/* Intrinsic translation Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Paul Brook and Steven Bosscher This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "ggc.h" #include "toplev.h" #include "real.h" #include "tree-gimple.h" #include "flags.h" #include "gfortran.h" #include "arith.h" #include "intrinsic.h" #include "trans.h" #include "trans-const.h" #include "trans-types.h" #include "trans-array.h" #include "defaults.h" /* Only for gfc_trans_assign and gfc_trans_pointer_assign. */ #include "trans-stmt.h" /* This maps fortran intrinsic math functions to external library or GCC builtin functions. */ typedef struct gfc_intrinsic_map_t GTY(()) { /* The explicit enum is required to work around inadequacies in the garbage collection/gengtype parsing mechanism. */ enum gfc_generic_isym_id id; /* Enum value from the "language-independent", aka C-centric, part of gcc, or END_BUILTINS of no such value set. */ enum built_in_function code_r4; enum built_in_function code_r8; enum built_in_function code_r10; enum built_in_function code_r16; enum built_in_function code_c4; enum built_in_function code_c8; enum built_in_function code_c10; enum built_in_function code_c16; /* True if the naming pattern is to prepend "c" for complex and append "f" for kind=4. False if the naming pattern is to prepend "_gfortran_" and append "[rc](4|8|10|16)". */ bool libm_name; /* True if a complex version of the function exists. */ bool complex_available; /* True if the function should be marked const. */ bool is_constant; /* The base library name of this function. */ const char *name; /* Cache decls created for the various operand types. */ tree real4_decl; tree real8_decl; tree real10_decl; tree real16_decl; tree complex4_decl; tree complex8_decl; tree complex10_decl; tree complex16_decl; } gfc_intrinsic_map_t; /* ??? The NARGS==1 hack here is based on the fact that (c99 at least) defines complex variants of all of the entries in mathbuiltins.def except for atan2. */ #define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \ { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \ BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, 0, 0, 0, 0, true, \ false, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \ NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE}, #define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \ { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \ BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, \ BUILT_IN_C ## ID, BUILT_IN_C ## ID ## L, BUILT_IN_C ## ID ## L, true, \ true, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \ NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE}, #define LIBM_FUNCTION(ID, NAME, HAVE_COMPLEX) \ { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ true, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \ NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE } #define LIBF_FUNCTION(ID, NAME, HAVE_COMPLEX) \ { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \ false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \ NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE } static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] = { /* Functions built into gcc itself. */ #include "mathbuiltins.def" /* Functions in libm. */ /* ??? This does exist as BUILT_IN_SCALBN, but doesn't quite fit the pattern for other mathbuiltins.def entries. At present we have no optimizations for this in the common sources. */ LIBM_FUNCTION (SCALE, "scalbn", false), /* Functions in libgfortran. */ LIBF_FUNCTION (FRACTION, "fraction", false), LIBF_FUNCTION (NEAREST, "nearest", false), LIBF_FUNCTION (RRSPACING, "rrspacing", false), LIBF_FUNCTION (SET_EXPONENT, "set_exponent", false), LIBF_FUNCTION (SPACING, "spacing", false), /* End the list. */ LIBF_FUNCTION (NONE, NULL, false) }; #undef DEFINE_MATH_BUILTIN #undef DEFINE_MATH_BUILTIN_C #undef LIBM_FUNCTION #undef LIBF_FUNCTION /* Structure for storing components of a floating number to be used by elemental functions to manipulate reals. */ typedef struct { tree arg; /* Variable tree to view convert to integer. */ tree expn; /* Variable tree to save exponent. */ tree frac; /* Variable tree to save fraction. */ tree smask; /* Constant tree of sign's mask. */ tree emask; /* Constant tree of exponent's mask. */ tree fmask; /* Constant tree of fraction's mask. */ tree edigits; /* Constant tree of the number of exponent bits. */ tree fdigits; /* Constant tree of the number of fraction bits. */ tree f1; /* Constant tree of the f1 defined in the real model. */ tree bias; /* Constant tree of the bias of exponent in the memory. */ tree type; /* Type tree of arg1. */ tree mtype; /* Type tree of integer type. Kind is that of arg1. */ } real_compnt_info; enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR }; /* Evaluate the arguments to an intrinsic function. */ /* FIXME: This function and its callers should be rewritten so that it's not necessary to cons up a list to hold the arguments. */ static tree gfc_conv_intrinsic_function_args (gfc_se * se, gfc_expr * expr) { gfc_actual_arglist *actual; gfc_expr *e; gfc_intrinsic_arg *formal; gfc_se argse; tree args; args = NULL_TREE; formal = expr->value.function.isym->formal; for (actual = expr->value.function.actual; actual; actual = actual->next, formal = formal ? formal->next : NULL) { e = actual->expr; /* Skip omitted optional arguments. */ if (!e) continue; /* Evaluate the parameter. This will substitute scalarized references automatically. */ gfc_init_se (&argse, se); if (e->ts.type == BT_CHARACTER) { gfc_conv_expr (&argse, e); gfc_conv_string_parameter (&argse); args = gfc_chainon_list (args, argse.string_length); } else gfc_conv_expr_val (&argse, e); /* If an optional argument is itself an optional dummy argument, check its presence and substitute a null if absent. */ if (e->expr_type ==EXPR_VARIABLE && e->symtree->n.sym->attr.optional && formal && formal->optional) gfc_conv_missing_dummy (&argse, e, formal->ts); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); args = gfc_chainon_list (args, argse.expr); } return args; } /* Conversions between different types are output by the frontend as intrinsic functions. We implement these directly with inline code. */ static void gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr) { tree type; tree arg; /* Evaluate the argument. */ type = gfc_typenode_for_spec (&expr->ts); gcc_assert (expr->value.function.actual->expr); arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); /* Conversion from complex to non-complex involves taking the real component of the value. */ if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE && expr->ts.type != BT_COMPLEX) { tree artype; artype = TREE_TYPE (TREE_TYPE (arg)); arg = build1 (REALPART_EXPR, artype, arg); } se->expr = convert (type, arg); } /* This is needed because the gcc backend only implements FIX_TRUNC_EXPR, which is the same as INT() in Fortran. FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1 Similarly for CEILING. */ static tree build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up) { tree tmp; tree cond; tree argtype; tree intval; argtype = TREE_TYPE (arg); arg = gfc_evaluate_now (arg, pblock); intval = convert (type, arg); intval = gfc_evaluate_now (intval, pblock); tmp = convert (argtype, intval); cond = build2 (up ? GE_EXPR : LE_EXPR, boolean_type_node, tmp, arg); tmp = build2 (up ? PLUS_EXPR : MINUS_EXPR, type, intval, build_int_cst (type, 1)); tmp = build3 (COND_EXPR, type, cond, intval, tmp); return tmp; } /* This is needed because the gcc backend only implements FIX_TRUNC_EXPR NINT(x) = INT(x + ((x > 0) ? 0.5 : -0.5)). */ static tree build_round_expr (stmtblock_t * pblock, tree arg, tree type) { tree tmp; tree cond; tree neg; tree pos; tree argtype; REAL_VALUE_TYPE r; argtype = TREE_TYPE (arg); arg = gfc_evaluate_now (arg, pblock); real_from_string (&r, "0.5"); pos = build_real (argtype, r); real_from_string (&r, "-0.5"); neg = build_real (argtype, r); tmp = gfc_build_const (argtype, integer_zero_node); cond = fold_build2 (GT_EXPR, boolean_type_node, arg, tmp); tmp = fold_build3 (COND_EXPR, argtype, cond, pos, neg); tmp = fold_build2 (PLUS_EXPR, argtype, arg, tmp); return fold_build1 (FIX_TRUNC_EXPR, type, tmp); } /* Convert a real to an integer using a specific rounding mode. Ideally we would just build the corresponding GENERIC node, however the RTL expander only actually supports FIX_TRUNC_EXPR. */ static tree build_fix_expr (stmtblock_t * pblock, tree arg, tree type, enum rounding_mode op) { switch (op) { case RND_FLOOR: return build_fixbound_expr (pblock, arg, type, 0); break; case RND_CEIL: return build_fixbound_expr (pblock, arg, type, 1); break; case RND_ROUND: return build_round_expr (pblock, arg, type); default: gcc_assert (op == RND_TRUNC); return build1 (FIX_TRUNC_EXPR, type, arg); } } /* Round a real value using the specified rounding mode. We use a temporary integer of that same kind size as the result. Values larger than those that can be represented by this kind are unchanged, as they will not be accurate enough to represent the rounding. huge = HUGE (KIND (a)) aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a */ static void gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op) { tree type; tree itype; tree arg; tree tmp; tree cond; mpfr_t huge; int n; int kind; kind = expr->ts.kind; n = END_BUILTINS; /* We have builtin functions for some cases. */ switch (op) { case RND_ROUND: switch (kind) { case 4: n = BUILT_IN_ROUNDF; break; case 8: n = BUILT_IN_ROUND; break; case 10: case 16: n = BUILT_IN_ROUNDL; break; } break; case RND_TRUNC: switch (kind) { case 4: n = BUILT_IN_TRUNCF; break; case 8: n = BUILT_IN_TRUNC; break; case 10: case 16: n = BUILT_IN_TRUNCL; break; } break; default: gcc_unreachable (); } /* Evaluate the argument. */ gcc_assert (expr->value.function.actual->expr); arg = gfc_conv_intrinsic_function_args (se, expr); /* Use a builtin function if one exists. */ if (n != END_BUILTINS) { tmp = built_in_decls[n]; se->expr = build_function_call_expr (tmp, arg); return; } /* This code is probably redundant, but we'll keep it lying around just in case. */ type = gfc_typenode_for_spec (&expr->ts); arg = TREE_VALUE (arg); arg = gfc_evaluate_now (arg, &se->pre); /* Test if the value is too large to handle sensibly. */ gfc_set_model_kind (kind); mpfr_init (huge); n = gfc_validate_kind (BT_INTEGER, kind, false); mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE); tmp = gfc_conv_mpfr_to_tree (huge, kind); cond = build2 (LT_EXPR, boolean_type_node, arg, tmp); mpfr_neg (huge, huge, GFC_RND_MODE); tmp = gfc_conv_mpfr_to_tree (huge, kind); tmp = build2 (GT_EXPR, boolean_type_node, arg, tmp); cond = build2 (TRUTH_AND_EXPR, boolean_type_node, cond, tmp); itype = gfc_get_int_type (kind); tmp = build_fix_expr (&se->pre, arg, itype, op); tmp = convert (type, tmp); se->expr = build3 (COND_EXPR, type, cond, tmp, arg); mpfr_clear (huge); } /* Convert to an integer using the specified rounding mode. */ static void gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op) { tree type; tree arg; /* Evaluate the argument. */ type = gfc_typenode_for_spec (&expr->ts); gcc_assert (expr->value.function.actual->expr); arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); if (TREE_CODE (TREE_TYPE (arg)) == INTEGER_TYPE) { /* Conversion to a different integer kind. */ se->expr = convert (type, arg); } else { /* Conversion from complex to non-complex involves taking the real component of the value. */ if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE && expr->ts.type != BT_COMPLEX) { tree artype; artype = TREE_TYPE (TREE_TYPE (arg)); arg = build1 (REALPART_EXPR, artype, arg); } se->expr = build_fix_expr (&se->pre, arg, type, op); } } /* Get the imaginary component of a value. */ static void gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr) { tree arg; arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); se->expr = build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg); } /* Get the complex conjugate of a value. */ static void gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr) { tree arg; arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); se->expr = build1 (CONJ_EXPR, TREE_TYPE (arg), arg); } /* Initialize function decls for library functions. The external functions are created as required. Builtin functions are added here. */ void gfc_build_intrinsic_lib_fndecls (void) { gfc_intrinsic_map_t *m; /* Add GCC builtin functions. */ for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++) { if (m->code_r4 != END_BUILTINS) m->real4_decl = built_in_decls[m->code_r4]; if (m->code_r8 != END_BUILTINS) m->real8_decl = built_in_decls[m->code_r8]; if (m->code_r10 != END_BUILTINS) m->real10_decl = built_in_decls[m->code_r10]; if (m->code_r16 != END_BUILTINS) m->real16_decl = built_in_decls[m->code_r16]; if (m->code_c4 != END_BUILTINS) m->complex4_decl = built_in_decls[m->code_c4]; if (m->code_c8 != END_BUILTINS) m->complex8_decl = built_in_decls[m->code_c8]; if (m->code_c10 != END_BUILTINS) m->complex10_decl = built_in_decls[m->code_c10]; if (m->code_c16 != END_BUILTINS) m->complex16_decl = built_in_decls[m->code_c16]; } } /* Create a fndecl for a simple intrinsic library function. */ static tree gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr) { tree type; tree argtypes; tree fndecl; gfc_actual_arglist *actual; tree *pdecl; gfc_typespec *ts; char name[GFC_MAX_SYMBOL_LEN + 3]; ts = &expr->ts; if (ts->type == BT_REAL) { switch (ts->kind) { case 4: pdecl = &m->real4_decl; break; case 8: pdecl = &m->real8_decl; break; case 10: pdecl = &m->real10_decl; break; case 16: pdecl = &m->real16_decl; break; default: gcc_unreachable (); } } else if (ts->type == BT_COMPLEX) { gcc_assert (m->complex_available); switch (ts->kind) { case 4: pdecl = &m->complex4_decl; break; case 8: pdecl = &m->complex8_decl; break; case 10: pdecl = &m->complex10_decl; break; case 16: pdecl = &m->complex16_decl; break; default: gcc_unreachable (); } } else gcc_unreachable (); if (*pdecl) return *pdecl; if (m->libm_name) { if (ts->kind == 4) snprintf (name, sizeof (name), "%s%s%s", ts->type == BT_COMPLEX ? "c" : "", m->name, "f"); else if (ts->kind == 8) snprintf (name, sizeof (name), "%s%s", ts->type == BT_COMPLEX ? "c" : "", m->name); else { gcc_assert (ts->kind == 10 || ts->kind == 16); snprintf (name, sizeof (name), "%s%s%s", ts->type == BT_COMPLEX ? "c" : "", m->name, "l"); } } else { snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name, ts->type == BT_COMPLEX ? 'c' : 'r', ts->kind); } argtypes = NULL_TREE; for (actual = expr->value.function.actual; actual; actual = actual->next) { type = gfc_typenode_for_spec (&actual->expr->ts); argtypes = gfc_chainon_list (argtypes, type); } argtypes = gfc_chainon_list (argtypes, void_type_node); type = build_function_type (gfc_typenode_for_spec (ts), argtypes); fndecl = build_decl (FUNCTION_DECL, get_identifier (name), type); /* Mark the decl as external. */ DECL_EXTERNAL (fndecl) = 1; TREE_PUBLIC (fndecl) = 1; /* Mark it __attribute__((const)), if possible. */ TREE_READONLY (fndecl) = m->is_constant; rest_of_decl_compilation (fndecl, 1, 0); (*pdecl) = fndecl; return fndecl; } /* Convert an intrinsic function into an external or builtin call. */ static void gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr) { gfc_intrinsic_map_t *m; tree args; tree fndecl; gfc_generic_isym_id id; id = expr->value.function.isym->generic_id; /* Find the entry for this function. */ for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++) { if (id == m->id) break; } if (m->id == GFC_ISYM_NONE) { internal_error ("Intrinsic function %s(%d) not recognized", expr->value.function.name, id); } /* Get the decl and generate the call. */ args = gfc_conv_intrinsic_function_args (se, expr); fndecl = gfc_get_intrinsic_lib_fndecl (m, expr); se->expr = build_function_call_expr (fndecl, args); } /* Generate code for EXPONENT(X) intrinsic function. */ static void gfc_conv_intrinsic_exponent (gfc_se * se, gfc_expr * expr) { tree args, fndecl; gfc_expr *a1; args = gfc_conv_intrinsic_function_args (se, expr); a1 = expr->value.function.actual->expr; switch (a1->ts.kind) { case 4: fndecl = gfor_fndecl_math_exponent4; break; case 8: fndecl = gfor_fndecl_math_exponent8; break; case 10: fndecl = gfor_fndecl_math_exponent10; break; case 16: fndecl = gfor_fndecl_math_exponent16; break; default: gcc_unreachable (); } se->expr = build_function_call_expr (fndecl, args); } /* Evaluate a single upper or lower bound. */ /* TODO: bound intrinsic generates way too much unnecessary code. */ static void gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper) { gfc_actual_arglist *arg; gfc_actual_arglist *arg2; tree desc; tree type; tree bound; tree tmp; tree cond, cond1, cond2, cond3, cond4, size; tree ubound; tree lbound; gfc_se argse; gfc_ss *ss; gfc_array_spec * as; gfc_ref *ref; arg = expr->value.function.actual; arg2 = arg->next; if (se->ss) { /* Create an implicit second parameter from the loop variable. */ gcc_assert (!arg2->expr); gcc_assert (se->loop->dimen == 1); gcc_assert (se->ss->expr == expr); gfc_advance_se_ss_chain (se); bound = se->loop->loopvar[0]; bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound, se->loop->from[0]); } else { /* use the passed argument. */ gcc_assert (arg->next->expr); gfc_init_se (&argse, NULL); gfc_conv_expr_type (&argse, arg->next->expr, gfc_array_index_type); gfc_add_block_to_block (&se->pre, &argse.pre); bound = argse.expr; /* Convert from one based to zero based. */ bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound, gfc_index_one_node); } /* TODO: don't re-evaluate the descriptor on each iteration. */ /* Get a descriptor for the first parameter. */ ss = gfc_walk_expr (arg->expr); gcc_assert (ss != gfc_ss_terminator); gfc_init_se (&argse, NULL); gfc_conv_expr_descriptor (&argse, arg->expr, ss); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); desc = argse.expr; if (INTEGER_CST_P (bound)) { int hi, low; hi = TREE_INT_CST_HIGH (bound); low = TREE_INT_CST_LOW (bound); if (hi || low < 0 || low >= GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))) gfc_error ("'dim' argument of %s intrinsic at %L is not a valid " "dimension index", upper ? "UBOUND" : "LBOUND", &expr->where); } else { if (flag_bounds_check) { bound = gfc_evaluate_now (bound, &se->pre); cond = fold_build2 (LT_EXPR, boolean_type_node, bound, build_int_cst (TREE_TYPE (bound), 0)); tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))]; tmp = fold_build2 (GE_EXPR, boolean_type_node, bound, tmp); cond = fold_build2 (TRUTH_ORIF_EXPR, boolean_type_node, cond, tmp); gfc_trans_runtime_check (cond, gfc_msg_fault, &se->pre, &expr->where); } } ubound = gfc_conv_descriptor_ubound (desc, bound); lbound = gfc_conv_descriptor_lbound (desc, bound); /* Follow any component references. */ if (arg->expr->expr_type == EXPR_VARIABLE || arg->expr->expr_type == EXPR_CONSTANT) { as = arg->expr->symtree->n.sym->as; for (ref = arg->expr->ref; ref; ref = ref->next) { switch (ref->type) { case REF_COMPONENT: as = ref->u.c.component->as; continue; case REF_SUBSTRING: continue; case REF_ARRAY: { switch (ref->u.ar.type) { case AR_ELEMENT: case AR_SECTION: case AR_UNKNOWN: as = NULL; continue; case AR_FULL: break; } } } } } else as = NULL; /* 13.14.53: Result value for LBOUND Case (i): For an array section or for an array expression other than a whole array or array structure component, LBOUND(ARRAY, DIM) has the value 1. For a whole array or array structure component, LBOUND(ARRAY, DIM) has the value: (a) equal to the lower bound for subscript DIM of ARRAY if dimension DIM of ARRAY does not have extent zero or if ARRAY is an assumed-size array of rank DIM, or (b) 1 otherwise. 13.14.113: Result value for UBOUND Case (i): For an array section or for an array expression other than a whole array or array structure component, UBOUND(ARRAY, DIM) has the value equal to the number of elements in the given dimension; otherwise, it has a value equal to the upper bound for subscript DIM of ARRAY if dimension DIM of ARRAY does not have size zero and has value zero if dimension DIM has size zero. */ if (as) { tree stride = gfc_conv_descriptor_stride (desc, bound); cond1 = fold_build2 (GE_EXPR, boolean_type_node, ubound, lbound); cond2 = fold_build2 (LE_EXPR, boolean_type_node, ubound, lbound); cond3 = fold_build2 (GE_EXPR, boolean_type_node, stride, gfc_index_zero_node); cond3 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond3, cond1); cond4 = fold_build2 (LT_EXPR, boolean_type_node, stride, gfc_index_zero_node); cond4 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond4, cond2); if (upper) { cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4); se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond, ubound, gfc_index_zero_node); } else { if (as->type == AS_ASSUMED_SIZE) cond = fold_build2 (EQ_EXPR, boolean_type_node, bound, build_int_cst (TREE_TYPE (bound), arg->expr->rank - 1)); else cond = boolean_false_node; cond1 = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4); cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond1); se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond, lbound, gfc_index_one_node); } } else { if (upper) { size = fold_build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound); se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, size, gfc_index_one_node); } else se->expr = gfc_index_one_node; } type = gfc_typenode_for_spec (&expr->ts); se->expr = convert (type, se->expr); } static void gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr) { tree args; tree val; int n; args = gfc_conv_intrinsic_function_args (se, expr); gcc_assert (args && TREE_CHAIN (args) == NULL_TREE); val = TREE_VALUE (args); switch (expr->value.function.actual->expr->ts.type) { case BT_INTEGER: case BT_REAL: se->expr = build1 (ABS_EXPR, TREE_TYPE (val), val); break; case BT_COMPLEX: switch (expr->ts.kind) { case 4: n = BUILT_IN_CABSF; break; case 8: n = BUILT_IN_CABS; break; case 10: case 16: n = BUILT_IN_CABSL; break; default: gcc_unreachable (); } se->expr = build_function_call_expr (built_in_decls[n], args); break; default: gcc_unreachable (); } } /* Create a complex value from one or two real components. */ static void gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both) { tree arg; tree real; tree imag; tree type; type = gfc_typenode_for_spec (&expr->ts); arg = gfc_conv_intrinsic_function_args (se, expr); real = convert (TREE_TYPE (type), TREE_VALUE (arg)); if (both) imag = convert (TREE_TYPE (type), TREE_VALUE (TREE_CHAIN (arg))); else if (TREE_CODE (TREE_TYPE (TREE_VALUE (arg))) == COMPLEX_TYPE) { arg = TREE_VALUE (arg); imag = build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg); imag = convert (TREE_TYPE (type), imag); } else imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node); se->expr = fold_build2 (COMPLEX_EXPR, type, real, imag); } /* Remainder function MOD(A, P) = A - INT(A / P) * P MODULO(A, P) = A - FLOOR (A / P) * P */ /* TODO: MOD(x, 0) */ static void gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo) { tree arg; tree arg2; tree type; tree itype; tree tmp; tree test; tree test2; mpfr_t huge; int n, ikind; arg = gfc_conv_intrinsic_function_args (se, expr); switch (expr->ts.type) { case BT_INTEGER: /* Integer case is