offset from the start of the stacked arguments for a parm passed in mode PASSED_MODE and with type TYPE. INITIAL_OFFSET_PTR points to the current offset into the stacked arguments. The starting offset and size for this parm are returned in LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is nonzero, the offset is that of stack slot, which is returned in LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of padding required from the initial offset ptr to the stack slot. IN_REGS is nonzero if the argument will be passed in registers. It will never be set if REG_PARM_STACK_SPACE is not defined. REG_PARM_STACK_SPACE is the number of bytes of stack space reserved for arguments which are passed in registers. FNDECL is the function in which the argument was defined. There are two types of rounding that are done. The first, controlled by TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument list to be aligned to the specific boundary (in bits). This rounding affects the initial and starting offsets, but not the argument size. The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY, optionally rounds the size of the parm to PARM_BOUNDARY. The initial offset is not affected by this rounding, while the size always is and the starting offset may be. */ /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case; INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's callers pass in the total size of args so far as INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */ void locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs, int reg_parm_stack_space, int partial, tree fndecl ATTRIBUTE_UNUSED, struct args_size *initial_offset_ptr, struct locate_and_pad_arg_data *locate) { tree sizetree; enum direction where_pad; unsigned int boundary, round_boundary; int part_size_in_regs; /* If we have found a stack parm before we reach the end of the area reserved for registers, skip that area. */ if (! in_regs) { if (reg_parm_stack_space > 0) { if (initial_offset_ptr->var) { initial_offset_ptr->var = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), ssize_int (reg_parm_stack_space)); initial_offset_ptr->constant = 0; } else if (initial_offset_ptr->constant < reg_parm_stack_space) initial_offset_ptr->constant = reg_parm_stack_space; } } part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); sizetree = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); where_pad = FUNCTION_ARG_PADDING (passed_mode, type); boundary = targetm.calls.function_arg_boundary (passed_mode, type); round_boundary = targetm.calls.function_arg_round_boundary (passed_mode, type); locate->where_pad = where_pad; /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */ if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) boundary = MAX_SUPPORTED_STACK_ALIGNMENT; locate->boundary = boundary; if (SUPPORTS_STACK_ALIGNMENT) { /* stack_alignment_estimated can't change after stack has been realigned. */ if (crtl->stack_alignment_estimated < boundary) { if (!crtl->stack_realign_processed) crtl->stack_alignment_estimated = boundary; else { /* If stack is realigned and stack alignment value hasn't been finalized, it is OK not to increase stack_alignment_estimated. The bigger alignment requirement is recorded in stack_alignment_needed below. */ gcc_assert (!crtl->stack_realign_finalized && crtl->stack_realign_needed); } } } /* Remember if the outgoing parameter requires extra alignment on the calling function side. */ if (crtl->stack_alignment_needed < boundary) crtl->stack_alignment_needed = boundary; if (crtl->preferred_stack_boundary < boundary) crtl->preferred_stack_boundary = boundary; if (ARGS_GROW_DOWNWARD) { locate->slot_offset.constant = -initial_offset_ptr->constant; if (initial_offset_ptr->var) locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var); { tree s2 = sizetree; if (where_pad != none && (!tree_fits_uhwi_p (sizetree) || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) s2 = round_up (s2, round_boundary / BITS_PER_UNIT); SUB_PARM_SIZE (locate->slot_offset, s2); } locate->slot_offset.constant += part_size_in_regs; if (!in_regs || reg_parm_stack_space > 0) pad_to_arg_alignment (&locate->slot_offset, boundary, &locate->alignment_pad); locate->size.constant = (-initial_offset_ptr->constant - locate->slot_offset.constant); if (initial_offset_ptr->var) locate->size.var = size_binop (MINUS_EXPR, size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var), locate->slot_offset.var); /* Pad_below needs the pre-rounded size to know how much to pad below. */ locate->offset = locate->slot_offset; if (where_pad == downward) pad_below (&locate->offset, passed_mode, sizetree); } else { if (!in_regs || reg_parm_stack_space > 0) pad_to_arg_alignment (initial_offset_ptr, boundary, &locate->alignment_pad); locate->slot_offset = *initial_offset_ptr; #ifdef PUSH_ROUNDING if (passed_mode != BLKmode) sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); #endif /* Pad_below needs the pre-rounded size to know how much to pad below so this must be done before rounding up. */ locate->offset = locate->slot_offset; if (where_pad == downward) pad_below (&locate->offset, passed_mode, sizetree); if (where_pad != none && (!tree_fits_uhwi_p (sizetree) || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT); ADD_PARM_SIZE (locate->size, sizetree); locate->size.constant -= part_size_in_regs; } #ifdef FUNCTION_ARG_OFFSET locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type); #endif } /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ static void pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, struct args_size *alignment_pad) { tree save_var = NULL_TREE; HOST_WIDE_INT save_constant = 0; int boundary_in_bytes = boundary / BITS_PER_UNIT; HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET; #ifdef SPARC_STACK_BOUNDARY_HACK /* ??? The SPARC port may claim a STACK_BOUNDARY higher than the real alignment of %sp. However, when it does this, the alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ if (SPARC_STACK_BOUNDARY_HACK) sp_offset = 0; #endif if (boundary > PARM_BOUNDARY) { save_var = offset_ptr->var; save_constant = offset_ptr->constant; } alignment_pad->var = NULL_TREE; alignment_pad->constant = 0; if (boundary > BITS_PER_UNIT) { if (offset_ptr->var) { tree sp_offset_tree = ssize_int (sp_offset); tree offset = size_binop (PLUS_EXPR, ARGS_SIZE_TREE (*offset_ptr), sp_offset_tree); tree rounded; if (ARGS_GROW_DOWNWARD) rounded = round_down (offset, boundary / BITS_PER_UNIT); else rounded = round_up (offset, boundary / BITS_PER_UNIT); offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree); /* ARGS_SIZE_TREE includes constant term. */ offset_ptr->constant = 0; if (boundary > PARM_BOUNDARY) alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, save_var); } else { offset_ptr->constant = -sp_offset + (ARGS_GROW_DOWNWARD ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes) : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)); if (boundary > PARM_BOUNDARY) alignment_pad->constant = offset_ptr->constant - save_constant; } } } static void pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree) { if (passed_mode != BLKmode) { if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY) offset_ptr->constant += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1) / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT) - GET_MODE_SIZE (passed_mode)); } else { if (TREE_CODE (sizetree) != INTEGER_CST || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY) { /* Round the size up to multiple of PARM_BOUNDARY bits. */ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); /* Add it in. */ ADD_PARM_SIZE (*offset_ptr, s2); SUB_PARM_SIZE (*offset_ptr, sizetree); } } } /* True if register REGNO was alive at a place where `setjmp' was called and was set more than once or is an argument. Such regs may be clobbered by `longjmp'. */ static bool regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno) { /* There appear to be cases where some local vars never reach the backend but have bogus regnos. */ if (regno >= max_reg_num ()) return false; return ((REG_N_SETS (regno) > 1 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), regno)) && REGNO_REG_SET_P (setjmp_crosses, regno)); } /* Walk the tree of blocks describing the binding levels within a function and warn about variables the might be killed by setjmp or vfork. This is done after calling flow_analysis before register allocation since that will clobber the pseudo-regs to hard regs. */ static void setjmp_vars_warning (bitmap setjmp_crosses, tree block) { tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl)) { if (TREE_CODE (decl) == VAR_DECL && DECL_RTL_SET_P (decl) && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) warning (OPT_Wclobbered, "variable %q+D might be clobbered by" " % or %", decl); } for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub)) setjmp_vars_warning (setjmp_crosses, sub); } /* Do