@ignore Copyright (C) 2005 Free Software Foundation, Inc. This is part of the GFORTRAN manual. For copying conditions, see the file gfortran.texi. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being ``GNU General Public License'' and ``Funding Free Software'', the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the gfdl(7) man page. Some basic guidelines for editing this document: (1) The intrinsic procedures are to be listed in alphabetical order. (2) The generic name is to be use. (3) The specific names are included in the function index and in a table at the end of the node (See ABS entry). (4) Try to maintain the same style for each entry. @end ignore @node Intrinsic Procedures @chapter Intrinsic Procedures @cindex Intrinsic Procedures This portion of the document is incomplete and undergoing massive expansion and editing. All contributions and corrections are strongly encouraged. @menu * Introduction: Introduction * @code{ABORT}: ABORT, Abort the program * @code{ABS}: ABS, Absolute value * @code{ACHAR}: ACHAR, Character in @acronym{ASCII} collating sequence * @code{ACOS}: ACOS, Arc cosine function * @code{ADJUSTL}: ADJUSTL, Left adjust a string * @code{ADJUSTR}: ADJUSTR, Right adjust a string * @code{AIMAG}: AIMAG, Imaginary part of complex number * @code{AINT}: AINT, Truncate to a whole number * @code{ALL}: ALL, Determine if all values are true * @code{ALLOCATED}: ALLOCATED, Status of allocatable entity * @code{ANINT}: ANINT, Nearest whole number * @code{ANY}: ANY, Determine if any values are true * @code{ASIN}: ASIN, Arcsine function * @code{ASSOCIATED}: ASSOCIATED, Status of a pointer or pointer/target pair * @code{ATAN}: ATAN, Arctangent function * @code{ATAN2}: ATAN2, Arctangent function * @code{BESJ0}: BESJ0, Bessel function of the first kind of order 0 * @code{BESJ1}: BESJ1, Bessel function of the first kind of order 1 * @code{BESJN}: BESJN, Bessel function of the first kind * @code{BESY0}: BESY0, Bessel function of the second kind of order 0 * @code{BESY1}: BESY1, Bessel function of the second kind of order 1 * @code{BESYN}: BESYN, Bessel function of the second kind * @code{BIT_SIZE}: BIT_SIZE, Bit size inquiry function * @code{BTEST}: BTEST, Bit test function * @code{CEILING}: CEILING, Integer ceiling function * @code{CHAR}: CHAR, Character conversion function * @code{CMPLX}: CMPLX, Complex conversion function * @code{COMMAND_ARGUMENT_COUNT}: COMMAND_ARGUMENT_COUNT, Command line argument count * @code{CONJG}: CONJG, Complex conjugate function * @code{COS}: COS, Cosine function * @code{COSH}: COSH, Hyperbolic cosine function * @code{COUNT}: COUNT, Count occurrences of .TRUE. in an array * @code{CPU_TIME}: CPU_TIME, CPU time subroutine * @code{CSHIFT}: CSHIFT, Circular array shift function * @code{DATE_AND_TIME}: DATE_AND_TIME, Date and time subroutine * @code{DBLE}: DBLE, Double precision conversion function * @code{DCMPLX}: DCMPLX, Double complex conversion function * @code{DFLOAT}: DFLOAT, Double precision conversion function * @code{DIGITS}: DIGITS, Significant digits function * @code{DIM}: DIM, Dim function * @code{DOT_PRODUCT}: DOT_PRODUCT, Dot product function * @code{DPROD}: DPROD, Double product function * @code{DREAL}: DREAL, Double real part function * @code{DTIME}: DTIME, Execution time subroutine (or function) * @code{EOSHIFT}: EOSHIFT, End-off shift function * @code{EPSILON}: EPSILON, Epsilon function * @code{ERF}: ERF, Error function * @code{ERFC}: ERFC, Complementary error function * @code{ETIME}: ETIME, Execution time subroutine (or function) * @code{EXIT}: EXIT, Exit the program with status. * @code{EXP}: EXP, Cosine function * @code{LOG}: LOG, Logarithm function * @code{LOG10}: LOG10, Base 10 logarithm function * @code{SQRT}: SQRT, Square-root function * @code{SIN}: SIN, Sine function * @code{SINH}: SINH, Hyperbolic sine function * @code{TAN}: TAN, Tangent function * @code{TANH}: TANH, Hyperbolic tangent function @end menu @node Introduction @section Introduction to intrinsic procedures Gfortran provides a rich set of intrinsic procedures that includes all the intrinsic procedures required by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility with Gnu Fortran 77 (i.e., @command{g77}), and a small selection of intrinsic procedures from the Fortran 2003 standard. Any description here, which conflicts with a description in either the Fortran 95 standard or the Fortran 2003 standard, is unintentional and the standard(s) should be considered authoritative. The enumeration of the @code{KIND} type parameter is processor defined in the Fortran 95 standard. Gfortran defines the default integer type and default real type by @code{INTEGER(KIND=4)} and @code{REAL(KIND=4)}, respectively. The standard mandates that both data types shall have another kind, which have more precision. On typical target architectures supported by @command{gfortran}, this kind type parameter is @code{KIND=8}. Hence, @code{REAL(KIND=8)} and @code{DOUBLE PRECISION} are equivalent. In the description of generic intrinsic procedures, the kind type parameter will be specified by @code{KIND=*}, and in the description of specific names for an intrinsic procedure the kind type parameter will be explicitly given (e.g., @code{REAL(KIND=4)} or @code{REAL(KIND=8)}). Finally, for brevity the optional @code{KIND=} syntax will be omitted. Many of the intrinsics procedures take one or more optional arguments. This document follows the convention used in the Fortran 95 standard, and denotes such arguments by square brackets. @command{Gfortran} offers the @option{-std=f95} and @option{-std=gnu} options, which can be used to restrict the set of intrinsic procedures to a given standard. By default, @command{gfortran} sets the @option{-std=gnu} option, and so all intrinsic procedures described here are accepted. There is one caveat. For a select group of intrinsic procedures, @command{g77} implemented both a function and a subroutine. Both classes have been implemented in @command{gfortran} for backwards compatibility with @command{g77}. It is noted here that these functions and subroutines cannot be intermixed in a given subprogram. In the descriptions that follow, the applicable option(s) is noted. @node ABORT @section @code{ABORT} --- Abort the program @findex @code{ABORT} @cindex abort @table @asis @item @emph{Description}: @code{ABORT} causes immediate termination of the program. On operating systems that support a core dump, @code{ABORT} will produce a core dump, which is suitable for debugging purposes. @item @emph{Option}: gnu @item @emph{Class}: non-elemental subroutine @item @emph{Syntax}: @code{CALL ABORT} @item @emph{Return value}: Does not return. @item @emph{Example}: @smallexample program test_abort integer :: i = 1, j = 2 if (i /= j) call abort end program test_abort @end smallexample @end table @node ABS @section @code{ABS} --- Absolute value @findex @code{ABS} intrinsic @findex @code{CABS} intrinsic @findex @code{DABS} intrinsic @findex @code{IABS} intrinsic @findex @code{ZABS} intrinsic @findex @code{CDABS} intrinsic @cindex absolute value @table @asis @item @emph{Description}: @code{ABS(X)} computes the absolute value of @code{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ABS(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type of the argument shall be an @code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of the same type and kind as the argument except the return value is @code{REAL(*)} for a @code{COMPLEX(*)} argument. @item @emph{Example}: @smallexample program test_abs integer :: i = -1 real :: x = -1.e0 complex :: z = (-1.e0,0.e0) i = abs(i) x = abs(x) x = abs(z) end program test_abs @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{CABS(Z)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab f95, gnu @item @code{DABS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{IABS(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab f95, gnu @item @code{ZABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab gnu @item @code{CDABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab gnu @end multitable @end table @node ACHAR @section @code{ACHAR} --- Character in @acronym{ASCII} collating sequence @findex @code{ACHAR} intrinsic @cindex @acronym{ASCII} collating sequence @table @asis @item @emph{Description}: @code{ACHAR(I)} returns the character located at position @code{I} in the @acronym{ASCII} collating sequence. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{C = ACHAR(I)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{I} @tab The type shall be @code{INTEGER(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{CHARACTER} with a length of one. The kind type parameter is the same as @code{KIND('A')}. @item @emph{Example}: @smallexample program test_achar character c c = achar(32) end program test_achar @end smallexample @end table @node ACOS @section @code{ACOS} --- Arc cosine function @findex @code{ACOS} intrinsic @findex @code{DACOS} intrinsic @cindex arc cosine @table @asis @item @emph{Description}: @code{ACOS(X)} computes the arc cosine of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ACOS(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} with a magnitude that is less than one. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it lies in the range @math{ 0 \leq \arccos (x) \leq \pi}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_acos real(8) :: x = 0.866_8 x = achar(x) end program test_acos @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node ADJUSTL @section @code{ADJUSTL} --- Left adjust a string @findex @code{ADJUSTL} intrinsic @cindex adjust string @table @asis @item @emph{Description}: @code{ADJUSTL(STR)} will left adjust a string by removing leading spaces. Spaces are inserted at the end of the string as needed. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{STR = ADJUSTL(STR)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{STR} @tab The type shall be @code{CHARACTER}. @end multitable @item @emph{Return value}: The return value is of type @code{CHARACTER} where leading spaces are removed and the same number of spaces are inserted on the end of @var{STR}. @item @emph{Example}: @smallexample program test_adjustl character(len=20) :: str = ' gfortran' str = adjustl(str) print *, str end program test_adjustl @end smallexample @end table @node ADJUSTR @section @code{ADJUSTR} --- Right adjust a string @findex @code{ADJUSTR} intrinsic @cindex adjust string @table @asis @item @emph{Description}: @code{ADJUSTR(STR)} will right adjust a string by removing trailing spaces. Spaces are inserted at the start of the string as needed. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{STR = ADJUSTR(STR)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{STR} @tab The type shall be @code{CHARACTER}. @end multitable @item @emph{Return value}: The return value is of type @code{CHARACTER} where trailing spaces are removed and the same number of spaces are inserted at the start of @var{STR}. @item @emph{Example}: @smallexample program test_adjustr character(len=20) :: str = 'gfortran' str = adjustr(str) print *, str end program test_adjustr @end smallexample @end table @node AIMAG @section @code{AIMAG} --- Imaginary part of complex number @findex @code{AIMAG} intrinsic @findex @code{DIMAG} intrinsic @cindex Imaginary part @table @asis @item @emph{Description}: @code{AIMAG(Z)} yields the imaginary part of complex argument @code{Z}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = AIMAG(Z)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{Z} @tab The type of the argument shall be @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type real with the kind type parameter of the argument. @item @emph{Example}: @smallexample program test_aimag complex(4) z4 complex(8) z8 z4 = cmplx(1.e0_4, 0.e0_4) z8 = cmplx(0.e0_8, 1.e0_8) print *, aimag(z4), dimag(z8) end program test_aimag @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DIMAG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node AINT @section @code{AINT} --- Imaginary part of complex number @findex @code{AINT} intrinsic @findex @code{DINT} intrinsic @cindex whole number @table @asis @item @emph{Description}: @code{AINT(X [, KIND])} truncates its argument to a whole number. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = AINT(X)} @code{X = AINT(X, KIND)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type of the argument shall be @code{REAL(*)}. @item @var{KIND} @tab (Optional) @var{KIND} shall be a scalar integer initialization expression. @end multitable @item @emph{Return value}: The return value is of type real with the kind type parameter of the argument if the optional @var{KIND} is absent; otherwise, the kind type parameter will be given by @var{KIND}. If the magnitude of @var{X} is less than one, then @code{AINT(X)} returns zero. If the magnitude is equal to or greater than one, then it returns the largest whole number that does not exceed its magnitude. The sign is the same as the sign of @var{X}. @item @emph{Example}: @smallexample program test_aint real(4) x4 real(8) x8 x4 = 1.234E0_4 x8 = 4.321_8 print *, aint(x4), dint(x8) x8 = aint(x4,8) end program test_aint @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node ALL @section @code{ALL} --- All values in @var{MASK} along @var{DIM} are true @findex @code{ALL} intrinsic @cindex true values @table @asis @item @emph{Description}: @code{ALL(MASK [, DIM])} determines if all the values are true in @var{MASK} in the array along dimension @var{DIM}. @item @emph{Option}: f95, gnu @item @emph{Class}: transformational function @item @emph{Syntax}: @code{L = ALL(MASK)} @code{L = ALL(MASK, DIM)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL(*)} and it shall not be scalar. @item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer with a value that lies between one and the rank of @var{MASK}. @end multitable @item @emph{Return value}: @code{ALL(MASK)} returns a scalar value of type @code{LOGICAL(*)} where the kind type parameter is the same as the kind type parameter of @var{MASK}. If @var{DIM} is present, then @code{ALL(MASK, DIM)} returns an array with the rank of @var{MASK} minus 1. The shape is determined from the shape of @var{MASK} where the @var{DIM} dimension is elided. @table @asis @item (A) @code{ALL(MASK)} is true if all elements of @var{MASK} are true. It also is true if @var{MASK} has zero size; otherwise, it is false. @item (B) If the rank of @var{MASK} is one, then @code{ALL(MASK,DIM)} is equivalent to @code{ALL(MASK)}. If the rank is greater than one, then @code{ALL(MASK,DIM)} is determined by applying @code{ALL} to the array sections. @end table @item @emph{Example}: @smallexample program test_all logical l l = all((/.true., .true., .true./)) print *, l call section contains subroutine section integer a(2,3), b(2,3) a = 1 b = 1 b(2,2) = 2 print *, all(a .eq. b, 1) print *, all(a .eq. b, 2) end subroutine section end program test_all @end smallexample @end table @node ALLOCATED @section @code{ALLOCATED} --- Status of an allocatable entity @findex @code{ALLOCATED} intrinsic @cindex allocation status @table @asis @item @emph{Description}: @code{ALLOCATED(X)} checks the status of whether @var{X} is allocated. @item @emph{Option}: f95, gnu @item @emph{Class}: inquiry function @item @emph{Syntax}: @code{L = ALLOCATED(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The argument shall be an @code{ALLOCATABLE} array. @end multitable @item @emph{Return value}: The return value is a scalar @code{LOGICAL} with the default logical kind type parameter. If @var{X} is allocated, @code{ALLOCATED(X)} is @code{.TRUE.}; otherwise, it returns the @code{.TRUE.} @item @emph{Example}: @smallexample program test_allocated integer :: i = 4 real(4), allocatable :: x(:) if (allocated(x) .eqv. .false.) allocate(x(i) end program test_allocated @end smallexample @end table @node ANINT @section @code{ANINT} --- Imaginary part of complex number @findex @code{ANINT} intrinsic @findex @code{DNINT} intrinsic @cindex whole number @table @asis @item @emph{Description}: @code{ANINT(X [, KIND])} rounds its argument to the nearest whole number. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ANINT(X)} @code{X = ANINT(X, KIND)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type of the argument shall be @code{REAL(*)}. @item @var{KIND} @tab (Optional) @var{KIND} shall be a scalar integer initialization expression. @end multitable @item @emph{Return value}: The return value is of type real with the kind type parameter of the argument if the optional @var{KIND} is absent; otherwise, the kind type parameter will be given by @var{KIND}. If @var{X} is greater than zero, then @code{ANINT(X)} returns @code{AINT(X+0.5)}. If @var{X} is less than or equal to zero, then return @code{AINT(X-0.5)}. @item @emph{Example}: @smallexample program test_anint real(4) x4 real(8) x8 x4 = 1.234E0_4 x8 = 4.321_8 print *, anint(x4), dnint(x8) x8 = anint(x4,8) end program test_anint @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node ANY @section @code{ANY} --- Any value in @var{MASK} along @var{DIM} is true @findex @code{ANY} intrinsic @cindex true values @table @asis @item @emph{Description}: @code{ANY(MASK [, DIM])} determines if any of the values in the logical array @var{MASK} along dimension @var{DIM} are @code{.TRUE.}. @item @emph{Option}: f95, gnu @item @emph{Class}: transformational function @item @emph{Syntax}: @code{L = ANY(MASK)} @code{L = ANY(MASK, DIM)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{MASK} @tab The type of the argument shall be @code{LOGICAL(*)} and it shall not be scalar. @item @var{DIM} @tab (Optional) @var{DIM} shall be a scalar integer with a value that lies between one and the rank of @var{MASK}. @end multitable @item @emph{Return value}: @code{ANY(MASK)} returns a scalar value of type @code{LOGICAL(*)} where the kind type parameter is the same as the kind type parameter of @var{MASK}. If @var{DIM} is present, then @code{ANY(MASK, DIM)} returns an array with the rank of @var{MASK} minus 1. The shape is determined from the shape of @var{MASK} where the @var{DIM} dimension is elided. @table @asis @item (A) @code{ANY(MASK)} is true if any element of @var{MASK} is true; otherwise, it is false. It also is false if @var{MASK} has zero size. @item (B) If the rank of @var{MASK} is one, then @code{ANY(MASK,DIM)} is equivalent to @code{ANY(MASK)}. If the rank is greater than one, then @code{ANY(MASK,DIM)} is determined by applying @code{ANY} to the array sections. @end table @item @emph{Example}: @smallexample program test_any logical l l = any((/.true., .true., .true./)) print *, l call section contains subroutine section integer a(2,3), b(2,3) a = 1 b = 1 b(2,2) = 2 print *, any(a .eq. b, 1) print *, any(a .eq. b, 2) end subroutine section end program test_any @end smallexample @end table @node ASIN @section @code{ASIN} --- Arcsine function @findex @code{ASIN} intrinsic @findex @code{DASIN} intrinsic @cindex arcsine @table @asis @item @emph{Description}: @code{ASIN(X)} computes the arcsine of its @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ASIN(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and a magnitude that is less than one. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it lies in the range @math{-\pi / 2 \leq \arccos (x) \leq \pi / 2}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_asin real(8) :: x = 0.866_8 x = asin(x) end program test_asin @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node ASSOCIATED @section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair @findex @code{ASSOCIATED} intrinsic @cindex pointer status @table @asis @item @emph{Description}: @code{ASSOCIATED(PTR [, TGT])} determines the status of the pointer @var{PTR} or if @var{PTR} is associated with the target @var{TGT}. @item @emph{Option}: f95, gnu @item @emph{Class}: inquiry function @item @emph{Syntax}: @code{L = ASSOCIATED(PTR)} @code{L = ASSOCIATED(PTR [, TGT])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{PTR} @tab @var{PTR} shall have the @code{POINTER} attribute and it can be of any type. @item @var{TGT} @tab (Optional) @var{TGT} shall be a @code{POINTER} or a @code{TARGET}. It must have the same type, kind type parameter, and array rank as @var{PTR}. @end multitable The status of neither @var{PTR} nor @var{TGT} can be undefined. @item @emph{Return value}: @code{ASSOCIATED(PTR)} returns a scalar value of type @code{LOGICAL(4)}. There are several cases: @table @asis @item (A) If the optional @var{TGT} is not present, then @code{ASSOCIATED(PTR)} is true if @var{PTR} is associated with a target; otherwise, it returns false. @item (B) If @var{TGT} is present and a scalar target, the result is true if @var{TGT} is not a 0 sized storage sequence and the target associated with @var{PTR} occupies the same storage units. If @var{PTR} is disassociated, then the result is false. @item (C) If @var{TGT} is present and an array target, the result is true if @var{TGT} and @var{PTR} have the same shape, are not 0 sized arrays, are arrays whose elements are not 0 sized storage sequences, and @var{TGT} and @var{PTR} occupy the same storage units in array element order. As in case(B), the result is false, if @var{PTR} is disassociated. @item (D) If @var{TGT} is present and an scalar pointer, the result is true if target associated with @var{PTR} and the target associated with @var{TGT} are not 0 sized storage sequences and occupy the same storage units. The result is false, if either @var{TGT} or @var{PTR} is disassociated. @item (E) If @var{TGT} is present and an array pointer, the result is true if target associated with @var{PTR} and the target associated with @var{TGT} have the same shape, are not 0 sized arrays, are arrays whose elements are not 0 sized storage sequences, and @var{TGT} and @var{PTR} occupy the same storage units in array element order. The result is false, if either @var{TGT} or @var{PTR} is disassociated. @end table @item @emph{Example}: @smallexample program test_associated implicit none real, target :: tgt(2) = (/1., 2./) real, pointer :: ptr(:) ptr => tgt if (associated(ptr) .eqv. .false.) call abort if (associated(ptr,tgt) .eqv. .false.) call abort end program test_associated @end smallexample @end table @node ATAN @section @code{ATAN} --- Arctangent function @findex @code{ATAN} intrinsic @findex @code{DATAN} intrinsic @cindex arctangent @table @asis @item @emph{Description}: @code{ATAN(X)} computes the arctangent of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ATAN(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it lies in the range @math{ - \pi / 2 \leq \arcsin (x) \leq \pi / 2}. @item @emph{Example}: @smallexample program test_atan real(8) :: x = 2.866_8 x = atan(x) end program test_atan @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node ATAN2 @section @code{ATAN2} --- Arctangent function @findex @code{ATAN2} intrinsic @findex @code{DATAN2} intrinsic @cindex arctangent @table @asis @item @emph{Description}: @code{ATAN2(Y,X)} computes the arctangent of the complex number @math{X + i Y}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ATAN2(Y,X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{Y} @tab The type shall be @code{REAL(*)}. @item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}. If @var{Y} is zero, then @var{X} must be nonzero. @end multitable @item @emph{Return value}: The return value has the same type and kind type parameter as @var{Y}. It is the principle value of the complex number @math{X + i Y}. If @var{X} is nonzero, then it lies in the range @math{-\pi \le \arccos (x) \leq \pi}. The sign is positive if @var{Y} is positive. If @var{Y} is zero, then the return value is zero if @var{X} is positive and @math{\pi} if @var{X} is negative. Finally, if @var{X} is zero, then the magnitude of the result is @math{\pi/2}. @item @emph{Example}: @smallexample program test_atan2 real(4) :: x = 1.e0_4, y = 0.5e0_4 x = atan2(y,x) end program test_atan2 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node BESJ0 @section @code{BESJ0} --- Bessel function of the first kind of order 0 @findex @code{BESJ0} intrinsic @findex @code{DBESJ0} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESJ0(X)} computes the Bessel function of the first kind of order 0 of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = BESJ0(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it lies in the range @math{ - 0.4027... \leq Bessel (0,x) \leq 