easy, we've got a builtin op. */ arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); if (modulo) se->expr = build2 (FLOOR_MOD_EXPR, type, arg, arg2); else se->expr = build2 (TRUNC_MOD_EXPR, type, arg, arg2); break; case BT_REAL: n = END_BUILTINS; /* Check if we have a builtin fmod. */ switch (expr->ts.kind) { case 4: n = BUILT_IN_FMODF; break; case 8: n = BUILT_IN_FMOD; break; case 10: case 16: n = BUILT_IN_FMODL; break; default: break; } /* Use it if it exists. */ if (n != END_BUILTINS) { tmp = built_in_decls[n]; se->expr = build_function_call_expr (tmp, arg); if (modulo == 0) return; } arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); arg = gfc_evaluate_now (arg, &se->pre); arg2 = gfc_evaluate_now (arg2, &se->pre); /* Definition: modulo = arg - floor (arg/arg2) * arg2, so = test ? fmod (arg, arg2) : fmod (arg, arg2) + arg2, where test = (fmod (arg, arg2) != 0) && ((arg < 0) xor (arg2 < 0)) thereby avoiding another division and retaining the accuracy of the builtin function. */ if (n != END_BUILTINS && modulo) { tree zero = gfc_build_const (type, integer_zero_node); tmp = gfc_evaluate_now (se->expr, &se->pre); test = build2 (LT_EXPR, boolean_type_node, arg, zero); test2 = build2 (LT_EXPR, boolean_type_node, arg2, zero); test2 = build2 (TRUTH_XOR_EXPR, boolean_type_node, test, test2); test = build2 (NE_EXPR, boolean_type_node, tmp, zero); test = build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2); test = gfc_evaluate_now (test, &se->pre); se->expr = build3 (COND_EXPR, type, test, build2 (PLUS_EXPR, type, tmp, arg2), tmp); return; } /* If we do not have a built_in fmod, the calculation is going to have to be done longhand. */ tmp = build2 (RDIV_EXPR, type, arg, arg2); /* Test if the value is too large to handle sensibly. */ gfc_set_model_kind (expr->ts.kind); mpfr_init (huge); n = gfc_validate_kind (BT_INTEGER, expr->ts.kind, true); ikind = expr->ts.kind; if (n < 0) { n = gfc_validate_kind (BT_INTEGER, gfc_max_integer_kind, false); ikind = gfc_max_integer_kind; } mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE); test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind); test2 = build2 (LT_EXPR, boolean_type_node, tmp, test); mpfr_neg (huge, huge, GFC_RND_MODE); test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind); test = build2 (GT_EXPR, boolean_type_node, tmp, test); test2 = build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2); itype = gfc_get_int_type (ikind); if (modulo) tmp = build_fix_expr (&se->pre, tmp, itype, RND_FLOOR); else tmp = build_fix_expr (&se->pre, tmp, itype, RND_TRUNC); tmp = convert (type, tmp); tmp = build3 (COND_EXPR, type, test2, tmp, arg); tmp = build2 (MULT_EXPR, type, tmp, arg2); se->expr = build2 (MINUS_EXPR, type, arg, tmp); mpfr_clear (huge); break; default: gcc_unreachable (); } } /* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y. */ static void gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree val; tree tmp; tree type; tree zero; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); val = build2 (MINUS_EXPR, type, arg, arg2); val = gfc_evaluate_now (val, &se->pre); zero = gfc_build_const (type, integer_zero_node); tmp = build2 (LE_EXPR, boolean_type_node, val, zero); se->expr = build3 (COND_EXPR, type, tmp, zero, val); } /* SIGN(A, B) is absolute value of A times sign of B. The real value versions use library functions to ensure the correct handling of negative zero. Integer case implemented as: SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp } */ static void gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr) { tree tmp; tree arg; tree arg2; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); if (expr->ts.type == BT_REAL) { switch (expr->ts.kind) { case 4: tmp = built_in_decls[BUILT_IN_COPYSIGNF]; break; case 8: tmp = built_in_decls[BUILT_IN_COPYSIGN]; break; case 10: case 16: tmp = built_in_decls[BUILT_IN_COPYSIGNL]; break; default: gcc_unreachable (); } se->expr = build_function_call_expr (tmp, arg); return; } /* Having excluded floating point types, we know we are now dealing with signed integer types. */ arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); /* Arg is used multiple times below. */ arg = gfc_evaluate_now (arg, &se->pre); /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if the signs of A and B are the same, and of all ones if they differ. */ tmp = fold_build2 (BIT_XOR_EXPR, type, arg, arg2); tmp = fold_build2 (RSHIFT_EXPR, type, tmp, build_int_cst (type, TYPE_PRECISION (type) - 1)); tmp = gfc_evaluate_now (tmp, &se->pre); /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp] is all ones (i.e. -1). */ se->expr = fold_build2 (BIT_XOR_EXPR, type, fold_build2 (PLUS_EXPR, type, arg, tmp), tmp); } /* Test for the presence of an optional argument. */ static void gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr) { gfc_expr *arg; arg = expr->value.function.actual->expr; gcc_assert (arg->expr_type == EXPR_VARIABLE); se->expr = gfc_conv_expr_present (arg->symtree->n.sym); se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr); } /* Calculate the double precision product of two single precision values. */ static void gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); /* Convert the args to double precision before multiplying. */ type = gfc_typenode_for_spec (&expr->ts); arg = convert (type, arg); arg2 = convert (type, arg2); se->expr = build2 (MULT_EXPR, type, arg, arg2); } /* Return a length one character string containing an ascii character. */ static void gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr) { tree arg; tree var; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); /* We currently don't support character types != 1. */ gcc_assert (expr->ts.kind == 1); type = gfc_character1_type_node; var = gfc_create_var (type, "char"); arg = convert (type, arg); gfc_add_modify_expr (&se->pre, var, arg); se->expr = gfc_build_addr_expr (build_pointer_type (type), var); se->string_length = integer_one_node; } static void gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr) { tree var; tree len; tree tmp; tree arglist; tree type; tree cond; tree gfc_int8_type_node = gfc_get_int_type (8); type = build_pointer_type (gfc_character1_type_node); var = gfc_create_var (type, "pstr"); len = gfc_create_var (gfc_int8_type_node, "len"); tmp = gfc_conv_intrinsic_function_args (se, expr); arglist = gfc_chainon_list (NULL_TREE, build_fold_addr_expr (var)); arglist = gfc_chainon_list (arglist, build_fold_addr_expr (len)); arglist = chainon (arglist, tmp); tmp = build_function_call_expr (gfor_fndecl_ctime, arglist); gfc_add_expr_to_block (&se->pre, tmp); /* Free the temporary afterwards, if necessary. */ cond = build2 (GT_EXPR, boolean_type_node, len, build_int_cst (TREE_TYPE (len), 0)); tmp = build_call_expr (gfor_fndecl_internal_free, 1, var); tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&se->post, tmp); se->expr = var; se->string_length = len; } static void gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr) { tree var; tree len; tree tmp; tree arglist; tree type; tree cond; tree gfc_int4_type_node = gfc_get_int_type (4); type = build_pointer_type (gfc_character1_type_node); var = gfc_create_var (type, "pstr"); len = gfc_create_var (gfc_int4_type_node, "len"); tmp = gfc_conv_intrinsic_function_args (se, expr); arglist = gfc_chainon_list (NULL_TREE, build_fold_addr_expr (var)); arglist = gfc_chainon_list (arglist, build_fold_addr_expr (len)); arglist = chainon (arglist, tmp); tmp = build_function_call_expr (gfor_fndecl_fdate, arglist); gfc_add_expr_to_block (&se->pre, tmp); /* Free the temporary afterwards, if necessary. */ cond = build2 (GT_EXPR, boolean_type_node, len, build_int_cst (TREE_TYPE (len), 0)); tmp = build_call_expr (gfor_fndecl_internal_free, 1, var); tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&se->post, tmp); se->expr = var; se->string_length = len; } /* Return a character string containing the tty name. */ static void gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr) { tree var; tree len; tree tmp; tree arglist; tree type; tree cond; tree gfc_int4_type_node = gfc_get_int_type (4); type = build_pointer_type (gfc_character1_type_node); var = gfc_create_var (type, "pstr"); len = gfc_create_var (gfc_int4_type_node, "len"); tmp = gfc_conv_intrinsic_function_args (se, expr); arglist = gfc_chainon_list (NULL_TREE, build_fold_addr_expr (var)); arglist = gfc_chainon_list (arglist, build_fold_addr_expr (len)); arglist = chainon (arglist, tmp); tmp = build_function_call_expr (gfor_fndecl_ttynam, arglist); gfc_add_expr_to_block (&se->pre, tmp); /* Free the temporary afterwards, if necessary. */ cond = build2 (GT_EXPR, boolean_type_node, len, build_int_cst (TREE_TYPE (len), 0)); tmp = build_call_expr (gfor_fndecl_internal_free, 1, var); tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&se->post, tmp); se->expr = var; se->string_length = len; } /* Get the minimum/maximum value of all the parameters. minmax (a1, a2, a3, ...) { if (a2 .op. a1) mvar = a2; else mvar = a1; if (a3 .op. mvar) mvar = a3; ... return mvar } */ /* TODO: Mismatching types can occur when specific names are used. These should be handled during resolution. */ static void gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, int op) { tree limit; tree tmp; tree mvar; tree val; tree thencase; tree elsecase; tree arg; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); type = gfc_typenode_for_spec (&expr->ts); limit = TREE_VALUE (arg); if (TREE_TYPE (limit) != type) limit = convert (type, limit); /* Only evaluate the argument once. */ if (TREE_CODE (limit) != VAR_DECL && !TREE_CONSTANT (limit)) limit = gfc_evaluate_now (limit, &se->pre); mvar = gfc_create_var (type, "M"); elsecase = build2_v (MODIFY_EXPR, mvar, limit); for (arg = TREE_CHAIN (arg); arg != NULL_TREE; arg = TREE_CHAIN (arg)) { val = TREE_VALUE (arg); if (TREE_TYPE (val) != type) val = convert (type, val); /* Only evaluate the argument once. */ if (TREE_CODE (val) != VAR_DECL && !TREE_CONSTANT (val)) val = gfc_evaluate_now (val, &se->pre); thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val)); tmp = build2 (op, boolean_type_node, val, limit); tmp = build3_v (COND_EXPR, tmp, thencase, elsecase); gfc_add_expr_to_block (&se->pre, tmp); elsecase = build_empty_stmt (); limit = mvar; } se->expr = mvar; } /* Create a symbol node for this intrinsic. The symbol from the frontend has the generic name. */ static gfc_symbol * gfc_get_symbol_for_expr (gfc_expr * expr) { gfc_symbol *sym; /* TODO: Add symbols for intrinsic function to the global namespace. */ gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5); sym = gfc_new_symbol (expr->value.function.name, NULL); sym->ts = expr->ts; sym->attr.external = 1; sym->attr.function = 1; sym->attr.always_explicit = 1; sym->attr.proc = PROC_INTRINSIC; sym->attr.flavor = FL_PROCEDURE; sym->result = sym; if (expr->rank > 0) { sym->attr.dimension = 1; sym->as = gfc_get_array_spec (); sym->as->type = AS_ASSUMED_SHAPE; sym->as->rank = expr->rank; } /* TODO: proper argument lists for external intrinsics. */ return sym; } /* Generate a call to an external intrinsic function. */ static void gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr) { gfc_symbol *sym; tree append_args; gcc_assert (!se->ss || se->ss->expr == expr); if (se->ss) gcc_assert (expr->rank > 0); else gcc_assert (expr->rank == 0); sym = gfc_get_symbol_for_expr (expr); /* Calls to libgfortran_matmul need to be appended special arguments, to be able to call the BLAS ?gemm functions if required and possible. */ append_args = NULL_TREE; if (expr->value.function.isym->generic_id == GFC_ISYM_MATMUL && sym->ts.type != BT_LOGICAL) { tree