/* Check functions Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Contributed by Andy Vaught & Katherine Holcomb This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* These functions check to see if an argument list is compatible with a particular intrinsic function or subroutine. Presence of required arguments has already been established, the argument list has been sorted into the right order and has NULL arguments in the correct places for missing optional arguments. */ #include "config.h" #include "system.h" #include "flags.h" #include "gfortran.h" #include "intrinsic.h" /* Check the type of an expression. */ static try type_check (gfc_expr * e, int n, bt type) { if (e->ts.type == type) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be %s", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where, gfc_basic_typename (type)); return FAILURE; } /* Check that the expression is a numeric type. */ static try numeric_check (gfc_expr * e, int n) { if (gfc_numeric_ts (&e->ts)) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be a numeric type", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } /* Check that an expression is integer or real. */ static try int_or_real_check (gfc_expr * e, int n) { if (e->ts.type != BT_INTEGER && e->ts.type != BT_REAL) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or REAL", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } return SUCCESS; } /* Check that an expression is real or complex. */ static try real_or_complex_check (gfc_expr * e, int n) { if (e->ts.type != BT_REAL && e->ts.type != BT_COMPLEX) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be REAL or COMPLEX", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } return SUCCESS; } /* Check that the expression is an optional constant integer and that it specifies a valid kind for that type. */ static try kind_check (gfc_expr * k, int n, bt type) { int kind; if (k == NULL) return SUCCESS; if (type_check (k, n, BT_INTEGER) == FAILURE) return FAILURE; if (k->expr_type != EXPR_CONSTANT) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be a constant", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &k->where); return FAILURE; } if (gfc_extract_int (k, &kind) != NULL || gfc_validate_kind (type, kind, true) < 0) { gfc_error ("Invalid kind for %s at %L", gfc_basic_typename (type), &k->where); return FAILURE; } return SUCCESS; } /* Make sure the expression is a double precision real. */ static try double_check (gfc_expr * d, int n) { if (type_check (d, n, BT_REAL) == FAILURE) return FAILURE; if (d->ts.kind != gfc_default_double_kind) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be double precision", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &d->where); return FAILURE; } return SUCCESS; } /* Make sure the expression is a logical array. */ static try logical_array_check (gfc_expr * array, int n) { if (array->ts.type != BT_LOGICAL || array->rank == 0) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be a logical array", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &array->where); return FAILURE; } return SUCCESS; } /* Make sure an expression is an array. */ static try array_check (gfc_expr * e, int n) { if (e->rank != 0) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be an array", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } /* Make sure an expression is a scalar. */ static try scalar_check (gfc_expr * e, int n) { if (e->rank == 0) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be a scalar", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } /* Make sure two expression have the same type. */ static try same_type_check (gfc_expr * e, int n, gfc_expr * f, int m) { if (gfc_compare_types (&e->ts, &f->ts)) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be the same type " "and kind as '%s'", gfc_current_intrinsic_arg[m], gfc_current_intrinsic, &f->where, gfc_current_intrinsic_arg[n]); return FAILURE; } /* Make sure that an expression has a certain (nonzero) rank. */ static try rank_check (gfc_expr * e, int n, int rank) { if (e->rank == rank) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be of rank %d", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where, rank); return FAILURE; } /* Make sure a variable expression is not an optional dummy argument. */ static try nonoptional_check (gfc_expr * e, int n) { if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional) { gfc_error ("'%s' argument