the appropriate part of setjmp_vars_warning but for arguments instead of local variables. */ static void setjmp_args_warning (bitmap setjmp_crosses) { tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = DECL_CHAIN (decl)) if (DECL_RTL (decl) != 0 && REG_P (DECL_RTL (decl)) && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) warning (OPT_Wclobbered, "argument %q+D might be clobbered by % or %", decl); } /* Generate warning messages for variables live across setjmp. */ void generate_setjmp_warnings (void) { bitmap setjmp_crosses = regstat_get_setjmp_crosses (); if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS || bitmap_empty_p (setjmp_crosses)) return; setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl)); setjmp_args_warning (setjmp_crosses); } /* Reverse the order of elements in the fragment chain T of blocks, and return the new head of the chain (old last element). In addition to that clear BLOCK_SAME_RANGE flags when needed and adjust BLOCK_SUPERCONTEXT from the super fragment to its super fragment origin. */ static tree block_fragments_nreverse (tree t) { tree prev = 0, block, next, prev_super = 0; tree super = BLOCK_SUPERCONTEXT (t); if (BLOCK_FRAGMENT_ORIGIN (super)) super = BLOCK_FRAGMENT_ORIGIN (super); for (block = t; block; block = next) { next = BLOCK_FRAGMENT_CHAIN (block); BLOCK_FRAGMENT_CHAIN (block) = prev; if ((prev && !BLOCK_SAME_RANGE (prev)) || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block)) != prev_super)) BLOCK_SAME_RANGE (block) = 0; prev_super = BLOCK_SUPERCONTEXT (block); BLOCK_SUPERCONTEXT (block) = super; prev = block; } t = BLOCK_FRAGMENT_ORIGIN (t); if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t)) != prev_super) BLOCK_SAME_RANGE (t) = 0; BLOCK_SUPERCONTEXT (t) = super; return prev; } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). Also do the same on subblocks and reverse the order of elements in BLOCK_FRAGMENT_CHAIN as well. */ static tree blocks_nreverse_all (tree t) { tree prev = 0, block, next; for (block = t; block; block = next) { next = BLOCK_CHAIN (block); BLOCK_CHAIN (block) = prev; if (BLOCK_FRAGMENT_CHAIN (block) && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE) { BLOCK_FRAGMENT_CHAIN (block) = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block)); if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block))) BLOCK_SAME_RANGE (block) = 0; } BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); prev = block; } return prev; } /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */ /* ??? Need an option to either create block fragments or to create abstract origin duplicates of a source block. It really depends on what optimization has been performed. */ void reorder_blocks (void) { tree block = DECL_INITIAL (current_function_decl); if (block == NULL_TREE) return; auto_vec block_stack; /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ clear_block_marks (block); /* Prune the old trees away, so that they don't get in the way. */ BLOCK_SUBBLOCKS (block) = NULL_TREE; BLOCK_CHAIN (block) = NULL_TREE; /* Recreate the block tree from the note nesting. */ reorder_blocks_1 (get_insns (), block, &block_stack); BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); } /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ void clear_block_marks (tree block) { while (block) { TREE_ASM_WRITTEN (block) = 0; clear_block_marks (BLOCK_SUBBLOCKS (block)); block = BLOCK_CHAIN (block); } } static void reorder_blocks_1 (rtx_insn *insns, tree current_block, vec *p_block_stack) { rtx_insn *insn; tree prev_beg = NULL_TREE, prev_end = NULL_TREE; for (insn = insns; insn; insn = NEXT_INSN (insn)) { if (NOTE_P (insn)) { if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG) { tree block = NOTE_BLOCK (insn); tree origin; gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE); origin = block; if (prev_end) BLOCK_SAME_RANGE (prev_end) = 0; prev_end = NULL_TREE; /* If we have seen this block before, that means it now spans multiple address regions. Create a new fragment. */ if (TREE_ASM_WRITTEN (block)) { tree new_block = copy_node (block); BLOCK_SAME_RANGE (new_block) = 0; BLOCK_FRAGMENT_ORIGIN (new_block) = origin; BLOCK_FRAGMENT_CHAIN (new_block) = BLOCK_FRAGMENT_CHAIN (origin); BLOCK_FRAGMENT_CHAIN (origin) = new_block; NOTE_BLOCK (insn) = new_block; block = new_block; } if (prev_beg == current_block && prev_beg) BLOCK_SAME_RANGE (block) = 1; prev_beg = origin; BLOCK_SUBBLOCKS (block) = 0; TREE_ASM_WRITTEN (block) = 1; /* When there's only one block for the entire function, current_block == block and we mustn't do this, it will cause infinite recursion. */ if (block != current_block) { tree super; if (block != origin) gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT (origin)) == current_block); if (p_block_stack->is_empty ()) super = current_block; else { super = p_block_stack->last (); gcc_assert (super == current_block || BLOCK_FRAGMENT_ORIGIN (super) == current_block); } BLOCK_SUPERCONTEXT (block) = super; BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = block; current_block = origin; } p_block_stack->safe_push (block); } else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END) { NOTE_BLOCK (insn) = p_block_stack->pop (); current_block = BLOCK_SUPERCONTEXT (current_block); if (BLOCK_FRAGMENT_ORIGIN (current_block)) current_block = BLOCK_FRAGMENT_ORIGIN (current_block); prev_beg = NULL_TREE; prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn)) ? NOTE_BLOCK (insn) : NULL_TREE; } } else { prev_beg = NULL_TREE; if (prev_end) BLOCK_SAME_RANGE (prev_end) = 0; prev_end = NULL_TREE; } } } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). */ tree blocks_nreverse (tree t) { tree prev = 0, block, next; for (block = t; block; block = next) { next = BLOCK_CHAIN (block); BLOCK_CHAIN (block) = prev; prev = block; } return prev; } /* Concatenate two chains of blocks (chained through BLOCK_CHAIN) by modifying the last node in chain 1 to point to chain 2. */ tree block_chainon (tree op1, tree op2) { tree t1; if (!op1) return op2; if (!op2) return op1; for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1)) continue; BLOCK_CHAIN (t1) = op2; #ifdef ENABLE_TREE_CHECKING { tree t2; for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2)) gcc_assert (t2 != t1); } #endif return op1; } /* Count the subblocks of the list starting with BLOCK. If VECTOR is non-NULL, list them all into VECTOR, in a depth-first preorder traversal of the block tree. Also clear TREE_ASM_WRITTEN in all blocks. */ static int all_blocks (tree block, tree *vector) { int n_blocks = 0; while (block) { TREE_ASM_WRITTEN (block) = 0; /* Record this block. */ if (vector) vector[n_blocks] = block; ++n_blocks; /* Record the subblocks, and their subblocks... */ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), vector ? vector + n_blocks : 0); block = BLOCK_CHAIN (block); } return n_blocks; } /* Return a vector containing all the blocks rooted at BLOCK. The number of elements in the vector is stored in N_BLOCKS_P. The vector is dynamically allocated; it is the caller's responsibility to call `free' on the pointer returned. */ static tree * get_block_vector (tree block, int *n_blocks_p) { tree *block_vector; *n_blocks_p = all_blocks (block, NULL); block_vector = XNEWVEC (tree, *n_blocks_p); all_blocks (block, block_vector); return block_vector; } static GTY(()) int next_block_index = 2; /* Set BLOCK_NUMBER for all the blocks in FN. */ void number_blocks (tree fn) { int i; int n_blocks; tree *block_vector; /* For SDB and XCOFF debugging output, we start numbering the blocks from 1 within each function, rather than keeping a running count. */ #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG) next_block_index = 1; #endif block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); /* The top-level BLOCK isn't numbered at all. */ for (i = 1; i < n_blocks; ++i) /* We number the blocks from two. */ BLOCK_NUMBER (block_vector[i]) = next_block_index++; free (block_vector); return; } /* If VAR is present in a subblock of BLOCK, return the subblock. */ DEBUG_FUNCTION tree debug_find_var_in_block_tree (tree var, tree block) { tree t; for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) if (t == var) return block; for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) { tree ret = debug_find_var_in_block_tree (var, t); if (ret) return ret; } return NULL_TREE; } /* Keep track of whether we're in a dummy function context. If we are, we don't want to invoke the set_current_function hook, because we'll get into trouble if the hook calls target_reinit () recursively or when the initial initialization is not yet complete. */ static bool in_dummy_function; /* Invoke the target hook when setting cfun. Update the optimization options if the function uses different options than the default. */ static void invoke_set_current_function_hook (tree fndecl) { if (!in_dummy_function) { tree opts = ((fndecl) ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) : optimization_default_node); if (!opts) opts = optimization_default_node; /* Change optimization options if needed. */ if (optimization_current_node != opts) { optimization_current_node = opts; cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts)); } targetm.set_current_function (fndecl); this_fn_optabs = this_target_optabs; if (opts != optimization_default_node) { init_tree_optimization_optabs (opts); if (TREE_OPTIMIZATION_OPTABS (opts)) this_fn_optabs = (struct target_optabs *) TREE_OPTIMIZATION_OPTABS (opts); } } } /* cfun should never be set directly; use this function. */ void set_cfun (struct function *new_cfun) { if (cfun != new_cfun) { cfun = new_cfun; invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE); } } /* Initialized with NOGC, making this poisonous to the garbage collector. */ static vec cfun_stack; /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set current_function_decl accordingly. */ void push_cfun (struct function *new_cfun) { gcc_assert ((!cfun && !current_function_decl) || (cfun && current_function_decl == cfun->decl)); cfun_stack.safe_push (cfun); current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; set_cfun (new_cfun); } /* Pop cfun from the stack. Also set current_function_decl accordingly. */ void pop_cfun (void) { struct function *new_cfun = cfun_stack.pop (); /* When in_dummy_function, we do have a cfun but current_function_decl is NULL. We also allow pushing NULL cfun and subsequently changing current_function_decl to something else and have both restored by pop_cfun. */ gcc_checking_assert (in_dummy_function || !cfun || current_function_decl == cfun->decl); set_cfun (new_cfun); current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; } /* Return value of funcdef and increase it. */ int get_next_funcdef_no (void) { return funcdef_no++; } /* Return value of funcdef. */ int get_last_funcdef_no (void) { return funcdef_no; } /* Allocate a function structure for FNDECL and set its contents to the defaults. Set cfun to the newly-allocated object. Some of the helper functions invoked during initialization assume that cfun has already been set. Therefore, assign the new object directly into cfun and invoke the back end hook explicitly at the very end, rather than initializing a temporary and calling set_cfun on it. ABSTRACT_P is true if this is a function that will never be seen by the middle-end. Such functions are front-end concepts (like C++ function templates) that do not correspond directly to functions placed in object files. */ void allocate_struct_function (tree fndecl, bool abstract_p) { tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; cfun = ggc_cleared_alloc (); init_eh_for_function (); if (init_machine_status) cfun->machine = (*init_machine_status) (); #ifdef OVERRIDE_ABI_FORMAT OVERRIDE_ABI_FORMAT (fndecl); #endif if (fndecl != NULL_TREE) { DECL_STRUCT_FUNCTION (fndecl) = cfun; cfun->decl = fndecl; current_function_funcdef_no = get_next_funcdef_no (); } invoke_set_current_function_hook (fndecl); if (fndecl != NULL_TREE) { tree result = DECL_RESULT (fndecl); if (!abstract_p && aggregate_value_p (result, fndecl)) { #ifdef PCC_STATIC_STRUCT_RETURN cfun->returns_pcc_struct = 1; #endif cfun->returns_struct = 1; } cfun->stdarg = stdarg_p (fntype); /* Assume all registers in stdarg functions need to be saved. */ cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; /* ??? This could be set on a per-function basis by the front-end but is this worth the hassle? */ cfun->can_throw_non_call_exceptions = flag_non_call_exceptions; cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions; if (!profile_flag && !flag_instrument_function_entry_exit) DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1; } } /* This is like allocate_struct_function, but pushes a new cfun for FNDECL instead of just setting it. */ void push_struct_function (tree fndecl) { /* When in_dummy_function we might be in the middle of a pop_cfun and current_function_decl and cfun may not match. */ gcc_assert (in_dummy_function || (!cfun && !current_function_decl) || (cfun && current_function_decl == cfun->decl)); cfun_stack.safe_push (cfun); current_function_decl = fndecl; allocate_struct_function (fndecl, false); } /* Reset crtl and other non-struct-function variables to defaults as appropriate for emitting rtl at the start of a function. */ static void prepare_function_start (void) { gcc_assert (!get_last_insn ()); init_temp_slots (); init_emit (); init_varasm_status (); init_expr (); default_rtl_profile (); if (flag_stack_usage_info) { cfun->su = ggc_cleared_alloc (); cfun->su->static_stack_size = -1; } cse_not_expected = ! optimize; /* Caller save not needed yet. */ caller_save_needed = 0; /* We haven't done register allocation yet. */ reg_renumber = 0; /* Indicate that we have not instantiated virtual registers yet. */ virtuals_instantiated = 0; /* Indicate that we want CONCATs now. */ generating_concat_p = 1; /* Indicate we have no need of a frame pointer yet. */ frame_pointer_needed = 0; } void push_dummy_function (bool with_decl) { tree fn_decl, fn_type, fn_result_decl; gcc_assert (!in_dummy_function); in_dummy_function = true; if (with_decl) { fn_type = build_function_type_list (void_type_node, NULL_TREE); fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE, fn_type); fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); DECL_RESULT (fn_decl) = fn_result_decl; } else fn_decl = NULL_TREE; push_struct_function (fn_decl); } /* Initialize the rtl expansion mechanism so that we can do simple things like generate sequences. This is used to provide a context during global initialization of some passes. You must call expand_dummy_function_end to exit this context. */ void init_dummy_function_start (void) { push_dummy_function (false); prepare_function_start (); } /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) and initialize static variables for generating RTL for the statements of the function. */ void init_function_start (tree subr) { if (subr && DECL_STRUCT_FUNCTION (subr)) set_cfun (DECL_STRUCT_FUNCTION (subr)); else allocate_struct_function (subr, false); /* Initialize backend, if needed. */ initialize_rtl (); prepare_function_start (); decide_function_section (subr); /* Warn if this value is an aggregate type, regardless of which calling convention we are using for it. */ if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) warning (OPT_Waggregate_return, "function returns an aggregate"); } /* Expand code to verify the stack_protect_guard. This is invoked at the end of a function to be protected. */ #ifndef HAVE_stack_protect_test # define HAVE_stack_protect_test 0 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX) #endif void stack_protect_epilogue (void) { tree guard_decl = targetm.stack_protect_guard (); rtx_code_label *label = gen_label_rtx (); rtx x, y, tmp; x = expand_normal (crtl->stack_protect_guard); y = expand_normal (guard_decl); /* Allow the target to compare Y with X without leaking either into a register. */ switch (HAVE_stack_protect_test != 0) { case 1: tmp = gen_stack_protect_test (x, y, label); if (tmp) { emit_insn (tmp); break; } /* FALLTHRU */ default: emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); break; } /* The noreturn predictor has been moved to the tree level. The rtl-level predictors estimate this branch about 20%, which isn't enough to get things moved out of line. Since this is the only extant case of adding a noreturn function at the rtl level, it doesn't seem worth doing ought except adding the prediction by hand. */ tmp = get_last_insn (); if (JUMP_P (tmp)) predict_insn_def (as_a (tmp), PRED_NORETURN, TAKEN); expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true); free_temp_slots (); emit_label (label); } /* Start the RTL for a new function, and set variables used for emitting RTL. SUBR is the FUNCTION_DECL node. PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with the function's parameters, which must be run at any return statement. */ void expand_function_start (tree subr) { /* Make sure volatile mem refs aren't considered valid operands of arithmetic insns. */ init_recog_no_volatile (); crtl->profile = (profile_flag && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); crtl->limit_stack = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); /* Make the label for return statements to jump to. Do not special case machines with special return instructions -- they will be handled later during jump, ifcvt, or epilogue creation. */ return_label = gen_label_rtx (); /* Initialize rtx used to return the value. */ /* Do this before assign_parms so that we copy the struct value address before any library calls that assign parms might generate. */ /* Decide whether to return the value in memory or in a register. */ if (aggregate_value_p (DECL_RESULT (subr), subr)) { /* Returning