cint = gfc_get_int_type (gfc_c_int_kind); if (gfc_option.flag_external_blas && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX) && (sym->ts.kind == gfc_default_real_kind || sym->ts.kind == gfc_default_double_kind)) { tree gemm_fndecl; if (sym->ts.type == BT_REAL) { if (sym->ts.kind == gfc_default_real_kind) gemm_fndecl = gfor_fndecl_sgemm; else gemm_fndecl = gfor_fndecl_dgemm; } else { if (sym->ts.kind == gfc_default_real_kind) gemm_fndecl = gfor_fndecl_cgemm; else gemm_fndecl = gfor_fndecl_zgemm; } append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 1)); append_args = gfc_chainon_list (append_args, build_int_cst (cint, gfc_option.blas_matmul_limit)); append_args = gfc_chainon_list (append_args, gfc_build_addr_expr (NULL_TREE, gemm_fndecl)); } else { append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 0)); append_args = gfc_chainon_list (append_args, build_int_cst (cint, 0)); append_args = gfc_chainon_list (append_args, null_pointer_node); } } gfc_conv_function_call (se, sym, expr->value.function.actual, append_args); gfc_free (sym); } /* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR. Implemented as any(a) { forall (i=...) if (a[i] != 0) return 1 end forall return 0 } all(a) { forall (i=...) if (a[i] == 0) return 0 end forall return 1 } */ static void gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, int op) { tree resvar; stmtblock_t block; stmtblock_t body; tree type; tree tmp; tree found; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss; gfc_se arrayse; tree exit_label; if (se->ss) { gfc_conv_intrinsic_funcall (se, expr); return; } actual = expr->value.function.actual; type = gfc_typenode_for_spec (&expr->ts); /* Initialize the result. */ resvar = gfc_create_var (type, "test"); if (op == EQ_EXPR) tmp = convert (type, boolean_true_node); else tmp = convert (type, boolean_false_node); gfc_add_modify_expr (&se->pre, resvar, tmp); /* Walk the arguments. */ arrayss = gfc_walk_expr (actual->expr); gcc_assert (arrayss != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); exit_label = gfc_build_label_decl (NULL_TREE); TREE_USED (exit_label) = 1; gfc_add_ss_to_loop (&loop, arrayss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gfc_mark_ss_chain_used (arrayss, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); /* If the condition matches then set the return value. */ gfc_start_block (&block); if (op == EQ_EXPR) tmp = convert (type, boolean_false_node); else tmp = convert (type, boolean_true_node); gfc_add_modify_expr (&block, resvar, tmp); /* And break out of the loop. */ tmp = build1_v (GOTO_EXPR, exit_label); gfc_add_expr_to_block (&block, tmp); found = gfc_finish_block (&block); /* Check this element. */ gfc_init_se (&arrayse, NULL); gfc_copy_loopinfo_to_se (&arrayse, &loop); arrayse.ss = arrayss; gfc_conv_expr_val (&arrayse, actual->expr); gfc_add_block_to_block (&body, &arrayse.pre); tmp = fold_build2 (op, boolean_type_node, arrayse.expr, build_int_cst (TREE_TYPE (arrayse.expr), 0)); tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt ()); gfc_add_expr_to_block (&body, tmp); gfc_add_block_to_block (&body, &arrayse.post); gfc_trans_scalarizing_loops (&loop, &body); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&loop.pre, tmp); gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); gfc_cleanup_loop (&loop); se->expr = resvar; } /* COUNT(A) = Number of true elements in A. */ static void gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr) { tree resvar; tree type; stmtblock_t body; tree tmp; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss; gfc_se arrayse; if (se->ss) { gfc_conv_intrinsic_funcall (se, expr); return; } actual = expr->value.function.actual; type = gfc_typenode_for_spec (&expr->ts); /* Initialize the result. */ resvar = gfc_create_var (type, "count"); gfc_add_modify_expr (&se->pre, resvar, build_int_cst (type, 0)); /* Walk the arguments. */ arrayss = gfc_walk_expr (actual->expr); gcc_assert (arrayss != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, arrayss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gfc_mark_ss_chain_used (arrayss, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); tmp = build2 (PLUS_EXPR, TREE_TYPE (resvar), resvar, build_int_cst (TREE_TYPE (resvar), 1)); tmp = build2_v (MODIFY_EXPR, resvar, tmp); gfc_init_se (&arrayse, NULL); gfc_copy_loopinfo_to_se (&arrayse, &loop); arrayse.ss = arrayss; gfc_conv_expr_val (&arrayse, actual->expr); tmp = build3_v (COND_EXPR, arrayse.expr, tmp, build_empty_stmt ()); gfc_add_block_to_block (&body, &arrayse.pre); gfc_add_expr_to_block (&body, tmp); gfc_add_block_to_block (&body, &arrayse.post); gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); gfc_cleanup_loop (&loop); se->expr = resvar; } /* Inline implementation of the sum and product intrinsics. */ static void gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, int op) { tree resvar; tree type; stmtblock_t body; stmtblock_t block; tree tmp; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss; gfc_ss *maskss; gfc_se arrayse; gfc_se maskse; gfc_expr *arrayexpr; gfc_expr *maskexpr; if (se->ss) { gfc_conv_intrinsic_funcall (se, expr); return; } type = gfc_typenode_for_spec (&expr->ts); /* Initialize the result. */ resvar = gfc_create_var (type, "val"); if (op == PLUS_EXPR) tmp = gfc_build_const (type, integer_zero_node); else tmp = gfc_build_const (type, integer_one_node); gfc_add_modify_expr (&se->pre, resvar, tmp); /* Walk the arguments. */ actual = expr->value.function.actual; arrayexpr = actual->expr; arrayss = gfc_walk_expr (arrayexpr); gcc_assert (arrayss != gfc_ss_terminator); actual = actual->next->next; gcc_assert (actual); maskexpr = actual->expr; if (maskexpr && maskexpr->rank != 0) { maskss = gfc_walk_expr (maskexpr); gcc_assert (maskss != gfc_ss_terminator); } else maskss = NULL; /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, arrayss); if (maskss) gfc_add_ss_to_loop (&loop, maskss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gfc_mark_ss_chain_used (arrayss, 1); if (maskss) gfc_mark_ss_chain_used (maskss, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); /* If we have a mask, only add this element if the mask is set. */ if (maskss) { gfc_init_se (&maskse, NULL); gfc_copy_loopinfo_to_se (&maskse, &loop); maskse.ss = maskss; gfc_conv_expr_val (&maskse, maskexpr); gfc_add_block_to_block (&body, &maskse.pre); gfc_start_block (&block); } else gfc_init_block (&block); /* Do the actual summation/product. */ gfc_init_se (&arrayse, NULL); gfc_copy_loopinfo_to_se (&arrayse, &loop); arrayse.ss = arrayss; gfc_conv_expr_val (&arrayse, arrayexpr); gfc_add_block_to_block (&block, &arrayse.pre); tmp = build2 (op, type, resvar, arrayse.expr); gfc_add_modify_expr (&block, resvar, tmp); gfc_add_block_to_block (&block, &arrayse.post); if (maskss) { /* We enclose the above in if (mask) {...} . */ tmp = gfc_finish_block (&block); tmp = build3_v (COND_EXPR, maskse.expr, tmp, build_empty_stmt ()); } else tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&body, tmp); gfc_trans_scalarizing_loops (&loop, &body); /* For a scalar mask, enclose the loop in an if statement. */ if (maskexpr && maskss == NULL) { gfc_init_se (&maskse, NULL); gfc_conv_expr_val (&maskse, maskexpr); gfc_init_block (&block); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); tmp = gfc_finish_block (&block); tmp = build3_v (COND_EXPR, maskse.expr, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&se->pre, &block); } else { gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); } gfc_cleanup_loop (&loop); se->expr = resvar; } /* Inline implementation of the dot_product intrinsic. This function is based on gfc_conv_intrinsic_arith (the previous function). */ static void gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr) { tree resvar; tree type; stmtblock_t body; stmtblock_t block; tree tmp; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss1, *arrayss2; gfc_se arrayse1, arrayse2; gfc_expr *arrayexpr1, *arrayexpr2; type = gfc_typenode_for_spec (&expr->ts); /* Initialize the result. */ resvar = gfc_create_var (type, "val"); if (expr->ts.type == BT_LOGICAL) tmp = convert (type, integer_zero_node); else tmp = gfc_build_const (type, integer_zero_node); gfc_add_modify_expr (&se->pre, resvar, tmp); /* Walk argument #1. */ actual = expr->value.function.actual; arrayexpr1 = actual->expr; arrayss1 = gfc_walk_expr (arrayexpr1); gcc_assert (arrayss1 != gfc_ss_terminator); /* Walk argument #2. */ actual = actual->next; arrayexpr2 = actual->expr; arrayss2 = gfc_walk_expr (arrayexpr2); gcc_assert (arrayss2 != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, arrayss1); gfc_add_ss_to_loop (&loop, arrayss2); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gfc_mark_ss_chain_used (arrayss1, 1); gfc_mark_ss_chain_used (arrayss2, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); gfc_init_block (&block); /* Make the tree expression for [conjg(]array1[)]. */ gfc_init_se (&arrayse1, NULL); gfc_copy_loopinfo_to_se (&arrayse1, &loop); arrayse1.ss = arrayss1; gfc_conv_expr_val (&arrayse1, arrayexpr1); if (expr->ts.type == BT_COMPLEX) arrayse1.expr = build1 (CONJ_EXPR, type, arrayse1.expr); gfc_add_block_to_block (&block, &arrayse1.pre); /* Make the tree expression for array2. */ gfc_init_se (&arrayse2, NULL); gfc_copy_loopinfo_to_se (&arrayse2, &loop); arrayse2.ss = arrayss2; gfc_conv_expr_val (&arrayse2, arrayexpr2); gfc_add_block_to_block (&block, &arrayse2.pre); /* Do the actual product and sum. */ if (expr->ts.type == BT_LOGICAL) { tmp = build2 (TRUTH_AND_EXPR, type, arrayse1.expr, arrayse2.expr); tmp = build2 (TRUTH_OR_EXPR, type, resvar, tmp); } else { tmp = build2 (MULT_EXPR, type, arrayse1.expr, arrayse2.expr); tmp = build2 (PLUS_EXPR, type, resvar, tmp); } gfc_add_modify_expr (&block, resvar, tmp); /* Finish up the loop block and the loop. */ tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&body, tmp); gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); gfc_cleanup_loop (&loop); se->expr = resvar; } static void gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, int op) { stmtblock_t body; stmtblock_t block; stmtblock_t ifblock; stmtblock_t elseblock; tree limit; tree type; tree tmp; tree elsetmp; tree ifbody; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss; gfc_ss *maskss; gfc_se arrayse; gfc_se maskse; gfc_expr *arrayexpr; gfc_expr *maskexpr; tree pos; int n; if (se->ss) { gfc_conv_intrinsic_funcall (se, expr); return; } /* Initialize the result. */ pos = gfc_create_var (gfc_array_index_type, "pos"); type = gfc_typenode_for_spec (&expr->ts); /* Walk the arguments. */ actual = expr->value.function.actual; arrayexpr = actual->expr; arrayss = gfc_walk_expr (arrayexpr); gcc_assert (arrayss != gfc_ss_terminator); actual = actual->next->next; gcc_assert (actual); maskexpr = actual->expr; if (maskexpr && maskexpr->rank != 0) { maskss = gfc_walk_expr (maskexpr); gcc_assert (maskss != gfc_ss_terminator); } else maskss = NULL; limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit"); n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false); switch (arrayexpr->ts.type) { case BT_REAL: tmp = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge, arrayexpr->ts.kind); break; case BT_INTEGER: tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, arrayexpr->ts.kind); break; default: gcc_unreachable (); } /* We start with the most negative possible value for MAXLOC, and the most positive possible value for MINLOC. The most negative possible value is -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive possible value is HUGE in both cases. */ if (op == GT_EXPR) tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp); gfc_add_modify_expr (&se->pre, limit, tmp); if (op == GT_EXPR && expr->ts.type == BT_INTEGER) tmp = build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, build_int_cst (type, 1)); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, arrayss); if (maskss) gfc_add_ss_to_loop (&loop, maskss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gcc_assert (loop.dimen == 1); /* Initialize the position to zero, following Fortran 2003. We are free to do this because Fortran 95 allows the result of an entirely false mask to be processor dependent. */ gfc_add_modify_expr (&loop.pre, pos, gfc_index_zero_node); gfc_mark_ss_chain_used (arrayss, 1); if (maskss) gfc_mark_ss_chain_used (maskss, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); /* If we have a mask, only check this element if the mask is set. */ if (maskss) { gfc_init_se (&maskse, NULL); gfc_copy_loopinfo_to_se (&maskse, &loop); maskse.ss = maskss; gfc_conv_expr_val (&maskse, maskexpr); gfc_add_block_to_block (&body, &maskse.pre); gfc_start_block (&block); } else gfc_init_block (&block); /* Compare with the current limit. */ gfc_init_se (&arrayse, NULL); gfc_copy_loopinfo_to_se (&arrayse, &loop); arrayse.ss = arrayss; gfc_conv_expr_val (&arrayse, arrayexpr); gfc_add_block_to_block (&block, &arrayse.pre); /* We do the following if this is a more extreme value. */ gfc_start_block (&ifblock); /* Assign the value to the limit... */ gfc_add_modify_expr (&ifblock, limit, arrayse.expr); /* Remember where we are. */ gfc_add_modify_expr (&ifblock, pos, loop.loopvar[0]); ifbody = gfc_finish_block (&ifblock); /* If it is a more extreme value or pos is still zero. */ tmp = build2 (TRUTH_OR_EXPR, boolean_type_node, build2 (op, boolean_type_node, arrayse.expr, limit), build2 (EQ_EXPR, boolean_type_node, pos, gfc_index_zero_node)); tmp = build3_v (COND_EXPR, tmp, ifbody, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); if (maskss) { /* We enclose the above in if (mask) {...}. */ tmp = gfc_finish_block (&block); tmp = build3_v (COND_EXPR, maskse.expr, tmp, build_empty_stmt ()); } else tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&body, tmp); gfc_trans_scalarizing_loops (&loop, &body); /* For a scalar mask, enclose the loop in an if statement. */ if (maskexpr && maskss == NULL) { gfc_init_se (&maskse, NULL); gfc_conv_expr_val (&maskse, maskexpr); gfc_init_block (&block); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); tmp = gfc_finish_block (&block); /* For the else part of the scalar mask, just initialize the pos variable the same way as above. */ gfc_init_block (&elseblock); gfc_add_modify_expr (&elseblock, pos, gfc_index_zero_node); elsetmp = gfc_finish_block (&elseblock); tmp = build3_v (COND_EXPR, maskse.expr, tmp, elsetmp); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&se->pre, &block); } else { gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); } gfc_cleanup_loop (&loop); /* Return a value in the range 1..SIZE(array). */ tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, loop.from[0], gfc_index_one_node); tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, pos, tmp); /* And convert to the required type. */ se->expr = convert (type, tmp); } static void gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, int op) { tree limit; tree type; tree tmp; tree ifbody; stmtblock_t body; stmtblock_t block; gfc_loopinfo loop; gfc_actual_arglist *actual; gfc_ss *arrayss; gfc_ss *maskss; gfc_se arrayse; gfc_se maskse; gfc_expr *arrayexpr; gfc_expr *maskexpr; int n; if (se->ss) { gfc_conv_intrinsic_funcall (se, expr); return; } type = gfc_typenode_for_spec (&expr->ts); /* Initialize the result. */ limit = gfc_create_var (type, "limit"); n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false); switch (expr->ts.type) { case BT_REAL: tmp = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge, expr->ts.kind); break; case BT_INTEGER: tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind); break; default: gcc_unreachable (); } /* We start with the most negative possible value for MAXVAL, and the most positive possible value for MINVAL. The most negative possible value is -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive possible value is HUGE in both cases. */ if (op == GT_EXPR) tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp); if (op == GT_EXPR && expr->ts.type == BT_INTEGER) tmp = build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, build_int_cst (type, 1)); gfc_add_modify_expr (&se->pre, limit, tmp); /* Walk the arguments. */ actual = expr->value.function.actual; arrayexpr = actual->expr; arrayss = gfc_walk_expr (arrayexpr); gcc_assert (arrayss != gfc_ss_terminator); actual = actual->next->next; gcc_assert (actual); maskexpr = actual->expr; if (maskexpr && maskexpr->rank != 0) { maskss = gfc_walk_expr (maskexpr); gcc_assert (maskss != gfc_ss_terminator); } else maskss = NULL; /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, arrayss); if (maskss) gfc_add_ss_to_loop (&loop, maskss); /* Initialize the loop. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop); gfc_mark_ss_chain_used (arrayss, 1); if (maskss) gfc_mark_ss_chain_used (maskss, 1); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); /* If we have a mask, only add this element if the mask is set. */ if (maskss) { gfc_init_se (&maskse, NULL); gfc_copy_loopinfo_to_se (&maskse, &loop); maskse.ss = maskss; gfc_conv_expr_val (&maskse, maskexpr); gfc_add_block_to_block (&body, &maskse.pre); gfc_start_block (&block); } else gfc_init_block (&block); /* Compare with the current limit. */ gfc_init_se (&arrayse, NULL); gfc_copy_loopinfo_to_se (&arrayse, &loop); arrayse.ss = arrayss; gfc_conv_expr_val (&arrayse, arrayexpr); gfc_add_block_to_block (&block, &arrayse.pre); /* Assign the value to the limit... */ ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr); /* If it is a more extreme value. */ tmp = build2 (op, boolean_type_node, arrayse.expr, limit); tmp = build3_v (COND_EXPR, tmp, ifbody, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&block, &arrayse.post); tmp = gfc_finish_block (&block); if (maskss) /* We enclose the above in if (mask) {...}. */ tmp = build3_v (COND_EXPR, maskse.expr, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&body, tmp); gfc_trans_scalarizing_loops (&loop, &body); /* For a scalar mask, enclose the loop in an if statement. */ if (maskexpr && maskss == NULL) { gfc_init_se (&maskse, NULL); gfc_conv_expr_val (&maskse, maskexpr); gfc_init_block (&block); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); tmp = gfc_finish_block (&block); tmp = build3_v (COND_EXPR, maskse.expr, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&se->pre, &block); } else { gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->pre, &loop.post); } gfc_cleanup_loop (&loop); se->expr = limit; } /* BTEST (i, pos) = (i & (1 << pos)) != 0. */ static void gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree type; tree tmp; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); tmp = build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), arg2); tmp = build2 (BIT_AND_EXPR, type, arg, tmp); tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, build_int_cst (type, 0)); type = gfc_typenode_for_spec (&expr->ts); se->expr = convert (type, tmp); } /* Generate code to perform the specified operation. */ static void gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, int op) { tree arg; tree arg2; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); se->expr = fold_build2 (op, type, arg, arg2); } /* Bitwise not. */ static void gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr) { tree arg; arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (arg); se->expr = build1 (BIT_NOT_EXPR, TREE_TYPE (arg), arg); } /* Set or clear a single bit. */ static void gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set) { tree arg; tree arg2; tree type; tree tmp; int op; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), arg2); if (set) op = BIT_IOR_EXPR; else { op = BIT_AND_EXPR; tmp = fold_build1 (BIT_NOT_EXPR, type, tmp); } se->expr = fold_build2 (op, type, arg, tmp); } /* Extract a sequence of bits. IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN). */ static void gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree arg3; tree type; tree tmp; tree mask; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_CHAIN (arg); arg3 = TREE_VALUE (TREE_CHAIN (arg2)); arg = TREE_VALUE (arg); arg2 = TREE_VALUE (arg2); type = TREE_TYPE (arg); mask = build_int_cst (type, -1); mask = build2 (LSHIFT_EXPR, type, mask, arg3); mask = build1 (BIT_NOT_EXPR, type, mask); tmp = build2 (RSHIFT_EXPR, type, arg, arg2); se->expr = fold_build2 (BIT_AND_EXPR, type, tmp, mask); } /* RSHIFT (I, SHIFT) = I >> SHIFT LSHIFT (I, SHIFT) = I << SHIFT */ static void gfc_conv_intrinsic_rlshift (gfc_se * se, gfc_expr * expr, int right_shift) { tree arg; tree arg2; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); se->expr = fold_build2 (right_shift ? RSHIFT_EXPR : LSHIFT_EXPR, TREE_TYPE (arg), arg, arg2); } /* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i)) ? 0 : ((shift >= 0) ? i << shift : i >> -shift) where all shifts are logical shifts. */ static void gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree type; tree utype; tree tmp; tree width; tree num_bits; tree cond; tree lshift; tree rshift; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_VALUE (TREE_CHAIN (arg)); arg = TREE_VALUE (arg); type = TREE_TYPE (arg); utype = gfc_unsigned_type (type); width = fold_build1 (ABS_EXPR, TREE_TYPE (arg2), arg2); /* Left shift if positive. */ lshift = fold_build2 (LSHIFT_EXPR, type, arg, width); /* Right shift if negative. We convert to an unsigned type because we want a logical shift. The standard doesn't define the case of shifting negative numbers, and we try to be compatible with other compilers, most notably g77, here. */ rshift = fold_convert (type, build2 (RSHIFT_EXPR, utype, convert (utype, arg), width)); tmp = fold_build2 (GE_EXPR, boolean_type_node, arg2, build_int_cst (TREE_TYPE (arg2), 0)); tmp = fold_build3 (COND_EXPR, type, tmp, lshift, rshift); /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas gcc requires a shift width < BIT_SIZE(I), so we have to catch this special case. */ num_bits = build_int_cst (TREE_TYPE (arg2), TYPE_PRECISION (type)); cond = fold_build2 (GE_EXPR, boolean_type_node, width, num_bits); se->expr = fold_build3 (COND_EXPR, type, cond, build_int_cst (type, 0), tmp); } /* Circular shift. AKA rotate or barrel shift. */ static void gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr) { tree arg; tree arg2; tree arg3; tree type; tree tmp; tree lrot; tree rrot; tree zero; arg = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_CHAIN (arg); arg3 = TREE_CHAIN (arg2); if (arg3) { /* Use a library function for the 3 parameter version. */ tree int4type = gfc_get_int_type (4); type = TREE_TYPE (TREE_VALUE (arg)); /* We convert the first argument to at least 4 bytes, and convert back afterwards. This removes the need for library functions for all argument sizes, and function will be aligned to at least 32 bits, so there's no loss. */ if (expr->ts.kind < 4) { tmp = convert (int4type, TREE_VALUE (arg)); TREE_VALUE (arg) = tmp; } /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would need loads of library functions. They cannot have values > BIT_SIZE (I) so the conversion is safe. */ TREE_VALUE (arg2) = convert (int4type, TREE_VALUE (arg2)); TREE_VALUE (arg3) = convert (int4type, TREE_VALUE (arg3)); switch (expr->ts.kind) { case 1: case 2: case 4: tmp = gfor_fndecl_math_ishftc4; break; case 8: tmp = gfor_fndecl_math_ishftc8; break; case 16: tmp = gfor_fndecl_math_ishftc16; break; default: gcc_unreachable (); } se->expr = build_function_call_expr (tmp, arg); /* Convert the result back to the original type, if we extended the first argument's width above. */ if (expr->ts.kind < 4) se->expr = convert (type, se->expr); return; } arg = TREE_VALUE (arg); arg2 = TREE_VALUE (arg2); type = TREE_TYPE (arg); /* Rotate left if positive. */ lrot = fold_build2 (LROTATE_EXPR, type, arg, arg2); /* Rotate right if negative. */ tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (arg2), arg2); rrot = fold_build2 (RROTATE_EXPR, type, arg, tmp); zero = build_int_cst (TREE_TYPE (arg2), 0); tmp = fold_build2 (GT_EXPR, boolean_type_node, arg2, zero); rrot = fold_build3 (COND_EXPR, type, tmp, lrot, rrot); /* Do nothing if shift == 0. */ tmp = fold_build2 (EQ_EXPR, boolean_type_node, arg2, zero); se->expr = fold_build3 (COND_EXPR, type, tmp, arg, rrot); } /* The length of a character string. */ static void gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr) { tree len; tree type; tree decl; gfc_symbol *sym; gfc_se argse; gfc_expr *arg; gfc_ss *ss; gcc_assert (!se->ss); arg = expr->value.function.actual->expr; type = gfc_typenode_for_spec (&expr->ts); switch (arg->expr_type) { case EXPR_CONSTANT: len = build_int_cst (NULL_TREE, arg->value.character.length); break; case EXPR_ARRAY: /* Obtain the string length from the function used by trans-array.c(gfc_trans_array_constructor). */ len = NULL_TREE; get_array_ctor_strlen (arg->value.constructor, &len); break; case EXPR_VARIABLE: if (arg->ref == NULL || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY)) { /* This doesn't catch all cases. See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html and the surrounding thread. */ sym = arg->symtree->n.sym; decl = gfc_get_symbol_decl (sym); if (decl == current_function_decl && sym->attr.function && (sym->result == sym)) decl = gfc_get_fake_result_decl (sym, 0); len = sym->ts.cl->backend_decl; gcc_assert (len); break; } /* Otherwise fall through. */ default: /* Anybody stupid enough to do this deserves inefficient code. */ ss = gfc_walk_expr (arg); gfc_init_se (&argse, se); if (ss == gfc_ss_terminator) gfc_conv_expr (&argse, arg); else gfc_conv_expr_descriptor (&argse, arg, ss); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); len = argse.string_length; break; } se->expr = convert (type, len); } /* The length of a character string not including trailing blanks. */ static void gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr) { tree args; tree type; args = gfc_conv_intrinsic_function_args (se, expr); type = gfc_typenode_for_spec (&expr->ts); se->expr = build_function_call_expr (gfor_fndecl_string_len_trim, args); se->expr = convert (type, se->expr); } /* Returns the starting position of a substring within a string. */ static void gfc_conv_intrinsic_index (gfc_se * se, gfc_expr * expr) { tree logical4_type_node = gfc_get_logical_type (4); tree args; tree back; tree type; tree tmp; args = gfc_conv_intrinsic_function_args (se, expr); type = gfc_typenode_for_spec (&expr->ts); tmp = gfc_advance_chain (args, 3); if (TREE_CHAIN (tmp) == NULL_TREE) { back = tree_cons (NULL_TREE, build_int_cst (logical4_type_node, 0), NULL_TREE); TREE_CHAIN (tmp) = back; } else { back = TREE_CHAIN (tmp); TREE_VALUE (back) = convert (logical4_type_node, TREE_VALUE (back)); } se->expr = build_function_call_expr (gfor_fndecl_string_index, args); se->expr = convert (type, se->expr); } /* The ascii value for a single character. */ static void gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr) { tree arg; tree type; arg = gfc_conv_intrinsic_function_args (se, expr); arg = TREE_VALUE (TREE_CHAIN (arg)); gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg))); arg = build1 (NOP_EXPR, pchar_type_node, arg); type = gfc_typenode_for_spec (&expr->ts); se->expr = build_fold_indirect_ref (arg); se->expr = convert (type, se->expr); } /* MERGE (tsource, fsource, mask) = mask ? tsource : fsource. */ static void gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr) { tree arg; tree tsource; tree fsource; tree mask; tree type; tree len; arg = gfc_conv_intrinsic_function_args (se, expr); if (expr->ts.type != BT_CHARACTER) { tsource = TREE_VALUE (arg); arg = TREE_CHAIN (arg); fsource = TREE_VALUE (arg); mask = TREE_VALUE (TREE_CHAIN (arg)); } else { /* We do the same as in the non-character case, but the argument list is different because of the string length arguments. We also have to set the string length for the result. */ len = TREE_VALUE (arg); arg = TREE_CHAIN (arg); tsource = TREE_VALUE (arg); arg = TREE_CHAIN (TREE_CHAIN (arg)); fsource = TREE_VALUE (arg); mask = TREE_VALUE (TREE_CHAIN (arg)); se->string_length = len; } type = TREE_TYPE (tsource); se->expr = fold_build3 (COND_EXPR, type, mask, tsource, fsource); } static void gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr) { gfc_actual_arglist *actual; tree args; tree type; tree fndecl; gfc_se argse; gfc_ss *ss; gfc_init_se (&argse, NULL); actual = expr->value.function.actual; ss = gfc_walk_expr (actual->expr); gcc_assert (ss != gfc_ss_terminator); argse.want_pointer = 1; argse.data_not_needed = 1; gfc_conv_expr_descriptor (&argse, actual->expr, ss); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); args = gfc_chainon_list (NULL_TREE, argse.expr); actual = actual->next; if (actual->expr) { gfc_init_se (&argse, NULL); gfc_conv_expr_type (&argse, actual->expr, gfc_array_index_type); gfc_add_block_to_block (&se->pre, &argse.pre); args = gfc_chainon_list (args, argse.expr); fndecl = gfor_fndecl_size1; } else fndecl = gfor_fndecl_size0; se->expr = build_function_call_expr (fndecl, args); type = gfc_typenode_for_spec (&expr->ts); se->expr = convert (type, se->expr); } /* Intrinsic string comparison functions. */ static void gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, int op) { tree type; tree args; tree arg2; args = gfc_conv_intrinsic_function_args (se, expr); arg2 = TREE_CHAIN (TREE_CHAIN (args)); se->expr = gfc_build_compare_string (TREE_VALUE (args), TREE_VALUE (TREE_CHAIN (args)), TREE_VALUE (arg2), TREE_VALUE (TREE_CHAIN (arg2))); type = gfc_typenode_for_spec (&expr->ts); se->expr = fold_build2 (op, type, se->expr, build_int_cst (TREE_TYPE (se->expr), 0)); } /* Generate a call to the adjustl/adjustr library function. */ static void gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl) { tree args; tree len; tree type; tree var; tree tmp; args = gfc_conv_intrinsic_function_args (se, expr); len = TREE_VALUE (args); type = TREE_TYPE (TREE_VALUE (TREE_CHAIN (args))); var = gfc_conv_string_tmp (se, type, len); args = tree_cons (NULL_TREE, var, args); tmp = build_function_call_expr (fndecl, args); gfc_add_expr_to_block (&se->pre, tmp); se->expr = var; se->string_length = len; } /* A helper function for gfc_conv_intrinsic_array_transfer to compute the size of tree expressions in bytes. */ static tree gfc_size_in_bytes (gfc_se *se, gfc_expr *e) { tree tmp; if (e->ts.type == BT_CHARACTER) tmp = se->string_length; else { if (e->rank) { tmp = gfc_get_element_type (TREE_TYPE (se->expr)); tmp = size_in_bytes (tmp); } else tmp = size_in_bytes (TREE_TYPE (TREE_TYPE (se->expr))); } return fold_convert (gfc_array_index_type, tmp); } /* Array transfer statement. DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE]) where: typeof = typeof and: N = min (sizeof (SOURCE(:)), sizeof (DEST(:)), sizeof (DEST(0) * SIZE). */ static void gfc_conv_intrinsic_array_transfer (gfc_se * se, gfc_expr * expr) { tree tmp; tree extent; tree source; tree source_bytes; tree dest_word_len; tree size_words; tree size_bytes; tree upper; tree lower; tree stride; tree stmt; gfc_actual_arglist *arg; gfc_se argse; gfc_ss *ss; gfc_ss_info *info; stmtblock_t block; int n; gcc_assert (se->loop); info = &se->ss->data.info; /* Convert SOURCE. The output from this stage is:- source_bytes = length of the source in bytes source = pointer to the source data. */ arg = expr->value.function.actual; gfc_init_se (&argse, NULL); ss = gfc_walk_expr (arg->expr); source_bytes = gfc_create_var (gfc_array_index_type, NULL); /* Obtain the pointer to source and the length of source in bytes. */ if (ss == gfc_ss_terminator) { gfc_conv_expr_reference (&argse, arg->expr); source = argse.expr; /* Obtain the source word length. */ tmp = gfc_size_in_bytes (&argse, arg->expr); } else { gfc_init_se (&argse, NULL); argse.want_pointer = 0; gfc_conv_expr_descriptor (&argse, arg->expr, ss); source = gfc_conv_descriptor_data_get (argse.expr); /* Repack the source if not a full variable array. */ if (!(arg->expr->expr_type == EXPR_VARIABLE && arg->expr->ref->u.ar.type == AR_FULL)) { tmp = build_fold_addr_expr (argse.expr); source = build_call_expr (gfor_fndecl_in_pack, 1, tmp); source = gfc_evaluate_now (source, &argse.pre); /* Free the temporary. */ gfc_start_block (&block); tmp = convert (pvoid_type_node, source); tmp = build_call_expr (gfor_fndecl_internal_free, 1, tmp); gfc_add_expr_to_block (&block, tmp); stmt = gfc_finish_block (&block); /* Clean up if it was repacked. */ gfc_init_block (&block); tmp = gfc_conv_array_data (argse.expr); tmp = build2 (NE_EXPR, boolean_type_node, source, tmp); tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&block, &se->post); gfc_init_block (&se->post); gfc_add_block_to_block (&se->post, &block); } /* Obtain the source word length. */ tmp = gfc_size_in_bytes (&argse, arg->expr); /* Obtain the size of the array in bytes. */ extent = gfc_create_var (gfc_array_index_type, NULL); for (n = 0; n < arg->expr->rank; n++) { tree idx; idx = gfc_rank_cst[n]; gfc_add_modify_expr (&argse.pre, source_bytes, tmp); stride = gfc_conv_descriptor_stride (argse.expr, idx); lower = gfc_conv_descriptor_lbound (argse.expr, idx); upper = gfc_conv_descriptor_ubound (argse.expr, idx); tmp = build2 (MINUS_EXPR, gfc_array_index_type, upper, lower); gfc_add_modify_expr (&argse.pre, extent, tmp); tmp = build2 (PLUS_EXPR, gfc_array_index_type, extent, gfc_index_one_node); tmp = build2 (MULT_EXPR, gfc_array_index_type, tmp, source_bytes); } } gfc_add_modify_expr (&argse.pre, source_bytes, tmp); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); /* Now convert MOLD. The sole output is: dest_word_len = destination word length in bytes. */ arg = arg->next; gfc_init_se (&argse, NULL); ss = gfc_walk_expr (arg->expr); if (ss == gfc_ss_terminator) { gfc_conv_expr_reference (&argse, arg->expr); /* Obtain the source word length. */ tmp = gfc_size_in_bytes (&argse, arg->expr); } else { gfc_init_se (&argse, NULL); argse.want_pointer = 0; gfc_conv_expr_descriptor (&argse, arg->expr, ss); /* Obtain the source word length. */ tmp = gfc_size_in_bytes (&argse, arg->expr); } dest_word_len = gfc_create_var (gfc_array_index_type, NULL); gfc_add_modify_expr (&se->pre, dest_word_len, tmp); /* Finally convert SIZE, if it is present. */ arg = arg->next; size_words = gfc_create_var (gfc_array_index_type, NULL); if (arg->expr) { gfc_init_se (&argse, NULL); gfc_conv_expr_reference (&argse, arg->expr); tmp = convert (gfc_array_index_type, build_fold_indirect_ref (argse.expr)); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); } else tmp = NULL_TREE; size_bytes = gfc_create_var (gfc_array_index_type, NULL); if (tmp != NULL_TREE) { tmp = build2 (MULT_EXPR, gfc_array_index_type, tmp, dest_word_len); tmp = build2 (MIN_EXPR, gfc_array_index_type, tmp, source_bytes); } else tmp = source_bytes; gfc_add_modify_expr (&se->pre, size_bytes, tmp); gfc_add_modify_expr (&se->pre, size_words, build2 (CEIL_DIV_EXPR, gfc_array_index_type, size_bytes, dest_word_len)); /* Evaluate the bounds of the result. If the loop range exists, we have to check if it is too large. If so, we modify loop->to be consistent with min(size, size(source)). Otherwise, size is made consistent with the loop range, so that the right number of bytes is transferred.