/* Deal with interfaces. Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Andy Vaught This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Deal with interfaces. An explicit interface is represented as a singly linked list of formal argument structures attached to the relevant symbols. For an implicit interface, the arguments don't point to symbols. Explicit interfaces point to namespaces that contain the symbols within that interface. Implicit interfaces are linked together in a singly linked list along the next_if member of symbol nodes. Since a particular symbol can only have a single explicit interface, the symbol cannot be part of multiple lists and a single next-member suffices. This is not the case for general classes, though. An operator definition is independent of just about all other uses and has it's own head pointer. Nameless interfaces: Nameless interfaces create symbols with explicit interfaces within the current namespace. They are otherwise unlinked. Generic interfaces: The generic name points to a linked list of symbols. Each symbol has an explicit interface. Each explicit interface has its own namespace containing the arguments. Module procedures are symbols in which the interface is added later when the module procedure is parsed. User operators: User-defined operators are stored in a their own set of symtrees separate from regular symbols. The symtrees point to gfc_user_op structures which in turn head up a list of relevant interfaces. Extended intrinsics and assignment: The head of these interface lists are stored in the containing namespace. Implicit interfaces: An implicit interface is represented as a singly linked list of formal argument list structures that don't point to any symbol nodes -- they just contain types. When a subprogram is defined, the program unit's name points to an interface as usual, but the link to the namespace is NULL and the formal argument list points to symbols within the same namespace as the program unit name. */ #include "config.h" #include "system.h" #include "gfortran.h" #include "match.h" /* The current_interface structure holds information about the interface currently being parsed. This structure is saved and restored during recursive interfaces. */ gfc_interface_info current_interface; /* Free a singly linked list of gfc_interface structures. */ void gfc_free_interface (gfc_interface *intr) { gfc_interface *next; for (; intr; intr = next) { next = intr->next; gfc_free (intr); } } /* Change the operators unary plus and minus into binary plus and minus respectively, leaving the rest unchanged. */ static gfc_intrinsic_op fold_unary (gfc_intrinsic_op operator) { switch (operator) { case INTRINSIC_UPLUS: operator = INTRINSIC_PLUS; break; case INTRINSIC_UMINUS: operator = INTRINSIC_MINUS; break; default: break; } return operator; } /* Match a generic specification. Depending on which type of interface is found, the 'name' or 'operator' pointers may be set. This subroutine doesn't return MATCH_NO. */ match gfc_match_generic_spec (interface_type *type, char *name, gfc_intrinsic_op *operator) { char buffer[GFC_MAX_SYMBOL_LEN + 1]; match m; gfc_intrinsic_op i; if (gfc_match (" assignment ( = )") == MATCH_YES) { *type = INTERFACE_INTRINSIC_OP; *operator = INTRINSIC_ASSIGN; return MATCH_YES; } if (gfc_match (" operator ( %o )", &i) == MATCH_YES) { /* Operator i/f */ *type = INTERFACE_INTRINSIC_OP; *operator = fold_unary (i); return MATCH_YES; } if (gfc_match (" operator ( ") == MATCH_YES) { m = gfc_match_defined_op_name (buffer, 1); if (m == MATCH_NO) goto syntax; if (m != MATCH_YES) return MATCH_ERROR; m = gfc_match_char (')'); if (m == MATCH_NO) goto syntax; if (m != MATCH_YES) return MATCH_ERROR; strcpy (name, buffer); *type = INTERFACE_USER_OP; return MATCH_YES; } if (gfc_match_name (buffer) == MATCH_YES) { strcpy (name, buffer); *type = INTERFACE_GENERIC; return MATCH_YES; } *type = INTERFACE_NAMELESS; return MATCH_YES; syntax: gfc_error ("Syntax error in generic specification at %C"); return MATCH_ERROR; } /* Match one of the five forms of an interface statement. */ match gfc_match_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_symbol *sym; gfc_intrinsic_op operator; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in INTERFACE statement " "at %C"); return MATCH_ERROR; } current_interface.type = type; switch (type) { case INTERFACE_GENERIC: if (gfc_get_symbol (name, NULL, &sym)) return MATCH_ERROR; if (!sym->attr.generic && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE) return MATCH_ERROR; if (sym->attr.dummy) { gfc_error ("Dummy procedure '%s' at %C cannot have a " "generic interface", sym->name); return MATCH_ERROR; } current_interface.sym = gfc_new_block = sym; break; case INTERFACE_USER_OP: current_interface.uop = gfc_get_uop (name); break; case INTERFACE_INTRINSIC_OP: current_interface.op = operator; break; case INTERFACE_NAMELESS: break; } return MATCH_YES; } /* Match the different sort of generic-specs that can be present after the END INTERFACE itself. */ match gfc_match_end_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_intrinsic_op operator; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in END INTERFACE " "statement at %C"); return MATCH_ERROR; } m = MATCH_YES; switch (current_interface.type) { case INTERFACE_NAMELESS: if (type != current_interface.type) { gfc_error ("Expected a nameless interface at %C"); m = MATCH_ERROR; } break; case INTERFACE_INTRINSIC_OP: if (type != current_interface.type || operator != current_interface.op) { if (current_interface.op == INTRINSIC_ASSIGN) gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C"); else gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C", gfc_op2string (current_interface.op)); m = MATCH_ERROR; } break; case INTERFACE_USER_OP: /* Comparing the symbol node names is OK because only use-associated symbols can be renamed. */ if (type != current_interface.type || strcmp (current_interface.uop->name, name) != 0) { gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C", current_interface.uop->name); m = MATCH_ERROR; } break; case INTERFACE_GENERIC: if (type != current_interface.type || strcmp (current_interface.sym->name, name) != 0) { gfc_error ("Expecting 'END INTERFACE %s' at %C", current_interface.sym->name); m = MATCH_ERROR; } break; } return m; } /* Compare two derived types using the criteria in 4.4.2 of the standard, recursing through gfc_compare_types for the components. */ int gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2) { gfc_component *dt1, *dt2; /* Special case for comparing derived types across namespaces. If the true names and module names are the same and the module name is nonnull, then they are equal. */ if (strcmp (derived1->name, derived2->name) == 0 && derived1 != NULL && derived2 != NULL && derived1->module != NULL && derived2->module != NULL && strcmp (derived1->module, derived2->module) == 0) return 1; /* Compare type via the rules of the standard. Both types must have the SEQUENCE attribute to be equal. */ if (strcmp (derived1->name, derived2->name)) return 0; if (derived1->component_access == ACCESS_PRIVATE || derived2->component_access == ACCESS_PRIVATE) return 0; if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0) return 0; dt1 = derived1->components; dt2 = derived2->components; /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a simple test can speed things up. Otherwise, lots of things have to match. */ for (;;) { if (strcmp (dt1->name, dt2->name) != 0) return 0; if (dt1->pointer != dt2->pointer) return 0; if (dt1->dimension != dt2->dimension) return 0; if (dt1->allocatable != dt2->allocatable) return 0; if (dt1->dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0) return 0; if (gfc_compare_types (&dt1->ts, &dt2->ts) == 0) return 0; dt1 = dt1->next; dt2 = dt2->next; if (dt1 == NULL && dt2 == NULL) break; if (dt1 == NULL || dt2 == NULL) return 0; } return 1; } /* Compare two typespecs, recursively if necessary. */ int gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2) { if (ts1->type != ts2->type) return 0; if (ts1->type != BT_DERIVED) return (ts1->kind == ts2->kind); /* Compare derived types. */ if (ts1->derived == ts2->derived) return 1; return gfc_compare_derived_types (ts1->derived ,ts2->derived); } /* Given two symbols that are formal arguments, compare their ranks and types. Returns nonzero if they have the same rank and type, zero otherwise. */ static int compare_type_rank (gfc_symbol *s1, gfc_symbol *s2) { int r1, r2; r1 = (s1->as != NULL) ? s1->as->rank : 0; r2 = (s2->as != NULL) ? s2->as->rank : 0; if (r1 != r2) return 0; /* Ranks differ */ return gfc_compare_types (&s1->ts, &s2->ts); } static int compare_interfaces (gfc_symbol *, gfc_symbol *, int); /* Given two symbols that are formal arguments, compare their types and rank and their formal interfaces if they are both dummy procedures. Returns nonzero if the same, zero if different. */ static int compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2) { if (s1 == NULL || s2 == NULL) return s1 == s2 ? 1 : 0; if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE) return compare_type_rank (s1, s2); if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE) return 0; /* At this point, both symbols are procedures. */ if ((s1->attr.function == 0 && s1->attr.subroutine == 0) || (s2->attr.function == 0 && s2->attr.subroutine == 0)) return 0; if (s1->attr.function != s2->attr.function || s1->attr.subroutine != s2->attr.subroutine) return 0; if (s1->attr.function && compare_type_rank (s1, s2) == 0) return 0; /* Originally, gfortran recursed here to check the interfaces of passed procedures. This is explicitly not required by the standard. */ return 1; } /* Given a formal argument list and a keyword name, search the list for that keyword. Returns the correct symbol node if found, NULL if not found. */ static gfc_symbol * find_keyword_arg (const char *name, gfc_formal_arglist *f) { for (; f; f = f->next) if (strcmp (f->sym->name, name) == 0) return f->sym; return NULL; } /******** Interface checking subroutines **********/ /* Given an operator interface and the operator, make sure that all interfaces for that operator are legal. */ static void check_operator_interface (gfc_interface *intr, gfc_intrinsic_op operator) { gfc_formal_arglist *formal; sym_intent i1, i2; gfc_symbol *sym; bt t1, t2; int args; if (intr == NULL) return; args = 0; t1 = t2 = BT_UNKNOWN; i1 = i2 = INTENT_UNKNOWN; for (formal = intr->sym->formal; formal; formal = formal->next) { sym = formal->sym; if (sym == NULL) { gfc_error ("Alternate return cannot appear in operator " "interface at %L", &intr->where); return; } if (args == 0) { t1 = sym->ts.type; i1 = sym->attr.intent; } if (args == 1) { t2 = sym->ts.type; i2 = sym->attr.intent; } args++; } if (args == 0 || args > 2) goto num_args; sym = intr->sym; if (operator == INTRINSIC_ASSIGN) { if (!sym->attr.subroutine) { gfc_error ("Assignment operator interface at %L must be " "a SUBROUTINE", &intr->where); return; } if (args != 2) { gfc_error ("Assignment operator interface at %L must have " "two