/* Main parser. Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Andy Vaught This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include #include "coretypes.h" #include "gfortran.h" #include "match.h" #include "parse.h" #include "debug.h" /* Current statement label. Zero means no statement label. Because new_st can get wiped during statement matching, we have to keep it separate. */ gfc_st_label *gfc_statement_label; static locus label_locus; static jmp_buf eof_buf; gfc_state_data *gfc_state_stack; static bool last_was_use_stmt = false; /* TODO: Re-order functions to kill these forward decls. */ static void check_statement_label (gfc_statement); static void undo_new_statement (void); static void reject_statement (void); /* A sort of half-matching function. We try to match the word on the input with the passed string. If this succeeds, we call the keyword-dependent matching function that will match the rest of the statement. For single keywords, the matching subroutine is gfc_match_eos(). */ static match match_word (const char *str, match (*subr) (void), locus *old_locus) { match m; if (str != NULL) { m = gfc_match (str); if (m != MATCH_YES) return m; } m = (*subr) (); if (m != MATCH_YES) { gfc_current_locus = *old_locus; reject_statement (); } return m; } /* Load symbols from all USE statements encountered in this scoping unit. */ static void use_modules (void) { gfc_error_buf old_error; gfc_push_error (&old_error); gfc_buffer_error (0); gfc_use_modules (); gfc_buffer_error (1); gfc_pop_error (&old_error); gfc_commit_symbols (); gfc_warning_check (); gfc_current_ns->old_cl_list = gfc_current_ns->cl_list; gfc_current_ns->old_equiv = gfc_current_ns->equiv; last_was_use_stmt = false; } /* Figure out what the next statement is, (mostly) regardless of proper ordering. The do...while(0) is there to prevent if/else ambiguity. */ #define match(keyword, subr, st) \ do { \ if (match_word(keyword, subr, &old_locus) == MATCH_YES) \ return st; \ else \ undo_new_statement (); \ } while (0); /* This is a specialist version of decode_statement that is used for the specification statements in a function, whose characteristics are deferred into the specification statements. eg.: INTEGER (king = mykind) foo () USE mymodule, ONLY mykind..... The KIND parameter needs a return after USE or IMPORT, whereas derived type declarations can occur anywhere, up the executable block. ST_GET_FCN_CHARACTERISTICS is returned when we have run out of the correct kind of specification statements. */ static gfc_statement decode_specification_statement (void) { gfc_statement st; locus old_locus; char c; if (gfc_match_eos () == MATCH_YES) return ST_NONE; old_locus = gfc_current_locus; if (match_word ("use", gfc_match_use, &old_locus) == MATCH_YES) { last_was_use_stmt = true; return ST_USE; } else { undo_new_statement (); if (last_was_use_stmt) use_modules (); } match ("import", gfc_match_import, ST_IMPORT); if (gfc_current_block ()->result->ts.type != BT_DERIVED) goto end_of_block; match (NULL, gfc_match_st_function, ST_STATEMENT_FUNCTION); match (NULL, gfc_match_data_decl, ST_DATA_DECL); match (NULL, gfc_match_enumerator_def, ST_ENUMERATOR); /* General statement matching: Instead of testing every possible statement, we eliminate most possibilities by peeking at the first character. */ c = gfc_peek_ascii_char (); switch (c) { case 'a': match ("abstract% interface", gfc_match_abstract_interface, ST_INTERFACE); match ("allocatable", gfc_match_allocatable, ST_ATTR_DECL); match ("asynchronous", gfc_match_asynchronous, ST_ATTR_DECL); break; case 'b': match (NULL, gfc_match_bind_c_stmt, ST_ATTR_DECL); break; case 'c': match ("codimension", gfc_match_codimension, ST_ATTR_DECL); match ("contiguous", gfc_match_contiguous, ST_ATTR_DECL); break; case 'd': match ("data", gfc_match_data, ST_DATA); match ("dimension", gfc_match_dimension, ST_ATTR_DECL); break; case 'e': match ("enum , bind ( c )", gfc_match_enum, ST_ENUM); match ("entry% ", gfc_match_entry, ST_ENTRY); match ("equivalence", gfc_match_equivalence, ST_EQUIVALENCE); match ("external", gfc_match_external, ST_ATTR_DECL); break; case 'f': match ("format", gfc_match_format, ST_FORMAT); break; case 'g': break; case 'i': match ("implicit", gfc_match_implicit, ST_IMPLICIT); match ("implicit% none", gfc_match_implicit_none, ST_IMPLICIT_NONE); match ("interface", gfc_match_interface, ST_INTERFACE); match ("intent", gfc_match_intent, ST_ATTR_DECL); match ("intrinsic", gfc_match_intrinsic, ST_ATTR_DECL); break; case 'm': break; case 'n': match ("namelist", gfc_match_namelist, ST_NAMELIST); break; case 'o': match ("optional", gfc_match_optional, ST_ATTR_DECL); break; case 'p': match ("parameter", gfc_match_parameter, ST_PARAMETER); match ("pointer", gfc_match_pointer, ST_ATTR_DECL); if (gfc_match_private (&st) == MATCH_YES) return st; match ("procedure", gfc_match_procedure, ST_PROCEDURE); if (gfc_match_public (&st) == MATCH_YES) return st; match ("protected", gfc_match_protected, ST_ATTR_DECL); break; case 'r': break; case 's': match ("save", gfc_match_save, ST_ATTR_DECL); break; case 't': match ("target", gfc_match_target, ST_ATTR_DECL); match ("type", gfc_match_derived_decl, ST_DERIVED_DECL); break; case 'u': break; case 'v': match ("value", gfc_match_value, ST_ATTR_DECL); match ("volatile", gfc_match_volatile, ST_ATTR_DECL); break; case 'w': break; } /* This is not a specification statement. See if any of the matchers has stored an error message of some sort. */ end_of_block: gfc_clear_error (); gfc_buffer_error (0); gfc_current_locus = old_locus; return ST_GET_FCN_CHARACTERISTICS; } /* This is the primary 'decode_statement'. */ static gfc_statement decode_statement (void) { gfc_statement st; locus old_locus; match m; char c; gfc_enforce_clean_symbol_state (); gfc_clear_error (); /* Clear any pending errors. */ gfc_clear_warning (); /* Clear any pending warnings. */ gfc_matching_function = false; if (gfc_match_eos () == MATCH_YES) return ST_NONE; if (gfc_current_state () == COMP_FUNCTION && gfc_current_block ()->result->ts.kind == -1) return decode_specification_statement (); old_locus = gfc_current_locus; c = gfc_peek_ascii_char (); if (c == 'u') { if (match_word ("use", gfc_match_use, &old_locus) == MATCH_YES) { last_was_use_stmt = true; return ST_USE; } else undo_new_statement (); } if (last_was_use_stmt) use_modules (); /* Try matching a data declaration or function declaration. The input "REALFUNCTIONA(N)" can mean several things in different contexts, so it (and its relatives) get special treatment. */ if (gfc_current_state () == COMP_NONE || gfc_current_state () == COMP_INTERFACE || gfc_current_state () == COMP_CONTAINS) { gfc_matching_function = true; m = gfc_match_function_decl (); if (m == MATCH_YES) return ST_FUNCTION; else if (m == MATCH_ERROR) reject_statement (); else gfc_undo_symbols (); gfc_current_locus = old_locus; } gfc_matching_function = false; /* Match statements whose error messages are meant to be overwritten by something better. */ match (NULL, gfc_match_assignment, ST_ASSIGNMENT); match (NULL, gfc_match_pointer_assignment, ST_POINTER_ASSIGNMENT); match (NULL, gfc_match_st_function, ST_STATEMENT_FUNCTION); match (NULL, gfc_match_data_decl, ST_DATA_DECL); match (NULL, gfc_match_enumerator_def, ST_ENUMERATOR); /* Try to match a subroutine statement, which has the same optional prefixes that functions can have. */ if (gfc_match_subroutine () == MATCH_YES) return ST_SUBROUTINE; gfc_undo_symbols (); gfc_current_locus = old_locus; /* Check for the IF, DO, SELECT, WHERE, FORALL, CRITICAL, BLOCK and ASSOCIATE statements, which might begin with a block label. The match functions for these statements are unusual in that their keyword is not seen before the matcher is called. */ if (gfc_match_if (&st) == MATCH_YES) return st; gfc_undo_symbols (); gfc_current_locus = old_locus; if (gfc_match_where (&st) == MATCH_YES) return st; gfc_undo_symbols (); gfc_current_locus = old_locus; if (gfc_match_forall (&st) == MATCH_YES) return st; gfc_undo_symbols (); gfc_current_locus = old_locus; match (NULL, gfc_match_do, ST_DO); match (NULL, gfc_match_block, ST_BLOCK); match (NULL, gfc_match_associate, ST_ASSOCIATE); match (NULL, gfc_match_critical, ST_CRITICAL); match (NULL, gfc_match_select, ST_SELECT_CASE); match (NULL, gfc_match_select_type, ST_SELECT_TYPE); /* General statement matching: Instead of testing every possible statement, we eliminate most possibilities by peeking at the first character. */ switch (c) { case 'a': match ("abstract% interface", gfc_match_abstract_interface, ST_INTERFACE); match ("allocate", gfc_match_allocate, ST_ALLOCATE); match ("allocatable", gfc_match_allocatable, ST_ATTR_DECL); match ("assign", gfc_match_assign, ST_LABEL_ASSIGNMENT); match ("asynchronous", gfc_match_asynchronous, ST_ATTR_DECL); break; case 'b': match ("backspace", gfc_match_backspace, ST_BACKSPACE); match ("block data", gfc_match_block_data, ST_BLOCK_DATA); match (NULL, gfc_match_bind_c_stmt, ST_ATTR_DECL); break; case 'c': match ("call", gfc_match_call, ST_CALL); match ("close", gfc_match_close, ST_CLOSE); match ("continue", gfc_match_continue, ST_CONTINUE); match ("contiguous", gfc_match_contiguous, ST_ATTR_DECL); match ("cycle", gfc_match_cycle, ST_CYCLE); match ("case", gfc_match_case, ST_CASE); match ("common", gfc_match_common, ST_COMMON); match ("contains", gfc_match_eos, ST_CONTAINS); match ("class", gfc_match_class_is, ST_CLASS_IS); match ("codimension", gfc_match_codimension, ST_ATTR_DECL); break; case 'd': match ("deallocate", gfc_match_deallocate, ST_DEALLOCATE); match ("data", gfc_match_data, ST_DATA); match ("dimension", gfc_match_dimension, ST_ATTR_DECL); break; case 'e': match ("end file", gfc_match_endfile, ST_END_FILE); match ("exit", gfc_match_exit, ST_EXIT); match ("else", gfc_match_else, ST_ELSE); match ("else where", gfc_match_elsewhere, ST_ELSEWHERE); match ("else if", gfc_match_elseif, ST_ELSEIF); match ("error stop", gfc_match_error_stop, ST_ERROR_STOP); match ("enum , bind ( c )", gfc_match_enum, ST_ENUM); if (gfc_match_end (&st) == MATCH_YES) return st; match ("entry% ", gfc_match_entry, ST_ENTRY); match ("equivalence", gfc_match_equivalence, ST_EQUIVALENCE); match ("external", gfc_match_external, ST_ATTR_DECL); break; case 'f': match ("final", gfc_match_final_decl, ST_FINAL); match ("flush", gfc_match_flush, ST_FLUSH); match ("format", gfc_match_format, ST_FORMAT); break; case 'g': match ("generic", gfc_match_generic, ST_GENERIC); match ("go to", gfc_match_goto, ST_GOTO); break; case 'i': match ("inquire", gfc_match_inquire, ST_INQUIRE); match ("implicit", gfc_match_implicit, ST_IMPLICIT); match ("implicit% none", gfc_match_implicit_none, ST_IMPLICIT_NONE); match ("import", gfc_match_import, ST_IMPORT); match ("interface", gfc_match_interface, ST_INTERFACE); match ("intent", gfc_match_intent, ST_ATTR_DECL); match ("intrinsic", gfc_match_intrinsic, ST_ATTR_DECL); break; case 'l': match ("lock", gfc_match_lock, ST_LOCK); break; case 'm': match ("module% procedure", gfc_match_modproc, ST_MODULE_PROC); match ("module", gfc_match_module, ST_MODULE); break; case 'n': match ("nullify", gfc_match_nullify, ST_NULLIFY); match ("namelist", gfc_match_namelist, ST_NAMELIST); break; case 'o': match ("open", gfc_match_open, ST_OPEN); match ("optional", gfc_match_optional, ST_ATTR_DECL); break; case 'p': match ("print", gfc_match_print, ST_WRITE); match ("parameter", gfc_match_parameter, ST_PARAMETER); match ("pause", gfc_match_pause, ST_PAUSE); match ("pointer", gfc_match_pointer, ST_ATTR_DECL); if (gfc_match_private (&st) == MATCH_YES) return st; match ("procedure", gfc_match_procedure, ST_PROCEDURE); match ("program", gfc_match_program, ST_PROGRAM); if (gfc_match_public (&st) == MATCH_YES) return st; match ("protected", gfc_match_protected, ST_ATTR_DECL); break; case 'r': match ("read", gfc_match_read, ST_READ); match ("return", gfc_match_return, ST_RETURN); match ("rewind", gfc_match_rewind, ST_REWIND); break; case 's': match ("sequence", gfc_match_eos, ST_SEQUENCE); match ("stop", gfc_match_stop, ST_STOP); match ("save", gfc_match_save, ST_ATTR_DECL); match ("sync all", gfc_match_sync_all, ST_SYNC_ALL); match ("sync images", gfc_match_sync_images, ST_SYNC_IMAGES); match ("sync memory", gfc_match_sync_memory, ST_SYNC_MEMORY); break; case 't': match ("target", gfc_match_target, ST_ATTR_DECL); match ("type", gfc_match_derived_decl, ST_DERIVED_DECL); match ("type is", gfc_match_type_is, ST_TYPE_IS); break; case 'u': match ("unlock", gfc_match_unlock, ST_UNLOCK); break; case 'v': match ("value", gfc_match_value, ST_ATTR_DECL); match ("volatile", gfc_match_volatile, ST_ATTR_DECL); break; case 'w': match ("wait", gfc_match_wait, ST_WAIT); match ("write", gfc_match_write, ST_WRITE); break; } /* All else has failed, so give up. See if any of the matchers has stored an error message of some sort. */ if (gfc_error_check () == 0) gfc_error_now ("Unclassifiable statement at %C"); reject_statement (); gfc_error_recovery (); return ST_NONE; } static gfc_statement decode_omp_directive (void) { locus old_locus; char c; gfc_enforce_clean_symbol_state (); gfc_clear_error (); /* Clear any pending errors. */ gfc_clear_warning (); /* Clear any pending warnings. */ if (gfc_pure (NULL)) { gfc_error_now ("OpenMP directives at %C may not appear in PURE " "or ELEMENTAL procedures"); gfc_error_recovery (); return ST_NONE; } if (gfc_implicit_pure (NULL)) gfc_current_ns->proc_name->attr.implicit_pure = 0; old_locus = gfc_current_locus; /* General OpenMP directive matching: Instead of testing every possible statement, we eliminate most possibilities by peeking at the first character. */ c = gfc_peek_ascii_char (); switch (c) { case 'a': match ("atomic", gfc_match_omp_atomic, ST_OMP_ATOMIC); break; case 'b': match ("barrier", gfc_match_omp_barrier, ST_OMP_BARRIER); break; case 'c': match ("critical", gfc_match_omp_critical, ST_OMP_CRITICAL); break; case 'd': match ("do", gfc_match_omp_do, ST_OMP_DO); break; case 'e': match ("end atomic", gfc_match_omp_eos, ST_OMP_END_ATOMIC); match ("end critical", gfc_match_omp_critical, ST_OMP_END_CRITICAL); match ("end do", gfc_match_omp_end_nowait, ST_OMP_END_DO); match ("end master", gfc_match_omp_eos, ST_OMP_END_MASTER); match ("end ordered", gfc_match_omp_eos, ST_OMP_END_ORDERED); match ("end parallel do", gfc_match_omp_eos, ST_OMP_END_PARALLEL_DO); match ("end parallel sections", gfc_match_omp_eos, ST_OMP_END_PARALLEL_SECTIONS); match ("end parallel workshare", gfc_match_omp_eos, ST_OMP_END_PARALLEL_WORKSHARE); match ("end parallel", gfc_match_omp_eos, ST_OMP_END_PARALLEL); match ("end sections", gfc_match_omp_end_nowait, ST_OMP_END_SECTIONS); match ("end single", gfc_match_omp_end_single, ST_OMP_END_SINGLE); match ("end task", gfc_match_omp_eos, ST_OMP_END_TASK); match ("end workshare", gfc_match_omp_end_nowait, ST_OMP_END_WORKSHARE); break; case 'f': match ("flush", gfc_match_omp_flush, ST_OMP_FLUSH); break; case 'm': match ("master", gfc_match_omp_master, ST_OMP_MASTER); break; case 'o': match ("ordered", gfc_match_omp_ordered, ST_OMP_ORDERED); break; case 'p': match ("parallel do", gfc_match_omp_parallel_do, ST_OMP_PARALLEL_DO); match ("parallel sections", gfc_match_omp_parallel_sections, ST_OMP_PARALLEL_SECTIONS); match ("parallel workshare", gfc_match_omp_parallel_workshare, ST_OMP_PARALLEL_WORKSHARE); match ("parallel", gfc_match_omp_parallel, ST_OMP_PARALLEL); break; case 's': match ("sections", gfc_match_omp_sections, ST_OMP_SECTIONS); match ("section", gfc_match_omp_eos, ST_OMP_SECTION); match ("single", gfc_match_omp_single, ST_OMP_SINGLE); break; case 't': match ("task", gfc_match_omp_task, ST_OMP_TASK); match ("taskwait", gfc_match_omp_taskwait, ST_OMP_TASKWAIT); match ("taskyield", gfc_match_omp_taskyield, ST_OMP_TASKYIELD); match ("threadprivate", gfc_match_omp_threadprivate, ST_OMP_THREADPRIVATE); case 'w': match ("workshare", gfc_match_omp_workshare, ST_OMP_WORKSHARE); break; } /* All else has failed, so give up. See if any of the matchers has stored an error message of some sort. */ if (gfc_error_check () == 0) gfc_error_now ("Unclassifiable OpenMP directive at %C"); reject_statement (); gfc_error_recovery (); return ST_NONE; } static gfc_statement decode_gcc_attribute (void) { locus old_locus; gfc_enforce_clean_symbol_state (); gfc_clear_error (); /* Clear any pending errors. */ gfc_clear_warning (); /* Clear any pending warnings. */ old_locus = gfc_current_locus; match ("attributes", gfc_match_gcc_attributes, ST_ATTR_DECL); /* All else has failed, so give up. See if any of the matchers has stored an error message of some sort. */ if (gfc_error_check () == 0) gfc_error_now ("Unclassifiable GCC directive at %C"); reject_statement (); gfc_error_recovery (); return ST_NONE; } #undef match /* Get the next statement in free form source. */ static gfc_statement next_free (void) { match m; int i, cnt, at_bol; char c; at_bol = gfc_at_bol (); gfc_gobble_whitespace (); c = gfc_peek_ascii_char (); if (ISDIGIT (c)) { char d; /* Found a statement label? */ m = gfc_match_st_label (&gfc_statement_label); d = gfc_peek_ascii_char (); if (m != MATCH_YES || !gfc_is_whitespace (d)) { gfc_match_small_literal_int (&i, &cnt); if (cnt > 5) gfc_error_now ("Too many digits in statement label at %C"); if (i == 0) gfc_error_now ("Zero is not a valid statement label at %C"); do c = gfc_next_ascii_char (); while (ISDIGIT(c)); if (!gfc_is_whitespace (c)) gfc_error_now ("Non-numeric character in statement label at %C"); return ST_NONE; } else { label_locus = gfc_current_locus; gfc_gobble_whitespace (); if (at_bol && gfc_peek_ascii_char () == ';') { gfc_error_now ("Semicolon at %C needs to be preceded by " "statement"); gfc_next_ascii_char (); /* Eat up the semicolon. */ return ST_NONE; } if (gfc_match_eos () == MATCH_YES) { gfc_warning_now ("Ignoring statement label in empty statement " "at %L", &label_locus); gfc_free_st_label (gfc_statement_label); gfc_statement_label = NULL; return ST_NONE; } } } else if (c == '!') { /* Comments have already been skipped by the time we get here, except for GCC attributes and OpenMP directives. */ gfc_next_ascii_char (); /* Eat up the exclamation sign. */ c = gfc_peek_ascii_char (); if (c == 'g') { int i; c = gfc_next_ascii_char (); for (i = 0; i < 4; i++, c = gfc_next_ascii_char ()) gcc_assert (c == "gcc$"[i]); gfc_gobble_whitespace (); return decode_gcc_attribute (); } else if (c == '$' && gfc_option.gfc_flag_openmp) { int i; c = gfc_next_ascii_char (); for (i = 0; i < 4; i++, c = gfc_next_ascii_char ()) gcc_assert (c == "$omp"[i]); gcc_assert (c == ' ' || c == '\t'); gfc_gobble_whitespace (); if (last_was_use_stmt) use_modules (); return decode_omp_directive (); } gcc_unreachable (); } if (at_bol && c == ';') { if (!(gfc_option.allow_std & GFC_STD_F2008)) gfc_error_now ("Fortran 2008: Semicolon at %C without preceding " "statement"); gfc_next_ascii_char (); /* Eat up the semicolon. */ return ST_NONE; } return decode_statement (); } /* Get the next statement in fixed-form source. */ static gfc_statement next_fixed (void) { int label, digit_flag, i; locus loc; gfc_char_t c; if (!gfc_at_bol ()) return decode_statement (); /* Skip past the current label field, parsing a statement label if one is there. This is a weird number parser, since the number is contained within five columns and can have any kind of embedded spaces. We also check for characters that make the rest of the line a comment. */ label = 0; digit_flag = 0; for (i = 0; i < 5; i++) { c = gfc_next_char_literal (NONSTRING); switch (c) { case ' ': break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': label = label * 10 + ((unsigned char) c - '0'); label_locus = gfc_current_locus; digit_flag = 1; break; /* Comments have already been skipped by the time we get here, except for GCC attributes and OpenMP directives. */ case '*': c = gfc_next_char_literal (NONSTRING); if (TOLOWER (c) == 'g') { for (i = 0; i < 4; i++, c = gfc_next_char_literal (NONSTRING)) gcc_assert (TOLOWER (c) == "gcc$"[i]); return decode_gcc_attribute (); } else if (c == '$' && gfc_option.gfc_flag_openmp) { for (i = 0; i < 4; i++, c = gfc_next_char_literal (NONSTRING)) gcc_assert ((char) gfc_wide_tolower (c) == "$omp"[i]); if (c != ' ' && c != '0') { gfc_buffer_error (0); gfc_error ("Bad continuation line at %C"); return ST_NONE; } if (last_was_use_stmt) use_modules (); return decode_omp_directive (); } /* FALLTHROUGH */ /* Comments have already been skipped by the time we get here so don't bother checking for them. */ default: gfc_buffer_error (0); gfc_error ("Non-numeric character in statement label at %C"); return ST_NONE; } } if (digit_flag) { if (label == 0) gfc_warning_now ("Zero is not a valid statement label at %C"); else { /* We've found a valid statement label. */ gfc_statement_label = gfc_get_st_label (label); } } /* Since this line starts a statement, it cannot be a continuation of a previous statement. If we see something here besides a space or zero, it must be a bad continuation line. */ c = gfc_next_char_literal (NONSTRING); if (c == '\n') goto blank_line; if (c != ' ' && c != '0') { gfc_buffer_error (0); gfc_error ("Bad continuation line at %C"); return ST_NONE; } /* Now that we've taken care of the statement label columns, we have to make sure that the first nonblank character is not a '!'. If it is, the rest of the line is a comment. */ do { loc = gfc_current_locus; c = gfc_next_char_literal (NONSTRING); } while (gfc_is_whitespace (c)); if (c == '!') goto blank_line; gfc_current_locus = loc; if (c == ';') { if (digit_flag) gfc_error_now ("Semicolon at %C needs to be preceded by statement"); else if (!(gfc_option.allow_std & GFC_STD_F2008)) gfc_error_now ("Fortran 2008: Semicolon at %C without preceding " "statement"); return ST_NONE; } if (gfc_match_eos () == MATCH_YES) goto blank_line; /* At this point, we've got a nonblank statement to parse. */ return decode_statement (); blank_line: if (digit_flag) gfc_warning_now ("Ignoring statement label in empty statement at %L", &label_locus); gfc_current_locus.lb->truncated = 0; gfc_advance_line (); return ST_NONE; } /* Return the next non-ST_NONE statement to the caller. We also worry about including files and the ends of include files at this stage. */ static gfc_statement next_statement (void) { gfc_statement st; locus old_locus; gfc_enforce_clean_symbol_state (); gfc_new_block = NULL; gfc_current_ns->old_cl_list = gfc_current_ns->cl_list; gfc_current_ns->old_equiv = gfc_current_ns->equiv; for (;;) { gfc_statement_label = NULL; gfc_buffer_error (1); if (gfc_at_eol ()) gfc_advance_line (); gfc_skip_comments (); if (gfc_at_end ()) { st = ST_NONE; break; } if (gfc_define_undef_line ()) continue; old_locus = gfc_current_locus; st = (gfc_current_form == FORM_FIXED) ? next_fixed () : next_free (); if (st != ST_NONE) break; } gfc_buffer_error (0); if (st == ST_GET_FCN_CHARACTERISTICS && gfc_statement_label != NULL) { gfc_free_st_label (gfc_statement_label); gfc_statement_label = NULL; gfc_current_locus = old_locus; } if (st != ST_NONE) check_statement_label (st); return st; } /****************************** Parser ***********************************/ /* The parser subroutines are of type 'try' that fail if the file ends unexpectedly. */ /* Macros that expand to case-labels for various classes of statements. Start with executable statements that directly do things. */ #define case_executable case ST_ALLOCATE: case ST_BACKSPACE: case ST_CALL: \ case ST_CLOSE: case ST_CONTINUE: case ST_DEALLOCATE: case ST_END_FILE: \ case ST_GOTO: case ST_INQUIRE: case ST_NULLIFY: case ST_OPEN: \ case ST_READ: case ST_RETURN: case ST_REWIND: case ST_SIMPLE_IF: \ case ST_PAUSE: case ST_STOP: case ST_WAIT: case ST_WRITE: \ case ST_POINTER_ASSIGNMENT: case ST_EXIT: case ST_CYCLE: \ case ST_ASSIGNMENT: case ST_ARITHMETIC_IF: case ST_WHERE: case ST_FORALL: \ case ST_LABEL_ASSIGNMENT: case ST_FLUSH: case ST_OMP_FLUSH: \ case ST_OMP_BARRIER: case ST_OMP_TASKWAIT: case ST_OMP_TASKYIELD: \ case