*/ n = se->loop->order[0]; if (se->loop->to[n] != NULL_TREE) { tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, se->loop->to[n], se->loop->from[n]); tmp = build2 (PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); tmp = build2 (MIN_EXPR, gfc_array_index_type, tmp, size_words); gfc_add_modify_expr (&se->pre, size_words, tmp); gfc_add_modify_expr (&se->pre, size_bytes, build2 (MULT_EXPR, gfc_array_index_type, size_words, dest_word_len)); upper = build2 (PLUS_EXPR, gfc_array_index_type, size_words, se->loop->from[n]); upper = build2 (MINUS_EXPR, gfc_array_index_type, upper, gfc_index_one_node); } else { upper = build2 (MINUS_EXPR, gfc_array_index_type, size_words, gfc_index_one_node); se->loop->from[n] = gfc_index_zero_node; } se->loop->to[n] = upper; /* Build a destination descriptor, using the pointer, source, as the data field. This is already allocated so set callee_alloc. FIXME callee_alloc is not set! */ tmp = gfc_typenode_for_spec (&expr->ts); gfc_trans_create_temp_array (&se->pre, &se->post, se->loop, info, tmp, false, true, false); /* Use memcpy to do the transfer. */ tmp = build_call_expr (built_in_decls[BUILT_IN_MEMCPY], 3, gfc_conv_descriptor_data_get (info->descriptor), fold_convert (pvoid_type_node, source), size_bytes); gfc_add_expr_to_block (&se->pre, tmp); se->expr = info->descriptor; if (expr->ts.type == BT_CHARACTER) se->string_length = dest_word_len; } /* Scalar transfer statement. TRANSFER (source, mold) = memcpy(&tmpdecl, &source, size), tmpdecl. */ static void gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr) { gfc_actual_arglist *arg; gfc_se argse; tree type; tree ptr; gfc_ss *ss; tree tmpdecl, tmp; /* Get a pointer to the source. */ arg = expr->value.function.actual; ss = gfc_walk_expr (arg->expr); gfc_init_se (&argse, NULL); if (ss == gfc_ss_terminator) gfc_conv_expr_reference (&argse, arg->expr); else gfc_conv_array_parameter (&argse, arg->expr, ss, 1); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); ptr = argse.expr; arg = arg->next; type = gfc_typenode_for_spec (&expr->ts); if (expr->ts.type == BT_CHARACTER) { ptr = convert (build_pointer_type (type), ptr); gfc_init_se (&argse, NULL); gfc_conv_expr (&argse, arg->expr); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); se->expr = ptr; se->string_length = argse.string_length; } else { tree moldsize; tmpdecl = gfc_create_var (type, "transfer"); moldsize = size_in_bytes (type); /* Use memcpy to do the transfer. */ tmp = build1 (ADDR_EXPR, build_pointer_type (type), tmpdecl); tmp = build_call_expr (built_in_decls[BUILT_IN_MEMCPY], 3, fold_convert (pvoid_type_node, tmp), fold_convert (pvoid_type_node, ptr), moldsize); gfc_add_expr_to_block (&se->pre, tmp); se->expr = tmpdecl; } } /* Generate code for the ALLOCATED intrinsic. Generate inline code that directly check the address of the argument. */ static void gfc_conv_allocated (gfc_se *se, gfc_expr *expr) { gfc_actual_arglist *arg1; gfc_se arg1se; gfc_ss *ss1; tree tmp; gfc_init_se (&arg1se, NULL); arg1 = expr->value.function.actual; ss1 = gfc_walk_expr (arg1->expr); arg1se.descriptor_only = 1; gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1); tmp = gfc_conv_descriptor_data_get (arg1se.expr); tmp = build2 (NE_EXPR, boolean_type_node, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp); } /* Generate code for the ASSOCIATED intrinsic. If both POINTER and TARGET are arrays, generate a call to library function _gfor_associated, and pass descriptors of POINTER and TARGET to it. In other cases, generate inline code that directly compare the address of POINTER with the address of TARGET. */ static void gfc_conv_associated (gfc_se *se, gfc_expr *expr) { gfc_actual_arglist *arg1; gfc_actual_arglist *arg2; gfc_se arg1se; gfc_se arg2se; tree tmp2; tree tmp; tree fndecl; tree nonzero_charlen; tree nonzero_arraylen; gfc_ss *ss1, *ss2; gfc_init_se (&arg1se, NULL); gfc_init_se (&arg2se, NULL); arg1 = expr->value.function.actual; arg2 = arg1->next; ss1 = gfc_walk_expr (arg1->expr); if (!arg2->expr) { /* No optional target. */ if (ss1 == gfc_ss_terminator) { /* A pointer to a scalar. */ arg1se.want_pointer = 1; gfc_conv_expr (&arg1se, arg1->expr); tmp2 = arg1se.expr; } else { /* A pointer to an array. */ gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1); tmp2 = gfc_conv_descriptor_data_get (arg1se.expr); } gfc_add_block_to_block (&se->pre, &arg1se.pre); gfc_add_block_to_block (&se->post, &arg1se.post); tmp = build2 (NE_EXPR, boolean_type_node, tmp2, fold_convert (TREE_TYPE (tmp2), null_pointer_node)); se->expr = tmp; } else { /* An optional target. */ ss2 = gfc_walk_expr (arg2->expr); nonzero_charlen = NULL_TREE; if (arg1->expr->ts.type == BT_CHARACTER) nonzero_charlen = build2 (NE_EXPR, boolean_type_node, arg1->expr->ts.cl->backend_decl, integer_zero_node); if (ss1 == gfc_ss_terminator) { /* A pointer to a scalar. */ gcc_assert (ss2 == gfc_ss_terminator); arg1se.want_pointer = 1; gfc_conv_expr (&arg1se, arg1->expr); arg2se.want_pointer = 1; gfc_conv_expr (&arg2se, arg2->expr); gfc_add_block_to_block (&se->pre, &arg1se.pre); gfc_add_block_to_block (&se->post, &arg1se.post); tmp = build2 (EQ_EXPR, boolean_type_node, arg1se.expr, arg2se.expr); tmp2 = build2 (NE_EXPR, boolean_type_node, arg1se.expr, null_pointer_node); se->expr = build2 (TRUTH_AND_EXPR, boolean_type_node, tmp, tmp2); } else { /* An array pointer of zero length is not associated if target is present. */ arg1se.descriptor_only = 1; gfc_conv_expr_lhs (&arg1se, arg1->expr); tmp = gfc_conv_descriptor_stride (arg1se.expr, gfc_rank_cst[arg1->expr->rank - 1]); nonzero_arraylen = build2 (NE_EXPR, boolean_type_node, tmp, integer_zero_node); /* A pointer to an array, call library function _gfor_associated. */ gcc_assert (ss2 != gfc_ss_terminator); arg1se.want_pointer = 1; gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1); arg2se.want_pointer = 1; gfc_conv_expr_descriptor (&arg2se, arg2->expr, ss2); gfc_add_block_to_block (&se->pre, &arg2se.pre); gfc_add_block_to_block (&se->post, &arg2se.post); fndecl = gfor_fndecl_associated; se->expr = build_call_expr (fndecl, 2, arg1se.expr, arg2se.expr); se->expr = build2 (TRUTH_AND_EXPR, boolean_type_node, se->expr, nonzero_arraylen); } /* If target is present zero character length pointers cannot be associated. */ if (nonzero_charlen != NULL_TREE) se->expr = build2 (TRUTH_AND_EXPR, boolean_type_node, se->expr, nonzero_charlen); } se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr); } /* Scan a string for any one of the characters in a set of characters. */ static void gfc_conv_intrinsic_scan (gfc_se * se, gfc_expr * expr) { tree logical4_type_node = gfc_get_logical_type (4); tree args; tree back; tree type; tree tmp; args = gfc_conv_intrinsic_function_args (se, expr); type = gfc_typenode_for_spec (&expr->ts); tmp = gfc_advance_chain (args, 3); if (TREE_CHAIN (tmp) == NULL_TREE) { back = tree_cons (NULL_TREE, build_int_cst (logical4_type_node, 0), NULL_TREE); TREE_CHAIN (tmp) = back; } else { back = TREE_CHAIN (tmp); TREE_VALUE (back) = convert (logical4_type_node, TREE_VALUE (back)); } se->expr = build_function_call_expr (gfor_fndecl_string_scan, args); se->expr = convert (type, se->expr); } /* Verify that a set of characters contains all the characters in a string by identifying the position of the first character in a string of characters that does not appear in a given set of characters. */ static void gfc_conv_intrinsic_verify (gfc_se * se, gfc_expr * expr) { tree logical4_type_node = gfc_get_logical_type (4); tree args; tree back; tree type; tree tmp; args = gfc_conv_intrinsic_function_args (se, expr); type = gfc_typenode_for_spec (&expr->ts); tmp = gfc_advance_chain (args, 3); if (TREE_CHAIN (tmp) == NULL_TREE) { back = tree_cons (NULL_TREE, build_int_cst (logical4_type_node, 0), NULL_TREE); TREE_CHAIN (tmp) = back; } else { back = TREE_CHAIN (tmp); TREE_VALUE (back) = convert (logical4_type_node, TREE_VALUE (back)); } se->expr = build_function_call_expr (gfor_fndecl_string_verify, args); se->expr = convert (type, se->expr); } /* Generate code for SELECTED_INT_KIND (R) intrinsic function. */ static void gfc_conv_intrinsic_si_kind (gfc_se * se, gfc_expr * expr) { tree args; args = gfc_conv_intrinsic_function_args (se, expr); args = TREE_VALUE (args); args = build_fold_addr_expr (args); se->expr = build_call_expr (gfor_fndecl_si_kind, 1, args); } /* Generate code for SELECTED_REAL_KIND (P, R) intrinsic function. */ static void gfc_conv_intrinsic_sr_kind (gfc_se * se, gfc_expr * expr) { gfc_actual_arglist *actual; tree args; gfc_se argse; args = NULL_TREE; for (actual = expr->value.function.actual; actual; actual = actual->next) { gfc_init_se (&argse, se); /* Pass a NULL pointer for an absent arg. */ if (actual->expr == NULL) argse.expr = null_pointer_node; else gfc_conv_expr_reference (&argse, actual->expr); gfc_add_block_to_block (&se->pre, &argse.pre); gfc_add_block_to_block (&se->post, &argse.post); args = gfc_chainon_list (args, argse.expr); } se->expr = build_function_call_expr (gfor_fndecl_sr_kind, args); } /* Generate code for TRIM (A) intrinsic function. */ static void gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr) { tree gfc_int4_type_node = gfc_get_int_type (4); tree var; tree len; tree addr; tree tmp; tree arglist; tree type; tree cond; arglist = NULL_TREE; type = build_pointer_type (gfc_character1_type_node); var = gfc_create_var (type, "pstr"); addr = gfc_build_addr_expr (ppvoid_type_node, var); len = gfc_create_var (gfc_int4_type_node, "len"); tmp = gfc_conv_intrinsic_function_args (se, expr); arglist = gfc_chainon_list (arglist, build_fold_addr_expr (len)); arglist = gfc_chainon_list (arglist, addr); arglist = chainon (arglist, tmp); tmp = build_function_call_expr (gfor_fndecl_string_trim, arglist); gfc_add_expr_to_block (&se->pre, tmp); /* Free the temporary afterwards, if necessary. */ cond = build2 (GT_EXPR, boolean_type_node, len, build_int_cst (TREE_TYPE (len), 0)); tmp = build_call_expr (gfor_fndecl_internal_free, 1, var); tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&se->post, tmp); se->expr = var; se->string_length = len; } /* Generate code for REPEAT (STRING, NCOPIES) intrinsic function. */ static void gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr) { tree gfc_int4_type_node = gfc_get_int_type (4); tree tmp; tree len; tree args; tree ncopies; tree var; tree type; tree cond; args = gfc_conv_intrinsic_function_args (se, expr); len = TREE_VALUE (args); tmp = gfc_advance_chain (args, 2); ncopies = TREE_VALUE (tmp); /* Check that ncopies is not negative. */ ncopies = gfc_evaluate_now (ncopies, &se->pre); cond = fold_build2 (LT_EXPR, boolean_type_node, ncopies, build_int_cst (TREE_TYPE (ncopies), 0)); gfc_trans_runtime_check (cond, "Argument NCOPIES of REPEAT intrinsic is negative", &se->pre, &expr->where); /* Compute the destination length. */ len = fold_build2 (MULT_EXPR, gfc_int4_type_node, len, ncopies); type = gfc_get_character_type (expr->ts.kind, expr->ts.cl); var = gfc_conv_string_tmp (se, build_pointer_type (type), len); /* Create the argument list and generate the function call. */ tmp = build_call_expr (gfor_fndecl_string_repeat, 4, var, TREE_VALUE (args), TREE_VALUE (TREE_CHAIN (args)), ncopies); gfc_add_expr_to_block (&se->pre, tmp); se->expr = var; se->string_length = len; } /* Generate code for the IARGC intrinsic. */ static void gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr) { tree