something that won't go in a register. */ rtx value_address = 0; #ifdef PCC_STATIC_STRUCT_RETURN if (cfun->returns_pcc_struct) { int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr))); value_address = assemble_static_space (size); } else #endif { rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); /* Expect to be passed the address of a place to store the value. If it is passed as an argument, assign_parms will take care of it. */ if (sv) { value_address = gen_reg_rtx (Pmode); emit_move_insn (value_address, sv); } } if (value_address) { rtx x = value_address; if (!DECL_BY_REFERENCE (DECL_RESULT (subr))) { x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x); set_mem_attributes (x, DECL_RESULT (subr), 1); } SET_DECL_RTL (DECL_RESULT (subr), x); } } else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode) /* If return mode is void, this decl rtl should not be used. */ SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX); else { /* Compute the return values into a pseudo reg, which we will copy into the true return register after the cleanups are done. */ tree return_type = TREE_TYPE (DECL_RESULT (subr)); if (TYPE_MODE (return_type) != BLKmode && targetm.calls.return_in_msb (return_type)) /* expand_function_end will insert the appropriate padding in this case. Use the return value's natural (unpadded) mode within the function proper. */ SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (TYPE_MODE (return_type))); else { /* In order to figure out what mode to use for the pseudo, we figure out what the mode of the eventual return register will actually be, and use that. */ rtx hard_reg = hard_function_value (return_type, subr, 0, 1); /* Structures that are returned in registers are not aggregate_value_p, so we may see a PARALLEL or a REG. */ if (REG_P (hard_reg)) SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg))); else { gcc_assert (GET_CODE (hard_reg) == PARALLEL); SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg)); } } /* Set DECL_REGISTER flag so that expand_function_end will copy the result to the real return register(s). */ DECL_REGISTER (DECL_RESULT (subr)) = 1; if (chkp_function_instrumented_p (current_function_decl)) { tree return_type = TREE_TYPE (DECL_RESULT (subr)); rtx bounds = targetm.calls.chkp_function_value_bounds (return_type, subr, 1); SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds); } } /* Initialize rtx for parameters and local variables. In some cases this requires emitting insns. */ assign_parms (subr); /* If function gets a static chain arg, store it. */ if (cfun->static_chain_decl) { tree parm = cfun->static_chain_decl; rtx local, chain; rtx_insn *insn; local = gen_reg_rtx (Pmode); chain = targetm.calls.static_chain (current_function_decl, true); set_decl_incoming_rtl (parm, chain, false); SET_DECL_RTL (parm, local); mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); insn = emit_move_insn (local, chain); /* Mark the register as eliminable, similar to parameters. */ if (MEM_P (chain) && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0))) set_dst_reg_note (insn, REG_EQUIV, chain, local); /* If we aren't optimizing, save the static chain onto the stack. */ if (!optimize) { tree saved_static_chain_decl = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL, DECL_NAME (parm), TREE_TYPE (parm)); rtx saved_static_chain_rtx = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx); emit_move_insn (saved_static_chain_rtx, chain); SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl); DECL_HAS_VALUE_EXPR_P (parm) = 1; } } /* If the function receives a non-local goto, then store the bits we need to restore the frame pointer. */ if (cfun->nonlocal_goto_save_area) { tree t_save; rtx r_save; tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0); gcc_assert (DECL_RTL_SET_P (var)); t_save = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), cfun->nonlocal_goto_save_area, integer_zero_node, NULL_TREE, NULL_TREE); r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); gcc_assert (GET_MODE (r_save) == Pmode); emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ()); update_nonlocal_goto_save_area (); } /* The following was moved from init_function_start. The move is supposed to make sdb output more accurate. */ /* Indicate the beginning of the function body, as opposed to parm setup. */ emit_note (NOTE_INSN_FUNCTION_BEG); gcc_assert (NOTE_P (get_last_insn ())); parm_birth_insn = get_last_insn (); if (crtl->profile) { #ifdef PROFILE_HOOK PROFILE_HOOK (current_function_funcdef_no); #endif } /* If we are doing generic stack checking, the probe should go here. */ if (flag_stack_check == GENERIC_STACK_CHECK) stack_check_probe_note = emit_note (NOTE_INSN_DELETED); } void pop_dummy_function (void) { pop_cfun (); in_dummy_function = false; } /* Undo the effects of init_dummy_function_start. */ void expand_dummy_function_end (void) { gcc_assert (in_dummy_function); /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); /* Outside function body, can't compute type's actual size until next function's body starts. */ free_after_parsing (cfun); free_after_compilation (cfun); pop_dummy_function (); } /* Helper for diddle_return_value. */ void diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing) { if (! outgoing) return; if (REG_P (outgoing)) (*doit) (outgoing, arg); else if (GET_CODE (outgoing) == PARALLEL) { int i; for (i = 0; i < XVECLEN (outgoing, 0); i++) { rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) (*doit) (x, arg); } } } /* Call DOIT for each hard register used as a return value from the current function. */ void diddle_return_value (void (*doit) (rtx, void *), void *arg) { diddle_return_value_1 (doit, arg, crtl->return_bnd); diddle_return_value_1 (doit, arg, crtl->return_rtx); } static void do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) { emit_clobber (reg); } void clobber_return_register (void) { diddle_return_value (do_clobber_return_reg, NULL); /* In case we do use pseudo to return value, clobber it too. */ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) { tree decl_result = DECL_RESULT (current_function_decl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER) { do_clobber_return_reg (decl_rtl, NULL); } } } static void do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) { emit_use (reg); } static void use_return_register (void) { diddle_return_value (do_use_return_reg, NULL); } /* Set the location of the insn chain starting at INSN to LOC. */ static void set_insn_locations (rtx_insn *insn, int loc) { while (insn != NULL) { if (INSN_P (insn)) INSN_LOCATION (insn) = loc; insn = NEXT_INSN (insn); } } /* Generate RTL for the end of the current function. */ void expand_function_end (void) { /* If arg_pointer_save_area was referenced only from a nested function, we will not have initialized it yet. Do that now. */ if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init) get_arg_pointer_save_area (); /* If we are doing generic stack checking and this function makes calls, do a stack probe at the start of the function to ensure we have enough space for another stack frame. */ if (flag_stack_check == GENERIC_STACK_CHECK) { rtx_insn *insn, *seq; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (CALL_P (insn)) { rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE); start_sequence (); if (STACK_CHECK_MOVING_SP) anti_adjust_stack_and_probe (max_frame_size, true); else probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size); seq = get_insns (); end_sequence (); set_insn_locations (seq, prologue_location); emit_insn_before (seq, stack_check_probe_note); break; } } /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); clear_pending_stack_adjust (); do_pending_stack_adjust (); /* Output a linenumber for the end of the function. SDB depends on this. */ set_curr_insn_location (input_location); /* Before the return label (if any), clobber the return registers so that they are not propagated live to the rest of the function. This can only happen with functions that drop through; if there had been a return statement, there would have either been a return rtx, or a jump to the return label. We delay actual code generation after the current_function_value_rtx is computed. */ rtx_insn *clobber_after = get_last_insn (); /* Output the label for the actual return from the function. */ emit_label (return_label); if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) { /* Let except.c know where it should emit the call to unregister the function context for sjlj exceptions. */ if (flag_exceptions) sjlj_emit_function_exit_after (get_last_insn ()); } else { /* We want to ensure that instructions that may trap are not moved into the epilogue by scheduling, because we don't always emit unwind information for the epilogue. */ if (cfun->can_throw_non_call_exceptions) emit_insn (gen_blockage ()); } /* If this is an implementation of throw, do what's necessary