/* Code translation -- generate GCC trees from gfc_code. Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "tree-gimple.h" #include "ggc.h" #include "toplev.h" #include "defaults.h" #include "real.h" #include "gfortran.h" #include "trans.h" #include "trans-stmt.h" #include "trans-array.h" #include "trans-types.h" #include "trans-const.h" /* Naming convention for backend interface code: gfc_trans_* translate gfc_code into STMT trees. gfc_conv_* expression conversion gfc_get_* get a backend tree representation of a decl or type */ static gfc_file *gfc_current_backend_file; char gfc_msg_bounds[] = N_("Array bound mismatch"); char gfc_msg_fault[] = N_("Array reference out of bounds"); char gfc_msg_wrong_return[] = N_("Incorrect function return value"); /* Advance along TREE_CHAIN n times. */ tree gfc_advance_chain (tree t, int n) { for (; n > 0; n--) { gcc_assert (t != NULL_TREE); t = TREE_CHAIN (t); } return t; } /* Wrap a node in a TREE_LIST node and add it to the end of a list. */ tree gfc_chainon_list (tree list, tree add) { tree l; l = tree_cons (NULL_TREE, add, NULL_TREE); return chainon (list, l); } /* Strip off a legitimate source ending from the input string NAME of length LEN. */ static inline void remove_suffix (char *name, int len) { int i; for (i = 2; i < 8 && len > i; i++) { if (name[len - i] == '.') { name[len - i] = '\0'; break; } } } /* Creates a variable declaration with a given TYPE. */ tree gfc_create_var_np (tree type, const char *prefix) { return create_tmp_var_raw (type, prefix); } /* Like above, but also adds it to the current scope. */ tree gfc_create_var (tree type, const char *prefix) { tree tmp; tmp = gfc_create_var_np (type, prefix); pushdecl (tmp); return tmp; } /* If the an expression is not constant, evaluate it now. We assign the result of the expression to an artificially created variable VAR, and return a pointer to the VAR_DECL node for this variable. */ tree gfc_evaluate_now (tree expr, stmtblock_t * pblock) { tree var; if (CONSTANT_CLASS_P (expr)) return expr; var = gfc_create_var (TREE_TYPE (expr), NULL); gfc_add_modify_expr (pblock, var, expr); return var; } /* Build a MODIFY_EXPR (or GIMPLE_MODIFY_STMT) node and add it to a given statement block PBLOCK. A MODIFY_EXPR is an assignment: LHS <- RHS. */ void gfc_add_modify (stmtblock_t * pblock, tree lhs, tree rhs, bool tuples_p) { tree tmp; #ifdef ENABLE_CHECKING /* Make sure that the types of the rhs and the lhs are the same for scalar assignments. We should probably have something similar for aggregates, but right now removing that check just breaks everything. */ gcc_assert (TREE_TYPE (rhs) == TREE_TYPE (lhs) || AGGREGATE_TYPE_P (TREE_TYPE (lhs))); #endif tmp = fold_build2 (tuples_p ? GIMPLE_MODIFY_STMT : MODIFY_EXPR, void_type_node, lhs, rhs); gfc_add_expr_to_block (pblock, tmp); } /* Create a new scope/binding level and initialize a block. Care must be taken when translating expressions as any temporaries will be placed in the innermost scope. */ void gfc_start_block (stmtblock_t * block) { /* Start a new binding level. */ pushlevel (0); block->has_scope = 1; /* The block is empty. */ block->head = NULL_TREE; } /* Initialize a block without creating a new scope. */ void gfc_init_block (stmtblock_t * block) { block->head = NULL_TREE; block->has_scope = 0; } /* Sometimes we create a scope but it turns out that we don't actually need it. This function merges the scope of BLOCK with its parent. Only variable decls will be merged, you still need to add the code. */ void gfc_merge_block_scope (stmtblock_t * block) { tree decl; tree next; gcc_assert (block->has_scope); block->has_scope = 0; /* Remember the decls in this scope. */ decl = getdecls (); poplevel (0, 0, 0); /* Add them to the parent scope. */ while (decl != NULL_TREE) { next = TREE_CHAIN (decl); TREE_CHAIN (decl) = NULL_TREE; pushdecl (decl); decl = next; } } /* Finish a scope containing a block of statements. */ tree gfc_finish_block (stmtblock_t * stmtblock) { tree decl; tree expr; tree block; expr = stmtblock->head; if (!expr) expr = build_empty_stmt (); stmtblock->head = NULL_TREE; if (stmtblock->has_scope) { decl = getdecls (); if (decl) { block = poplevel (1, 0, 0); expr = build3_v (BIND_EXPR, decl, expr, block); } else poplevel (0, 0, 0); } return expr; } /* Build an ADDR_EXPR and cast the result to TYPE. If TYPE is NULL, the natural type is used. */ tree gfc_build_addr_expr (tree type, tree t) { tree base_type = TREE_TYPE (t); tree natural_type; if (type && POINTER_TYPE_P (type) && TREE_CODE (base_type) == ARRAY_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (type)) == TYPE_MAIN_VARIANT (TREE_TYPE (base_type))) natural_type = type; else natural_type = build_pointer_type (base_type); if (TREE_CODE (t) == INDIRECT_REF) { if (!type) type = natural_type; t = TREE_OPERAND (t, 0); natural_type = TREE_TYPE (t); } else { if (DECL_P (t)) TREE_ADDRESSABLE (t) = 1; t = build1 (ADDR_EXPR, natural_type, t); } if (type && natural_type != type) t = convert (type, t); return t; } /* Build an ARRAY_REF with its natural type. */ tree gfc_build_array_ref (tree base, tree offset) { tree type = TREE_TYPE (base); gcc_assert (TREE_CODE (type) == ARRAY_TYPE); type = TREE_TYPE (type); if (DECL_P (base)) TREE_ADDRESSABLE (base) = 1; /* Strip NON_LVALUE_EXPR nodes. */ STRIP_TYPE_NOPS (offset); return build4 (ARRAY_REF, type, base, offset, NULL_TREE, NULL_TREE); } /* Generate a runtime error if COND is true. */ void gfc_trans_runtime_check (tree cond, const char * msgid, stmtblock_t * pblock, locus * where) { stmtblock_t block; tree body; tree tmp; tree arg; char * message; int line; if (integer_zerop (cond)) return; /* The code to generate the error. */ gfc_start_block (&block); if (where) { #ifdef USE_MAPPED_LOCATION line = LOCATION_LINE (where->lb->location); #else line = where->lb->linenum; #endif asprintf (&message, "%s (in file '%s', at line %d)", _(msgid), where->lb->file->filename, line); } else asprintf (&message, "%s (in file '%s', around line %d)", _(msgid), gfc_source_file, input_line + 1); arg = gfc_build_addr_expr (pchar_type_node, gfc_build_cstring_const(message)); gfc_free(message); tmp = build_call_expr (gfor_fndecl_runtime_error, 1, arg); gfc_add_expr_to_block (&block, tmp); body = gfc_finish_block (&block); if (integer_onep (cond)) { gfc_add_expr_to_block (pblock, body); } else { /* Tell the compiler that this isn't likely. */ cond = fold_convert (long_integer_type_node, cond); tmp = build_int_cst (long_integer_type_node, 0); cond = build_call_expr (built_in_decls[BUILT_IN_EXPECT], 2, cond, tmp); cond = fold_convert (boolean_type_node, cond); tmp = build3_v (COND_EXPR, cond, body, build_empty_stmt ()); gfc_add_expr_to_block (pblock, tmp); } } /* Add a statement to a block. */ void gfc_add_expr_to_block (stmtblock_t * block, tree expr) { gcc_assert (block); if (expr == NULL_TREE || IS_EMPTY_STMT (expr)) return; if (block->head) { if (TREE_CODE (block->head) != STATEMENT_LIST) { tree tmp; tmp = block->head; block->head = NULL_TREE; append_to_statement_list (tmp, &block->head); } append_to_statement_list (expr, &block->head); } else /* Don't bother creating a list if we only have a single statement. */ block->head = expr; } /* Add a block the end of a block. */ void gfc_add_block_to_block (stmtblock_t * block, stmtblock_t * append) { gcc_assert (append); gcc_assert (!append->has_scope); gfc_add_expr_to_block (block, append->head); append->head = NULL_TREE; } /* Get the current locus. The structure may not be complete, and should only be used with gfc_set_backend_locus. */ void gfc_get_backend_locus (locus * loc) { loc->lb = gfc_getmem (sizeof (gfc_linebuf)); #ifdef USE_MAPPED_LOCATION loc->lb->location = input_location; #else loc->lb->linenum = input_line; #endif loc->lb->file = gfc_current_backend_file; } /* Set the current locus. */ void gfc_set_backend_locus (locus * loc) { gfc_current_backend_file = loc->lb->file; #ifdef USE_MAPPED_LOCATION input_location = loc->lb->location; #else input_line = loc->lb->linenum; input_filename = loc->lb->file->filename; #endif } /* Translate an executable statement. */ tree gfc_trans_code (gfc_code * code) { stmtblock_t block; tree res; if (!code) return build_empty_stmt (); gfc_start_block (&block); /* Translate statements one by one to GIMPLE trees until we reach the end of this gfc_code branch. */ for (; code; code = code->next) { if (code->here != 0) { res = gfc_trans_label_here (code); gfc_add_expr_to_block (&block, res); } switch (code->op) { case EXEC_NOP: res = NULL_TREE; break; case EXEC_ASSIGN: res = gfc_trans_assign (code); break; case EXEC_LABEL_ASSIGN: res = gfc_trans_label_assign (code); break; case EXEC_POINTER_ASSIGN: res = gfc_trans_pointer_assign (code); break; case EXEC_INIT_ASSIGN: res = gfc_trans_init_assign (code); break; case EXEC_CONTINUE: res = NULL_TREE; break; case EXEC_CYCLE: res = gfc_trans_cycle (code); break; case EXEC_EXIT: res = gfc_trans_exit (code); break; case EXEC_GOTO: res = gfc_trans_goto (code); break; case EXEC_ENTRY: res = gfc_trans_entry (code); break; case EXEC_PAUSE: res = gfc_trans_pause (code); break; case EXEC_STOP: res = gfc_trans_stop (code); break; case EXEC_CALL: res = gfc_trans_call (code, false); break; case EXEC_ASSIGN_CALL: res = gfc_trans_call (code, true); break; case EXEC_RETURN: res = gfc_trans_return (code); break; case EXEC_IF: res = gfc_trans_if (code); break; case EXEC_ARITHMETIC_IF: res = gfc_trans_arithmetic_if (code); break; case EXEC_DO: res = gfc_trans_do (code); break; case EXEC_DO_WHILE: res = gfc_trans_do_while (code); break; case EXEC_SELECT: res = gfc_trans_select (code); break; case EXEC_FLUSH: res = gfc_trans_flush (code); break; case EXEC_FORALL: res = gfc_trans_forall (code); break; case EXEC_WHERE: res = gfc_trans_where (code); break; case EXEC_ALLOCATE: res = gfc_trans_allocate (code); break; case EXEC_DEALLOCATE: res = gfc_trans_deallocate (code); break; case EXEC_OPEN: res = gfc_trans_open (code); break; case EXEC_CLOSE: res = gfc_trans_close (code); break; case EXEC_READ: res = gfc_trans_read (code); break; case EXEC_WRITE: res = gfc_trans_write (code); break; case EXEC_IOLENGTH: res = gfc_trans_iolength (code); break; case EXEC_BACKSPACE: res = gfc_trans_backspace (code); break; case EXEC_ENDFILE: res = gfc_trans_endfile (code); break; case EXEC_INQUIRE: res = gfc_trans_inquire (code); break; case EXEC_REWIND: res = gfc_trans_rewind (code); break; case EXEC_TRANSFER: res = gfc_trans_transfer (code); break; case EXEC_DT_END: res = gfc_trans_dt_end (code); break; case EXEC_OMP_ATOMIC: case EXEC_OMP_BARRIER: case EXEC_OMP_CRITICAL: case EXEC_OMP_DO: case EXEC_OMP_FLUSH: case EXEC_OMP_MASTER: case EXEC_OMP_ORDERED: case EXEC_OMP_PARALLEL: case EXEC_OMP_PARALLEL_DO: case EXEC_OMP_PARALLEL_SECTIONS: case EXEC_OMP_PARALLEL_WORKSHARE: case EXEC_OMP_SECTIONS: case EXEC_OMP_SINGLE: case EXEC_OMP_WORKSHARE: res = gfc_trans_omp_directive (code); break; default: internal_error ("gfc_trans_code(): Bad statement code"); } gfc_set_backend_locus (&code->loc); if (res != NULL_TREE && ! IS_EMPTY_STMT (res)) { if (TREE_CODE (res) == STATEMENT_LIST) annotate_all_with_locus (&res, input_location); else SET_EXPR_LOCATION (res, input_location); /* Add the new statement to the block. */ gfc_add_expr_to_block (&block, res); } } /* Return the finished block. */ return gfc_finish_block (&block); } /* This function is called after a complete program unit has been parsed and resolved. */ void gfc_generate_code (gfc_namespace * ns) { if (ns->is_block_data) { gfc_generate_block_data (ns); return; } gfc_generate_function_code (ns); } /* This function is called after a complete module has been parsed and resolved. */ void gfc_generate_module_code (gfc_namespace * ns) { gfc_namespace *n; gfc_generate_module_vars (ns); /* We need to generate all module function prototypes first, to allow sibling calls. */ for (n = ns->contained; n; n = n->sibling) { if (!n->proc_name) continue; gfc_create_function_decl (n); } for (n = ns->contained; n; n = n->sibling) { if (!n->proc_name) continue; gfc_generate_function_code (n); } }