tmp; tree fndecl; tree type; /* Call the library function. This always returns an INTEGER(4). */ fndecl = gfor_fndecl_iargc; tmp = build_call_expr (fndecl, 0); /* Convert it to the required type. */ type = gfc_typenode_for_spec (&expr->ts); tmp = fold_convert (type, tmp); se->expr = tmp; } /* The loc intrinsic returns the address of its argument as gfc_index_integer_kind integer. */ static void gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr) { tree temp_var; gfc_expr *arg_expr; gfc_ss *ss; gcc_assert (!se->ss); arg_expr = expr->value.function.actual->expr; ss = gfc_walk_expr (arg_expr); if (ss == gfc_ss_terminator) gfc_conv_expr_reference (se, arg_expr); else gfc_conv_array_parameter (se, arg_expr, ss, 1); se->expr= convert (gfc_get_int_type (gfc_index_integer_kind), se->expr); /* Create a temporary variable for loc return value. Without this, we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1). */ temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL); gfc_add_modify_expr (&se->pre, temp_var, se->expr); se->expr = temp_var; } /* Generate code for an intrinsic function. Some map directly to library calls, others get special handling. In some cases the name of the function used depends on the type specifiers. */ void gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr) { gfc_intrinsic_sym *isym; const char *name; int lib; isym = expr->value.function.isym; name = &expr->value.function.name[2]; if (expr->rank > 0 && !expr->inline_noncopying_intrinsic) { lib = gfc_is_intrinsic_libcall (expr); if (lib != 0) { if (lib == 1) se->ignore_optional = 1; gfc_conv_intrinsic_funcall (se, expr); return; } } switch (expr->value.function.isym->generic_id) { case GFC_ISYM_NONE: gcc_unreachable (); case GFC_ISYM_REPEAT: gfc_conv_intrinsic_repeat (se, expr); break; case GFC_ISYM_TRIM: gfc_conv_intrinsic_trim (se, expr); break; case GFC_ISYM_SI_KIND: gfc_conv_intrinsic_si_kind (se, expr); break; case GFC_ISYM_SR_KIND: gfc_conv_intrinsic_sr_kind (se, expr); break; case GFC_ISYM_EXPONENT: gfc_conv_intrinsic_exponent (se, expr); break; case GFC_ISYM_SCAN: gfc_conv_intrinsic_scan (se, expr); break; case GFC_ISYM_VERIFY: gfc_conv_intrinsic_verify (se, expr); break; case GFC_ISYM_ALLOCATED: gfc_conv_allocated (se, expr); break; case GFC_ISYM_ASSOCIATED: gfc_conv_associated(se, expr); break; case GFC_ISYM_ABS: gfc_conv_intrinsic_abs (se, expr); break; case GFC_ISYM_ADJUSTL: gfc_conv_intrinsic_adjust (se, expr, gfor_fndecl_adjustl); break; case GFC_ISYM_ADJUSTR: gfc_conv_intrinsic_adjust (se, expr, gfor_fndecl_adjustr); break; case GFC_ISYM_AIMAG: gfc_conv_intrinsic_imagpart (se, expr); break; case GFC_ISYM_AINT: gfc_conv_intrinsic_aint (se, expr, RND_TRUNC); break; case GFC_ISYM_ALL: gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR); break; case GFC_ISYM_ANINT: gfc_conv_intrinsic_aint (se, expr, RND_ROUND); break; case GFC_ISYM_AND: gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR); break; case GFC_ISYM_ANY: gfc_conv_intrinsic_anyall (se, expr, NE_EXPR); break; case GFC_ISYM_BTEST: gfc_conv_intrinsic_btest (se, expr); break; case GFC_ISYM_ACHAR: case GFC_ISYM_CHAR: gfc_conv_intrinsic_char (se, expr); break; case GFC_ISYM_CONVERSION: case GFC_ISYM_REAL: case GFC_ISYM_LOGICAL: case GFC_ISYM_DBLE: gfc_conv_intrinsic_conversion (se, expr); break; /* Integer conversions are handled separately to make sure we get the correct rounding mode. */ case GFC_ISYM_INT: case GFC_ISYM_INT2: case GFC_ISYM_INT8: case GFC_ISYM_LONG: gfc_conv_intrinsic_int (se, expr, RND_TRUNC); break; case GFC_ISYM_NINT: gfc_conv_intrinsic_int (se, expr, RND_ROUND); break; case GFC_ISYM_CEILING: gfc_conv_intrinsic_int (se, expr, RND_CEIL); break; case GFC_ISYM_FLOOR: gfc_conv_intrinsic_int (se, expr, RND_FLOOR); break; case GFC_ISYM_MOD: gfc_conv_intrinsic_mod (se, expr, 0); break; case GFC_ISYM_MODULO: gfc_conv_intrinsic_mod (se, expr, 1); break; case GFC_ISYM_CMPLX: gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1'); break; case GFC_ISYM_COMMAND_ARGUMENT_COUNT: gfc_conv_intrinsic_iargc (se, expr); break; case GFC_ISYM_COMPLEX: gfc_conv_intrinsic_cmplx (se, expr, 1); break; case GFC_ISYM_CONJG: gfc_conv_intrinsic_conjg (se, expr); break; case GFC_ISYM_COUNT: gfc_conv_intrinsic_count (se, expr); break; case GFC_ISYM_CTIME: gfc_conv_intrinsic_ctime (se, expr); break; case GFC_ISYM_DIM: gfc_conv_intrinsic_dim (se, expr); break; case GFC_ISYM_DOT_PRODUCT: gfc_conv_intrinsic_dot_product (se, expr); break; case GFC_ISYM_DPROD: gfc_conv_intrinsic_dprod (se, expr); break; case GFC_ISYM_FDATE: gfc_conv_intrinsic_fdate (se, expr); break; case GFC_ISYM_IAND: gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR); break; case GFC_ISYM_IBCLR: gfc_conv_intrinsic_singlebitop (se, expr, 0); break; case GFC_ISYM_IBITS: gfc_conv_intrinsic_ibits (se, expr); break; case GFC_ISYM_IBSET: gfc_conv_intrinsic_singlebitop (se, expr, 1); break; case GFC_ISYM_IACHAR: case GFC_ISYM_ICHAR: /* We assume ASCII character sequence. */ gfc_conv_intrinsic_ichar (se, expr); break; case GFC_ISYM_IARGC: gfc_conv_intrinsic_iargc (se, expr); break; case GFC_ISYM_IEOR: gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR); break; case GFC_ISYM_INDEX: gfc_conv_intrinsic_index (se, expr); break; case GFC_ISYM_IOR: gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR); break; case GFC_ISYM_LSHIFT: gfc_conv_intrinsic_rlshift (se, expr, 0); break; case GFC_ISYM_RSHIFT: gfc_conv_intrinsic_rlshift (se, expr, 1); break; case GFC_ISYM_ISHFT: gfc_conv_intrinsic_ishft (se, expr); break; case GFC_ISYM_ISHFTC: gfc_conv_intrinsic_ishftc (se, expr); break; case GFC_ISYM_LBOUND: gfc_conv_intrinsic_bound (se, expr, 0); break; case GFC_ISYM_TRANSPOSE: if (se->ss && se->ss->useflags) { gfc_conv_tmp_array_ref (se); gfc_advance_se_ss_chain (se); } else gfc_conv_array_transpose (se, expr->value.function.actual->expr); break; case GFC_ISYM_LEN: gfc_conv_intrinsic_len (se, expr); break; case GFC_ISYM_LEN_TRIM: gfc_conv_intrinsic_len_trim (se, expr); break; case GFC_ISYM_LGE: gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR); break; case GFC_ISYM_LGT: gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR); break; case GFC_ISYM_LLE: gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR); break; case GFC_ISYM_LLT: gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR); break; case GFC_ISYM_MAX: gfc_conv_intrinsic_minmax (se, expr, GT_EXPR); break; case GFC_ISYM_MAXLOC: gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR); break; case GFC_ISYM_MAXVAL: gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR); break; case GFC_ISYM_MERGE: gfc_conv_intrinsic_merge (se, expr); break; case GFC_ISYM_MIN: gfc_conv_intrinsic_minmax (se, expr, LT_EXPR); break; case GFC_ISYM_MINLOC: gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR); break; case GFC_ISYM_MINVAL: gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR); break; case GFC_ISYM_NOT: gfc_conv_intrinsic_not (se, expr); break; case GFC_ISYM_OR: gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR); break; case GFC_ISYM_PRESENT: gfc_conv_intrinsic_present (se, expr); break; case GFC_ISYM_PRODUCT: gfc_conv_intrinsic_arith (se, expr, MULT_EXPR); break; case GFC_ISYM_SIGN: gfc_conv_intrinsic_sign (se, expr); break; case GFC_ISYM_SIZE: gfc_conv_intrinsic_size (se, expr); break; case GFC_ISYM_SUM: gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR); break; case GFC_ISYM_TRANSFER: if (se->ss) { if (se->ss->useflags) { /* Access the previously obtained result. */ gfc_conv_tmp_array_ref (se); gfc_advance_se_ss_chain (se); break; } else gfc_conv_intrinsic_array_transfer (se, expr); } else gfc_conv_intrinsic_transfer (se, expr); break; case GFC_ISYM_TTYNAM: gfc_conv_intrinsic_ttynam (se, expr); break; case GFC_ISYM_UBOUND: gfc_conv_intrinsic_bound (se, expr, 1); break; case GFC_ISYM_XOR: gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR); break; case GFC_ISYM_LOC: gfc_conv_intrinsic_loc (se, expr); break; case GFC_ISYM_ACCESS: case GFC_ISYM_CHDIR: case GFC_ISYM_CHMOD: case GFC_ISYM_ETIME: case GFC_ISYM_FGET: case GFC_ISYM_FGETC: case GFC_ISYM_FNUM: case GFC_ISYM_FPUT: case GFC_ISYM_FPUTC: case GFC_ISYM_FSTAT: case GFC_ISYM_FTELL: case GFC_ISYM_GETCWD: case GFC_ISYM_GETGID: case GFC_ISYM_GETPID: case GFC_ISYM_GETUID: case GFC_ISYM_HOSTNM: case GFC_ISYM_KILL: case GFC_ISYM_IERRNO: case GFC_ISYM_IRAND: case GFC_ISYM_ISATTY: case GFC_ISYM_LINK: case GFC_ISYM_LSTAT: case GFC_ISYM_MALLOC: case GFC_ISYM_MATMUL: case GFC_ISYM_MCLOCK: case GFC_ISYM_MCLOCK8: case GFC_ISYM_RAND: case GFC_ISYM_RENAME: case GFC_ISYM_SECOND: case GFC_ISYM_SECNDS: case GFC_ISYM_SIGNAL: case GFC_ISYM_STAT: case GFC_ISYM_SYMLNK: case GFC_ISYM_SYSTEM: case GFC_ISYM_TIME: case GFC_ISYM_TIME8: case GFC_ISYM_UMASK: case GFC_ISYM_UNLINK: gfc_conv_intrinsic_funcall (se, expr); break; default: gfc_conv_intrinsic_lib_function (se, expr); break; } } /* This generates code to execute before entering the scalarization loop. Currently does nothing. */ void gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss) { switch (ss->expr->value.function.isym->generic_id) { case GFC_ISYM_UBOUND: case GFC_ISYM_LBOUND: break; default: gcc_unreachable (); } } /* UBOUND and LBOUND intrinsics with one parameter are expanded into code inside the scalarization loop. */ static gfc_ss * gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr) { gfc_ss *newss; /* The two argument version returns a scalar. */ if (expr->value.function.actual->next->expr) return ss; newss = gfc_get_ss (); newss->type = GFC_SS_INTRINSIC; newss->expr = expr; newss->next = ss; newss->data.info.dimen = 1; return newss; } /* Walk an intrinsic array libcall. */ static gfc_ss * gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr) { gfc_ss *newss; gcc_assert (expr->rank > 0); newss = gfc_get_ss (); newss->type = GFC_SS_FUNCTION; newss->expr = expr; newss->next = ss; newss->data.info.dimen = expr->rank; return newss; } /* Returns nonzero if the specified intrinsic function call maps directly to a an external library call. Should only be used for functions that return arrays. */ int gfc_is_intrinsic_libcall (gfc_expr * expr) { gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym); gcc_assert (expr->rank > 0); switch (expr->value.function.isym->generic_id) { case GFC_ISYM_ALL: case GFC_ISYM_ANY: case GFC_ISYM_COUNT: case GFC_ISYM_MATMUL: case GFC_ISYM_MAXLOC: case GFC_ISYM_MAXVAL: case GFC_ISYM_MINLOC: case GFC_ISYM_MINVAL: case GFC_ISYM_PRODUCT: case GFC_ISYM_SUM: case GFC_ISYM_SHAPE: case GFC_ISYM_SPREAD: case GFC_ISYM_TRANSPOSE: /* Ignore absent optional parameters. */ return 1; case GFC_ISYM_RESHAPE: case GFC_ISYM_CSHIFT: case GFC_ISYM_EOSHIFT: case GFC_ISYM_PACK: case GFC_ISYM_UNPACK: /* Pass absent optional parameters. */ return 2; default: return 0; } } /* Walk an intrinsic function. */ gfc_ss * gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr, gfc_intrinsic_sym * isym) { gcc_assert (isym); if (isym->elemental) return gfc_walk_elemental_function_args (ss, expr->value.function.actual, GFC_SS_SCALAR); if (expr->rank == 0) return ss; if (gfc_is_intrinsic_libcall (expr)) return gfc_walk_intrinsic_libfunc (ss, expr); /* Special cases. */ switch (isym->generic_id) { case GFC_ISYM_LBOUND: case GFC_ISYM_UBOUND: return gfc_walk_intrinsic_bound (ss, expr); case GFC_ISYM_TRANSFER: return gfc_walk_intrinsic_libfunc (ss, expr); default: /* This probably meant someone forgot to add an intrinsic to the above list(s) when they implemented it, or something's gone horribly wrong. */ gfc_todo_error ("Scalarization of non-elemental intrinsic: %s", expr->value.function.name); } } #include "gt-fortran-trans-intrinsic.h"