ST_ERROR_STOP: case ST_SYNC_ALL: case ST_SYNC_IMAGES: \ case ST_SYNC_MEMORY: case ST_LOCK: case ST_UNLOCK /* Statements that mark other executable statements. */ #define case_exec_markers case ST_DO: case ST_FORALL_BLOCK: \ case ST_IF_BLOCK: case ST_BLOCK: case ST_ASSOCIATE: \ case ST_WHERE_BLOCK: case ST_SELECT_CASE: case ST_SELECT_TYPE: \ case ST_OMP_PARALLEL: \ case ST_OMP_PARALLEL_SECTIONS: case ST_OMP_SECTIONS: case ST_OMP_ORDERED: \ case ST_OMP_CRITICAL: case ST_OMP_MASTER: case ST_OMP_SINGLE: \ case ST_OMP_DO: case ST_OMP_PARALLEL_DO: case ST_OMP_ATOMIC: \ case ST_OMP_WORKSHARE: case ST_OMP_PARALLEL_WORKSHARE: \ case ST_OMP_TASK: case ST_CRITICAL /* Declaration statements */ #define case_decl case ST_ATTR_DECL: case ST_COMMON: case ST_DATA_DECL: \ case ST_EQUIVALENCE: case ST_NAMELIST: case ST_STATEMENT_FUNCTION: \ case ST_TYPE: case ST_INTERFACE: case ST_OMP_THREADPRIVATE: \ case ST_PROCEDURE /* Block end statements. Errors associated with interchanging these are detected in gfc_match_end(). */ #define case_end case ST_END_BLOCK_DATA: case ST_END_FUNCTION: \ case ST_END_PROGRAM: case ST_END_SUBROUTINE: \ case ST_END_BLOCK: case ST_END_ASSOCIATE /* Push a new state onto the stack. */ static void push_state (gfc_state_data *p, gfc_compile_state new_state, gfc_symbol *sym) { p->state = new_state; p->previous = gfc_state_stack; p->sym = sym; p->head = p->tail = NULL; p->do_variable = NULL; /* If this the state of a construct like BLOCK, DO or IF, the corresponding construct statement was accepted right before pushing the state. Thus, the construct's gfc_code is available as tail of the parent state. */ gcc_assert (gfc_state_stack); p->construct = gfc_state_stack->tail; gfc_state_stack = p; } /* Pop the current state. */ static void pop_state (void) { gfc_state_stack = gfc_state_stack->previous; } /* Try to find the given state in the state stack. */ gfc_try gfc_find_state (gfc_compile_state state) { gfc_state_data *p; for (p = gfc_state_stack; p; p = p->previous) if (p->state == state) break; return (p == NULL) ? FAILURE : SUCCESS; } /* Starts a new level in the statement list. */ static gfc_code * new_level (gfc_code *q) { gfc_code *p; p = q->block = gfc_get_code (); gfc_state_stack->head = gfc_state_stack->tail = p; return p; } /* Add the current new_st code structure and adds it to the current program unit. As a side-effect, it zeroes the new_st. */ static gfc_code * add_statement (void) { gfc_code *p; p = gfc_get_code (); *p = new_st; p->loc = gfc_current_locus; if (gfc_state_stack->head == NULL) gfc_state_stack->head = p; else gfc_state_stack->tail->next = p; while (p->next != NULL) p = p->next; gfc_state_stack->tail = p; gfc_clear_new_st (); return p; } /* Frees everything associated with the current statement. */ static void undo_new_statement (void) { gfc_free_statements (new_st.block); gfc_free_statements (new_st.next); gfc_free_statement (&new_st); gfc_clear_new_st (); } /* If the current statement has a statement label, make sure that it is allowed to, or should have one. */ static void check_statement_label (gfc_statement st) { gfc_sl_type type; if (gfc_statement_label == NULL) { if (st == ST_FORMAT) gfc_error ("FORMAT statement at %L does not have a statement label", &new_st.loc); return; } switch (st) { case ST_END_PROGRAM: case ST_END_FUNCTION: case ST_END_SUBROUTINE: case ST_ENDDO: case ST_ENDIF: case ST_END_SELECT: case ST_END_CRITICAL: case ST_END_BLOCK: case ST_END_ASSOCIATE: case_executable: case_exec_markers: if (st == ST_ENDDO || st == ST_CONTINUE) type = ST_LABEL_DO_TARGET; else type = ST_LABEL_TARGET; break; case ST_FORMAT: type = ST_LABEL_FORMAT; break; /* Statement labels are not restricted from appearing on a particular line. However, there are plenty of situations where the resulting label can't be referenced. */ default: type = ST_LABEL_BAD_TARGET; break; } gfc_define_st_label (gfc_statement_label, type, &label_locus); new_st.here = gfc_statement_label; } /* Figures out what the enclosing program unit is. This will be a function, subroutine, program, block data or module. */ gfc_state_data * gfc_enclosing_unit (gfc_compile_state * result) { gfc_state_data *p; for (p = gfc_state_stack; p; p = p->previous) if (p->state == COMP_FUNCTION || p->state == COMP_SUBROUTINE || p->state == COMP_MODULE || p->state == COMP_BLOCK_DATA || p->state == COMP_PROGRAM) { if (result != NULL) *result = p->state; return p; } if (result != NULL) *result = COMP_PROGRAM; return NULL; } /* Translate a statement enum to a string. */ const char * gfc_ascii_statement (gfc_statement st) { const char *p; switch (st) { case ST_ARITHMETIC_IF: p = _("arithmetic IF"); break; case ST_ALLOCATE: p = "ALLOCATE"; break; case ST_ASSOCIATE: p = "ASSOCIATE"; break; case ST_ATTR_DECL: p = _("attribute declaration"); break; case ST_BACKSPACE: p = "BACKSPACE"; break; case ST_BLOCK: p = "BLOCK"; break; case ST_BLOCK_DATA: p = "BLOCK DATA"; break; case ST_CALL: p = "CALL"; break; case ST_CASE: p = "CASE"; break; case ST_CLOSE: p = "CLOSE"; break; case ST_COMMON: p = "COMMON"; break; case ST_CONTINUE: p = "CONTINUE"; break; case ST_CONTAINS: p = "CONTAINS"; break; case ST_CRITICAL: p = "CRITICAL"; break; case ST_CYCLE: p = "CYCLE"; break; case ST_DATA_DECL: p = _("data declaration"); break; case ST_DATA: p = "DATA"; break; case ST_DEALLOCATE: p = "DEALLOCATE"; break; case ST_DERIVED_DECL: p = _("derived type declaration"); break; case ST_DO: p = "DO"; break; case ST_ELSE: p = "ELSE"; break; case ST_ELSEIF: p = "ELSE IF"; break; case ST_ELSEWHERE: p = "ELSEWHERE"; break; case ST_END_ASSOCIATE: p = "END ASSOCIATE"; break; case ST_END_BLOCK: p = "END BLOCK"; break; case ST_END_BLOCK_DATA: p = "END BLOCK DATA"; break; case ST_END_CRITICAL: p = "END CRITICAL"; break; case ST_ENDDO: p = "END DO"; break; case ST_END_FILE: p = "END FILE"; break; case ST_END_FORALL: p = "END FORALL"; break; case ST_END_FUNCTION: p = "END FUNCTION"; break; case ST_ENDIF: p = "END IF"; break; case ST_END_INTERFACE: p = "END INTERFACE"; break; case ST_END_MODULE: p = "END MODULE"; break; case ST_END_PROGRAM: p = "END PROGRAM"; break; case ST_END_SELECT: p = "END SELECT"; break; case ST_END_SUBROUTINE: p = "END SUBROUTINE"; break; case ST_END_WHERE: p = "END WHERE"; break; case ST_END_TYPE: p = "END TYPE"; break; case ST_ENTRY: p = "ENTRY"; break; case ST_EQUIVALENCE: p = "EQUIVALENCE"; break; case ST_ERROR_STOP: p = "ERROR STOP"; break; case ST_EXIT: p = "EXIT"; break; case ST_FLUSH: p = "FLUSH"; break; case ST_FORALL_BLOCK: /* Fall through */ case ST_FORALL: p = "FORALL"; break; case ST_FORMAT: p = "FORMAT"; break; case ST_FUNCTION: p = "FUNCTION"; break; case ST_GENERIC: p = "GENERIC"; break; case ST_GOTO: p = "GOTO"; break; case ST_IF_BLOCK: p = _("block IF"); break; case ST_IMPLICIT: p = "IMPLICIT"; break; case ST_IMPLICIT_NONE: p = "IMPLICIT NONE"; break; case ST_IMPLIED_ENDDO: p = _("implied END DO"); break; case ST_IMPORT: p = "IMPORT"; break; case ST_INQUIRE: p = "INQUIRE"; break; case ST_INTERFACE: p = "INTERFACE"; break; case ST_LOCK: p = "LOCK"; break; case ST_PARAMETER: p = "PARAMETER"; break; case ST_PRIVATE: p = "PRIVATE"; break; case ST_PUBLIC: p = "PUBLIC"; break; case ST_MODULE: p = "MODULE"; break; case ST_PAUSE: p = "PAUSE"; break; case ST_MODULE_PROC: p = "MODULE PROCEDURE"; break; case ST_NAMELIST: p = "NAMELIST"; break; case ST_NULLIFY: p = "NULLIFY"; break; case ST_OPEN: p = "OPEN"; break; case ST_PROGRAM: p = "PROGRAM"; break; case ST_PROCEDURE: p = "PROCEDURE"; break; case ST_READ: p = "READ"; break; case ST_RETURN: p = "RETURN"; break; case ST_REWIND: p = "REWIND"; break; case ST_STOP: p = "STOP"; break; case ST_SYNC_ALL: p = "SYNC ALL"; break; case ST_SYNC_IMAGES: p = "SYNC IMAGES"; break; case ST_SYNC_MEMORY: p = "SYNC MEMORY"; break; case ST_SUBROUTINE: p = "SUBROUTINE"; break; case ST_TYPE: p = "TYPE"; break; case ST_UNLOCK: p = "UNLOCK"; break; case ST_USE: p = "USE"; break; case ST_WHERE_BLOCK: /* Fall through */ case ST_WHERE: p = "WHERE"; break; case ST_WAIT: p = "WAIT"; break; case ST_WRITE: p = "WRITE"; break; case ST_ASSIGNMENT: p = _("assignment"); break; case ST_POINTER_ASSIGNMENT: p = _("pointer assignment"); break; case ST_SELECT_CASE: p = "SELECT CASE"; break; case ST_SELECT_TYPE: p = "SELECT TYPE"; break; case ST_TYPE_IS: p = "TYPE IS"; break; case ST_CLASS_IS: p = "CLASS IS"; break; case ST_SEQUENCE: p = "SEQUENCE"; break; case ST_SIMPLE_IF: p = _("simple IF"); break; case ST_STATEMENT_FUNCTION: p = "STATEMENT FUNCTION"; break; case ST_LABEL_ASSIGNMENT: p = "LABEL ASSIGNMENT"; break; case ST_ENUM: p = "ENUM DEFINITION"; break; case ST_ENUMERATOR: p = "ENUMERATOR DEFINITION"; break; case ST_END_ENUM: p = "END ENUM"; break; case ST_OMP_ATOMIC: p = "!$OMP ATOMIC"; break; case ST_OMP_BARRIER: p = "!$OMP BARRIER"; break; case ST_OMP_CRITICAL: p = "!$OMP CRITICAL"; break; case ST_OMP_DO: p = "!$OMP DO"; break; case ST_OMP_END_ATOMIC: p = "!$OMP END ATOMIC"; break; case ST_OMP_END_CRITICAL: p = "!$OMP END CRITICAL"; break; case ST_OMP_END_DO: p = "!$OMP END DO"; break; case ST_OMP_END_MASTER: p = "!$OMP END MASTER"; break; case ST_OMP_END_ORDERED: p = "!$OMP END ORDERED"; break; case ST_OMP_END_PARALLEL: p = "!$OMP END PARALLEL"; break; case ST_OMP_END_PARALLEL_DO: p = "!$OMP END PARALLEL DO"; break; case ST_OMP_END_PARALLEL_SECTIONS: p = "!$OMP END PARALLEL SECTIONS"; break; case ST_OMP_END_PARALLEL_WORKSHARE: p = "!$OMP END PARALLEL WORKSHARE"; break; case ST_OMP_END_SECTIONS: p = "!$OMP END SECTIONS"; break; case ST_OMP_END_SINGLE: p = "!$OMP END SINGLE"; break; case ST_OMP_END_TASK: p = "!$OMP END TASK"; break; case ST_OMP_END_WORKSHARE: p = "!$OMP END WORKSHARE"; break; case ST_OMP_FLUSH: p = "!$OMP FLUSH"; break; case ST_OMP_MASTER: p = "!$OMP MASTER"; break; case ST_OMP_ORDERED: p = "!$OMP ORDERED"; break; case ST_OMP_PARALLEL: p = "!$OMP PARALLEL"; break; case ST_OMP_PARALLEL_DO: p = "!$OMP PARALLEL DO"; break; case ST_OMP_PARALLEL_SECTIONS: p = "!$OMP PARALLEL SECTIONS"; break; case ST_OMP_PARALLEL_WORKSHARE: p = "!$OMP PARALLEL WORKSHARE"; break; case ST_OMP_SECTIONS: p = "!$OMP SECTIONS"; break; case ST_OMP_SECTION: p = "!$OMP SECTION"; break; case ST_OMP_SINGLE: p = "!$OMP SINGLE"; break; case ST_OMP_TASK: p = "!$OMP TASK"; break; case ST_OMP_TASKWAIT: p = "!$OMP TASKWAIT"; break; case ST_OMP_TASKYIELD: p = "!$OMP TASKYIELD"; break; case ST_OMP_THREADPRIVATE: p = "!$OMP THREADPRIVATE"; break; case ST_OMP_WORKSHARE: p = "!$OMP WORKSHARE"; break; default: gfc_internal_error ("gfc_ascii_statement(): Bad statement code"); } return p; } /* Create a symbol for the main program and assign it to ns->proc_name. */ static void main_program_symbol (gfc_namespace *ns, const char *name) { gfc_symbol *main_program; symbol_attribute attr; gfc_get_symbol (name, ns, &main_program); gfc_clear_attr (&attr); attr.flavor = FL_PROGRAM; attr.proc = PROC_UNKNOWN; attr.subroutine = 1; attr.access = ACCESS_PUBLIC; attr.is_main_program = 1; main_program->attr = attr; main_program->declared_at = gfc_current_locus; ns->proc_name = main_program; gfc_commit_symbols (); } /* Do whatever is necessary to accept the last statement. */ static void accept_statement (gfc_statement st) { switch (st) { case ST_IMPLICIT_NONE: gfc_set_implicit_none (); break; case ST_IMPLICIT: break; case ST_FUNCTION: case ST_SUBROUTINE: case ST_MODULE: gfc_current_ns->proc_name = gfc_new_block; break; /* If the statement is the end of a block, lay down a special code that allows a branch to the end of the block from within the construct. IF and SELECT are treated differently from DO (where EXEC_NOP is added inside the loop) for two reasons: 1. END DO has a meaning in the sense that after a GOTO to it, the loop counter must be increased. 