to communicate between __builtin_eh_return and the epilogue. */ expand_eh_return (); /* If scalar return value was computed in a pseudo-reg, or was a named return value that got dumped to the stack, copy that to the hard return register. */ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) { tree decl_result = DECL_RESULT (current_function_decl); rtx decl_rtl = DECL_RTL (decl_result); if (REG_P (decl_rtl) ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER : DECL_REGISTER (decl_result)) { rtx real_decl_rtl = crtl->return_rtx; /* This should be set in assign_parms. */ gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. Note that if decl_rtl is memory, then its mode may have been changed, but that crtl->return_rtx has not. */ if (GET_MODE (real_decl_rtl) == BLKmode) PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); /* If a non-BLKmode return value should be padded at the least significant end of the register, shift it left by the appropriate amount. BLKmode results are handled using the group load/store machinery. */ if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode && REG_P (real_decl_rtl) && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) { emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), REGNO (real_decl_rtl)), decl_rtl); shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); } /* If a named return value dumped decl_return to memory, then we may need to re-do the PROMOTE_MODE signed/unsigned extension. */ else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) { int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); promote_function_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl), &unsignedp, TREE_TYPE (current_function_decl), 1); convert_move (real_decl_rtl, decl_rtl, unsignedp); } else if (GET_CODE (real_decl_rtl) == PARALLEL) { /* If expand_function_start has created a PARALLEL for decl_rtl, move the result to the real return registers. Otherwise, do a group load from decl_rtl for a named return. */ if (GET_CODE (decl_rtl) == PARALLEL) emit_group_move (real_decl_rtl, decl_rtl); else emit_group_load (real_decl_rtl, decl_rtl, TREE_TYPE (decl_result), int_size_in_bytes (TREE_TYPE (decl_result))); } /* In the case of complex integer modes smaller than a word, we'll need to generate some non-trivial bitfield insertions. Do that on a pseudo and not the hard register. */ else if (GET_CODE (decl_rtl) == CONCAT && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD) { int old_generating_concat_p; rtx tmp; old_generating_concat_p = generating_concat_p; generating_concat_p = 0; tmp = gen_reg_rtx (GET_MODE (decl_rtl)); generating_concat_p = old_generating_concat_p; emit_move_insn (tmp, decl_rtl); emit_move_insn (real_decl_rtl, tmp); } else emit_move_insn (real_decl_rtl, decl_rtl); } } /* If returning a structure, arrange to return the address of the value in a place where debuggers expect to find it. If returning a structure PCC style, the caller also depends on this value. And cfun->returns_pcc_struct is not necessarily set. */ if ((cfun->returns_struct || cfun->returns_pcc_struct) && !targetm.calls.omit_struct_return_reg) { rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); rtx outgoing; if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) type = TREE_TYPE (type); else value_address = XEXP (value_address, 0); outgoing = targetm.calls.function_value (build_pointer_type (type), current_function_decl, true); /* Mark this as a function return value so integrate will delete the assignment and USE below when inlining this function. */ REG_FUNCTION_VALUE_P (outgoing) = 1; /* The address may be ptr_mode and OUTGOING may be Pmode. */ value_address = convert_memory_address (GET_MODE (outgoing), value_address); emit_move_insn (outgoing, value_address); /* Show return register used to hold result (in this case the address of the result. */ crtl->return_rtx = outgoing; } /* Emit the actual code to clobber return register. Don't emit it if clobber_after is a barrier, then the previous basic block certainly doesn't fall thru into the exit block. */ if (!BARRIER_P (clobber_after)) { start_sequence (); clobber_return_register (); rtx_insn *seq = get_insns (); end_sequence (); emit_insn_after (seq, clobber_after); } /* Output the label for the naked return from the function. */ if (naked_return_label) emit_label (naked_return_label); /* @@@ This is a kludge. We want to ensure that instructions that may trap are not moved into the epilogue by scheduling, because we don't always emit unwind information for the epilogue. */ if (cfun->can_throw_non_call_exceptions && targetm_common.except_unwind_info (&global_options) != UI_SJLJ) emit_insn (gen_blockage ()); /* If stack protection is enabled for this function, check the guard. */ if (crtl->stack_protect_guard) stack_protect_epilogue (); /* If we had calls to alloca, and this machine needs an accurate stack pointer to exit the function, insert some code to save and restore the stack pointer. */ if (! EXIT_IGNORE_STACK && cfun->calls_alloca) { rtx tem = 0; start_sequence (); emit_stack_save (SAVE_FUNCTION, &tem); rtx_insn *seq = get_insns (); end_sequence (); emit_insn_before (seq, parm_birth_insn); emit_stack_restore (SAVE_FUNCTION, tem); } /* ??? This should no longer be necessary since stupid is no longer with us, but there are some parts of the compiler (eg reload_combine, and sh mach_dep_reorg) that still try and compute their own lifetime info instead of using the general framework. */ use_return_register (); } rtx get_arg_pointer_save_area (void) { rtx ret = arg_pointer_save_area; if (! ret) { ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); arg_pointer_save_area = ret; } if (! crtl->arg_pointer_save_area_init) { /* Save the arg pointer at the beginning of the function. The generated stack slot may not be a valid memory address, so we have to check it and fix it if necessary. */ start_sequence (); emit_move_insn (validize_mem (copy_rtx (ret)), crtl->args.internal_arg_pointer); rtx_insn *seq = get_insns (); end_sequence (); push_topmost_sequence (); emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); crtl->arg_pointer_save_area_init = true; } return ret; } /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP for the first time. */ static void record_insns (rtx_insn *insns, rtx end, hash_table **hashp) { rtx_insn *tmp; hash_table *hash = *hashp; if (hash == NULL) *hashp = hash = hash_table::create_ggc (17); for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp)) { rtx *slot = hash->find_slot (tmp, INSERT); gcc_assert (*slot == NULL); *slot = tmp; } } /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a basic block, splitting or peepholes. If INSN is a prologue or epilogue insn, then record COPY as well. */ void maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy) { hash_table *hash; rtx *slot; hash = epilogue_insn_hash; if (!hash || !hash->find (insn)) { hash = prologue_insn_hash; if (!hash || !hash->find (insn)) return; } slot = hash->find_slot (copy, INSERT); gcc_assert (*slot == NULL); *slot = copy; } /* Determine if any INSNs in HASH are, or are part of, INSN. Because we can be running after reorg, SEQUENCE rtl is possible. */ static bool contains (const_rtx insn, hash_table *hash) { if (hash == NULL) return false; if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) { rtx_sequence *seq = as_a (PATTERN (insn)); int i; for (i = seq->len () - 1; i >= 0; i--) if (hash->find (seq->element (i))) return true; return false; } return hash->find (const_cast (insn)) != NULL; } int prologue_epilogue_contains (const_rtx insn) { if (contains (insn, prologue_insn_hash)) return 1; if (contains (insn, epilogue_insn_hash)) return 1; return 0; } /* Insert use of return register before the end of BB. */ static void emit_use_return_register_into_block (basic_block bb) { start_sequence (); use_return_register (); rtx_insn *seq = get_insns (); end_sequence (); rtx_insn *insn = BB_END (bb); if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))) insn = prev_cc0_setter (insn); emit_insn_before (seq, insn); } /* Create a return pattern, either simple_return or return, depending on simple_p. */ static rtx_insn * gen_return_pattern (bool simple_p) { return (simple_p ? targetm.gen_simple_return () : targetm.gen_return ()); } /* Insert an appropriate return pattern at the end of block BB. This also means updating block_for_insn appropriately. SIMPLE_P is the same as in gen_return_pattern and passed to it. */ void emit_return_into_block (bool simple_p, basic_block bb) { rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb)); rtx pat = PATTERN (jump); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); gcc_assert (ANY_RETURN_P (pat)); JUMP_LABEL (jump) = pat; } /* Set JUMP_LABEL for a return insn. */ void set_return_jump_label (rtx_insn *returnjump) { rtx pat = PATTERN (returnjump); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); if (ANY_RETURN_P (pat)) JUMP_LABEL (returnjump) = pat; else JUMP_LABEL (returnjump) = ret_rtx; } /* Return true if there are any active insns between HEAD and TAIL. */ bool active_insn_between (rtx_insn *head, rtx_insn *tail) { while (tail) { if (active_insn_p (tail)) return true; if (tail == head) return false; tail = PREV_INSN (tail); } return false; } /* LAST_BB is a block that exits, and empty of active instructions. Examine its predecessors for jumps that can be converted to (conditional) returns. */ vec convert_jumps_to_returns (basic_block last_bb, bool simple_p, vec unconverted ATTRIBUTE_UNUSED) { int i; basic_block bb; edge_iterator ei; edge e; auto_vec src_bbs (EDGE_COUNT (last_bb->preds)); FOR_EACH_EDGE (e, ei, last_bb->preds) if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) src_bbs.quick_push (e->src); rtx_insn *label = BB_HEAD (last_bb); FOR_EACH_VEC_ELT (src_bbs, i, bb) { rtx_insn *jump = BB_END (bb); if (!JUMP_P (jump) || JUMP_LABEL (jump) != label) continue; e = find_edge (bb, last_bb); /* If we have an unconditional jump, we can replace that with a simple return instruction. */ if (simplejump_p (jump)) { /* The use of the return register might be present in the exit fallthru block. Either: - removing the use is safe, and we should remove the use in the exit fallthru block, or - removing the use is not safe, and we should add it here. For now, we conservatively choose the latter. Either of the 2 helps in crossjumping. */ emit_use_return_register_into_block (bb); emit_return_into_block (simple_p, bb); delete_insn (jump); } /* If we have a conditional jump branching to the last block, we can try to replace that with a conditional return instruction. */ else if (condjump_p (jump)) { rtx dest; if (simple_p) dest = simple_return_rtx; else dest = ret_rtx; if (!redirect_jump (as_a (jump), dest, 0)) { if (targetm.have_simple_return () && simple_p) { if (dump_file) fprintf (dump_file, "Failed to redirect bb %d branch.\n", bb->index); unconverted.safe_push (e); } continue; } /* See comment in simplejump_p case above. */ emit_use_return_register_into_block (bb); /* If this block has only one successor, it both jumps and falls through to the fallthru block, so we can't delete the edge. */ if (single_succ_p (bb)) continue; } else { if (targetm.have_simple_return () && simple_p) { if (dump_file) fprintf (dump_file, "Failed to redirect bb %d branch.\n", bb->index); unconverted.safe_push (e); } continue; } /* Fix up the CFG for the successful change we just made. */ redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun)); e->flags &= ~EDGE_CROSSING; } src_bbs.release (); return unconverted; } /* Emit a return insn for the exit fallthru block. */ basic_block emit_return_for_exit (edge exit_fallthru_edge, bool simple_p) { basic_block last_bb = exit_fallthru_edge->src; if (JUMP_P (BB_END (last_bb))) { last_bb = split_edge (exit_fallthru_edge); exit_fallthru_edge = single_succ_edge (last_bb); } emit_barrier_after (BB_END (last_bb)); emit_return_into_block (simple_p, last_bb); exit_fallthru_edge->flags &= ~EDGE_FALLTHRU; return last_bb; } /* Generate the prologue and epilogue RTL if the machine supports it. Thread this into place with notes indicating where the prologue ends and where the epilogue begins. Update the basic block information when possible. Notes on epilogue placement: There are several kinds of edges to the exit block: * a single fallthru edge from LAST_BB * possibly, edges from blocks containing sibcalls * possibly, fake edges from infinite loops The epilogue is always emitted on the fallthru edge from the last basic block in the function, LAST_BB, into the exit block. If LAST_BB is empty except for a label, it is the target of every other basic block in the function that ends in a return. If a target has a return or simple_return pattern (possibly with conditional variants), these basic blocks can be changed so that a return insn is emitted into them, and their target is adjusted to the real exit block. Notes on shrink wrapping: We implement a fairly conservative version of shrink-wrapping rather than the textbook one. We only generate a single prologue and a single epilogue. This is sufficient to catch a number of interesting cases involving early exits. First, we identify the blocks that require the prologue to occur before them. These are the ones that modify a call-saved register, or reference any of the stack or frame pointer registers. To simplify things, we then mark everything reachable from these blocks as also requiring a prologue. This takes care of loops automatically, and avoids the need to examine whether MEMs reference the frame, since it is sufficient to check for occurrences of the stack or frame pointer. We then compute the set of blocks for which the need for a prologue is anticipatable (borrowing terminology from the shrink-wrapping description in Muchnick's book). These are the blocks which either require a prologue themselves, or those that have only successors where the prologue is anticipatable. The prologue needs to be inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1 is not. For the moment, we ensure that only one such edge exists. The epilogue is placed as described above, but we make a distinction between inserting return and simple_return patterns when modifying other blocks that end in a return. Blocks that end in a sibcall omit the sibcall_epilogue if the block is not in ANTIC. */ void thread_prologue_and_epilogue_insns (void) { bool inserted; vec unconverted_simple_returns = vNULL; bitmap_head bb_flags; rtx_insn *returnjump; rtx_insn *epilogue_end ATTRIBUTE_UNUSED; rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED; edge e, entry_edge, orig_entry_edge, exit_fallthru_edge; edge_iterator ei; df_analyze (); rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); inserted = false; epilogue_end = NULL; returnjump = NULL; /* Can't deal with multiple successors of the entry block at the moment. Function should always have at least one entry point. */ gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))); entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); orig_entry_edge = entry_edge; split_prologue_seq = NULL; if (flag_split_stack && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)) == NULL)) { #ifndef HAVE_split_stack_prologue gcc_unreachable (); #else gcc_assert (HAVE_split_stack_prologue); start_sequence (); emit_insn (gen_split_stack_prologue ()); split_prologue_seq = get_insns (); end_sequence (); record_insns (split_prologue_seq, NULL, &prologue_insn_hash); set_insn_locations (split_prologue_seq, prologue_location); #endif } prologue_seq = NULL; #ifdef HAVE_prologue if (HAVE_prologue) { start_sequence (); rtx_insn *seq = safe_as_a (gen_prologue ()); emit_insn (seq); /* Insert an explicit USE for the frame pointer if the profiling is on and the frame pointer is required. */ if (crtl->profile && frame_pointer_needed) emit_use (hard_frame_pointer_rtx); /* Retain a map of the prologue insns. */ record_insns (seq, NULL, &prologue_insn_hash); emit_note (NOTE_INSN_PROLOGUE_END); /* Ensure that instructions are not moved into the prologue when profiling is on. The call to the profiling routine can be emitted within the live range of a call-clobbered register. */ if (!targetm.profile_before_prologue () && crtl->profile) emit_insn (gen_blockage ()); prologue_seq = get_insns (); end_sequence (); set_insn_locations (prologue_seq, prologue_location); } #endif bitmap_initialize (&bb_flags, &bitmap_default_obstack); /* Try to perform a kind of shrink-wrapping, making sure the prologue/epilogue is emitted only around those parts of the function that require it. */ try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq); if (split_prologue_seq != NULL_RTX) { insert_insn_on_edge (split_prologue_seq, orig_entry_edge); inserted = true; } if (prologue_seq != NULL_RTX) { insert_insn_on_edge (prologue_seq, entry_edge); inserted = true; } /* If the exit block has no non-fake predecessors, we don't need an epilogue. */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) if ((e->flags & EDGE_FAKE) == 0) break; if (e == NULL) goto epilogue_done; rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)); exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); if (targetm.have_simple_return () && entry_edge != orig_entry_edge) exit_fallthru_edge = get_unconverted_simple_return (exit_fallthru_edge, bb_flags, &unconverted_simple_returns, &returnjump); if (targetm.have_return ()) { if (exit_fallthru_edge == NULL) goto epilogue_done; if (optimize) { basic_block last_bb = exit_fallthru_edge->src; if (LABEL_P (BB_HEAD (last_bb)) && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb))) convert_jumps_to_returns (last_bb, false, vNULL); if (EDGE_COUNT (last_bb->preds) != 0 && single_succ_p (last_bb)) { last_bb = emit_return_for_exit (exit_fallthru_edge, false); epilogue_end = returnjump = BB_END (last_bb); /* Emitting