arguments", &intr->where); return; } if (sym->formal->sym->ts.type != BT_DERIVED && sym->formal->next->sym->ts.type != BT_DERIVED && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type || (gfc_numeric_ts (&sym->formal->sym->ts) && gfc_numeric_ts (&sym->formal->next->sym->ts)))) { gfc_error ("Assignment operator interface at %L must not redefine " "an INTRINSIC type assignment", &intr->where); return; } } else { if (!sym->attr.function) { gfc_error ("Intrinsic operator interface at %L must be a FUNCTION", &intr->where); return; } } switch (operator) { case INTRINSIC_PLUS: /* Numeric unary or binary */ case INTRINSIC_MINUS: if ((args == 1) && (t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX)) goto bad_repl; if ((args == 2) && (t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX) && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX)) goto bad_repl; break; case INTRINSIC_POWER: /* Binary numeric */ case INTRINSIC_TIMES: case INTRINSIC_DIVIDE: case INTRINSIC_EQ: case INTRINSIC_NE: if (args == 1) goto num_args; if ((t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX) && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX)) goto bad_repl; break; case INTRINSIC_GE: /* Binary numeric operators that do not support */ case INTRINSIC_LE: /* complex numbers */ case INTRINSIC_LT: case INTRINSIC_GT: if (args == 1) goto num_args; if ((t1 == BT_INTEGER || t1 == BT_REAL) && (t2 == BT_INTEGER || t2 == BT_REAL)) goto bad_repl; break; case INTRINSIC_OR: /* Binary logical */ case INTRINSIC_AND: case INTRINSIC_EQV: case INTRINSIC_NEQV: if (args == 1) goto num_args; if (t1 == BT_LOGICAL && t2 == BT_LOGICAL) goto bad_repl; break; case INTRINSIC_NOT: /* Unary logical */ if (args != 1) goto num_args; if (t1 == BT_LOGICAL) goto bad_repl; break; case INTRINSIC_CONCAT: /* Binary string */ if (args != 2) goto num_args; if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; break; case INTRINSIC_ASSIGN: /* Class by itself */ if (args != 2) goto num_args; break; default: gfc_internal_error ("check_operator_interface(): Bad operator"); } /* Check intents on operator interfaces. */ if (operator == INTRINSIC_ASSIGN) { if (i1 != INTENT_OUT && i1 != INTENT_INOUT) gfc_error ("First argument of defined assignment at %L must be " "INTENT(IN) or INTENT(INOUT)", &intr->where); if (i2 != INTENT_IN) gfc_error ("Second argument of defined assignment at %L must be " "INTENT(IN)", &intr->where); } else { if (i1 != INTENT_IN) gfc_error ("First argument of operator interface at %L must be " "INTENT(IN)", &intr->where); if (args == 2 && i2 != INTENT_IN) gfc_error ("Second argument of operator interface at %L must be " "INTENT(IN)", &intr->where); } return; bad_repl: gfc_error ("Operator interface at %L conflicts with intrinsic interface", &intr->where); return; num_args: gfc_error ("Operator interface at %L has the wrong number of arguments", &intr->where); return; } /* Given a pair of formal argument lists, we see if the two lists can be distinguished by counting the number of nonoptional arguments of a given type/rank in f1 and seeing if there are less then that number of those arguments in f2 (including optional arguments). Since this test is asymmetric, it has to be called twice to make it symmetric. Returns nonzero if the argument lists are incompatible by this test. This subroutine implements rule 1 of section 14.1.2.3. */ static int count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2) { int rc, ac1, ac2, i, j, k, n1; gfc_formal_arglist *f; typedef struct { int flag; gfc_symbol *sym; } arginfo; arginfo *arg; n1 = 0; for (f = f1; f; f = f->next) n1++; /* Build an array of integers that gives the same integer to arguments of the same type/rank. */ arg = gfc_getmem (n1 * sizeof (arginfo)); f = f1; for (i = 0; i < n1; i++, f = f->next) { arg[i].flag = -1; arg[i].sym = f->sym; } k = 0; for (i = 0; i < n1; i++) { if (arg[i].flag != -1) continue; if (arg[i].sym && arg[i].sym->attr.optional) continue; /* Skip optional arguments */ arg[i].flag = k; /* Find other nonoptional arguments of the same type/rank. */ for (j = i + 1; j < n1; j++) if ((arg[j].sym == NULL || !arg[j].sym->attr.optional) && compare_type_rank_if (arg[i].sym, arg[j].sym)) arg[j].flag = k; k++; } /* Now loop over each distinct type found in f1. */ k = 0; rc = 0; for (i = 0; i < n1; i++) { if (arg[i].flag != k) continue; ac1 = 1; for (j = i + 1; j < n1; j++) if (arg[j].flag == k) ac1++; /* Count the number of arguments in f2 with that type, including those that are optional. */ ac2 = 0; for (f = f2; f; f = f->next) if (compare_type_rank_if (arg[i].sym, f->sym)) ac2++; if (ac1 > ac2) { rc = 1; break; } k++; } gfc_free (arg); return rc; } /* Perform the abbreviated correspondence test for operators. The arguments cannot be optional and are always ordered correctly, which makes this test much easier than that for generic tests. This subroutine is also used when comparing a formal and actual argument list when an actual parameter is a dummy procedure. At that point, two formal interfaces must be compared for equality which is what happens here. */ static int operator_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2) { for (;;) { if (f1 == NULL && f2 == NULL) break; if (f1 == NULL || f2 == NULL) return 1; if (!compare_type_rank (f1->sym, f2->sym)) return 1; f1 = f1->next; f2 = f2->next; } return 0; } /* Perform the correspondence test in rule 2 of section 14.1.2.3. Returns zero if no argument is found that satisfies rule 2, nonzero otherwise. This test is also not symmetric in f1 and f2 and must be called twice. This