2. IF blocks and SELECT blocks can consist of multiple parallel blocks (IF ... ELSE IF ... ELSE ... END IF). Putting the label before the END IF would make the jump from, say, the ELSE IF block to the END IF illegal. */ case ST_ENDIF: case ST_END_SELECT: case ST_END_CRITICAL: if (gfc_statement_label != NULL) { new_st.op = EXEC_END_NESTED_BLOCK; add_statement (); } break; /* In the case of BLOCK and ASSOCIATE blocks, there cannot be more than one parallel block. Thus, we add the special code to the nested block itself, instead of the parent one. */ case ST_END_BLOCK: case ST_END_ASSOCIATE: if (gfc_statement_label != NULL) { new_st.op = EXEC_END_BLOCK; add_statement (); } break; /* The end-of-program unit statements do not get the special marker and require a statement of some sort if they are a branch target. */ case ST_END_PROGRAM: case ST_END_FUNCTION: case ST_END_SUBROUTINE: if (gfc_statement_label != NULL) { new_st.op = EXEC_RETURN; add_statement (); } else { new_st.op = EXEC_END_PROCEDURE; add_statement (); } break; case ST_ENTRY: case_executable: case_exec_markers: add_statement (); break; default: break; } gfc_commit_symbols (); gfc_warning_check (); gfc_clear_new_st (); } /* Undo anything tentative that has been built for the current statement. */ static void reject_statement (void) { /* Revert to the previous charlen chain. */ gfc_free_charlen (gfc_current_ns->cl_list, gfc_current_ns->old_cl_list); gfc_current_ns->cl_list = gfc_current_ns->old_cl_list; gfc_free_equiv_until (gfc_current_ns->equiv, gfc_current_ns->old_equiv); gfc_current_ns->equiv = gfc_current_ns->old_equiv; gfc_new_block = NULL; gfc_undo_symbols (); gfc_clear_warning (); undo_new_statement (); } /* Generic complaint about an out of order statement. We also do whatever is necessary to clean up. */ static void unexpected_statement (gfc_statement st) { gfc_error ("Unexpected %s statement at %C", gfc_ascii_statement (st)); reject_statement (); } /* Given the next statement seen by the matcher, make sure that it is in proper order with the last. This subroutine is initialized by calling it with an argument of ST_NONE. If there is a problem, we issue an error and return FAILURE. Otherwise we return SUCCESS. Individual parsers need to verify that the statements seen are valid before calling here, i.e., ENTRY statements are not allowed in INTERFACE blocks. The following diagram is taken from the standard: +---------------------------------------+ | program subroutine function module | +---------------------------------------+ | use | +---------------------------------------+ | import | +---------------------------------------+ | | implicit none | | +-----------+------------------+ | | parameter | implicit | | +-----------+------------------+ | format | | derived type | | entry | parameter | interface | | | data | specification | | | | statement func | | +-----------+------------------+ | | data | executable | +--------+-----------+------------------+ | contains | +---------------------------------------+ | internal module/subprogram | +---------------------------------------+ | end | +---------------------------------------+ */ enum state_order { ORDER_START, ORDER_USE, ORDER_IMPORT, ORDER_IMPLICIT_NONE, ORDER_IMPLICIT, ORDER_SPEC, ORDER_EXEC }; typedef struct { enum state_order state; gfc_statement last_statement; locus where; } st_state; static gfc_try verify_st_order (st_state *p, gfc_statement st, bool silent) { switch (st) { case ST_NONE: p->state = ORDER_START; break; case ST_USE: if (p->state > ORDER_USE) goto order; p->state = ORDER_USE; break; case ST_IMPORT: if (p->state > ORDER_IMPORT) goto order; p->state = ORDER_IMPORT; break; case ST_IMPLICIT_NONE: if (p->state > ORDER_IMPLICIT_NONE) goto order; /* The '>' sign cannot be a '>=', because a FORMAT or ENTRY statement disqualifies a USE but not an IMPLICIT NONE. Duplicate IMPLICIT NONEs are caught when the implicit types are set. */ p->state = ORDER_IMPLICIT_NONE; break; case ST_IMPLICIT: if (p->state > ORDER_IMPLICIT) goto order; p->state = ORDER_IMPLICIT; break; case ST_FORMAT: case ST_ENTRY: if (p->state < ORDER_IMPLICIT_NONE) p->state = ORDER_IMPLICIT_NONE; break; case ST_PARAMETER: if (p->state >= ORDER_EXEC) goto order; if (p->state < ORDER_IMPLICIT) p->state = ORDER_IMPLICIT; break; case ST_DATA: if (p->state < ORDER_SPEC) p->state = ORDER_SPEC; break; case ST_PUBLIC: case ST_PRIVATE: case ST_DERIVED_DECL: case_decl: if (p->state >= ORDER_EXEC) goto order; if (p->state < ORDER_SPEC) p->state = ORDER_SPEC; break; case_executable: case_exec_markers: if (p->state < ORDER_EXEC) p->state = ORDER_EXEC; break; default: gfc_internal_error ("Unexpected %s statement in verify_st_order() at %C", gfc_ascii_statement (st)); } /* All is well, record the statement in case we need it next time. */ p->where = gfc_current_locus; p->last_statement = st; return SUCCESS; order: if (!silent) gfc_error ("%s statement at %C cannot follow %s statement at %L", gfc_ascii_statement (st), gfc_ascii_statement (p->last_statement), &p->where); return FAILURE; } /* Handle an unexpected end of file. This is a show-stopper... */ static void unexpected_eof (void) ATTRIBUTE_NORETURN; static void unexpected_eof (void) { gfc_state_data *p; gfc_error ("Unexpected end of file in '%s'", gfc_source_file); /* Memory cleanup. Move to "second to last". */ for (p = gfc_state_stack; p && p->previous && p->previous->previous; p = p->previous); gfc_current_ns->code = (p && p->previous) ? p->head : NULL; gfc_done_2 (); longjmp (eof_buf, 1); } /* Parse the CONTAINS section of a derived type definition. */ gfc_access gfc_typebound_default_access; static bool parse_derived_contains (void) { gfc_state_data s; bool seen_private = false; bool seen_comps = false; bool error_flag = false; bool to_finish; gcc_assert (gfc_current_state () == COMP_DERIVED); gcc_assert (gfc_current_block ()); /* Derived-types with SEQUENCE and/or BIND(C) must not have a CONTAINS section. */ if (gfc_current_block ()->attr.sequence) gfc_error ("Derived-type '%s' with SEQUENCE must not have a CONTAINS" " section at %C", gfc_current_block ()->name); if (gfc_current_block ()->attr.is_bind_c) gfc_error ("Derived-type '%s' with BIND(C) must not have a CONTAINS" " section at %C", gfc_current_block ()->name); accept_statement (ST_CONTAINS); push_state (&s, COMP_DERIVED_CONTAINS, NULL); gfc_typebound_default_access = ACCESS_PUBLIC; to_finish = false; while (!to_finish) { gfc_statement st; st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); break; case ST_DATA_DECL: gfc_error ("Components in TYPE at %C must precede CONTAINS"); goto error; case ST_PROCEDURE: if (gfc_notify_std (GFC_STD_F2003, "Type-bound" " procedure at %C") == FAILURE) goto error; accept_statement (ST_PROCEDURE); seen_comps = true; break; case ST_GENERIC: if (gfc_notify_std (GFC_STD_F2003, "GENERIC binding" " at %C") == FAILURE) goto error; accept_statement (ST_GENERIC); seen_comps = true; break; case ST_FINAL: if (gfc_notify_std (GFC_STD_F2003, "FINAL procedure declaration" " at %C") == FAILURE) goto error; accept_statement (ST_FINAL); seen_comps = true; break; case ST_END_TYPE: to_finish = true; if (!seen_comps && (gfc_notify_std (GFC_STD_F2008, "Derived type " "definition at %C with empty CONTAINS " "section") == FAILURE)) goto error; /* ST_END_TYPE is accepted by parse_derived after return. */ break; case ST_PRIVATE: if (gfc_find_state (COMP_MODULE) == FAILURE) { gfc_error ("PRIVATE statement in TYPE at %C must be inside " "a MODULE"); goto error; } if (seen_comps) { gfc_error ("PRIVATE statement at %C must precede procedure" " bindings"); goto error; } if (seen_private) { gfc_error ("Duplicate PRIVATE statement at %C"); goto error; } accept_statement (ST_PRIVATE); gfc_typebound_default_access = ACCESS_PRIVATE; seen_private = true; break; case ST_SEQUENCE: gfc_error ("SEQUENCE statement at %C must precede CONTAINS"); goto error; case ST_CONTAINS: gfc_error ("Already inside a CONTAINS block at %C"); goto error; default: unexpected_statement (st); break; } continue; error: error_flag = true; reject_statement (); } pop_state (); gcc_assert (gfc_current_state () == COMP_DERIVED); return error_flag; } /* Parse a derived type. */ static void parse_derived (void) { int compiling_type, seen_private, seen_sequence, seen_component; gfc_statement st; gfc_state_data s; gfc_symbol *sym; gfc_component *c, *lock_comp = NULL; accept_statement (ST_DERIVED_DECL); push_state (&s, COMP_DERIVED, gfc_new_block); gfc_new_block->component_access = ACCESS_PUBLIC; seen_private = 0; seen_sequence = 0; seen_component = 0; compiling_type = 1; while (compiling_type) { st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); case ST_DATA_DECL: case ST_PROCEDURE: accept_statement (st); seen_component = 1; break; case ST_FINAL: gfc_error ("FINAL declaration at %C must be inside CONTAINS"); break; case ST_END_TYPE: endType: compiling_type = 0; if (!seen_component) gfc_notify_std (GFC_STD_F2003, "Derived type " "definition at %C without components"); accept_statement (ST_END_TYPE); break; case ST_PRIVATE: if (gfc_find_state (COMP_MODULE) == FAILURE) { gfc_error ("PRIVATE statement in TYPE at %C must be inside " "a MODULE"); break; } if (seen_component) { gfc_error ("PRIVATE statement at %C must precede " "structure components"); break; } if (seen_private) gfc_error ("Duplicate PRIVATE statement at %C"); s.sym->component_access = ACCESS_PRIVATE; accept_statement (ST_PRIVATE); seen_private = 1; break; case ST_SEQUENCE: if (seen_component) { gfc_error ("SEQUENCE statement at %C must precede " "structure components"); break; } if (gfc_current_block ()->attr.sequence) gfc_warning ("SEQUENCE attribute at %C already specified in " "TYPE statement"); if (seen_sequence) { gfc_error ("Duplicate SEQUENCE statement at %C"); } seen_sequence = 1; gfc_add_sequence (&gfc_current_block ()->attr, gfc_current_block ()->name, NULL); break; case ST_CONTAINS: gfc_notify_std (GFC_STD_F2003, "CONTAINS block in derived type" " definition at %C"); accept_statement (ST_CONTAINS); parse_derived_contains (); goto endType; default: unexpected_statement (st); break; } } /* need to verify that all fields of the derived type are * interoperable with C if the type is declared to be bind(c) */ sym = gfc_current_block (); for (c = sym->components; c; c = c->next) { bool coarray, lock_type, allocatable, pointer; coarray = lock_type = allocatable = pointer = false; /* Look for allocatable components. */ if (c->attr.allocatable || (c->ts.type == BT_CLASS && c->attr.class_ok && CLASS_DATA (c)->attr.allocatable) || (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.alloc_comp)) { allocatable = true; sym->attr.alloc_comp = 1; } /* Look for pointer components. */ if (c->attr.pointer || (c->ts.type == BT_CLASS && c->attr.class_ok && CLASS_DATA (c)->attr.class_pointer) || (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.pointer_comp)) { pointer = true; sym->attr.pointer_comp = 1; } /* Look for procedure pointer components. */ if (c->attr.proc_pointer || (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.proc_pointer_comp)) sym->attr.proc_pointer_comp = 1; /* Looking for coarray components. */ if (c->attr.codimension || (c->ts.type == BT_CLASS && c->attr.class_ok && CLASS_DATA (c)->attr.codimension)) { coarray = true; sym->attr.coarray_comp = 1; } if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.coarray_comp) { coarray = true; if (!pointer && !allocatable) sym->attr.coarray_comp = 1; } /* Looking for lock_type components. */ if ((c->ts.type == BT_DERIVED && c->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && c->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) || (c->ts.type == BT_CLASS && c->attr.class_ok && CLASS_DATA (c)->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && CLASS_DATA (c)->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) || (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.lock_comp && !allocatable && !pointer)) { lock_type = 1; lock_comp = c; sym->attr.lock_comp = 1; } /* Check for F2008, C1302 - and recall that pointers may not be coarrays (5.3.14) and that subobjects of coarray are coarray themselves (2.4.7), unless there are nondirect [allocatable or pointer] components involved (cf. 1.3.33.1 and 1.3.33.3). */ if (pointer && !coarray && lock_type) gfc_error ("Component %s at %L of type LOCK_TYPE must have a " "codimension or be a subcomponent of a coarray, " "which is not possible as the component has the " "pointer attribute", c->name, &c->loc); else if (pointer && !coarray && c->ts.type == BT_DERIVED && c->ts.u.derived->attr.lock_comp) gfc_error ("Pointer component %s at %L has a noncoarray subcomponent " "of type LOCK_TYPE, which must have a codimension or be a " "subcomponent of a coarray", c->name, &c->loc); if (lock_type && allocatable && !coarray) gfc_error ("Allocatable component %s at %L of type LOCK_TYPE must have " "a codimension", c->name, &c->loc); else if (lock_type && allocatable && c->ts.type == BT_DERIVED && c->ts.u.derived->attr.lock_comp) gfc_error ("Allocatable component %s at %L must have a codimension as " "it has a noncoarray subcomponent of type LOCK_TYPE", c->name, &c->loc); if (sym->attr.coarray_comp && !coarray && lock_type) gfc_error ("Noncoarray component %s at %L of type LOCK_TYPE or with " "subcomponent of type LOCK_TYPE must have a codimension or " "be a subcomponent of a coarray. (Variables of type %s may " "not have a codimension as already a coarray " "subcomponent exists)", c->name, &c->loc, sym->name); if (sym->attr.lock_comp && coarray && !lock_type) gfc_error ("Noncoarray component %s at %L of type LOCK_TYPE or with " "subcomponent of type LOCK_TYPE must have a codimension or " "be a subcomponent of a coarray. (Variables of type %s may " "not have a codimension as %s at %L has a codimension or a " "coarray subcomponent)", lock_comp->name, &lock_comp->loc, sym->name, c->name, &c->loc); /* Look for private components. */ if (sym->component_access == ACCESS_PRIVATE || c->attr.access == ACCESS_PRIVATE || (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.private_comp)) sym->attr.private_comp = 1; } if (!seen_component) sym->attr.zero_comp = 1; pop_state (); } /* Parse an ENUM. */ static void parse_enum (void) { gfc_statement st; int compiling_enum; gfc_state_data s; int seen_enumerator = 0; push_state (&s, COMP_ENUM, gfc_new_block); compiling_enum = 1; while (compiling_enum) { st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); break; case ST_ENUMERATOR: seen_enumerator = 1; accept_statement (st); break; case ST_END_ENUM: compiling_enum = 0; if (!seen_enumerator) gfc_error ("ENUM declaration at %C has no ENUMERATORS"); accept_statement (st); break; default: gfc_free_enum_history (); unexpected_statement (st); break; } } pop_state (); } /* Parse an interface. We must be able to deal with the possibility of recursive interfaces. The parse_spec() subroutine is mutually recursive with parse_interface(). */ static gfc_statement parse_spec (gfc_statement); static void parse_interface (void) { gfc_compile_state new_state = COMP_NONE, current_state; gfc_symbol *prog_unit, *sym; gfc_interface_info save; gfc_state_data s1, s2; gfc_statement st; locus proc_locus; accept_statement (ST_INTERFACE); current_interface.ns = gfc_current_ns; save = current_interface; sym = (current_interface.type == INTERFACE_GENERIC || current_interface.type == INTERFACE_USER_OP) ? gfc_new_block : NULL; push_state (&s1, COMP_INTERFACE, sym); current_state = COMP_NONE; loop: gfc_current_ns = gfc_get_namespace (current_interface.ns, 0); st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); case ST_SUBROUTINE: case ST_FUNCTION: if (st == ST_SUBROUTINE) new_state = COMP_SUBROUTINE; else if (st == ST_FUNCTION) new_state = COMP_FUNCTION; if (gfc_new_block->attr.pointer) { gfc_new_block->attr.pointer = 0; gfc_new_block->attr.proc_pointer = 1; } if (gfc_add_explicit_interface (gfc_new_block, IFSRC_IFBODY, gfc_new_block->formal, NULL) == FAILURE) { reject_statement (); gfc_free_namespace (gfc_current_ns); goto loop; } break; case ST_PROCEDURE: case ST_MODULE_PROC: /* The module procedure matcher makes sure the context is correct. */ accept_statement (st); gfc_free_namespace (gfc_current_ns); goto loop; case ST_END_INTERFACE: gfc_free_namespace (gfc_current_ns); gfc_current_ns = current_interface.ns; goto done; default: gfc_error ("Unexpected %s statement in INTERFACE block at %C", gfc_ascii_statement (st)); reject_statement (); gfc_free_namespace (gfc_current_ns); goto loop; } /* Make sure that the generic name has the right attribute. */ if (current_interface.type == INTERFACE_GENERIC && current_state == COMP_NONE) { if (new_state == COMP_FUNCTION && sym) gfc_add_function (&sym->attr, sym->name, NULL); else if (new_state == COMP_SUBROUTINE && sym) gfc_add_subroutine (&sym->attr, sym->name, NULL); current_state = new_state; } if (current_interface.type == INTERFACE_ABSTRACT) { gfc_add_abstract (&gfc_new_block->attr, &gfc_current_locus); if (gfc_is_intrinsic_typename (gfc_new_block->name)) gfc_error ("Name '%s' of ABSTRACT INTERFACE at %C " "cannot be the same as an intrinsic type", gfc_new_block->name); } push_state (&s2, new_state, gfc_new_block); accept_statement (st); prog_unit = gfc_new_block; prog_unit->formal_ns = gfc_current_ns; proc_locus = gfc_current_locus; decl: /* Read data declaration statements. */ st = parse_spec (ST_NONE); /* Since the interface block does not permit an IMPLICIT statement, the default type for the function or the result must be taken from the formal namespace. */ if (new_state == COMP_FUNCTION) { if (prog_unit->result == prog_unit && prog_unit->ts.type == BT_UNKNOWN) gfc_set_default_type (prog_unit, 1, prog_unit->formal_ns); else if (prog_unit->result != prog_unit && prog_unit->result->ts.type == BT_UNKNOWN) gfc_set_default_type (prog_unit->result, 1, prog_unit->formal_ns); } if (st != ST_END_SUBROUTINE && st != ST_END_FUNCTION) { gfc_error ("Unexpected %s statement at %C in INTERFACE body", gfc_ascii_statement (st)); reject_statement (); goto decl; } /* Add EXTERNAL attribute to function or subroutine. */ if (current_interface.type != INTERFACE_ABSTRACT && !prog_unit->attr.dummy) gfc_add_external (&prog_unit->attr, &gfc_current_locus); current_interface = save; gfc_add_interface (prog_unit); pop_state (); if (current_interface.ns && current_interface.ns->proc_name && strcmp (current_interface.ns->proc_name->name, prog_unit->name) == 0) gfc_error ("INTERFACE procedure '%s' at %L has the same name as the " "enclosing procedure", prog_unit->name, &proc_locus); goto loop; done: pop_state (); } /* Associate function characteristics by going back to the function declaration and rematching the prefix. */ static match match_deferred_characteristics (gfc_typespec * ts) { locus loc; match m = MATCH_ERROR; char name[GFC_MAX_SYMBOL_LEN + 1]; loc = gfc_current_locus; gfc_current_locus = gfc_current_block ()->declared_at; gfc_clear_error (); gfc_buffer_error (1); m = gfc_match_prefix (ts); gfc_buffer_error (0); if (ts->type == BT_DERIVED) { ts->kind = 0; if (!ts->u.derived) m = MATCH_ERROR; } /* Only permit one go at the characteristic association. */ if (ts->kind == -1) ts->kind = 0; /* Set the function locus correctly. If we have not found the function name, there is an error. */ if (m == MATCH_YES && gfc_match ("function% %n", name) == MATCH_YES && strcmp (name, gfc_current_block ()->name) == 0) { gfc_current_block ()->declared_at = gfc_current_locus; gfc_commit_symbols (); } else { gfc_error_check (); gfc_undo_symbols (); } gfc_current_locus =loc; return m; } /* Check specification-expressions in the function result of the currently parsed block and ensure they are typed (give an IMPLICIT type if necessary). For return types specified in a FUNCTION prefix, the IMPLICIT rules of the scope are not yet parsed so this has to be delayed up to parse_spec. */ static void check_function_result_typed (void) { gfc_typespec* ts = &gfc_current_ns->proc_name->result->ts; gcc_assert (gfc_current_state () == COMP_FUNCTION); gcc_assert (ts->type != BT_UNKNOWN); /* Check type-parameters, at the moment only CHARACTER lengths possible. */ /* TODO: Extend when KIND type parameters are implemented. */ if (ts->type == BT_CHARACTER && ts->u.cl && ts->u.cl->length) gfc_expr_check_typed (ts->u.cl->length, gfc_current_ns, true); } /* Parse a set of specification statements. Returns the statement that doesn't fit. */ static gfc_statement parse_spec (gfc_statement st) { st_state ss; bool function_result_typed = false; bool bad_characteristic = false; gfc_typespec *ts; verify_st_order (&ss, ST_NONE, false); if (st == ST_NONE) st = next_statement (); /* If we are not inside a function or don't have a result specified so far, do nothing special about it. */ if (gfc_current_state () != COMP_FUNCTION) function_result_typed = true; else { gfc_symbol* proc = gfc_current_ns->proc_name; gcc_assert (proc); if (proc->result->ts.type == BT_UNKNOWN) function_result_typed = true; } loop: /* If we're inside a BLOCK construct, some statements are disallowed. Check this here. Attribute declaration statements like INTENT, OPTIONAL or VALUE are also disallowed, but they don't have a particular ST_* key so we have to check for them individually in their matcher routine. */ if (gfc_current_state () == COMP_BLOCK) switch (st) { case ST_IMPLICIT: case ST_IMPLICIT_NONE: case ST_NAMELIST: case ST_COMMON: case ST_EQUIVALENCE: case ST_STATEMENT_FUNCTION: gfc_error ("%s statement is not allowed inside of BLOCK at %C", gfc_ascii_statement (st)); reject_statement (); break; default: break; } /* If we find a statement that can not be followed by an IMPLICIT statement (and thus we can expect to see none any further), type the function result if it has not yet been typed. Be careful not to give the END statement to verify_st_order! */ if (!function_result_typed && st != ST_GET_FCN_CHARACTERISTICS) { bool verify_now = false; if (st == ST_END_FUNCTION || st == ST_CONTAINS) verify_now = true; else { st_state dummyss; verify_st_order (&dummyss, ST_NONE, false); verify_st_order (&dummyss, st, false); if (verify_st_order (&dummyss, ST_IMPLICIT, true) == FAILURE) verify_now = true; } if (verify_now) { check_function_result_typed (); function_result_typed = true; } } switch (st) { case ST_NONE: unexpected_eof (); case ST_IMPLICIT_NONE: case ST_IMPLICIT: if (!function_result_typed) { check_function_result_typed (); function_result_typed = true; } goto declSt; case ST_FORMAT: case ST_ENTRY: case ST_DATA: /* Not allowed in interfaces */ if (gfc_current_state () == COMP_INTERFACE) break; /* Fall through */ case ST_USE: case ST_IMPORT: case ST_PARAMETER: case ST_PUBLIC: case ST_PRIVATE: case ST_DERIVED_DECL: case_decl: declSt: if (verify_st_order (&ss, st, false) == FAILURE) { reject_statement (); st = next_statement (); goto loop; } switch (st) { case ST_INTERFACE: parse_interface (); break; case ST_DERIVED_DECL: parse_derived (); break; case ST_PUBLIC: case ST_PRIVATE: if (gfc_current_state () != COMP_MODULE) { gfc_error ("%s statement must appear in a MODULE", gfc_ascii_statement (st)); reject_statement (); break; } if (gfc_current_ns->default_access != ACCESS_UNKNOWN) { gfc_error ("%s statement at %C follows another accessibility " "specification", gfc_ascii_statement (st)); reject_statement (); break; } gfc_current_ns->default_access = (st == ST_PUBLIC) ? ACCESS_PUBLIC : ACCESS_PRIVATE; break; case ST_STATEMENT_FUNCTION: if (gfc_current_state () == COMP_MODULE) { unexpected_statement (st); break; } default: break; } accept_statement (st); st = next_statement (); goto loop; case ST_ENUM: accept_statement (st); parse_enum(); st = next_statement (); goto loop; case ST_GET_FCN_CHARACTERISTICS: /* This statement triggers the association of a function's result characteristics. */ ts = &gfc_current_block ()->result->ts; if (match_deferred_characteristics (ts) != MATCH_YES) bad_characteristic = true; st = next_statement (); goto loop; default: break; } /* If match_deferred_characteristics failed, then there is an error. */ if (bad_characteristic) { ts = &gfc_current_block ()->result->ts; if (ts->type != BT_DERIVED) gfc_error ("Bad kind expression for function '%s' at %L", gfc_current_block ()->name, &gfc_current_block ()->declared_at); else gfc_error ("The type for function '%s' at %L is not accessible", gfc_current_block ()->name, &gfc_current_block ()->declared_at); gfc_current_block ()->ts.kind = 0; /* Keep the derived type; if it's bad, it will be discovered later. */ if (!