the return may add a basic block. Fix bb_flags for the added block. */ if (targetm.have_simple_return () && last_bb != exit_fallthru_edge->src) bitmap_set_bit (&bb_flags, last_bb->index); goto epilogue_done; } } } /* A small fib -- epilogue is not yet completed, but we wish to re-use this marker for the splits of EH_RETURN patterns, and nothing else uses the flag in the meantime. */ epilogue_completed = 1; #ifdef HAVE_eh_return /* Find non-fallthru edges that end with EH_RETURN instructions. On some targets, these get split to a special version of the epilogue code. In order to be able to properly annotate these with unwind info, try to split them now. If we get a valid split, drop an EPILOGUE_BEG note and mark the insns as epilogue insns. */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx_insn *prev, *last, *trial; if (e->flags & EDGE_FALLTHRU) continue; last = BB_END (e->src); if (!eh_returnjump_p (last)) continue; prev = PREV_INSN (last); trial = try_split (PATTERN (last), last, 1); if (trial == last) continue; record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash); emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev); } #endif /* If nothing falls through into the exit block, we don't need an epilogue. */ if (exit_fallthru_edge == NULL) goto epilogue_done; if (HAVE_epilogue) { start_sequence (); epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG); rtx_insn *seq = as_a (gen_epilogue ()); if (seq) emit_jump_insn (seq); /* Retain a map of the epilogue insns. */ record_insns (seq, NULL, &epilogue_insn_hash); set_insn_locations (seq, epilogue_location); seq = get_insns (); returnjump = get_last_insn (); end_sequence (); insert_insn_on_edge (seq, exit_fallthru_edge); inserted = true; if (JUMP_P (returnjump)) set_return_jump_label (returnjump); } else { basic_block cur_bb; if (! next_active_insn (BB_END (exit_fallthru_edge->src))) goto epilogue_done; /* We have a fall-through edge to the exit block, the source is not at the end of the function, and there will be an assembler epilogue at the end of the function. We can't use force_nonfallthru here, because that would try to use return. Inserting a jump 'by hand' is extremely messy, so we take advantage of cfg_layout_finalize using fixup_fallthru_exit_predecessor. */ cfg_layout_initialize (0); FOR_EACH_BB_FN (cur_bb, cfun) if (cur_bb->index >= NUM_FIXED_BLOCKS && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) cur_bb->aux = cur_bb->next_bb; cfg_layout_finalize (); } epilogue_done: default_rtl_profile (); if (inserted) { sbitmap blocks; commit_edge_insertions (); /* Look for basic blocks within the prologue insns. */ blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); bitmap_clear (blocks); bitmap_set_bit (blocks, entry_edge->dest->index); bitmap_set_bit (blocks, orig_entry_edge->dest->index); find_many_sub_basic_blocks (blocks); sbitmap_free (blocks); /* The epilogue insns we inserted may cause the exit edge to no longer be fallthru. */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { if (((e->flags & EDGE_FALLTHRU) != 0) && returnjump_p (BB_END (e->src))) e->flags &= ~EDGE_FALLTHRU; } } if (targetm.have_simple_return ()) convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump, unconverted_simple_returns); #ifdef HAVE_sibcall_epilogue /* Emit sibling epilogues before any sibling call sites. */ for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e = ei_safe_edge (ei)); ) { basic_block bb = e->src; rtx_insn *insn = BB_END (bb); rtx ep_seq; if (!CALL_P (insn) || ! SIBLING_CALL_P (insn) || (targetm.have_simple_return () && entry_edge != orig_entry_edge && !bitmap_bit_p (&bb_flags, bb->index))) { ei_next (&ei); continue; } ep_seq = gen_sibcall_epilogue (); if (ep_seq) { start_sequence (); emit_note (NOTE_INSN_EPILOGUE_BEG); emit_insn (ep_seq); rtx_insn *seq = get_insns (); end_sequence (); /* Retain a map of the epilogue insns. Used in life analysis to avoid getting rid of sibcall epilogue insns. Do this before we actually emit the sequence. */ record_insns (seq, NULL, &epilogue_insn_hash); set_insn_locations (seq, epilogue_location); emit_insn_before (seq, insn); } ei_next (&ei); } #endif if (epilogue_end) { rtx_insn *insn, *next; /* Similarly, move any line notes that appear after the epilogue. There is no need, however, to be quite so anal about the existence of such a note. Also possibly move NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug info generation. */ for (insn = epilogue_end; insn; insn = next) { next = NEXT_INSN (insn); if (NOTE_P (insn) && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)) reorder_insns (insn, insn, PREV_INSN (epilogue_end)); } } bitmap_clear (&bb_flags); /* Threading the prologue and epilogue changes the artificial refs in the entry and exit blocks. */ epilogue_completed = 1; df_update_entry_exit_and_calls (); } /* Reposition the prologue-end and epilogue-begin notes after instruction scheduling. */ void reposition_prologue_and_epilogue_notes (void) { #if ! defined (HAVE_prologue) && ! defined (HAVE_sibcall_epilogue) if (!HAVE_epilogue) return; #endif /* Since the hash table is created on demand, the fact that it is non-null is a signal that it is non-empty. */ if (prologue_insn_hash != NULL) { size_t len = prologue_insn_hash->elements (); rtx_insn *insn, *last = NULL, *note = NULL; /* Scan from the beginning until we reach the last prologue insn. */ /* ??? While we do have the CFG intact, there are two problems: (1) The prologue can contain loops (typically probing the stack), which means that the end of the prologue isn't in the first bb. (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (NOTE_P (insn)) { if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END) note = insn; } else if (contains (insn, prologue_insn_hash)) { last = insn; if (--len == 0) break; } } if (last) { if (note == NULL) { /* Scan forward looking for the PROLOGUE_END note. It should be right at the beginning of the block, possibly with other insn notes that got moved there. */ for (note = NEXT_INSN (last); ; note = NEXT_INSN (note)) { if (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END) break; } } /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ if (LABEL_P (last)) last = NEXT_INSN (last); reorder_insns (note, note, last); } } if (epilogue_insn_hash != NULL) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx_insn *insn, *first = NULL, *note = NULL; basic_block bb = e->src; /* Scan from the beginning until we reach the first epilogue insn. */ FOR_BB_INSNS (bb, insn) { if (NOTE_P (insn)) { if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) { note = insn; if (first != NULL) break; } } else if (first == NULL && contains (insn, epilogue_insn_hash)) { first = insn; if (note != NULL) break; } } if (note) { /* If the function has a single basic block, and no real epilogue insns (e.g. sibcall with no cleanup), the epilogue note can get scheduled before the prologue note. If we have frame related prologue insns, having them scanned during the epilogue will result in a crash. In this case re-order the epilogue note to just before the last insn in the block. */ if (first == NULL) first = BB_END (bb); if (PREV_INSN (first) != note) reorder_insns (note, note, PREV_INSN (first)); } } } } /* Returns the name of function declared by FNDECL. */ const char * fndecl_name (tree fndecl) { if (fndecl == NULL) return "(nofn)"; return lang_hooks.decl_printable_name (fndecl, 2); } /* Returns the name of function FN. */ const char * function_name (struct function *fn) { tree fndecl = (fn == NULL) ? NULL : fn->decl; return fndecl_name (fndecl); } /* Returns the name of the current function. */ const char * current_function_name (void) { return function_name (cfun); } static unsigned int rest_of_handle_check_leaf_regs (void) { #ifdef LEAF_REGISTERS crtl->uses_only_leaf_regs = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); #endif return 0; } /* Insert a TYPE into the used types hash table of CFUN. */ static void used_types_insert_helper (tree type, struct function *func) { if (type != NULL && func != NULL) { if (func->used_types_hash == NULL) func->used_types_hash = hash_set::create_ggc (37); func->used_types_hash->add (type); } } /* Given a type, insert it into the used hash table in cfun. */ void used_types_insert (tree t) { while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) if (TYPE_NAME (t)) break; else t = TREE_TYPE (t); if (TREE_CODE (t) == ERROR_MARK) return; if (TYPE_NAME (t) == NULL_TREE || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t))) t = TYPE_MAIN_VARIANT (t); if (debug_info_level > DINFO_LEVEL_NONE) { if (cfun) used_types_insert_helper (t, cfun); else { /* So this might be a type referenced by a global variable. Record that type so that we can later decide to emit its debug information. */ vec_safe_push (types_used_by_cur_var_decl, t); } } } /* Helper to Hash a struct types_used_by_vars_entry. */ static