1}. @item @emph{Example}: @smallexample program test_besj0 real(8) :: x = 0.0_8 x = besj0(x) end program test_besj0 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node BESJ1 @section @code{BESJ1} --- Bessel function of the first kind of order 1 @findex @code{BESJ1} intrinsic @findex @code{DBESJ1} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESJ1(X)} computes the Bessel function of the first kind of order 1 of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = BESJ1(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it lies in the range @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }. @item @emph{Example}: @smallexample program test_besj1 real(8) :: x = 1.0_8 x = besj1(x) end program test_besj1 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESJ1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node BESJN @section @code{BESJN} --- Bessel function of the first kind @findex @code{BESJN} intrinsic @findex @code{DBESJN} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESJN(N, X)} computes the Bessel function of the first kind of order @var{N} of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{Y = BESJN(N, X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{N} @tab The type shall be @code{INTEGER(*)}, and it shall be scalar. @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)}. @item @emph{Example}: @smallexample program test_besjn real(8) :: x = 1.0_8 x = besjn(5,x) end program test_besjn @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESJN(X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)} @tab gnu @item @tab @code{REAL(8) X} @tab @tab @end multitable @end table @node BESY0 @section @code{BESY0} --- Bessel function of the second kind of order 0 @findex @code{BESY0} intrinsic @findex @code{DBESY0} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESY0(X)} computes the Bessel function of the second kind of order 0 of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = BESY0(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)}. @item @emph{Example}: @smallexample program test_besy0 real(8) :: x = 0.0_8 x = besy0(x) end program test_besy0 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESY0(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node BESY1 @section @code{BESY1} --- Bessel function of the second kind of order 1 @findex @code{BESY1} intrinsic @findex @code{DBESY1} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESY1(X)} computes the Bessel function of the second kind of order 1 of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = BESY1(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)}. @item @emph{Example}: @smallexample program test_besy1 real(8) :: x = 1.0_8 x = besy1(x) end program test_besy1 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESY1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node BESYN @section @code{BESYN} --- Bessel function of the second kind @findex @code{BESYN} intrinsic @findex @code{DBESYN} intrinsic @cindex Bessel @table @asis @item @emph{Description}: @code{BESYN(N, X)} computes the Bessel function of the second kind of order @var{N} of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{Y = BESYN(N, X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{N} @tab The type shall be @code{INTEGER(*)}, and it shall be scalar. @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)}. @item @emph{Example}: @smallexample program test_besyn real(8) :: x = 1.0_8 x = besyn(5,x) end program test_besyn @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DBESYN(N,X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)} @tab gnu @item @tab @code{REAL(8) X} @tab @tab @end multitable @end table @node BIT_SIZE @section @code{BIT_SIZE} --- Bit size inquiry function @findex @code{BIT_SIZE} intrinsic @cindex bit_size @table @asis @item @emph{Description}: @code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit) represented by the type of @var{I}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{I = BIT_SIZE(I)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{I} @tab The type shall be @code{INTEGER(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER(*)} @item @emph{Example}: @smallexample program test_bit_size integer :: i = 123 integer :: size size = bit_size(i) print *, size end program test_bit_size @end smallexample @end table @node BTEST @section @code{BTEST} --- Bit test function @findex @code{BTEST} intrinsic @cindex BTEST @table @asis @item @emph{Description}: @code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS} in @var{I} is set. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{I = BTEST(I,POS)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{I} @tab The type shall be @code{INTEGER(*)}. @item @var{POS} @tab The type shall be @code{INTEGER(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{LOGICAL} @item @emph{Example}: @smallexample program test_btest integer :: i = 32768 + 1024 + 64 integer :: pos logical :: bool do pos=0,16 bool = btest(i, pos) print *, pos, bool end do end program test_btest @end smallexample @end table @node CEILING @section @code{CEILING} --- Integer ceiling function @findex @code{CEILING} intrinsic @cindex CEILING @table @asis @item @emph{Description}: @code{CEILING(X)} returns the least integer greater than or equal to @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = CEILING(X[,KIND])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @item @var{KIND} @tab Optional scaler integer initialization expression. @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER(KIND)} @item @emph{Example}: @smallexample program test_ceiling real :: x = 63.29 real :: y = -63.59 print *, ceiling(x) ! returns 64 print *, ceiling(y) ! returns -63 end program test_ceiling @end smallexample @end table @node CHAR @section @code{CHAR} --- Character conversion function @findex @code{CHAR} intrinsic @cindex CHAR @table @asis @item @emph{Description}: @code{CHAR(I,[KIND])} returns the character represented by the integer @var{I}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{C = CHAR(I[,KIND])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{I} @tab The type shall be @code{INTEGER(*)}. @item @var{KIND} @tab Optional scaler integer initialization expression. @end multitable @item @emph{Return value}: The return value is of type @code{CHARACTER(1)} @item @emph{Example}: @smallexample program test_char integer :: i = 74 character(1) :: c c = char(i) print *, i, c ! returns 'J' end program test_char @end smallexample @end table @node CMPLX @section @code{CMPLX} --- Complex conversion function @findex @code{CMPLX} intrinsic @cindex CMPLX @table @asis @item @emph{Description}: @code{CMPLX(X,[Y,KIND])} returns a complex number where @var{X} is converted to the real component. If @var{Y} is present it is converted to the imaginary component. If @var{Y} is not present then the imaginary component is set to 0.0. If @var{X} is complex then @var{Y} must not be present. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{C = CMPLX(X[,Y,KIND])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type may be @code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}. @item @var{Y} @tab Optional, allowed if @var{X} is not @code{COMPLEX(*)}. May be @code{INTEGER(*)} or @code{REAL(*)}. @item @var{KIND} @tab Optional scaler integer initialization expression. @end multitable @item @emph{Return value}: The return value is of type @code{COMPLEX(*)} @item @emph{Example}: @smallexample program test_cmplx integer :: i = 42 real :: x = 3.14 complex :: z z = cmplx(i, x) print *, z, cmplx(x) end program test_cmplx @end smallexample @end table @node COMMAND_ARGUMENT_COUNT @section @code{COMMAND_ARGUMENT_COUNT} --- Argument count function @findex @code{COMMAND_ARGUMENT_COUNT} intrinsic @cindex command argument count @table @asis @item @emph{Description}: @code{COMMAND_ARGUMENT_COUNT()} returns the number of arguments passed on the command line when the containing program was invoked. @item @emph{Option}: f2003, gnu @item @emph{Class}: non-elemental function @item @emph{Syntax}: @code{I = COMMAND_ARGUMENT_COUNT()} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item None @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER(4)} @item @emph{Example}: @smallexample program test_command_argument_count integer :: count count = command_argument_count() print *, count end program test_command_argument_count @end smallexample @end table @node CONJG @section @code{CONJG} --- Complex conjugate function @findex @code{CONJG} intrinsic @findex @code{DCONJG} intrinsic @cindex complex conjugate @table @asis @item @emph{Description}: @code{CONJG(Z)} returns the conjugate of @var{Z}. If @var{Z} is @code{(x, y)} then the result is @code{(x, -y)} @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{Z = CONJG(Z)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{Z} @tab The type shall be @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{COMPLEX(*)}. @item @emph{Example}: @smallexample program test_conjg complex :: z = (2.0, 3.0) complex(8) :: dz = (2.71_8, -3.14_8) z= conjg(z) print *, z dz = dconjg(dz) print *, dz end program test_conjg @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab gnu @end multitable @end table @node COS @section @code{COS} --- Cosine function @findex @code{COS} intrinsic @findex @code{DCOS} intrinsic @findex @code{ZCOS} intrinsic @findex @code{CDCOS} intrinsic @cindex cosine @table @asis @item @emph{Description}: @code{COS(X)} computes the cosine of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = COS(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value has the same type and kind as @var{X}. @item @emph{Example}: @smallexample program test_cos real :: x = 0.0 x = cos(x) end program test_cos @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{CCOS(X)}@tab @code{COMPLEX(4) X}@tab @code{COMPLEX(4)}@tab f95, gnu @item @code{ZCOS(X)}@tab @code{COMPLEX(8) X}@tab @code{COMPLEX(8)}@tab f95, gnu @item @code{CDCOS(X)}@tab @code{COMPLEX(8) X}@tab @code{COMPLEX(8)}@tab f95, gnu @end multitable @end table @node COSH @section @code{COSH} --- Hyperbolic cosine function @findex @code{COSH} intrinsic @findex @code{DCOSH} intrinsic @cindex hyperbolic cosine @table @asis @item @emph{Description}: @code{COSH(X)} computes the hyperbolic cosine of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = COSH(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and it is positive (@math{ \cosh (x) \geq 0 }. @item @emph{Example}: @smallexample program test_cosh real(8) :: x = 1.0_8 x = cosh(x) end program test_cosh @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node COUNT @section @code{COUNT} --- Count function @findex @code{COUNT} intrinsic @cindex count @table @asis @item @emph{Description}: @code{COUNT(MASK[,DIM])} counts the number of @code{.TRUE.} elements of @var{MASK} along the dimension of @var{DIM}. If @var{DIM} is omitted it is taken to be @code{1}. @var{DIM} is a scaler of type @code{INTEGER} in the range of @math{1 /leq DIM /leq n)} where @math{n} is the rank of @var{MASK}. @item @emph{Option}: f95, gnu @item @emph{Class}: transformational function @item @emph{Syntax}: @code{I = COUNT(MASK[,DIM])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{MASK} @tab The type shall be @code{LOGICAL}. @item @var{DIM} @tab The type shall be @code{INTEGER}. @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER} with rank equal to that of @var{MASK}. @item @emph{Example}: @smallexample program test_count integer, dimension(2,3) :: a, b logical, dimension(2,3) :: mask a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /)) b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /)) print '(3i3)', a(1,:) print '(3i3)', a(2,:) print * print '(3i3)', b(1,:) print '(3i3)', b(2,:) print * mask = a.ne.b print '(3l3)', mask(1,:) print '(3l3)', mask(2,:) print * print '(3i3)', count(mask) print * print '(3i3)', count(mask, 1) print * print '(3i3)', count(mask, 2) end program test_count @end smallexample @end table @node CPU_TIME @section @code{CPU_TIME} --- CPU elapsed time in seconds @findex @code{CPU_TIME} intrinsic @cindex CPU_TIME @table @asis @item @emph{Description}: Returns a @code{REAL} value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time. @item @emph{Option}: f95, gnu @item @emph{Class}: subroutine @item @emph{Syntax}: @code{CPU_TIME(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL} with intent out. @end multitable @item @emph{Return value}: None @item @emph{Example}: @smallexample program test_cpu_time real :: start, finish call cpu_time(start) ! put code to test here call cpu_time(finish) print '("Time = ",f6.3," seconds.")',finish-start end program test_cpu_time @end smallexample @end table @node CSHIFT @section @code{CSHIFT} --- Circular shift function @findex @code{CSHIFT} intrinsic @cindex cshift intrinsic @table @asis @item @emph{Description}: @code{CSHIFT(ARRAY, SHIFT[,DIM])} performs a circular shift on elements of @var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is omitted it is taken to be @code{1}. @var{DIM} is a scaler of type @code{INTEGER} in the range of @math{1 /leq DIM /leq n)} where @math{n} is the rank of @var{ARRAY}. If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted by @var{SHIFT} places. If rank is greater than one, then all complete rank one sections of @var{ARRAY} along the given dimension are shifted. Elements shifted out one end of each rank one section are shifted back in the other end. @item @emph{Option}: f95, gnu @item @emph{Class}: transformational function @item @emph{Syntax}: @code{A = CSHIFT(A, SHIFT[,DIM])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{ARRAY} @tab May be any type, not scaler. @item @var{SHIFT} @tab The type shall be @code{INTEGER}. @item @var{DIM} @tab The type shall be @code{INTEGER}. @end multitable @item @emph{Return value}: Returns an array of same type and rank as the @var{ARRAY} argument. @item @emph{Example}: @smallexample program test_cshift integer, dimension(3,3) :: a a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /)) print '(3i3)', a(1,:) print '(3i3)', a(2,:) print '(3i3)', a(3,:) a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2) print * print '(3i3)', a(1,:) print '(3i3)', a(2,:) print '(3i3)', a(3,:) end program test_cshift @end smallexample @end table @node DATE_AND_TIME @section @code{DATE_AND_TIME} --- Date and time subroutine @findex @code{DATE_AND_TIME} intrinsic @cindex DATE_AND_TIME @table @asis @item @emph{Description}: @code{DATE_AND_TIME(DATE, TIME, ZONE, VALUES)} gets the corresponding date and time information from the real-time system clock. @var{DATE} is @code{INTENT(OUT)} and has form ccyymmdd. @var{TIME} is @code{INTENT(OUT)} and has form hhmmss.sss. @var{ZONE} is @code{INTENT(OUT)} and has form (+-)hhmm, representing the difference with respect to Coordinated Universal Time (UTC). Unavailable time and date parameters return blanks. @var{VALUES} is @code{INTENT(OUT)} and provides the following: @multitable @columnfractions .15 .30 .60 @item @tab @code{VALUE(1)}: @tab The year @item @tab @code{VALUE(2)}: @tab The month @item @tab @code{VALUE(3)}: @tab The day of the month @item @tab @code{VAlUE(4)}: @tab Time difference with UTC in minutes @item @tab @code{VALUE(5)}: @tab The hour of the day @item @tab @code{VALUE(6)}: @tab The minutes of the hour @item @tab @code{VALUE(7)}: @tab The seconds of the minute @item @tab @code{VALUE(8)}: @tab The milliseconds of the second @end multitable @item @emph{Option}: f95, gnu @item @emph{Class}: subroutine @item @emph{Syntax}: @code{CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{DATE} @tab (Optional) The type shall be @code{CHARACTER(8)} or larger. @item @var{TIME} @tab (Optional) The type shall be @code{CHARACTER(10)} or larger. @item @var{ZONE} @tab (Optional) The type shall be @code{CHARACTER(5)} or larger. @item @var{VALUES}@tab (Optional) The type shall be @code{INTEGER(8)}. @end multitable @item @emph{Return value}: None @item @emph{Example}: @smallexample program test_time_and_date character(8) :: date character(10) :: time character(5) :: zone integer,dimension(8) :: values ! using keyword arguments call date_and_time(date,time,zone,values) call date_and_time(DATE=date,ZONE=zone) call date_and_time(TIME=time) call date_and_time(VALUES=values) print '(a,2x,a,2x,a)', date, time, zone print '(8i5))', values end program test_time_and_date @end smallexample @end table @node DBLE @section @code{DBLE} --- Double conversion function @findex @code{DBLE} intrinsic @cindex double conversion @table @asis @item @emph{Description}: @code{DBLE(X)} Converts @var{X} to double precision real type. @code{DFLOAT} is an alias for @code{DBLE} @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = DBLE(X)} @code{X = DFLOAT(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type double precision real. @item @emph{Example}: @smallexample program test_dble real :: x = 2.18 integer :: i = 5 complex :: z = (2.3,1.14) print *, dble(x), dble(i), dfloat(z) end program test_dble @end smallexample @end table @node DCMPLX @section @code{DCMPLX} --- Double complex conversion function @findex @code{DCMPLX} intrinsic @cindex DCMPLX @table @asis @item @emph{Description}: @code{DCMPLX(X [,Y])} returns a double complex number where @var{X} is converted to the real component. If @var{Y} is present it is converted to the imaginary component. If @var{Y} is not present then the imaginary component is set to 0.0. If @var{X} is complex then @var{Y} must not be present. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{C = DCMPLX(X)} @code{C = DCMPLX(X,Y)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type may be @code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}. @item @var{Y} @tab Optional if @var{X} is not @code{COMPLEX(*)}. May be @code{INTEGER(*)} or @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{COMPLEX(8)} @item @emph{Example}: @smallexample program test_dcmplx integer :: i = 42 real :: x = 3.14 complex :: z z = cmplx(i, x) print *, dcmplx(i) print *, dcmplx(x) print *, dcmplx(z) print *, dcmplx(x,i) end program test_dcmplx @end smallexample @end table @node DFLOAT @section @code{DFLOAT} --- Double conversion function @findex @code{DFLOAT} intrinsic @cindex double float conversion @table @asis @item @emph{Description}: @code{DFLOAT(X)} Converts @var{X} to double precision real type. @code{DFLOAT} is an alias for @code{DBLE}. See @code{DBLE}. @end table @node DIGITS @section @code{DIGITS} --- Significant digits function @findex @code{DIGITS} intrinsic @cindex digits, significant @table @asis @item @emph{Description}: @code{DIGITS(X)} returns the number of significant digits of the internal model representation of @var{X}. For example, on a system using a 32-bit floating point representation, a default real number would likely return 24. @item @emph{Option}: f95, gnu @item @emph{Class}: inquiry function @item @emph{Syntax}: @code{C = DIGITS(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type may be @code{INTEGER(*)} or @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER}. @item @emph{Example}: @smallexample program test_digits integer :: i = 12345 real :: x = 3.143 real(8) :: y = 2.33 print *, digits(i) print *, digits(x) print *, digits(y) end program test_digits @end smallexample @end table @node DIM @section @code{DIM} --- Dim function @findex @code{DIM} intrinsic @findex @code{IDIM} intrinsic @findex @code{DDIM} intrinsic @cindex dim @table @asis @item @emph{Description}: @code{DIM(X,Y)} returns the difference @code{X-Y} if the result is positive; otherwise returns zero. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = DIM(X,Y)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{INTEGER(*)} or @code{REAL(*)} @item @var{Y} @tab The type shall be the same type and kind as @var{X}. @end multitable @item @emph{Return value}: The return value is of type @code{INTEGER(*)} or @code{REAL(*)}. @item @emph{Example}: @smallexample program test_dim integer :: i real(8) :: x i = dim(4, 15) x = dim(4.345_8, 2.111_8) print *, i print *, x end program test_dim @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab gnu @item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node DOT_PRODUCT @section @code{DOT_PRODUCT} --- Dot product function @findex @code{DOT_PRODUCT} intrinsic @cindex Dot product @table @asis @item @emph{Description}: @code{DOT_PRODUCT(X,Y)} computes the dot product multiplication of two vectors @var{X} and @var{Y}. The two vectors may be either numeric or logical and must be arrays of rank one and of equal size. If the vectors are @code{INTEGER(*)} or @code{REAL(*)}, the result is @code{SUM(X*Y)}. If the vectors are @code{COMPLEX(*)}, the result is @code{SUM(CONJG(X)*Y)}. If the vectors are @code{LOGICAL}, the result is @code{ANY(X.AND.Y)}. @item @emph{Option}: f95 @item @emph{Class}: transformational function @item @emph{Syntax}: @code{S = DOT_PRODUCT(X,Y)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be numeric or @code{LOGICAL}, rank 1. @item @var{Y} @tab The type shall be numeric or @code{LOGICAL}, rank 1. @end multitable @item @emph{Return value}: If the arguments are numeric, the return value is a scaler of numeric type, @code{INTEGER(*)}, @code{REAL(*)}, or @code{COMPLEX(*)}. If the arguments are @code{LOGICAL}, the return value is @code{.TRUE.} or @code{.FALSE.}. @item @emph{Example}: @smallexample program test_dot_prod integer, dimension(3) :: a, b a = (/ 1, 2, 3 /) b = (/ 4, 5, 6 /) print '(3i3)', a print * print '(3i3)', b print * print *, dot_product(a,b) end program test_dot_prod @end smallexample @end table @node DPROD @section @code{DPROD} --- Double product function @findex @code{DPROD} intrinsic @cindex Double product @table @asis @item @emph{Description}: @code{DPROD(X,Y)} returns the product @code{X*Y}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{D = DPROD(X,Y)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL}. @item @var{Y} @tab The type shall be @code{REAL}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(8)}. @item @emph{Example}: @smallexample program test_dprod integer :: i real :: x = 5.2 real :: y = 2.3 real(8) :: d d = dprod(x,y) print *, d end program test_dprod @end smallexample @end table @node DREAL @section @code{DREAL} --- Double real part function @findex @code{DREAL} intrinsic @cindex Double real part @table @asis @item @emph{Description}: @code{DREAL(Z)} returns the real part of complex variable @var{Z}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{D = DREAL(Z)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{Z} @tab The type shall be @code{COMPLEX(8)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(8)}. @item @emph{Example}: @smallexample program test_dreal complex(8) :: z = (1.3_8,7.2_8) print *, dreal(z) end program test_dreal @end smallexample @end table @node DTIME @section @code{DTIME} --- Execution time subroutine (or function) @findex @code{DTIME} intrinsic @cindex dtime subroutine @table @asis @item @emph{Description}: @code{DTIME(TARRAY, RESULT)} initially returns the number of seconds of runtime since the start of the process's execution in @var{RESULT}. @var{TARRAY} returns the user and system components of this time in @code{TARRAY(1)} and @code{TARRAY(2)} respectively. @var{RESULT} is equal to @code{TARRAY(1) + TARRAY(2)}. Subsequent invocations of @code{DTIME} return values accumulated since the previous invocation. On some systems, the underlying timings are represented using types with sufficiently small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. If @code{DTIME} is invoked as a function, it can not be invoked as a subroutine, and vice versa. @var{TARRAY} and @var{RESULT} are @code{INTENT(OUT)} and provide the following: @multitable @columnfractions .15 .30 .60 @item @tab @code{TARRAY(1)}: @tab User time in seconds. @item @tab @code{TARRAY(2)}: @tab System time in seconds. @item @tab @code{RESULT}: @tab Run time since start in seconds. @end multitable @item @emph{Option}: gnu @item @emph{Class}: subroutine @item @emph{Syntax}: @multitable @columnfractions .80 @item @code{CALL DTIME(TARRAY, RESULT)}. @item @code{RESULT = DTIME(TARRAY)}, (not recommended). @end multitable @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{TARRAY}@tab The type shall be @code{REAL, DIMENSION(2)}. @item @var{RESULT}@tab The type shall be @code{REAL}. @end multitable @item @emph{Return value}: Elapsed time in seconds since the start of program execution. @item @emph{Example}: @smallexample program test_dtime integer(8) :: i, j real, dimension(2) :: tarray real :: result call dtime(tarray, result) print *, result print *, tarray(1) print *, tarray(2) do i=1,100000000 ! Just a delay j = i * i - i end do call dtime(tarray, result) print *, result print *, tarray(1) print *, tarray(2) end program test_dtime @end smallexample @end table @node EOSHIFT @section @code{EOSHIFT} --- End-off shift function @findex @code{EOSHIFT} intrinsic @cindex eoshift intrinsic @table @asis @item @emph{Description}: @code{EOSHIFT(ARRAY, SHIFT[,BOUNDARY, DIM])} performs an end-off shift on elements of @var{ARRAY} along the dimension of @var{DIM}. If @var{DIM} is omitted it is taken to be @code{1}. @var{DIM} is a scaler of type @code{INTEGER} in the range of @math{1 /leq DIM /leq n)} where @math{n} is the rank of @var{ARRAY}. If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted by @var{SHIFT} places. If rank is greater than one, then all complete rank one sections of @var{ARRAY} along the given dimension are shifted. Elements shifted out one end of each rank one section are dropped. If @var{BOUNDARY} is present then the corresponding value of from @var{BOUNDARY} is copied back in the other end. If @var{BOUNDARY} is not present then the following are copied in depending on the type of @var{ARRAY}. @multitable @columnfractions .15 .80 @item @emph{Array Type} @tab @emph{Boundary Value} @item Numeric @tab 0 of the type and kind of @var{ARRAY}. @item Logical @tab @code{.FALSE.}. @item Character(@var{len}) @tab @var{len} blanks. @end multitable @item @emph{Option}: f95, gnu @item @emph{Class}: transformational function @item @emph{Syntax}: @code{A = EOSHIFT(A, SHIFT[,BOUNDARY, DIM])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{ARRAY} @tab May be any type, not scaler. @item @var{SHIFT} @tab The type shall be @code{INTEGER}. @item @var{BOUNDARY} @tab Same type as @var{ARRAY}. @item @var{DIM} @tab The type shall be @code{INTEGER}. @end multitable @item @emph{Return value}: Returns an array of same type and rank as the @var{ARRAY} argument. @item @emph{Example}: @smallexample program test_eoshift integer, dimension(3,3) :: a a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /)) print '(3i3)', a(1,:) print '(3i3)', a(2,:) print '(3i3)', a(3,:) a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2) print * print '(3i3)', a(1,:) print '(3i3)', a(2,:) print '(3i3)', a(3,:) end program test_eoshift @end smallexample @end table @node EPSILON @section @code{EPSILON} --- Epsilon function @findex @code{EPSILON} intrinsic @cindex epsilon, significant @table @asis @item @emph{Description}: @code{EPSILON(X)} returns a nearly negligible number relative to @code{1}. @item @emph{Option}: f95, gnu @item @emph{Class}: inquiry function @item @emph{Syntax}: @code{C = EPSILON(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of same type as the argument. @item @emph{Example}: @smallexample program test_epsilon real :: x = 3.143 real(8) :: y = 2.33 print *, EPSILON(x) print *, EPSILON(y) end program test_epsilon @end smallexample @end table @node ERF @section @code{ERF} --- Error function @findex @code{ERF} intrinsic @cindex error function @table @asis @item @emph{Description}: @code{ERF(X)} computes the error function of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ERF(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)} and it is positive (@math{ - 1 \leq erf (x) \leq 1 }. @item @emph{Example}: @smallexample program test_erf real(8) :: x = 0.17_8 x = erf(x) end program test_erf @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DERF(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node ERFC @section @code{ERFC} --- Error function @findex @code{ERFC} intrinsic @cindex error function @table @asis @item @emph{Description}: @code{ERFC(X)} computes the complementary error function of @var{X}. @item @emph{Option}: gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = ERFC(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar. @end multitable @item @emph{Return value}: The return value is a scalar of type @code{REAL(*)} and it is positive (@math{ 0 \leq erfc (x) \leq 2 }. @item @emph{Example}: @smallexample program test_erfc real(8) :: x = 0.17_8 x = erfc(x) end program test_erfc @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DERFC(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab gnu @end multitable @end table @node ETIME @section @code{ETIME} --- Execution time subroutine (or function) @findex @code{ETIME} intrinsic @cindex ETIME subroutine @table @asis @item @emph{Description}: @code{ETIME(TARRAY, RESULT)} returns the number of seconds of runtime since the start of the process's execution in @var{RESULT}. @var{TARRAY} returns the user and system components of this time in @code{TARRAY(1)} and @code{TARRAY(2)} respectively. @var{RESULT} is equal to @code{TARRAY(1) + TARRAY(2)}. On some systems, the underlying timings are represented using types with sufficiently small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. If @code{ETIME} is invoked as a function, it can not be invoked as a subroutine, and vice versa. @var{TARRAY} and @var{RESULT} are @code{INTENT(OUT)} and provide the following: @multitable @columnfractions .15 .30 .60 @item @tab @code{TARRAY(1)}: @tab User time in seconds. @item @tab @code{TARRAY(2)}: @tab System time in seconds. @item @tab @code{RESULT}: @tab Run time since start in seconds. @end multitable @item @emph{Option}: gnu @item @emph{Class}: subroutine @item @emph{Syntax}: @multitable @columnfractions .8 @item @code{CALL ETIME(TARRAY, RESULT)}. @item @code{RESULT = ETIME(TARRAY)}, (not recommended). @end multitable @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{TARRAY}@tab The type shall be @code{REAL, DIMENSION(2)}. @item @var{RESULT}@tab The type shall be @code{REAL}. @end multitable @item @emph{Return value}: Elapsed time in seconds since the start of program execution. @item @emph{Example}: @smallexample program test_etime integer(8) :: i, j real, dimension(2) :: tarray real :: result call ETIME(tarray, result) print *, result print *, tarray(1) print *, tarray(2) do i=1,100000000 ! Just a delay j = i * i - i end do call ETIME(tarray, result) print *, result print *, tarray(1) print *, tarray(2) end program test_etime @end smallexample @end table @node EXIT @section @code{EXIT} --- Exit the program with status. @findex @code{EXIT} @cindex exit @table @asis @item @emph{Description}: @code{EXIT} causes immediate termination of the program with status. If status is omitted it returns the canonical @emph{success} for the system. All Fortran I/O units are closed. @item @emph{Option}: gnu @item @emph{Class}: non-elemental subroutine @item @emph{Syntax}: @code{CALL EXIT([STATUS])} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{STATUS} @tab The type of the argument shall be @code{INTEGER(*)}. @end multitable @item @emph{Return value}: @code{STATUS} is passed to the parent process on exit. @item @emph{Example}: @smallexample program test_exit integer :: STATUS = 0 print *, 'This program is going to exit.' call EXIT(STATUS) end program test_exit @end smallexample @end table @node EXP @section @code{EXP} --- Exponential function @findex @code{EXP} intrinsic @findex @code{DEXP} intrinsic @findex @code{ZEXP} intrinsic @findex @code{CDEXP} intrinsic @cindex exponential @table @asis @item @emph{Description}: @code{EXP(X)} computes the base @math{e} exponential of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = EXP(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value has same type and kind as @var{X}. @item @emph{Example}: @smallexample program test_exp real :: x = 1.0 x = exp(x) end program test_exp @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu @item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @item @code{CDEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @end multitable @end table @node LOG @section @code{LOG} --- Logarithm function @findex @code{LOG} intrinsic @findex @code{ALOG} intrinsic @findex @code{DLOG} intrinsic @findex @code{CLOG} intrinsic @findex @code{ZLOG} intrinsic @findex @code{CDLOG} intrinsic @cindex