(ts->type == BT_DERIVED && ts->u.derived)) ts->type = BT_UNKNOWN; } return st; } /* Parse a WHERE block, (not a simple WHERE statement). */ static void parse_where_block (void) { int seen_empty_else; gfc_code *top, *d; gfc_state_data s; gfc_statement st; accept_statement (ST_WHERE_BLOCK); top = gfc_state_stack->tail; push_state (&s, COMP_WHERE, gfc_new_block); d = add_statement (); d->expr1 = top->expr1; d->op = EXEC_WHERE; top->expr1 = NULL; top->block = d; seen_empty_else = 0; do { st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); case ST_WHERE_BLOCK: parse_where_block (); break; case ST_ASSIGNMENT: case ST_WHERE: accept_statement (st); break; case ST_ELSEWHERE: if (seen_empty_else) { gfc_error ("ELSEWHERE statement at %C follows previous " "unmasked ELSEWHERE"); reject_statement (); break; } if (new_st.expr1 == NULL) seen_empty_else = 1; d = new_level (gfc_state_stack->head); d->op = EXEC_WHERE; d->expr1 = new_st.expr1; accept_statement (st); break; case ST_END_WHERE: accept_statement (st); break; default: gfc_error ("Unexpected %s statement in WHERE block at %C", gfc_ascii_statement (st)); reject_statement (); break; } } while (st != ST_END_WHERE); pop_state (); } /* Parse a FORALL block (not a simple FORALL statement). */ static void parse_forall_block (void) { gfc_code *top, *d; gfc_state_data s; gfc_statement st; accept_statement (ST_FORALL_BLOCK); top = gfc_state_stack->tail; push_state (&s, COMP_FORALL, gfc_new_block); d = add_statement (); d->op = EXEC_FORALL; top->block = d; do { st = next_statement (); switch (st) { case ST_ASSIGNMENT: case ST_POINTER_ASSIGNMENT: case ST_WHERE: case ST_FORALL: accept_statement (st); break; case ST_WHERE_BLOCK: parse_where_block (); break; case ST_FORALL_BLOCK: parse_forall_block (); break; case ST_END_FORALL: accept_statement (st); break; case ST_NONE: unexpected_eof (); default: gfc_error ("Unexpected %s statement in FORALL block at %C", gfc_ascii_statement (st)); reject_statement (); break; } } while (st != ST_END_FORALL); pop_state (); } static gfc_statement parse_executable (gfc_statement); /* parse the statements of an IF-THEN-ELSEIF-ELSE-ENDIF block. */ static void parse_if_block (void) { gfc_code *top, *d; gfc_statement st; locus else_locus; gfc_state_data s; int seen_else; seen_else = 0; accept_statement (ST_IF_BLOCK); top = gfc_state_stack->tail; push_state (&s, COMP_IF, gfc_new_block); new_st.op = EXEC_IF; d = add_statement (); d->expr1 = top->expr1; top->expr1 = NULL; top->block = d; do { st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); case ST_ELSEIF: if (seen_else) { gfc_error ("ELSE IF statement at %C cannot follow ELSE " "statement at %L", &else_locus); reject_statement (); break; } d = new_level (gfc_state_stack->head); d->op = EXEC_IF; d->expr1 = new_st.expr1; accept_statement (st); break; case ST_ELSE: if (seen_else) { gfc_error ("Duplicate ELSE statements at %L and %C", &else_locus); reject_statement (); break; } seen_else = 1; else_locus = gfc_current_locus; d = new_level (gfc_state_stack->head); d->op = EXEC_IF; accept_statement (st); break; case ST_ENDIF: break; default: unexpected_statement (st); break; } } while (st != ST_ENDIF); pop_state (); accept_statement (st); } /* Parse a SELECT block. */ static void parse_select_block (void) { gfc_statement st; gfc_code *cp; gfc_state_data s; accept_statement (ST_SELECT_CASE); cp = gfc_state_stack->tail; push_state (&s, COMP_SELECT, gfc_new_block); /* Make sure that the next statement is a CASE or END SELECT. */ for (;;) { st = next_statement (); if (st == ST_NONE) unexpected_eof (); if (st == ST_END_SELECT) { /* Empty SELECT CASE is OK. */ accept_statement (st); pop_state (); return; } if (st == ST_CASE) break; gfc_error ("Expected a CASE or END SELECT statement following SELECT " "CASE at %C"); reject_statement (); } /* At this point, we're got a nonempty select block. */ cp = new_level (cp); *cp = new_st; accept_statement (st); do { st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); case ST_CASE: cp = new_level (gfc_state_stack->head); *cp = new_st; gfc_clear_new_st (); accept_statement (st); /* Fall through */ case ST_END_SELECT: break; /* Can't have an executable statement because of parse_executable(). */ default: unexpected_statement (st); break; } } while (st != ST_END_SELECT); pop_state (); accept_statement (st); } /* Pop the current selector from the SELECT TYPE stack. */ static void select_type_pop (void) { gfc_select_type_stack *old = select_type_stack; select_type_stack = old->prev; free (old); } /* Parse a SELECT TYPE construct (F03:R821). */ static void parse_select_type_block (void) { gfc_statement st; gfc_code *cp; gfc_state_data s; accept_statement (ST_SELECT_TYPE); cp = gfc_state_stack->tail; push_state (&s, COMP_SELECT_TYPE, gfc_new_block); /* Make sure that the next statement is a TYPE IS, CLASS IS, CLASS DEFAULT or END SELECT. */ for (;;) { st = next_statement (); if (st == ST_NONE) unexpected_eof (); if (st == ST_END_SELECT) /* Empty SELECT CASE is OK. */ goto done; if (st == ST_TYPE_IS || st == ST_CLASS_IS) break; gfc_error ("Expected TYPE IS, CLASS IS or END SELECT statement " "following SELECT TYPE at %C"); reject_statement (); } /* At this point, we're got a nonempty select block. */ cp = new_level (cp); *cp = new_st; accept_statement (st); do { st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); case ST_TYPE_IS: case ST_CLASS_IS: cp = new_level (gfc_state_stack->head); *cp = new_st; gfc_clear_new_st (); accept_statement (st); /* Fall through */ case ST_END_SELECT: break; /* Can't have an executable statement because of parse_executable(). */ default: unexpected_statement (st); break; } } while (st != ST_END_SELECT); done: pop_state (); accept_statement (st); gfc_current_ns = gfc_current_ns->parent; select_type_pop (); } /* Given a symbol, make sure it is not an iteration variable for a DO statement. This subroutine is called when the symbol is seen in a context that causes it to become redefined. If the symbol is an iterator, we generate an error message and return nonzero. */ int gfc_check_do_variable (gfc_symtree *st) { gfc_state_data *s; for (s=gfc_state_stack; s; s = s->previous) if (s->do_variable == st) { gfc_error_now("Variable '%s' at %C cannot be redefined inside " "loop beginning at %L", st->name, &s->head->loc); return 1; } return 0; } /* Checks to see if the current statement label closes an enddo. Returns 0 if not, 1 if closes an ENDDO correctly, or 2 (and issues an error) if it incorrectly closes an ENDDO. */ static int check_do_closure (void) { gfc_state_data *p; if (gfc_statement_label == NULL) return 0; for (p = gfc_state_stack; p; p = p->previous) if (p->state == COMP_DO || p->state == COMP_DO_CONCURRENT) break; if (p == NULL) return 0; /* No loops to close */ if (p->ext.end_do_label == gfc_statement_label) { if (p == gfc_state_stack) return 1; gfc_error ("End of nonblock DO statement at %C is within another block"); return 2; } /* At this point, the label doesn't terminate the innermost loop. Make sure it doesn't terminate another one. */ for (; p; p = p->previous) if ((p->state == COMP_DO || p->state == COMP_DO_CONCURRENT) && p->ext.end_do_label == gfc_statement_label) { gfc_error ("End of nonblock DO statement at %C is interwoven " "with another DO loop"); return 2; } return 0; } /* Parse a series of contained program units. */ static void parse_progunit (gfc_statement); /* Parse a CRITICAL block. */ static void parse_critical_block (void) { gfc_code *top, *d; gfc_state_data s; gfc_statement st; s.ext.end_do_label = new_st.label1; accept_statement (ST_CRITICAL); top = gfc_state_stack->tail; push_state (&s, COMP_CRITICAL, gfc_new_block); d = add_statement (); d->op = EXEC_CRITICAL; top->block = d; do { st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); break; case ST_END_CRITICAL: if (s.ext.end_do_label != NULL && s.ext.end_do_label != gfc_statement_label) gfc_error_now ("Statement label in END CRITICAL at %C does not " "match CRITICAL label"); if (gfc_statement_label != NULL) { new_st.op = EXEC_NOP; add_statement (); } break; default: unexpected_statement (st); break; } } while (st != ST_END_CRITICAL); pop_state (); accept_statement (st); } /* Set up the local namespace for a BLOCK construct. */ gfc_namespace* gfc_build_block_ns (gfc_namespace *parent_ns) { gfc_namespace* my_ns; static int numblock = 1; my_ns = gfc_get_namespace (parent_ns, 1); my_ns->construct_entities = 1; /* Give the BLOCK a symbol of flavor LABEL; this is later needed for correct code generation (so it must not be NULL). We set its recursive argument if our container procedure is recursive, so that local variables are accordingly placed on the stack when it will be necessary. */ if (gfc_new_block) my_ns->proc_name = gfc_new_block; else { gfc_try t; char buffer[20]; /* Enough to hold "block@2147483648\n". */ snprintf(buffer, sizeof(buffer), "block@%d", numblock++); gfc_get_symbol (buffer, my_ns, &my_ns->proc_name); t = gfc_add_flavor (&my_ns->proc_name->attr, FL_LABEL, my_ns->proc_name->name, NULL); gcc_assert (t == SUCCESS); gfc_commit_symbol (my_ns->proc_name); } if (parent_ns->proc_name) my_ns->proc_name->attr.recursive = parent_ns->proc_name->attr.recursive; return my_ns; } /* Parse a BLOCK construct. */ static void parse_block_construct (void) { gfc_namespace* my_ns; gfc_state_data s; gfc_notify_std (GFC_STD_F2008, "BLOCK construct at %C"); my_ns = gfc_build_block_ns (gfc_current_ns); new_st.op = EXEC_BLOCK; new_st.ext.block.ns = my_ns; new_st.ext.block.assoc = NULL; accept_statement (ST_BLOCK); push_state (&s, COMP_BLOCK, my_ns->proc_name); gfc_current_ns = my_ns; parse_progunit (ST_NONE); gfc_current_ns = gfc_current_ns->parent; pop_state (); } /* Parse an ASSOCIATE construct. This is essentially a BLOCK construct behind the scenes with compiler-generated variables. */ static void parse_associate (void) { gfc_namespace* my_ns; gfc_state_data s; gfc_statement st; gfc_association_list* a; gfc_notify_std (GFC_STD_F2003, "ASSOCIATE construct at %C"); my_ns = gfc_build_block_ns (gfc_current_ns); new_st.op = EXEC_BLOCK; new_st.ext.block.ns = my_ns; gcc_assert (new_st.ext.block.assoc); /* Add all associate-names as BLOCK variables. Creating them is enough for now, they'll get their values during trans-* phase. */ gfc_current_ns = my_ns; for (a = new_st.ext.block.assoc; a; a = a->next) { gfc_symbol* sym; if (gfc_get_sym_tree (a->name, NULL, &a->st, false)) gcc_unreachable (); sym = a->st->n.sym; sym->attr.flavor = FL_VARIABLE; sym->assoc = a; sym->declared_at = a->where; gfc_set_sym_referenced (sym); /* Initialize the typespec. It is not available in all cases, however, as it may only be set on the target during resolution. Still, sometimes it helps to have it right now -- especially for parsing component references on the associate-name in case of association to a derived-type. */ sym->ts = a->target->ts; } accept_statement (ST_ASSOCIATE); push_state (&s, COMP_ASSOCIATE, my_ns->proc_name); loop: st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); case_end: accept_statement (st); my_ns->code = gfc_state_stack->head; break; default: unexpected_statement (st); goto loop; } gfc_current_ns = gfc_current_ns->parent; pop_state (); } /* Parse a DO loop. Note that the ST_CYCLE and ST_EXIT statements are handled inside of parse_executable(), because they aren't really loop statements. */ static void parse_do_block (void) { gfc_statement st; gfc_code *top; gfc_state_data s; gfc_symtree *stree; gfc_exec_op do_op; do_op = new_st.op; s.ext.end_do_label = new_st.label1; if (new_st.ext.iterator != NULL) stree = new_st.ext.iterator->var->symtree; else stree = NULL; accept_statement (ST_DO); top = gfc_state_stack->tail; push_state (&s, do_op == EXEC_DO_CONCURRENT ? COMP_DO_CONCURRENT : COMP_DO, gfc_new_block); s.do_variable = stree; top->block = new_level (top); top->block->op = EXEC_DO; loop: st = parse_executable (ST_NONE); switch (st) { case ST_NONE: unexpected_eof (); case ST_ENDDO: if (s.ext.end_do_label != NULL && s.ext.end_do_label != gfc_statement_label) gfc_error_now ("Statement label in ENDDO at %C doesn't match " "DO label"); if (gfc_statement_label != NULL) { new_st.op = EXEC_NOP; add_statement (); } break; case ST_IMPLIED_ENDDO: /* If the do-stmt of this DO construct has a do-construct-name, the corresponding end-do must be an end-do-stmt (with a matching name, but in that case we must have seen ST_ENDDO first). We only complain about this in pedantic mode. */ if (gfc_current_block () != NULL) gfc_error_now ("Named block DO at %L requires matching ENDDO name", &gfc_current_block()->declared_at); break; default: unexpected_statement (st); goto loop; } pop_state (); accept_statement (st); } /* Parse the statements of OpenMP do/parallel do. */ static gfc_statement parse_omp_do (gfc_statement omp_st) { gfc_statement st; gfc_code *cp, *np; gfc_state_data s; accept_statement (omp_st); cp = gfc_state_stack->tail; push_state (&s, COMP_OMP_STRUCTURED_BLOCK, NULL); np = new_level (cp); np->op = cp->op; np->block = NULL; for (;;) { st = next_statement (); if (st == ST_NONE) unexpected_eof (); else if (st == ST_DO) break; else unexpected_statement (st); } parse_do_block (); if (gfc_statement_label != NULL && gfc_state_stack->previous != NULL && gfc_state_stack->previous->state == COMP_DO && gfc_state_stack->previous->ext.end_do_label == gfc_statement_label) { /* In DO 100 I=1,10 !