test finds problems caused by sorting the actual argument list with keywords. For example: INTERFACE FOO SUBROUTINE F1(A, B) INTEGER :: A ; REAL :: B END SUBROUTINE F1 SUBROUTINE F2(B, A) INTEGER :: A ; REAL :: B END SUBROUTINE F1 END INTERFACE FOO At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */ static int generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2) { gfc_formal_arglist *f2_save, *g; gfc_symbol *sym; f2_save = f2; while (f1) { if (f1->sym->attr.optional) goto next; if (f2 != NULL && compare_type_rank (f1->sym, f2->sym)) goto next; /* Now search for a disambiguating keyword argument starting at the current non-match. */ for (g = f1; g; g = g->next) { if (g->sym->attr.optional) continue; sym = find_keyword_arg (g->sym->name, f2_save); if (sym == NULL || !compare_type_rank (g->sym, sym)) return 1; } next: f1 = f1->next; if (f2 != NULL) f2 = f2->next; } return 0; } /* 'Compare' two formal interfaces associated with a pair of symbols. We return nonzero if there exists an actual argument list that would be ambiguous between the two interfaces, zero otherwise. */ static int compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, int generic_flag) { gfc_formal_arglist *f1, *f2; if (s1->attr.function != s2->attr.function && s1->attr.subroutine != s2->attr.subroutine) return 0; /* disagreement between function/subroutine */ f1 = s1->formal; f2 = s2->formal; if (f1 == NULL && f2 == NULL) return 1; /* Special case */ if (count_types_test (f1, f2)) return 0; if (count_types_test (f2, f1)) return 0; if (generic_flag) { if (generic_correspondence (f1, f2)) return 0; if (generic_correspondence (f2, f1)) return 0; } else { if (operator_correspondence (f1, f2)) return 0; } return 1; } /* Given a pointer to an interface pointer, remove duplicate interfaces and make sure that all symbols are either functions or subroutines. Returns nonzero if something goes wrong. */ static int check_interface0 (gfc_interface *p, const char *interface_name) { gfc_interface *psave, *q, *qlast; psave = p; /* Make sure all symbols in the interface have been defined as functions or subroutines. */ for (; p; p = p->next) if (!p->sym->attr.function && !p->sym->attr.subroutine) { gfc_error ("Procedure '%s' in %s at %L is neither function nor " "subroutine", p->sym->name, interface_name, &p->sym->declared_at); return 1; } p = psave; /* Remove duplicate interfaces in this interface list. */ for (; p; p = p->next) { qlast = p; for (q = p->next; q;) { if (p->sym != q->sym) { qlast = q; q = q->next; } else { /* Duplicate interface */ qlast->next = q->next; gfc_free (q); q = qlast->next; } } } return 0; } /* Check lists of interfaces to make sure that no two interfaces are ambiguous. Duplicate interfaces (from the same symbol) are OK here. */ static int check_interface1 (gfc_interface *p, gfc_interface *q0, int generic_flag, const char *interface_name, bool referenced) { gfc_interface *q; for (; p; p = p->next) for (q = q0; q; q = q->next) { if (p->sym == q->sym) continue; /* Duplicates OK here */ if (p->sym->name == q->sym->name && p->sym->module == q->sym->module) continue; if (compare_interfaces (p->sym, q->sym, generic_flag)) { if (referenced) { gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L", p->sym->name, q->sym->name, interface_name, &p->where); } if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc) gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L", p->sym->name, q->sym->name, interface_name, &p->where); return 1; } } return 0; } /* Check the generic and operator interfaces of symbols to make sure that none of the interfaces conflict. The check has to be done after all of the symbols are actually loaded. */ static void check_sym_interfaces (gfc_symbol *sym) { char interface_name[100]; bool k; gfc_interface *p; if (sym->ns != gfc_current_ns) return; if (sym->generic != NULL) { sprintf (interface_name, "generic interface '%s'", sym->name); if (check_interface0 (sym->generic, interface_name)) return; for (p = sym->generic; p; p = p->next) { if (!p->sym->attr.use_assoc && p->sym->attr.mod_proc && p->sym->attr.if_source != IFSRC_DECL) { gfc_error ("MODULE PROCEDURE '%s' at %L does not come " "from a module", p->sym->name, &p->where); return; } } /* Originally, this test was applied to host interfaces too; this is incorrect since host associated symbols, from any source, cannot be ambiguous with local symbols. */ k = sym->attr.referenced || !sym->attr.use_assoc; if (check_interface1 (sym->generic, sym->generic, 1, interface_name, k)) sym->attr.ambiguous_interfaces = 1; } } static void check_uop_interfaces (gfc_user_op *uop) { char interface_name[100]; gfc_user_op *uop2; gfc_namespace *ns; sprintf (interface_name, "operator interface '%s'", uop->name); if (check_interface0 (uop->operator, interface_name)) return; for (ns = gfc_current_ns; ns; ns = ns->parent) { uop2 = gfc_find_uop (uop->name, ns); if (uop2 == NULL) continue; check_interface1 (uop->operator, uop2->operator, 0, interface_name, true); } } /* For the namespace, check generic, user operator and intrinsic operator interfaces for consistency and to remove duplicate interfaces. We traverse the whole namespace, counting on the fact that most symbols will not have generic or operator interfaces. */ void gfc_check_interfaces (gfc_namespace *ns) { gfc_namespace *old_ns, *ns2; char interface_name[100]; gfc_intrinsic_op i; old_ns = gfc_current_ns; gfc_current_ns = ns; gfc_traverse_ns (ns, check_sym_interfaces); gfc_traverse_user_op (ns, check_uop_interfaces); for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) { if (i == INTRINSIC_USER) continue; if (i == INTRINSIC_ASSIGN) strcpy (interface_name, "intrinsic assignment operator"); else sprintf (interface_name, "intrinsic '%s' operator", gfc_op2string (i)); if (check_interface0 (ns->operator[i], interface_name)) continue; check_operator_interface (ns->operator[i], i); for (ns2 = ns->parent; ns2; ns2 = ns2->parent) if (check_interface1 (ns->operator[i], ns2->operator[i], 0, interface_name, true)) break; } gfc_current_ns = old_ns; } static int symbol_rank (gfc_symbol *sym) { return (sym->as == NULL) ? 