hashval_t hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry) { gcc_assert (entry && entry->var_decl && entry->type); return iterative_hash_object (entry->type, iterative_hash_object (entry->var_decl, 0)); } /* Hash function of the types_used_by_vars_entry hash table. */ hashval_t used_type_hasher::hash (types_used_by_vars_entry *entry) { return hash_types_used_by_vars_entry (entry); } /*Equality function of the types_used_by_vars_entry hash table. */ bool used_type_hasher::equal (types_used_by_vars_entry *e1, types_used_by_vars_entry *e2) { return (e1->var_decl == e2->var_decl && e1->type == e2->type); } /* Inserts an entry into the types_used_by_vars_hash hash table. */ void types_used_by_var_decl_insert (tree type, tree var_decl) { if (type != NULL && var_decl != NULL) { types_used_by_vars_entry **slot; struct types_used_by_vars_entry e; e.var_decl = var_decl; e.type = type; if (types_used_by_vars_hash == NULL) types_used_by_vars_hash = hash_table::create_ggc (37); slot = types_used_by_vars_hash->find_slot (&e, INSERT); if (*slot == NULL) { struct types_used_by_vars_entry *entry; entry = ggc_alloc (); entry->type = type; entry->var_decl = var_decl; *slot = entry; } } } namespace { const pass_data pass_data_leaf_regs = { RTL_PASS, /* type */ "*leaf_regs", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_leaf_regs : public rtl_opt_pass { public: pass_leaf_regs (gcc::context *ctxt) : rtl_opt_pass (pass_data_leaf_regs, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *) { return rest_of_handle_check_leaf_regs (); } }; // class pass_leaf_regs } // anon namespace rtl_opt_pass * make_pass_leaf_regs (gcc::context *ctxt) { return new pass_leaf_regs (ctxt); } static unsigned int rest_of_handle_thread_prologue_and_epilogue (void) { if (optimize) cleanup_cfg (CLEANUP_EXPENSIVE); /* On some machines, the prologue and epilogue code, or parts thereof, can be represented as RTL. Doing so lets us schedule insns between it and the rest of the code and also allows delayed branch scheduling to operate in the epilogue. */ thread_prologue_and_epilogue_insns (); /* Shrink-wrapping can result in unreachable edges in the epilogue, see PR57320. */ cleanup_cfg (0); /* The stack usage info is finalized during prologue expansion. */ if (flag_stack_usage_info) output_stack_usage (); return 0; } namespace { const pass_data pass_data_thread_prologue_and_epilogue = { RTL_PASS, /* type */ "pro_and_epilogue", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */ }; class pass_thread_prologue_and_epilogue : public rtl_opt_pass { public: pass_thread_prologue_and_epilogue (gcc::context *ctxt) : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *) { return rest_of_handle_thread_prologue_and_epilogue (); } }; // class pass_thread_prologue_and_epilogue } // anon namespace rtl_opt_pass * make_pass_thread_prologue_and_epilogue (gcc::context *ctxt) { return new pass_thread_prologue_and_epilogue (ctxt); } /* This mini-pass fixes fall-out from SSA in asm statements that have in-out constraints. Say you start with orig = inout; asm ("": "+mr" (inout)); use (orig); which is transformed very early to use explicit output and match operands: orig = inout; asm ("": "=mr" (inout) : "0" (inout)); use (orig); Or, after SSA and copyprop, asm ("": "=mr" (inout_2) : "0" (inout_1)); use (inout_1); Clearly inout_2 and inout_1 can't be coalesced easily anymore, as they represent two separate values, so they will get different pseudo registers during expansion. Then, since the two operands need to match per the constraints, but use different pseudo registers, reload can only register a reload for these operands. But reloads can only be satisfied by hardregs, not by memory, so we need a register for this reload, just because we are presented with non-matching operands. So, even though we allow memory for this operand, no memory can be used for it, just because the two operands don't match. This can cause reload failures on register-starved targets. So it's a symptom of reload not being able to use memory for reloads or, alternatively it's also a symptom of both operands not coming into reload as matching (in which case the pseudo could go to memory just fine, as the alternative allows it, and no reload would be necessary). We fix the latter problem here, by transforming asm ("": "=mr" (inout_2) : "0" (inout_1)); back to inout_2 = inout_1; asm ("": "=mr" (inout_2) : "0" (inout_2)); */ static void match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs) { int i; bool changed = false; rtx op = SET_SRC (p_sets[0]); int ninputs = ASM_OPERANDS_INPUT_LENGTH (op); rtvec inputs = ASM_OPERANDS_INPUT_VEC (op); bool *output_matched = XALLOCAVEC (bool, noutputs); memset (output_matched, 0, noutputs * sizeof (bool)); for (i = 0; i < ninputs; i++) { rtx input, output; rtx_insn *insns; const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i); char *end; int match, j; if (*constraint == '%') constraint++; match = strtoul (constraint, &end, 10); if (end == constraint) continue; gcc_assert (match < noutputs); output = SET_DEST (p_sets[match]); input = RTVEC_ELT (inputs, i); /* Only do the transformation for pseudos. */ if (! REG_P (output) || rtx_equal_p (output, input) || (GET_MODE (input) != VOIDmode && GET_MODE (input) != GET_MODE (output))) continue; /* We can't do anything if the output is also used as input, as we're going to overwrite it. */ for (j = 0; j < ninputs; j++) if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j))) break; if (j != ninputs) continue; /* Avoid changing the same input several times. For asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in)); only change in once (to out1), rather than changing it first to out1 and afterwards to out2. */ if (i > 0) { for (j = 0; j < noutputs; j++) if (output_matched[j] && input == SET_DEST (p_sets[j])) break; if (j != noutputs) continue; } output_matched[match] = true; start_sequence (); emit_move_insn (output, input); insns = get_insns (); end_sequence (); emit_insn_before (insns, insn); /* Now replace all mentions of the input with output. We can't just replace the occurrence in inputs[i], as the register might also be used in some other input (or even in an address of an output), which would mean possibly increasing the number of inputs by one (namely 'output' in addition), which might pose a too complicated problem for reload to solve. E.g. this situation: asm ("" : "=r" (output), "=m" (input) : "0" (input)) Here 'input' is used in two occurrences as input (once for the input operand, once for the address in the second output operand). If we would replace only the occurrence of the input operand (to make the matching) we would be left with this: output = input asm ("" : "=r" (output), "=m" (input) : "0" (output)) Now we suddenly have two different input values (containing the same value, but different pseudos) where we formerly had only one. With more complicated asms this might lead to reload failures which wouldn't have happen without this pass. So, iterate over all operands and replace all occurrences of the register used. */ for (j = 0; j < noutputs; j++) if (!rtx_equal_p (SET_DEST (p_sets[j]), input) && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j]))) SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]), input, output); for (j = 0; j < ninputs; j++) if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j))) RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j), input, output); changed = true; } if (changed) df_insn_rescan (insn); } /* Add the decl D to the local_decls list of FUN. */ void add_local_decl (struct function *fun, tree d) { gcc_assert (TREE_CODE (d) == VAR_DECL); vec_safe_push (fun->local_decls, d); } namespace { const pass_data pass_data_match_asm_constraints = { RTL_PASS, /* type */ "asmcons", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_match_asm_constraints : public rtl_opt_pass { public: pass_match_asm_constraints (gcc::context *ctxt) : rtl_opt_pass (pass_data_match_asm_constraints, ctxt) {} /* opt_pass methods: */ virtual unsigned int execute (function *); }; // class pass_match_asm_constraints unsigned pass_match_asm_constraints::execute (function *fun) { basic_block bb; rtx_insn *insn; rtx pat, *p_sets; int noutputs; if (!crtl->has_asm_statement) return 0; df_set_flags (DF_DEFER_INSN_RESCAN); FOR_EACH_BB_FN (bb, fun) { FOR_BB_INSNS (bb, insn) { if (!INSN_P (insn)) continue; pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL) p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0); else if (GET_CODE (pat) == SET) p_sets = &PATTERN (insn), noutputs = 1; else continue; if (GET_CODE (*p_sets) == SET && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS) match_asm_constraints_1 (insn, p_sets, noutputs); } } return TODO_df_finish; } } // anon namespace rtl_opt_pass * make_pass_match_asm_constraints (gcc::context *ctxt) { return new pass_match_asm_constraints (ctxt); } #include "gt-function.h"