$OMP DO DO J=1,10 ... 100 CONTINUE there should be no !$OMP END DO. */ pop_state (); return ST_IMPLIED_ENDDO; } check_do_closure (); pop_state (); st = next_statement (); if (st == (omp_st == ST_OMP_DO ? ST_OMP_END_DO : ST_OMP_END_PARALLEL_DO)) { if (new_st.op == EXEC_OMP_END_NOWAIT) cp->ext.omp_clauses->nowait |= new_st.ext.omp_bool; else gcc_assert (new_st.op == EXEC_NOP); gfc_clear_new_st (); gfc_commit_symbols (); gfc_warning_check (); st = next_statement (); } return st; } /* Parse the statements of OpenMP atomic directive. */ static gfc_statement parse_omp_atomic (void) { gfc_statement st; gfc_code *cp, *np; gfc_state_data s; int count; accept_statement (ST_OMP_ATOMIC); cp = gfc_state_stack->tail; push_state (&s, COMP_OMP_STRUCTURED_BLOCK, NULL); np = new_level (cp); np->op = cp->op; np->block = NULL; count = 1 + (cp->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE); while (count) { st = next_statement (); if (st == ST_NONE) unexpected_eof (); else if (st == ST_ASSIGNMENT) { accept_statement (st); count--; } else unexpected_statement (st); } pop_state (); st = next_statement (); if (st == ST_OMP_END_ATOMIC) { gfc_clear_new_st (); gfc_commit_symbols (); gfc_warning_check (); st = next_statement (); } else if (cp->ext.omp_atomic == GFC_OMP_ATOMIC_CAPTURE) gfc_error ("Missing !$OMP END ATOMIC after !$OMP ATOMIC CAPTURE at %C"); return st; } /* Parse the statements of an OpenMP structured block. */ static void parse_omp_structured_block (gfc_statement omp_st, bool workshare_stmts_only) { gfc_statement st, omp_end_st; gfc_code *cp, *np; gfc_state_data s; accept_statement (omp_st); cp = gfc_state_stack->tail; push_state (&s, COMP_OMP_STRUCTURED_BLOCK, NULL); np = new_level (cp); np->op = cp->op; np->block = NULL; switch (omp_st) { case ST_OMP_PARALLEL: omp_end_st = ST_OMP_END_PARALLEL; break; case ST_OMP_PARALLEL_SECTIONS: omp_end_st = ST_OMP_END_PARALLEL_SECTIONS; break; case ST_OMP_SECTIONS: omp_end_st = ST_OMP_END_SECTIONS; break; case ST_OMP_ORDERED: omp_end_st = ST_OMP_END_ORDERED; break; case ST_OMP_CRITICAL: omp_end_st = ST_OMP_END_CRITICAL; break; case ST_OMP_MASTER: omp_end_st = ST_OMP_END_MASTER; break; case ST_OMP_SINGLE: omp_end_st = ST_OMP_END_SINGLE; break; case ST_OMP_TASK: omp_end_st = ST_OMP_END_TASK; break; case ST_OMP_WORKSHARE: omp_end_st = ST_OMP_END_WORKSHARE; break; case ST_OMP_PARALLEL_WORKSHARE: omp_end_st = ST_OMP_END_PARALLEL_WORKSHARE; break; default: gcc_unreachable (); } do { if (workshare_stmts_only) { /* Inside of !$omp workshare, only scalar assignments array assignments where statements and constructs forall statements and constructs !$omp atomic !$omp critical !$omp parallel are allowed. For !$omp critical these restrictions apply recursively. */ bool cycle = true; st = next_statement (); for (;;) { switch (st) { case ST_NONE: unexpected_eof (); case ST_ASSIGNMENT: case ST_WHERE: case ST_FORALL: accept_statement (st); break; case ST_WHERE_BLOCK: parse_where_block (); break; case ST_FORALL_BLOCK: parse_forall_block (); break; case ST_OMP_PARALLEL: case ST_OMP_PARALLEL_SECTIONS: parse_omp_structured_block (st, false); break; case ST_OMP_PARALLEL_WORKSHARE: case ST_OMP_CRITICAL: parse_omp_structured_block (st, true); break; case ST_OMP_PARALLEL_DO: st = parse_omp_do (st); continue; case ST_OMP_ATOMIC: st = parse_omp_atomic (); continue; default: cycle = false; break; } if (!cycle) break; st = next_statement (); } } else st = parse_executable (ST_NONE); if (st == ST_NONE) unexpected_eof (); else if (st == ST_OMP_SECTION && (omp_st == ST_OMP_SECTIONS || omp_st == ST_OMP_PARALLEL_SECTIONS)) { np = new_level (np); np->op = cp->op; np->block = NULL; } else if (st != omp_end_st) unexpected_statement (st); } while (st != omp_end_st); switch (new_st.op) { case EXEC_OMP_END_NOWAIT: cp->ext.omp_clauses->nowait |= new_st.ext.omp_bool; break; case EXEC_OMP_CRITICAL: if (((cp->ext.omp_name == NULL) ^ (new_st.ext.omp_name == NULL)) || (new_st.ext.omp_name != NULL && strcmp (cp->ext.omp_name, new_st.ext.omp_name) != 0)) gfc_error ("Name after !$omp critical and !$omp end critical does " "not match at %C"); free (CONST_CAST (char *, new_st.ext.omp_name)); break; case EXEC_OMP_END_SINGLE: cp->ext.omp_clauses->lists[OMP_LIST_COPYPRIVATE] = new_st.ext.omp_clauses->lists[OMP_LIST_COPYPRIVATE]; new_st.ext.omp_clauses->lists[OMP_LIST_COPYPRIVATE] = NULL; gfc_free_omp_clauses (new_st.ext.omp_clauses); break; case EXEC_NOP: break; default: gcc_unreachable (); } gfc_clear_new_st (); gfc_commit_symbols (); gfc_warning_check (); pop_state (); } /* Accept a series of executable statements. We return the first statement that doesn't fit to the caller. Any block statements are passed on to the correct handler, which usually passes the buck right back here. */ static gfc_statement parse_executable (gfc_statement st) { int close_flag; if (st == ST_NONE) st = next_statement (); for (;;) { close_flag = check_do_closure (); if (close_flag) switch (st) { case ST_GOTO: case ST_END_PROGRAM: case ST_RETURN: case ST_EXIT: case ST_END_FUNCTION: case ST_CYCLE: case ST_PAUSE: case ST_STOP: case ST_ERROR_STOP: case ST_END_SUBROUTINE: case ST_DO: case ST_FORALL: case ST_WHERE: case ST_SELECT_CASE: gfc_error ("%s statement at %C cannot terminate a non-block " "DO loop", gfc_ascii_statement (st)); break; default: break; } switch (st) { case ST_NONE: unexpected_eof (); case ST_DATA: gfc_notify_std (GFC_STD_F95_OBS, "DATA statement at %C after the " "first executable statement"); /* Fall through. */ case ST_FORMAT: case ST_ENTRY: case_executable: accept_statement (st); if (close_flag == 1) return ST_IMPLIED_ENDDO; break; case ST_BLOCK: parse_block_construct (); break; case ST_ASSOCIATE: parse_associate (); break; case ST_IF_BLOCK: parse_if_block (); break; case ST_SELECT_CASE: parse_select_block (); break; case ST_SELECT_TYPE: parse_select_type_block(); break; case ST_DO: parse_do_block (); if (check_do_closure () == 1) return ST_IMPLIED_ENDDO; break; case ST_CRITICAL: parse_critical_block (); break; case ST_WHERE_BLOCK: parse_where_block (); break; case ST_FORALL_BLOCK: parse_forall_block (); break; case ST_OMP_PARALLEL: case ST_OMP_PARALLEL_SECTIONS: case ST_OMP_SECTIONS: case ST_OMP_ORDERED: case ST_OMP_CRITICAL: case ST_OMP_MASTER: case ST_OMP_SINGLE: case ST_OMP_TASK: parse_omp_structured_block (st, false); break; case ST_OMP_WORKSHARE: case ST_OMP_PARALLEL_WORKSHARE: parse_omp_structured_block (st, true); break; case ST_OMP_DO: case ST_OMP_PARALLEL_DO: st = parse_omp_do (st); if (st == ST_IMPLIED_ENDDO) return st; continue; case ST_OMP_ATOMIC: st = parse_omp_atomic (); continue; default: return st; } st = next_statement (); } } /* Fix the symbols for sibling functions. These are incorrectly added to the child namespace as the parser didn't know about this procedure. */ static void gfc_fixup_sibling_symbols (gfc_symbol *sym, gfc_namespace *siblings) { gfc_namespace *ns; gfc_symtree *st; gfc_symbol *old_sym; sym->attr.referenced = 1; for (ns = siblings; ns; ns = ns->sibling) { st = gfc_find_symtree (ns->sym_root, sym->name); if (!st || (st->n.sym->attr.dummy && ns == st->n.sym->ns)) goto fixup_contained; if ((st->n.sym->attr.flavor == FL_DERIVED && sym->attr.generic && sym->attr.function) ||(sym->attr.flavor == FL_DERIVED && st->n.sym->attr.generic && st->n.sym->attr.function)) goto fixup_contained; old_sym = st->n.sym; if (old_sym->ns == ns && !old_sym->attr.contained /* By 14.6.1.3, host association should be excluded for the following. */ && !(old_sym->attr.external || (old_sym->ts.type != BT_UNKNOWN && !old_sym->attr.implicit_type) || old_sym->attr.flavor == FL_PARAMETER || old_sym->attr.use_assoc || old_sym->attr.in_common || old_sym->attr.in_equivalence || old_sym->attr.data || old_sym->attr.dummy || old_sym->attr.result || old_sym->attr.dimension || old_sym->attr.allocatable || old_sym->attr.intrinsic || old_sym->attr.generic || old_sym->attr.flavor == FL_NAMELIST || old_sym->attr.flavor == FL_LABEL || old_sym->attr.proc == PROC_ST_FUNCTION)) { /* Replace it with the symbol from the parent namespace. */ st->n.sym = sym; sym->refs++; gfc_release_symbol (old_sym); } fixup_contained: /* Do the same for any contained procedures. */ gfc_fixup_sibling_symbols (sym, ns->contained); } } static void parse_contained (int module) { gfc_namespace *ns, *parent_ns, *tmp; gfc_state_data s1, s2; gfc_statement st; gfc_symbol *sym; gfc_entry_list *el; int contains_statements = 0; int seen_error = 0; push_state (&s1, COMP_CONTAINS, NULL); parent_ns = gfc_current_ns; do { gfc_current_ns = gfc_get_namespace (parent_ns, 1); gfc_current_ns->sibling = parent_ns->contained; parent_ns->contained = gfc_current_ns; next: /* Process the next available statement. We come here if we got an error and rejected the last statement. */ st = next_statement (); switch (st) { case ST_NONE: unexpected_eof (); case ST_FUNCTION: case ST_SUBROUTINE: contains_statements = 1; accept_statement (st); push_state (&s2, (st == ST_FUNCTION) ? COMP_FUNCTION : COMP_SUBROUTINE, gfc_new_block); /* For internal procedures, create/update the symbol in the parent namespace. */ if (!module) { if (gfc_get_symbol (gfc_new_block->name, parent_ns, &sym)) gfc_error ("Contained procedure '%s' at %C is already " "ambiguous", gfc_new_block->name); else { if (gfc_add_procedure (&sym->attr, PROC_INTERNAL, sym->name, &gfc_new_block->declared_at) == SUCCESS) { if (st == ST_FUNCTION) gfc_add_function (&sym->attr, sym->name, &gfc_new_block->declared_at); else gfc_add_subroutine (&sym->attr, sym->name, &gfc_new_block->declared_at); } } gfc_commit_symbols (); } else sym = gfc_new_block; /* Mark this as a contained function, so it isn't replaced by other module functions. */ sym->attr.contained = 1; sym->attr.referenced = 1; /* Set implicit_pure so that it can be reset if any of the tests for purity fail. This is used for some optimisation during translation. */ if (!sym->attr.pure) sym->attr.implicit_pure = 1; parse_progunit (ST_NONE); /* Fix up any sibling functions that refer to this one. */ gfc_fixup_sibling_symbols (sym, gfc_current_ns); /* Or refer to any of its alternate entry points. */ for (el = gfc_current_ns->entries; el; el = el->next) gfc_fixup_sibling_symbols (el->sym, gfc_current_ns); gfc_current_ns->code = s2.head; gfc_current_ns = parent_ns; pop_state (); break; /* These statements are associated