0 : sym->as->rank; } /* Given a symbol of a formal argument list and an expression, if the formal argument is allocatable, check that the actual argument is allocatable. Returns nonzero if compatible, zero if not compatible. */ static int compare_allocatable (gfc_symbol *formal, gfc_expr *actual) { symbol_attribute attr; if (formal->attr.allocatable) { attr = gfc_expr_attr (actual); if (!attr.allocatable) return 0; } return 1; } /* Given a symbol of a formal argument list and an expression, if the formal argument is a pointer, see if the actual argument is a pointer. Returns nonzero if compatible, zero if not compatible. */ static int compare_pointer (gfc_symbol *formal, gfc_expr *actual) { symbol_attribute attr; if (formal->attr.pointer) { attr = gfc_expr_attr (actual); if (!attr.pointer) return 0; } return 1; } /* Given a symbol of a formal argument list and an expression, see if the two are compatible as arguments. Returns nonzero if compatible, zero if not compatible. */ static int compare_parameter (gfc_symbol *formal, gfc_expr *actual, int ranks_must_agree, int is_elemental) { gfc_ref *ref; if (actual->ts.type == BT_PROCEDURE) { if (formal->attr.flavor != FL_PROCEDURE) return 0; if (formal->attr.function && !compare_type_rank (formal, actual->symtree->n.sym)) return 0; if (formal->attr.if_source == IFSRC_UNKNOWN || actual->symtree->n.sym->attr.external) return 1; /* Assume match */ return compare_interfaces (formal, actual->symtree->n.sym, 0); } if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN) && !gfc_compare_types (&formal->ts, &actual->ts)) return 0; if (symbol_rank (formal) == actual->rank) return 1; /* At this point the ranks didn't agree. */ if (ranks_must_agree || formal->attr.pointer) return 0; if (actual->rank != 0) return is_elemental || formal->attr.dimension; /* At this point, we are considering a scalar passed to an array. This is legal if the scalar is an array element of the right sort. */ if (formal->as->type == AS_ASSUMED_SHAPE) return 0; for (ref = actual->ref; ref; ref = ref->next) if (ref->type == REF_SUBSTRING) return 0; for (ref = actual->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT) break; if (ref == NULL) return 0; /* Not an array element */ return 1; } /* Given a symbol of a formal argument list and an expression, see if the two are compatible as arguments. Returns nonzero if compatible, zero if not compatible. */ static int compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual) { if (actual->expr_type != EXPR_VARIABLE) return 1; if (!actual->symtree->n.sym->attr.protected) return 1; if (!actual->symtree->n.sym->attr.use_assoc) return 1; if (formal->attr.intent == INTENT_IN || formal->attr.intent == INTENT_UNKNOWN) return 1; if (!actual->symtree->n.sym->attr.pointer) return 0; if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer) return 0; return 1; } /* Given formal and actual argument lists, see if they are compatible. If they are compatible, the actual argument list is sorted to correspond with the formal list, and elements for missing optional arguments are inserted. If WHERE pointer is nonnull, then we issue errors when things don't match instead of just returning the status code. */ static int compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal, int ranks_must_agree, int is_elemental, locus *where) { gfc_actual_arglist **new, *a, *actual, temp; gfc_formal_arglist *f; int i, n, na; bool rank_check; actual = *ap; if (actual == NULL && formal == NULL) return 1; n = 0; for (f = formal; f; f = f->next) n++; new = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *)); for (i = 0; i < n; i++) new[i] = NULL; na = 0; f = formal; i = 0; for (a = actual; a; a = a->next, f = f->next) { /* Look for keywords but ignore g77 extensions like %VAL. */ if (a->name != NULL && a->name[0] != '%') { i = 0; for (f = formal; f; f = f->next, i++) { if (f->sym == NULL) continue; if (strcmp (f->sym->name, a->name) == 0) break; } if (f == NULL) { if (where) gfc_error ("Keyword argument '%s' at %L is not in " "the procedure", a->name, &a->expr->where); return 0; } if (new[i] != NULL) { if (where) gfc_error ("Keyword argument '%s' at %L is already associated " "with another actual argument", a->name, &a->expr->where); return 0; } } if (f == NULL) { if (where) gfc_error ("More actual than formal arguments in procedure " "call at %L", where); return 0; } if (f->sym == NULL && a->expr == NULL) goto match; if (f->sym == NULL) { if (where) gfc_error ("Missing alternate return spec in subroutine call " "at %L", where); return 0; } if (a->expr == NULL) { if (where) gfc_error ("Unexpected alternate return spec in subroutine " "call at %L", where); return 0; } rank_check = where != NULL && !is_elemental && f->sym->as && (f->sym->as->type == AS_ASSUMED_SHAPE || f->sym->as->type == AS_DEFERRED); if (!compare_parameter (f->sym, a->expr, ranks_must_agree || rank_check, is_elemental)) { if (where) gfc_error ("Type/rank mismatch in argument '%s' at %L", f->sym->name, &a->expr->where); return 0; } /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is provided for a procedure formal argument. */ if (a->expr->ts.type != BT_PROCEDURE && a->expr->expr_type == EXPR_VARIABLE && f->sym->attr.flavor == FL_PROCEDURE) { if (where) gfc_error ("Expected a procedure for argument '%s' at %L", f->sym->name, &a->expr->where); return 0; } if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure && a->expr->ts.type == BT_PROCEDURE && !a->expr->symtree->n.sym->attr.pure) { if (where) gfc_error ("Expected a PURE procedure for argument '%s' at %L", f->sym->name, &a->expr->where); return 0; } if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE && a->expr->expr_type == EXPR_VARIABLE && a->expr->symtree->n.sym->as && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE && (a->expr->ref == NULL || (a->expr->ref->type == REF_ARRAY && a->expr->ref->u.ar.type == AR_FULL))) { if (where) gfc_error ("Actual argument for '%s' cannot be an assumed-size" " array at %L", f->sym->name, where); return 0; } if (a->expr->expr_type != EXPR_NULL && compare_pointer (f->sym, a->expr) == 0) { if (where) gfc_error ("Actual argument for '%s' must be a pointer at %L", f->sym->name, &a->expr->where); return 0; } if (a->expr->expr_type != EXPR_NULL && compare_allocatable (f->sym, a->expr) == 0) { if (where) gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L", f->sym->name, &a->expr->where); return 0; } /* Check intent = OUT/INOUT for definable actual argument. */ if (a->expr->expr_type != EXPR_VARIABLE && (f->sym->attr.intent == INTENT_OUT || f->sym->attr.intent == INTENT_INOUT)) { if (where) gfc_error ("Actual argument at %L must be definable to " "match dummy INTENT = OUT/INOUT", &a->expr->where); return 0; } if (!compare_parameter_protected(f->sym, a->expr)) { if (where) gfc_error ("Actual argument at %L is use-associated with " "PROTECTED attribute and dummy argument '%s' is " "INTENT = OUT/INOUT", &a->expr->where,f->sym->name); return 0; } /* C1232 (R1221) For an actual argument which is an array section or an assumed-shape array, the dummy argument shall be an assumed- shape array, if the dummy argument has the VOLATILE attribute. */ if (f->sym->attr.volatile_ && a->expr->symtree->n.sym->as && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) { if (where) gfc_error ("Assumed-shape actual argument at %L is " "incompatible with the non-assumed-shape " "dummy argument '%s' due to VOLATILE attribute", &a->expr->where,f->sym->name); return 0; } if (f->sym->attr.volatile_ && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) { if (where) gfc_error ("Array-section actual argument at %L is " "incompatible with the non-assumed-shape " "dummy argument '%s' due to VOLATILE attribute", &a->expr->where,f->sym->name); return 0; } /* C1233 (R1221) For an actual argument which is a pointer array, the dummy argument shall be an assumed-shape or pointer array, if the dummy argument has the VOLATILE attribute. */ if (f->sym->attr.volatile_ && a->expr->symtree->n.sym->attr.pointer && a->expr->symtree->n.sym->as && !(f->sym->as && (f->sym->as->type == AS_ASSUMED_SHAPE || f->sym->attr.pointer))) { if (where) gfc_error ("Pointer-array actual argument at %L requires " "an assumed-shape or pointer-array dummy " "argument '%s' due to VOLATILE attribute", &a->expr->where,f->sym->name); return 0; } match: if (a == actual) na = i; new[i++] = a; } /* Make sure missing actual arguments are optional. */ i = 0; for (f = formal; f; f = f->next, i++) { if (new[i] != NULL) continue; if (f->sym == NULL) { if (where) gfc_error ("Missing alternate return spec in subroutine call " "at %L", where); return 0; } if (!f->sym->attr.optional) { if (where) gfc_error ("Missing actual argument for argument '%s' at %L", f->sym->name, where); return 0; } } /* The argument lists are compatible. We now relink a new actual argument list with null arguments in the right places. The head of the list remains the head. */ for (i = 0; i < n; i++) if (new[i] == NULL) new[i] = gfc_get_actual_arglist (); if (na != 0) { temp = *new[0]; *new[0] = *actual; *actual = temp; a = new[0]; new[0] = new[na]; new[na] = a; } for (i = 0; i < n - 1; i++) new[i]->next = new[i + 1]; new[i]->next = NULL; if (*ap == NULL && n > 0) *ap = new[0]; /* Note the types of omitted optional arguments. */ for (a = actual, f = formal; a; a = a->next, f = f->next) if (a->expr == NULL && a->label == NULL) a->missing_arg_type = f->sym->ts.type; return 1; } typedef struct { gfc_formal_arglist *f; gfc_actual_arglist *a; } argpair; /* qsort comparison function for argument pairs, with the following order: - p->a->expr == NULL - p->a->expr->expr_type != EXPR_VARIABLE - growing p->a->expr->symbol. */ static int pair_cmp (const void *p1, const void *p2) { const gfc_actual_arglist *a1, *a2; /* *p1 and *p2 are elements of the to-be-sorted array. */ a1 = ((const argpair *) p1)->a; a2 = ((const argpair *) p2)->a; if (!a1->expr) { if (!a2->expr) return 0; return -1; } if (!a2->expr) return 1; if (a1->expr->expr_type != EXPR_VARIABLE) { if (a2->expr->expr_type != EXPR_VARIABLE) return 0; return -1; } if (a2->expr->expr_type != EXPR_VARIABLE) return 1; return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym; } /* Given two expressions from some actual arguments, test whether they refer to the same expression. The analysis is conservative. Returning FAILURE will produce no warning. */ static try compare_actual_expr (gfc_expr *e1, gfc_expr *e2) { const gfc_ref *r1, *r2; if (!e1 || !e2 || e1->expr_type != EXPR_VARIABLE || e2->expr_type != EXPR_VARIABLE || e1->symtree->n.sym != e2->symtree->n.sym) return FAILURE; /* TODO: improve comparison, see expr.c:show_ref(). */ for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next) { if (r1->type != r2->type) return FAILURE; switch (r1->type) { case REF_ARRAY: if (r1->u.ar.type != r2->u.ar.type) return FAILURE; /* TODO: At the moment, consider only full arrays; we could do better. */ if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL) return FAILURE; break; case REF_COMPONENT: if (r1->u.c.component != r2->u.c.component) return FAILURE; break; case REF_SUBSTRING: return FAILURE; default: gfc_internal_error ("compare_actual_expr(): Bad component code"); } } if (!r1 && !r2) return SUCCESS; return FAILURE; } /* Given formal and actual argument lists that correspond to one another, check that identical actual arguments aren't not associated with some incompatible INTENTs. */ static try check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a) { sym_intent f1_intent, f2_intent; gfc_formal_arglist *f1; gfc_actual_arglist *a1; size_t n, i, j; argpair *p; try t = SUCCESS; n = 0; for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next) { if (f1 == NULL && a1 == NULL) break; if (f1 == NULL || a1 == NULL) gfc_internal_error ("check_some_aliasing(): List mismatch"); n++; } if (n == 0) return t; p = (argpair *) alloca (n * sizeof (argpair)); for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next) { p[i].f = f1; p[i].a = a1; } qsort (p, n, sizeof (argpair), pair_cmp); for (i = 0; i < n; i++) { if (!p[i].a->expr || p[i].a->expr->expr_type != EXPR_VARIABLE || p[i].a->expr->ts.type == BT_PROCEDURE) continue; f1_intent = p[i].f->sym->attr.intent; for (j = i + 1; j < n; j++) { /* Expected order after the sort. */ if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE) gfc_internal_error ("check_some_aliasing(): corrupted data"); /* Are the expression the same? */ if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE) break; f2_intent = p[j].f->sym->attr.intent; if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT) || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)) { gfc_warning ("Same actual argument associated with INTENT(%s) " "argument '%s' and INTENT(%s) argument '%s' at %L", gfc_intent_string (f1_intent), p[i].f->sym->name, gfc_intent_string (f2_intent), p[j].f->sym->name, &p[i].a->expr->where); t = FAILURE; } } } return t; } /* Given a symbol of a formal argument list and an expression, return non-zero if their intents are compatible, zero otherwise. */ static int compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual) { if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer) return 1; if (actual->symtree->n.sym->attr.intent != INTENT_IN) return 1; if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT) return 0; return 1; } /* Given formal and actual argument lists that correspond to one another, check that they are compatible in the sense that intents are not mismatched. */ static try check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a) { sym_intent f_intent; for (;; f = f->next, a = a->next) { if (f == NULL && a == NULL) break; if (f == NULL || a == NULL) gfc_internal_error ("check_intents(): List mismatch"); if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE) continue; f_intent = f->sym->attr.intent; if (!compare_parameter_intent(f->sym, a->expr)) { gfc_error ("Procedure argument at %L is INTENT(IN) while interface " "specifies INTENT(%s)", &a->expr->where, gfc_intent_string (f_intent)); return FAILURE; } if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym)) { if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT) { gfc_error ("Procedure argument at %L is local to a PURE " "procedure and is passed to an INTENT(%s) argument", &a->expr->where, gfc_intent_string (f_intent)); return FAILURE; } if (a->expr->symtree->n.sym->attr.pointer) { gfc_error ("Procedure argument at %L is local to a PURE " "procedure and has the POINTER attribute", &a->expr->where); return FAILURE; } } } return SUCCESS; } /* Check how a procedure is used against its interface. If all goes well, the actual argument list will also end up being properly sorted. */ void gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where) { /* Warn about calls with an implicit interface. */ if (gfc_option.warn_implicit_interface && sym->attr.if_source == IFSRC_UNKNOWN) gfc_warning ("Procedure '%s' called with an implicit interface at %L", sym->name, where); if (sym->attr.if_source == IFSRC_UNKNOWN || !compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where)) return; check_intents (sym->formal, *ap); if (gfc_option.warn_aliasing) check_some_aliasing (sym->formal, *ap); } /* Given an interface pointer and an actual argument list, search for a formal argument list that matches the actual. If found, returns a pointer to the symbol of the correct interface. Returns NULL if not found. */ gfc_symbol * gfc_search_interface (gfc_interface *intr, int sub_flag, gfc_actual_arglist **ap) { int r; for (; intr; intr = intr->next) { if (sub_flag && intr->sym->attr.function) continue; if (!sub_flag && intr->sym->attr.subroutine) continue; r = !intr->sym->attr.elemental; if (compare_actual_formal (ap, intr->sym->formal, r, !r, NULL)) { check_intents (intr->sym->formal, *ap); if (gfc_option.warn_aliasing) check_some_aliasing (intr->sym->formal, *ap); return intr->sym; } } return NULL; } /* Do a brute force recursive search for a symbol. */ static gfc_symtree * find_symtree0 (gfc_symtree *root, gfc_symbol *sym) { gfc_symtree * st; if (root->n.sym == sym) return root; st = NULL; if (root->left) st = find_symtree0 (root->left, sym); if (root->right && ! st) st = find_symtree0 (root->right, sym); return st; } /* Find a symtree for a symbol. */ static gfc_symtree * find_sym_in_symtree (gfc_symbol *sym) { gfc_symtree *st; gfc_namespace *ns; /* First try to find it by name. */ gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st); if (st && st->n.sym == sym) return st; /* if it's been renamed, resort to a brute-force search. */ /* TODO: avoid having to do this search. If the symbol doesn't exist in the symtree for the current namespace, it should probably be added. */ for (ns = gfc_current_ns; ns; ns = ns->parent) { st = find_symtree0 (ns->sym_root, sym); if (st) return st; } gfc_internal_error ("Unable to find symbol %s", sym->name); /* Not reached */ } /* This subroutine is called when an expression is being resolved. The expression node in question is either a user defined operator or an intrinsic operator with arguments that aren't compatible with the operator. This subroutine builds an actual argument list corresponding to the operands, then searches for a compatible interface. If one is found, the expression node is replaced with the appropriate function call. */ try gfc_extend_expr (gfc_expr *e) { gfc_actual_arglist *actual; gfc_symbol *sym; gfc_namespace *ns; gfc_user_op *uop; gfc_intrinsic_op i; sym = NULL; actual = gfc_get_actual_arglist (); actual->expr = e->value.op.op1; if (e->value.op.op2 != NULL) { actual->next = gfc_get_actual_arglist (); actual->next->expr = e->value.op.op2; } i = fold_unary (e->value.op.operator); if (i == INTRINSIC_USER) { for (ns = gfc_current_ns; ns; ns = ns->parent) { uop = gfc_find_uop (e->value.op.uop->name, ns); if (uop == NULL) continue; sym = gfc_search_interface (uop->operator, 0, &actual); if (sym != NULL) break; } } else { for (ns = gfc_current_ns; ns; ns = ns->parent) { sym = gfc_search_interface (ns->operator[i], 0, &actual); if (sym != NULL) break; } } if (sym == NULL) { /* Don't use gfc_free_actual_arglist() */ if (actual->next != NULL) gfc_free (actual->next); gfc_free (actual); return FAILURE; } /* Change the expression node to a function call. */ e->expr_type = EXPR_FUNCTION; e->symtree = find_sym_in_symtree (sym); e->value.function.actual = actual; e->value.function.esym = NULL; e->value.function.isym = NULL; e->value.function.name = NULL; if (gfc_pure (NULL) && !gfc_pure (sym)) { gfc_error ("Function '%s' called in lieu of an operator at %L must " "be PURE", sym->name, &e->where); return FAILURE; } if (gfc_resolve_expr (e) == FAILURE) return FAILURE; return SUCCESS; } /* Tries to replace an assignment code node with a subroutine call to the subroutine associated with the assignment operator. Return SUCCESS if the node was replaced. On FAILURE, no error is generated. */ try gfc_extend_assign (gfc_code *c, gfc_namespace *ns) { gfc_actual_arglist *actual; gfc_expr *lhs, *rhs; gfc_symbol *sym; lhs = c->expr; rhs = c->expr2; /* Don't allow an intrinsic assignment to be replaced. */ if (lhs->ts.type != BT_DERIVED && rhs->ts.type != BT_DERIVED && (lhs->ts.type == rhs->ts.type || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts)))) return FAILURE; actual = gfc_get_actual_arglist (); actual->expr = lhs; actual->next = gfc_get_actual_arglist (); actual->next->expr = rhs; sym = NULL; for (; ns; ns = ns->parent) { sym = gfc_search_interface (ns->operator[INTRINSIC_ASSIGN], 1, &actual); if (sym != NULL) break; } if (sym == NULL) { gfc_free (actual->next); gfc_free (actual); return FAILURE; } /* Replace the assignment with the call. */ c->op = EXEC_ASSIGN_CALL; c->symtree = find_sym_in_symtree (sym); c->expr = NULL; c->expr2 = NULL; c->ext.actual = actual; return SUCCESS; } /* Make sure that the interface just parsed is not already present in the given interface list. Ambiguity isn't checked yet since module procedures can be present without interfaces. */ static try check_new_interface (gfc_interface * base, gfc_symbol * new) { gfc_interface *ip; for (ip = base; ip; ip = ip->next) { if (ip->sym == new) { gfc_error ("Entity '%s' at %C is already present in the interface", new->name); return FAILURE; } } return SUCCESS; } /* Add a symbol to the current interface. */ try gfc_add_interface (gfc_symbol *new) { gfc_interface **head, *intr; gfc_namespace *ns; gfc_symbol *sym; switch (current_interface.type) { case INTERFACE_NAMELESS: return SUCCESS; case INTERFACE_INTRINSIC_OP: for (ns = current_interface.ns; ns; ns = ns->parent) if (check_new_interface (ns->operator[current_interface.op], new) == FAILURE) return FAILURE; head = ¤t_interface.ns->operator[current_interface.op]; break; case INTERFACE_GENERIC: for (ns = current_interface.ns; ns; ns = ns->parent) { gfc_find_symbol (current_interface.sym->name, ns, 0, &sym); if (sym == NULL) continue; if (check_new_interface (sym->generic, new) == FAILURE) return FAILURE; } head = ¤t_interface.sym->generic; break; case INTERFACE_USER_OP: if (check_new_interface (current_interface.uop->operator, new) == FAILURE) return FAILURE; head = ¤t_interface.uop->operator; break; default: gfc_internal_error ("gfc_add_interface(): Bad interface type"); } intr = gfc_get_interface (); intr->sym = new; intr->where = gfc_current_locus; intr->next = *head; *head = intr; return SUCCESS; } /* Gets rid of a formal argument list. We do not free symbols. Symbols are freed when a namespace is freed. */ void gfc_free_formal_arglist (gfc_formal_arglist *p) { gfc_formal_arglist *q; for (; p; p = q) { q = p->next; gfc_free (p); } }