logarithm @table @asis @item @emph{Description}: @code{LOG(X)} computes the logarithm of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = LOG(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_log real(8) :: x = 1.0_8 complex :: z = (1.0, 2.0) x = log(x) z = log(z) end program test_log @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{ALOG(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f95, gnu @item @code{DLOG(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{CLOG(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu @item @code{ZLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @item @code{CDLOG(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @end multitable @end table @node LOG10 @section @code{LOG10} --- Base 10 logarithm function @findex @code{LOG10} intrinsic @findex @code{ALOG10} intrinsic @findex @code{DLOG10} intrinsic @cindex logarithm @table @asis @item @emph{Description}: @code{LOG10(X)} computes the base 10 logarithm of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = LOG10(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_log10 real(8) :: x = 10.0_8 x = log10(x) end program test_log10 @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab f95, gnu @item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node SIN @section @code{SIN} --- Sine function @findex @code{SIN} intrinsic @findex @code{DSIN} intrinsic @findex @code{ZSIN} intrinsic @findex @code{CDSIN} intrinsic @cindex sine @table @asis @item @emph{Description}: @code{SIN(X)} computes the sine of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = SIN(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value has same type and king than @var{X}. @item @emph{Example}: @smallexample program test_sin real :: x = 0.0 x = sin(x) end program test_sin @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DSIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{CSIN(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu @item @code{ZSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @item @code{CDSIN(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @end multitable @end table @node SINH @section @code{SINH} --- Hyperbolic sine function @findex @code{SINH} intrinsic @findex @code{DSINH} intrinsic @cindex hyperbolic sine @table @asis @item @emph{Description}: @code{SINH(X)} computes the hyperbolic sine of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = SINH(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)}. @item @emph{Example}: @smallexample program test_sinh real(8) :: x = - 1.0_8 x = sinh(x) end program test_sinh @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node SQRT @section @code{SQRT} --- Square-root function @findex @code{SQRT} intrinsic @findex @code{DSQRT} intrinsic @findex @code{CSQRT} intrinsic @findex @code{ZSQRT} intrinsic @findex @code{CDSQRT} intrinsic @cindex square-root @table @asis @item @emph{Description}: @code{SQRT(X)} computes the square root of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = SQRT(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)} or @code{COMPLEX(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} or @code{COMPLEX(*)}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_sqrt real(8) :: x = 2.0_8 complex :: z = (1.0, 2.0) x = sqrt(x) z = sqrt(z) end program test_sqrt @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab f95, gnu @item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab f95, gnu @end multitable @end table @node TAN @section @code{TAN} --- Tangent function @findex @code{TAN} intrinsic @findex @code{DTAN} intrinsic @cindex tangent @table @asis @item @emph{Description}: @code{TAN(X)} computes the tangent of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = TAN(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)}. The kind type parameter is the same as @var{X}. @item @emph{Example}: @smallexample program test_tan real(8) :: x = 0.165_8 x = tan(x) end program test_tan @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @node TANH @section @code{TANH} --- Hyperbolic tangent function @findex @code{TANH} intrinsic @findex @code{DTANH} intrinsic @cindex hyperbolic tangent @table @asis @item @emph{Description}: @code{TANH(X)} computes the hyperbolic tangent of @var{X}. @item @emph{Option}: f95, gnu @item @emph{Class}: elemental function @item @emph{Syntax}: @code{X = TANH(X)} @item @emph{Arguments}: @multitable @columnfractions .15 .80 @item @var{X} @tab The type shall be @code{REAL(*)}. @end multitable @item @emph{Return value}: The return value is of type @code{REAL(*)} and lies in the range @math{ - 1 \leq tanh(x) \leq 1 }. @item @emph{Example}: @smallexample program test_tanh real(8) :: x = 2.1_8 x = tanh(x) end program test_tanh @end smallexample @item @emph{Specific names}: @multitable @columnfractions .24 .24 .24 .24 @item Name @tab Argument @tab Return type @tab Option @item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu @end multitable @end table @comment sub exit @comment @comment gen exponent @comment @comment gen floor @comment @comment sub flush @comment @comment gen fnum @comment @comment gen fraction @comment @comment gen fstat @comment sub fstat @comment @comment sub getarg @comment @comment gen getcwd @comment sub getcwd @comment @comment sub getenv @comment @comment gen getgid @comment @comment gen getpid @comment @comment gen getuid @comment @comment sub get_command @comment @comment sub get_command_argument @comment @comment sub get_environment_variable @comment @comment gen huge @comment @comment gen iachar @comment @comment gen iand @comment @comment gen iargc @comment @comment gen ibclr @comment @comment gen ibits @comment @comment gen ibset @comment @comment gen ichar @comment @comment gen ieor @comment @comment gen index @comment @comment gen int @comment ifix @comment idint @comment @comment gen ior @comment @comment gen irand @comment @comment gen ishft @comment @comment gen ishftc @comment @comment gen kind @comment @comment gen lbound @comment @comment gen len @comment @comment gen len_trim @comment @comment gen lge @comment @comment gen lgt @comment @comment gen lle @comment @comment gen llt @comment @comment gen logical @comment @comment gen matmul @comment @comment gen max @comment max0 @comment amax0 @comment amax1 @comment max1 @comment dmax1 @comment @comment gen maxexponent @comment @comment gen maxloc @comment @comment gen maxval @comment @comment gen merge @comment @comment gen min @comment min0 @comment amin0 @comment amin1 @comment min1 @comment dmin1 @comment @comment gen minexponent @comment @comment gen minloc @comment @comment gen minval @comment @comment gen mod @comment amod @comment dmod @comment @comment gen modulo @comment @comment sub mvbits @comment @comment gen nearest @comment @comment gen nint @comment idnint @comment @comment gen not @comment @comment gen null @comment @comment gen pack @comment @comment gen precision @comment @comment gen present @comment @comment gen product @comment @comment gen radix @comment @comment gen rand @comment ran @comment @comment sub random_number @comment @comment sub random_seed @comment @comment gen range @comment @comment gen real @comment float @comment sngl @comment @comment gen repeat @comment @comment gen reshape @comment @comment gen rrspacing @comment @comment gen scale @comment @comment gen scan @comment @comment gen second @comment sub second @comment @comment gen selected_int_kind @comment @comment gen selected_real_kind @comment @comment gen set_exponent @comment @comment gen shape @comment @comment gen sign @comment isign @comment dsign @comment @comment gen size @comment @comment gen spacing @comment @comment gen spread @comment @comment sub srand @comment @comment gen stat @comment sub stat @comment @comment gen sum @comment @comment gen system @comment sub system @comment @comment sub system_clock @comment @comment gen tiny @comment @comment gen transfer @comment @comment gen transpose @comment @comment gen trim @comment @comment gen ubound @comment @comment gen umask @comment sub umask @comment @comment gen unlink @comment sub unlink @comment @comment gen unpack @comment @comment gen verify