with the end of the host unit. */ case ST_END_FUNCTION: case ST_END_MODULE: case ST_END_PROGRAM: case ST_END_SUBROUTINE: accept_statement (st); break; default: gfc_error ("Unexpected %s statement in CONTAINS section at %C", gfc_ascii_statement (st)); reject_statement (); seen_error = 1; goto next; break; } } while (st != ST_END_FUNCTION && st != ST_END_SUBROUTINE && st != ST_END_MODULE && st != ST_END_PROGRAM); /* The first namespace in the list is guaranteed to not have anything (worthwhile) in it. */ tmp = gfc_current_ns; gfc_current_ns = parent_ns; if (seen_error && tmp->refs > 1) gfc_free_namespace (tmp); ns = gfc_current_ns->contained; gfc_current_ns->contained = ns->sibling; gfc_free_namespace (ns); pop_state (); if (!contains_statements) gfc_notify_std (GFC_STD_F2008, "CONTAINS statement without " "FUNCTION or SUBROUTINE statement at %C"); } /* Parse a PROGRAM, SUBROUTINE, FUNCTION unit or BLOCK construct. */ static void parse_progunit (gfc_statement st) { gfc_state_data *p; int n; st = parse_spec (st); switch (st) { case ST_NONE: unexpected_eof (); case ST_CONTAINS: /* This is not allowed within BLOCK! */ if (gfc_current_state () != COMP_BLOCK) goto contains; break; case_end: accept_statement (st); goto done; default: break; } if (gfc_current_state () == COMP_FUNCTION) gfc_check_function_type (gfc_current_ns); loop: for (;;) { st = parse_executable (st); switch (st) { case ST_NONE: unexpected_eof (); case ST_CONTAINS: /* This is not allowed within BLOCK! */ if (gfc_current_state () != COMP_BLOCK) goto contains; break; case_end: accept_statement (st); goto done; default: break; } unexpected_statement (st); reject_statement (); st = next_statement (); } contains: n = 0; for (p = gfc_state_stack; p; p = p->previous) if (p->state == COMP_CONTAINS) n++; if (gfc_find_state (COMP_MODULE) == SUCCESS) n--; if (n > 0) { gfc_error ("CONTAINS statement at %C is already in a contained " "program unit"); reject_statement (); st = next_statement (); goto loop; } parse_contained (0); done: gfc_current_ns->code = gfc_state_stack->head; } /* Come here to complain about a global symbol already in use as something else. */ void gfc_global_used (gfc_gsymbol *sym, locus *where) { const char *name; if (where == NULL) where = &gfc_current_locus; switch(sym->type) { case GSYM_PROGRAM: name = "PROGRAM"; break; case GSYM_FUNCTION: name = "FUNCTION"; break; case GSYM_SUBROUTINE: name = "SUBROUTINE"; break; case GSYM_COMMON: name = "COMMON"; break; case GSYM_BLOCK_DATA: name = "BLOCK DATA"; break; case GSYM_MODULE: name = "MODULE"; break; default: gfc_internal_error ("gfc_global_used(): Bad type"); name = NULL; } gfc_error("Global name '%s' at %L is already being used as a %s at %L", sym->name, where, name, &sym->where); } /* Parse a block data program unit. */ static void parse_block_data (void) { gfc_statement st; static locus blank_locus; static int blank_block=0; gfc_gsymbol *s; gfc_current_ns->proc_name = gfc_new_block; gfc_current_ns->is_block_data = 1; if (gfc_new_block == NULL) { if (blank_block) gfc_error ("Blank BLOCK DATA at %C conflicts with " "prior BLOCK DATA at %L", &blank_locus); else { blank_block = 1; blank_locus = gfc_current_locus; } } else { s = gfc_get_gsymbol (gfc_new_block->name); if (s->defined || (s->type != GSYM_UNKNOWN && s->type != GSYM_BLOCK_DATA)) gfc_global_used(s, NULL); else { s->type = GSYM_BLOCK_DATA; s->where = gfc_current_locus; s->defined = 1; } } st = parse_spec (ST_NONE); while (st != ST_END_BLOCK_DATA) { gfc_error ("Unexpected %s statement in BLOCK DATA at %C", gfc_ascii_statement (st)); reject_statement (); st = next_statement (); } } /* Parse a module subprogram. */ static void parse_module (void) { gfc_statement st; gfc_gsymbol *s; s = gfc_get_gsymbol (gfc_new_block->name); if (s->defined || (s->type != GSYM_UNKNOWN && s->type != GSYM_MODULE)) gfc_global_used(s, NULL); else { s->type = GSYM_MODULE; s->where = gfc_current_locus; s->defined = 1; } st = parse_spec (ST_NONE); loop: switch (st) { case ST_NONE: unexpected_eof (); case ST_CONTAINS: parse_contained (1); break; case ST_END_MODULE: accept_statement (st); break; default: gfc_error ("Unexpected %s statement in MODULE at %C", gfc_ascii_statement (st)); reject_statement (); st = next_statement (); goto loop; } s->ns = gfc_current_ns; } /* Add a procedure name to the global symbol table. */ static void add_global_procedure (int sub) { gfc_gsymbol *s; s = gfc_get_gsymbol(gfc_new_block->name); if (s->defined || (s->type != GSYM_UNKNOWN && s->type != (sub ? GSYM_SUBROUTINE : GSYM_FUNCTION))) gfc_global_used(s, NULL); else { s->type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION; s->where = gfc_current_locus; s->defined = 1; s->ns = gfc_current_ns; } } /* Add a program to the global symbol table. */ static void add_global_program (void) { gfc_gsymbol *s; if (gfc_new_block == NULL) return; s = gfc_get_gsymbol (gfc_new_block->name); if (s->defined || (s->type != GSYM_UNKNOWN && s->type != GSYM_PROGRAM)) gfc_global_used(s, NULL); else { s->type = GSYM_PROGRAM; s->where = gfc_current_locus; s->defined = 1; s->ns = gfc_current_ns; } } /* Resolve all the program units when whole file scope option is active. */ static void resolve_all_program_units (gfc_namespace *gfc_global_ns_list) { gfc_free_dt_list (); gfc_current_ns = gfc_global_ns_list; for (; gfc_current_ns; gfc_current_ns = gfc_current_ns->sibling) { if (gfc_current_ns->proc_name && gfc_current_ns->proc_name->attr.flavor == FL_MODULE) continue; /* Already resolved. */ if (gfc_current_ns->proc_name) gfc_current_locus = gfc_current_ns->proc_name->declared_at; gfc_resolve (gfc_current_ns); gfc_current_ns->derived_types = gfc_derived_types; gfc_derived_types = NULL; } } static void clean_up_modules (gfc_gsymbol *gsym) { if (gsym == NULL) return; clean_up_modules (gsym->left); clean_up_modules (gsym->right); if (gsym->type != GSYM_MODULE || !gsym->ns) return; gfc_current_ns = gsym->ns; gfc_derived_types = gfc_current_ns->derived_types; gfc_done_2 (); gsym->ns = NULL; return; } /* Translate all the program units when whole file scope option is active. This could be in a different order to resolution if there are forward references in the file. */ static void translate_all_program_units (gfc_namespace *gfc_global_ns_list, bool main_in_tu) { int errors; gfc_current_ns = gfc_global_ns_list; gfc_get_errors (NULL, &errors); /* If the main program is in the translation unit and we have -fcoarray=libs, generate the static variables. */ if (gfc_option.coarray == GFC_FCOARRAY_LIB && main_in_tu) gfc_init_coarray_decl (true); /* We first translate all modules to make sure that later parts of the program can use the decl. Then we translate the nonmodules. */ for (; !errors && gfc_current_ns; gfc_current_ns = gfc_current_ns->sibling) { if (!gfc_current_ns->proc_name || gfc_current_ns->proc_name->attr.flavor != FL_MODULE) continue; gfc_current_locus = gfc_current_ns->proc_name->declared_at; gfc_derived_types = gfc_current_ns->derived_types; gfc_generate_module_code (gfc_current_ns); gfc_current_ns->translated = 1; } gfc_current_ns = gfc_global_ns_list; for (; !errors && gfc_current_ns; gfc_current_ns = gfc_current_ns->sibling) { if (gfc_current_ns->proc_name && gfc_current_ns->proc_name->attr.flavor == FL_MODULE) continue; gfc_current_locus = gfc_current_ns->proc_name->declared_at; gfc_derived_types = gfc_current_ns->derived_types; gfc_generate_code (gfc_current_ns); gfc_current_ns->translated = 1; } /* Clean up all the namespaces after translation. */ gfc_current_ns = gfc_global_ns_list; for (;gfc_current_ns;) { gfc_namespace *ns; if (gfc_current_ns->proc_name && gfc_current_ns->proc_name->attr.flavor == FL_MODULE) { gfc_current_ns = gfc_current_ns->sibling; continue; } ns = gfc_current_ns->sibling; gfc_derived_types = gfc_current_ns->derived_types; gfc_done_2 (); gfc_current_ns = ns; } clean_up_modules (gfc_gsym_root); } /* Top level parser. */ gfc_try gfc_parse_file (void) { int seen_program, errors_before, errors; gfc_state_data top, s; gfc_statement st; locus prog_locus; gfc_namespace *next; gfc_start_source_files (); top.state = COMP_NONE; top.sym = NULL; top.previous = NULL; top.head = top.tail = NULL; top.do_variable = NULL; gfc_state_stack = ⊤ gfc_clear_new_st (); gfc_statement_label = NULL; if (setjmp (eof_buf)) return FAILURE; /* Come here on unexpected EOF */ /* Prepare the global namespace that will contain the program units. */ gfc_global_ns_list = next = NULL; seen_program = 0; errors_before = 0; /* Exit early for empty files. */ if (gfc_at_eof ()) goto done; loop: gfc_init_2 (); st = next_statement (); switch (st) { case ST_NONE: gfc_done_2 (); goto done; case ST_PROGRAM: if (seen_program) goto duplicate_main; seen_program = 1; prog_locus = gfc_current_locus; push_state (&s, COMP_PROGRAM, gfc_new_block); main_program_symbol(gfc_current_ns, gfc_new_block->name); accept_statement (st); add_global_program (); parse_progunit (ST_NONE); if (gfc_option.flag_whole_file) goto prog_units; break; case ST_SUBROUTINE: add_global_procedure (1); push_state (&s, COMP_SUBROUTINE, gfc_new_block); accept_statement (st); parse_progunit (ST_NONE); if (gfc_option.flag_whole_file) goto prog_units; break; case ST_FUNCTION: add_global_procedure (0); push_state (&s, COMP_FUNCTION, gfc_new_block); accept_statement (st); parse_progunit (ST_NONE); if (gfc_option.flag_whole_file) goto prog_units; break; case ST_BLOCK_DATA: push_state (&s, COMP_BLOCK_DATA, gfc_new_block); accept_statement (st); parse_block_data (); break; case ST_MODULE: push_state (&s, COMP_MODULE, gfc_new_block); accept_statement (st); gfc_get_errors (NULL, &errors_before); parse_module (); break; /* Anything else starts a nameless main program block. */ default: if (seen_program) goto duplicate_main; seen_program = 1; prog_locus = gfc_current_locus; push_state (&s, COMP_PROGRAM, gfc_new_block); main_program_symbol (gfc_current_ns, "MAIN__"); parse_progunit (st); if (gfc_option.flag_whole_file) goto prog_units; break; } /* Handle the non-program units. */ gfc_current_ns->code = s.head; gfc_resolve (gfc_current_ns); /* Dump the parse tree if requested. */ if (gfc_option.dump_fortran_original) gfc_dump_parse_tree (gfc_current_ns, stdout); gfc_get_errors (NULL, &errors); if (s.state == COMP_MODULE) { gfc_dump_module (s.sym->name, errors_before == errors); if (!gfc_option.flag_whole_file) { if (errors == 0) gfc_generate_module_code (gfc_current_ns); pop_state (); gfc_done_2 (); } else { gfc_current_ns->derived_types = gfc_derived_types; gfc_derived_types = NULL; goto prog_units; } } else { if (errors == 0) gfc_generate_code (gfc_current_ns); pop_state (); gfc_done_2 (); } goto loop; prog_units: /* The main program and non-contained procedures are put in the global namespace list, so that they can be processed later and all their interfaces resolved. */ gfc_current_ns->code = s.head; if (next) { for (; next->sibling; next = next->sibling) ; next->sibling = gfc_current_ns; } else gfc_global_ns_list = gfc_current_ns; next = gfc_current_ns; pop_state (); goto loop; done: if (!gfc_option.flag_whole_file) goto termination; /* Do the resolution. */ resolve_all_program_units (gfc_global_ns_list); /* Do the parse tree dump. */ gfc_current_ns = gfc_option.dump_fortran_original ? gfc_global_ns_list : NULL; for (; gfc_current_ns; gfc_current_ns = gfc_current_ns->sibling) if (!gfc_current_ns->proc_name || gfc_current_ns->proc_name->attr.flavor != FL_MODULE) { gfc_dump_parse_tree (gfc_current_ns, stdout); fputs ("------------------------------------------\n\n", stdout); } /* Do the translation. */ translate_all_program_units (gfc_global_ns_list, seen_program); termination: gfc_end_source_files (); return SUCCESS; duplicate_main: /* If we see a duplicate main program, shut down. If the second instance is an implied main program, i.e. data decls or executable statements, we're in for lots of errors. */ gfc_error ("Two main PROGRAMs at %L and %C", &prog_locus); reject_statement (); gfc_done_2 (); return SUCCESS; }