of '%s' intrinsic at %L must not be OPTIONAL", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); } /* TODO: Recursive check on nonoptional variables? */ return SUCCESS; } /* Check that an expression has a particular kind. */ static try kind_value_check (gfc_expr * e, int n, int k) { if (e->ts.kind == k) return SUCCESS; gfc_error ("'%s' argument of '%s' intrinsic at %L must be of kind %d", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where, k); return FAILURE; } /* Make sure an expression is a variable. */ static try variable_check (gfc_expr * e, int n) { if ((e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.flavor != FL_PARAMETER) || (e->expr_type == EXPR_FUNCTION && e->symtree->n.sym->result == e->symtree->n.sym)) return SUCCESS; if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.intent == INTENT_IN) { gfc_error ("'%s' argument of '%s' intrinsic at %L cannot be INTENT(IN)", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } gfc_error ("'%s' argument of '%s' intrinsic at %L must be a variable", gfc_current_intrinsic_arg[n], gfc_current_intrinsic, &e->where); return FAILURE; } /* Check the common DIM parameter for correctness. */ static try dim_check (gfc_expr * dim, int n, int optional) { if (optional) { if (dim == NULL) return SUCCESS; if (nonoptional_check (dim, n) == FAILURE) return FAILURE; return SUCCESS; } if (dim == NULL) { gfc_error ("Missing DIM parameter in intrinsic '%s' at %L", gfc_current_intrinsic, gfc_current_intrinsic_where); return FAILURE; } if (type_check (dim, n, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (dim, n) == FAILURE) return FAILURE; return SUCCESS; } /* If a DIM parameter is a constant, make sure that it is greater than zero and less than or equal to the rank of the given array. If allow_assumed is zero then dim must be less than the rank of the array for assumed size arrays. */ static try dim_rank_check (gfc_expr * dim, gfc_expr * array, int allow_assumed) { gfc_array_ref *ar; int rank; if (dim->expr_type != EXPR_CONSTANT || array->expr_type != EXPR_VARIABLE) return SUCCESS; ar = gfc_find_array_ref (array); rank = array->rank; if (ar->as->type == AS_ASSUMED_SIZE && !allow_assumed) rank--; if (mpz_cmp_ui (dim->value.integer, 1) < 0 || mpz_cmp_ui (dim->value.integer, rank) > 0) { gfc_error ("'dim' argument of '%s' intrinsic at %L is not a valid " "dimension index", gfc_current_intrinsic, &dim->where); return FAILURE; } return SUCCESS; } /***** Check functions *****/ /* Check subroutine suitable for intrinsics taking a real argument and a kind argument for the result. */ static try check_a_kind (gfc_expr * a, gfc_expr * kind, bt type) { if (type_check (a, 0, BT_REAL) == FAILURE) return FAILURE; if (kind_check (kind, 1, type) == FAILURE) return FAILURE; return SUCCESS; } /* Check subroutine suitable for ceiling, floor and nint. */ try gfc_check_a_ikind (gfc_expr * a, gfc_expr * kind) { return check_a_kind (a, kind, BT_INTEGER); } /* Check subroutine suitable for aint, anint. */ try gfc_check_a_xkind (gfc_expr * a, gfc_expr * kind) { return check_a_kind (a, kind, BT_REAL); } try gfc_check_abs (gfc_expr * a) { if (numeric_check (a, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_achar (gfc_expr * a) { if (type_check (a, 0, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_all_any (gfc_expr * mask, gfc_expr * dim) { if (logical_array_check (mask, 0) == FAILURE) return FAILURE; if (dim_check (dim, 1, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_allocated (gfc_expr * array) { if (variable_check (array, 0) == FAILURE) return FAILURE; if (array_check (array, 0) == FAILURE) return FAILURE; if (!array->symtree->n.sym->attr.allocatable) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be ALLOCATABLE", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &array->where); return FAILURE; } return SUCCESS; } /* Common check function where the first argument must be real or integer and the second argument must be the same as the first. */ try gfc_check_a_p (gfc_expr * a, gfc_expr * p) { if (int_or_real_check (a, 0) == FAILURE) return FAILURE; if (a->ts.type != p->ts.type) { gfc_error ("'%s' and '%s' arguments of '%s' intrinsic at %L must " "have the same type", gfc_current_intrinsic_arg[0], gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &p->where); return FAILURE; } if (a->ts.kind != p->ts.kind) { if (gfc_notify_std (GFC_STD_GNU, "Extension: Different type kinds at %L", &p->where) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_associated (gfc_expr * pointer, gfc_expr * target) { symbol_attribute attr; int i; try t; if (pointer->expr_type == EXPR_VARIABLE) attr = gfc_variable_attr (pointer, NULL); else if (pointer->expr_type == EXPR_FUNCTION) attr = pointer->symtree->n.sym->attr; else gcc_assert (0); /* Pointer must be a variable or a function. */ if (!attr.pointer) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be a POINTER", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &pointer->where); return FAILURE; } /* Target argument is optional. */ if (target == NULL) return SUCCESS; if (target->expr_type == EXPR_NULL) { gfc_error ("NULL pointer at %L is not permitted as actual argument " "of '%s' intrinsic function", &target->where, gfc_current_intrinsic); return FAILURE; } if (target->expr_type == EXPR_VARIABLE) attr = gfc_variable_attr (target, NULL); else if (target->expr_type == EXPR_FUNCTION) attr = target->symtree->n.sym->attr; else gcc_assert (0); /* Target must be a variable or a function. */ if (!attr.pointer && !attr.target) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be a POINTER " "or a TARGET", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &target->where); return FAILURE; } t = SUCCESS; if (same_type_check (pointer, 0, target, 1) == FAILURE) t = FAILURE; if (rank_check (target, 0, pointer->rank) == FAILURE) t = FAILURE; if (target->rank > 0) { for (i = 0; i < target->rank; i++) if (target->ref->u.ar.dimen_type[i] == DIMEN_VECTOR) { gfc_error ("Array section with a vector subscript at %L shall not " "be the target of a pointer", &target->where); t = FAILURE; break; } } return t; } try gfc_check_atan2 (gfc_expr * y, gfc_expr * x) { if (type_check (y, 0, BT_REAL) == FAILURE) return FAILURE; if (same_type_check (y, 0, x, 1) == FAILURE) return FAILURE; return SUCCESS; } /* BESJN and BESYN functions. */ try gfc_check_besn (gfc_expr * n, gfc_expr * x) { if (scalar_check (n, 0) == FAILURE) return FAILURE; if (type_check (n, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (x, 1) == FAILURE) return FAILURE; if (type_check (x, 1, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_btest (gfc_expr * i, gfc_expr * pos) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (pos, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_char (gfc_expr * i, gfc_expr * kind) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (kind_check (kind, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_chdir (gfc_expr * dir) { if (type_check (dir, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_chdir_sub (gfc_expr * dir, gfc_expr * status) { if (type_check (dir, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 1, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_cmplx (gfc_expr * x, gfc_expr * y, gfc_expr * kind) { if (numeric_check (x, 0) == FAILURE) return FAILURE; if (y != NULL) { if (numeric_check (y, 1) == FAILURE) return FAILURE; if (x->ts.type == BT_COMPLEX) { gfc_error ("'%s' argument of '%s' intrinsic at %L must not be " "present if 'x' is COMPLEX", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &y->where); return FAILURE; } } if (kind_check (kind, 2, BT_COMPLEX) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_complex (gfc_expr * x, gfc_expr * y) { if (x->ts.type != BT_INTEGER && x->ts.type != BT_REAL) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or REAL", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &x->where); return FAILURE; } if (scalar_check (x, 0) == FAILURE) return FAILURE; if (y->ts.type != BT_INTEGER && y->ts.type != BT_REAL) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or REAL", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &y->where); return FAILURE; } if (scalar_check (y, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_count (gfc_expr * mask, gfc_expr * dim) { if (logical_array_check (mask, 0) == FAILURE) return FAILURE; if (dim_check (dim, 1, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_cshift (gfc_expr * array, gfc_expr * shift, gfc_expr * dim) { if (array_check (array, 0) == FAILURE) return FAILURE; if (array->rank == 1) { if (scalar_check (shift, 1) == FAILURE) return FAILURE; } else { /* TODO: more requirements on shift parameter. */ } if (dim_check (dim, 2, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ctime (gfc_expr * time) { if (scalar_check (time, 0) == FAILURE) return FAILURE; if (type_check (time, 0, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_dcmplx (gfc_expr * x, gfc_expr * y) { if (numeric_check (x, 0) == FAILURE) return FAILURE; if (y != NULL) { if (numeric_check (y, 1) == FAILURE) return FAILURE; if (x->ts.type == BT_COMPLEX) { gfc_error ("'%s' argument of '%s' intrinsic at %L must not be " "present if 'x' is COMPLEX", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &y->where); return FAILURE; } } return SUCCESS; } try gfc_check_dble (gfc_expr * x) { if (numeric_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_digits (gfc_expr * x) { if (int_or_real_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_dot_product (gfc_expr * vector_a, gfc_expr * vector_b) { switch (vector_a->ts.type) { case BT_LOGICAL: if (type_check (vector_b, 1, BT_LOGICAL) == FAILURE) return FAILURE; break; case BT_INTEGER: case BT_REAL: case BT_COMPLEX: if (numeric_check (vector_b, 1) == FAILURE) return FAILURE; break; default: gfc_error ("'%s' argument of '%s' intrinsic at %L must be numeric " "or LOGICAL", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &vector_a->where); return FAILURE; } if (rank_check (vector_a, 0, 1) == FAILURE) return FAILURE; if (rank_check (vector_b, 1, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_eoshift (gfc_expr * array, gfc_expr * shift, gfc_expr * boundary, gfc_expr * dim) { if (array_check (array, 0) == FAILURE) return FAILURE; if (type_check (shift, 1, BT_INTEGER) == FAILURE) return FAILURE; if (array->rank == 1) { if (scalar_check (shift, 2) == FAILURE) return FAILURE; } else { /* TODO: more weird restrictions on shift. */ } if (boundary != NULL) { if (same_type_check (array, 0, boundary, 2) == FAILURE) return FAILURE; /* TODO: more restrictions on boundary. */ } if (dim_check (dim, 1, 1) == FAILURE) return FAILURE; return SUCCESS; } /* A single complex argument. */ try gfc_check_fn_c (gfc_expr * a) { if (type_check (a, 0, BT_COMPLEX) == FAILURE) return FAILURE; return SUCCESS; } /* A single real argument. */ try gfc_check_fn_r (gfc_expr * a) { if (type_check (a, 0, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } /* A single real or complex argument. */ try gfc_check_fn_rc (gfc_expr * a) { if (real_or_complex_check (a, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_fnum (gfc_expr * unit) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; return SUCCESS; } /* This is used for the g77 one-argument Bessel functions, and the error function. */ try gfc_check_g77_math1 (gfc_expr * x) { if (scalar_check (x, 0) == FAILURE) return FAILURE; if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_huge (gfc_expr * x) { if (int_or_real_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } /* Check that the single argument is an integer. */ try gfc_check_i (gfc_expr * i) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_iand (gfc_expr * i, gfc_expr * j) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (j, 1, BT_INTEGER) == FAILURE) return FAILURE; if (i->ts.kind != j->ts.kind) { if (gfc_notify_std (GFC_STD_GNU, "Extension: Different type kinds at %L", &i->where) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_ibclr (gfc_expr * i, gfc_expr * pos) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (pos, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ibits (gfc_expr * i, gfc_expr * pos, gfc_expr * len) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (pos, 1, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (len, 2, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ibset (gfc_expr * i, gfc_expr * pos) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (pos, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ichar_iachar (gfc_expr * c) { int i; if (type_check (c, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (c->expr_type == EXPR_VARIABLE || c->expr_type == EXPR_SUBSTRING) { gfc_expr *start; gfc_expr *end; gfc_ref *ref; /* Substring references don't have the charlength set. */ ref = c->ref; while (ref && ref->type != REF_SUBSTRING) ref = ref->next; gcc_assert (ref == NULL || ref->type == REF_SUBSTRING); if (!ref) { /* Check that the argument is length one. Non-constant lengths can't be checked here, so assume thay are ok. */ if (c->ts.cl && c->ts.cl->length) { /* If we already have a length for this expression then use it. */ if (c->ts.cl->length->expr_type != EXPR_CONSTANT) return SUCCESS; i = mpz_get_si (c->ts.cl->length->value.integer); } else return SUCCESS; } else { start = ref->u.ss.start; end = ref->u.ss.end; gcc_assert (start); if (end == NULL || end->expr_type != EXPR_CONSTANT || start->expr_type != EXPR_CONSTANT) return SUCCESS; i = mpz_get_si (end->value.integer) + 1 - mpz_get_si (start->value.integer); } } else return SUCCESS; if (i != 1) { gfc_error ("Argument of %s at %L must be of length one", gfc_current_intrinsic, &c->where); return FAILURE; } return SUCCESS; } try gfc_check_idnint (gfc_expr * a) { if (double_check (a, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ieor (gfc_expr * i, gfc_expr * j) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (j, 1, BT_INTEGER) == FAILURE) return FAILURE; if (i->ts.kind != j->ts.kind) { if (gfc_notify_std (GFC_STD_GNU, "Extension: Different type kinds at %L", &i->where) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_index (gfc_expr * string, gfc_expr * substring, gfc_expr * back) { if (type_check (string, 0, BT_CHARACTER) == FAILURE || type_check (substring, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (back != NULL && type_check (back, 2, BT_LOGICAL) == FAILURE) return FAILURE; if (string->ts.kind != substring->ts.kind) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be the same " "kind as '%s'", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &substring->where, gfc_current_intrinsic_arg[0]); return FAILURE; } return SUCCESS; } try gfc_check_int (gfc_expr * x, gfc_expr * kind) { if (numeric_check (x, 0) == FAILURE) return FAILURE; if (kind != NULL) { if (type_check (kind, 1, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (kind, 1) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_ior (gfc_expr * i, gfc_expr * j) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (j, 1, BT_INTEGER) == FAILURE) return FAILURE; if (i->ts.kind != j->ts.kind) { if (gfc_notify_std (GFC_STD_GNU, "Extension: Different type kinds at %L", &i->where) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_ishft (gfc_expr * i, gfc_expr * shift) { if (type_check (i, 0, BT_INTEGER) == FAILURE || type_check (shift, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ishftc (gfc_expr * i, gfc_expr * shift, gfc_expr * size) { if (type_check (i, 0, BT_INTEGER) == FAILURE || type_check (shift, 1, BT_INTEGER) == FAILURE) return FAILURE; if (size != NULL && type_check (size, 2, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_kill (gfc_expr * pid, gfc_expr * sig) { if (type_check (pid, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (sig, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_kill_sub (gfc_expr * pid, gfc_expr * sig, gfc_expr * status) { if (type_check (pid, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (sig, 1, BT_INTEGER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_kind (gfc_expr * x) { if (x->ts.type == BT_DERIVED) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be a " "non-derived type", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &x->where); return FAILURE; } return SUCCESS; } try gfc_check_lbound (gfc_expr * array, gfc_expr * dim) { if (array_check (array, 0) == FAILURE) return FAILURE; if (dim != NULL) { if (dim_check (dim, 1, 1) == FAILURE) return FAILURE; if (dim_rank_check (dim, array, 1) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_link (gfc_expr * path1, gfc_expr * path2) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_link_sub (gfc_expr * path1, gfc_expr * path2, gfc_expr * status) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_loc (gfc_expr *expr) { return variable_check (expr, 0); } try gfc_check_symlnk (gfc_expr * path1, gfc_expr * path2) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_symlnk_sub (gfc_expr * path1, gfc_expr * path2, gfc_expr * status) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_logical (gfc_expr * a, gfc_expr * kind) { if (type_check (a, 0, BT_LOGICAL) == FAILURE) return FAILURE; if (kind_check (kind, 1, BT_LOGICAL) == FAILURE) return FAILURE; return SUCCESS; } /* Min/max family. */ static try min_max_args (gfc_actual_arglist * arg) { if (arg == NULL || arg->next == NULL) { gfc_error ("Intrinsic '%s' at %L must have at least two arguments", gfc_current_intrinsic, gfc_current_intrinsic_where); return FAILURE; } return SUCCESS; } static try check_rest (bt type, int kind, gfc_actual_arglist * arg) { gfc_expr *x; int n; if (min_max_args (arg) == FAILURE) return FAILURE; n = 1; for (; arg; arg = arg->next, n++) { x = arg->expr; if (x->ts.type != type || x->ts.kind != kind) { if (x->ts.type == type) { if (gfc_notify_std (GFC_STD_GNU, "Extension: Different type kinds at %L", &x->where) == FAILURE) return FAILURE; } else { gfc_error ("'a%d' argument of '%s' intrinsic at %L must be %s(%d)", n, gfc_current_intrinsic, &x->where, gfc_basic_typename (type), kind); return FAILURE; } } } return SUCCESS; } try gfc_check_min_max (gfc_actual_arglist * arg) { gfc_expr *x; if (min_max_args (arg) == FAILURE) return FAILURE; x = arg->expr; if (x->ts.type != BT_INTEGER && x->ts.type != BT_REAL) { gfc_error ("'a1' argument of '%s' intrinsic at %L must be INTEGER or REAL", gfc_current_intrinsic, &x->where); return FAILURE; } return check_rest (x->ts.type, x->ts.kind, arg); } try gfc_check_min_max_integer (gfc_actual_arglist * arg) { return check_rest (BT_INTEGER, gfc_default_integer_kind, arg); } try gfc_check_min_max_real (gfc_actual_arglist * arg) { return check_rest (BT_REAL, gfc_default_real_kind, arg); } try gfc_check_min_max_double (gfc_actual_arglist * arg) { return check_rest (BT_REAL, gfc_default_double_kind, arg); } /* End of min/max family. */ try gfc_check_malloc (gfc_expr * size) { if (type_check (size, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (size, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_matmul (gfc_expr * matrix_a, gfc_expr * matrix_b) { if ((matrix_a->ts.type != BT_LOGICAL) && !gfc_numeric_ts (&matrix_b->ts)) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be numeric " "or LOGICAL", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &matrix_a->where); return FAILURE; } if ((matrix_b->ts.type != BT_LOGICAL) && !gfc_numeric_ts (&matrix_a->ts)) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be numeric " "or LOGICAL", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &matrix_b->where); return FAILURE; } switch (matrix_a->rank) { case 1: if (rank_check (matrix_b, 1, 2) == FAILURE) return FAILURE; break; case 2: if (matrix_b->rank == 2) break; if (rank_check (matrix_b, 1, 1) == FAILURE) return FAILURE; break; default: gfc_error ("'%s' argument of '%s' intrinsic at %L must be of rank " "1 or 2", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &matrix_a->where); return FAILURE; } return SUCCESS; } /* Whoever came up with this interface was probably on something. The possibilities for the occupation of the second and third parameters are: Arg #2 Arg #3 NULL NULL DIM NULL MASK NULL NULL MASK minloc(array, mask=m) DIM MASK I.e. in the case of minloc(array,mask), mask will be in the second position of the argument list and we'll have to fix that up. */ try gfc_check_minloc_maxloc (gfc_actual_arglist * ap) { gfc_expr *a, *m, *d; a = ap->expr; if (int_or_real_check (a, 0) == FAILURE || array_check (a, 0) == FAILURE) return FAILURE; d = ap->next->expr; m = ap->next->next->expr; if (m == NULL && d != NULL && d->ts.type == BT_LOGICAL && ap->next->name == NULL) { m = d; d = NULL; ap->next->expr = NULL; ap->next->next->expr = m; } if (d != NULL && (scalar_check (d, 1) == FAILURE || type_check (d, 1, BT_INTEGER) == FAILURE)) return FAILURE; if (m != NULL && type_check (m, 2, BT_LOGICAL) == FAILURE) return FAILURE; return SUCCESS; } /* Similar to minloc/maxloc, the argument list might need to be reordered for the MINVAL, MAXVAL, PRODUCT, and SUM intrinsics. The difference is that MINLOC/MAXLOC take an additional KIND argument. The possibilities are: Arg #2 Arg #3 NULL NULL DIM NULL MASK NULL NULL MASK minval(array, mask=m) DIM MASK I.e. in the case of minval(array,mask), mask will be in the second position of the argument list and we'll have to fix that up. */ static try check_reduction (gfc_actual_arglist * ap) { gfc_expr *m, *d; d = ap->next->expr; m = ap->next->next->expr; if (m == NULL && d != NULL && d->ts.type == BT_LOGICAL && ap->next->name == NULL) { m = d; d = NULL; ap->next->expr = NULL; ap->next->next->expr = m; } if (d != NULL && (scalar_check (d, 1) == FAILURE || type_check (d, 1, BT_INTEGER) == FAILURE)) return FAILURE; if (m != NULL && type_check (m, 2, BT_LOGICAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_minval_maxval (gfc_actual_arglist * ap) { if (int_or_real_check (ap->expr, 0) == FAILURE || array_check (ap->expr, 0) == FAILURE) return FAILURE; return check_reduction (ap); } try gfc_check_product_sum (gfc_actual_arglist * ap) { if (numeric_check (ap->expr, 0) == FAILURE || array_check (ap->expr, 0) == FAILURE) return FAILURE; return check_reduction (ap); } try gfc_check_merge (gfc_expr * tsource, gfc_expr * fsource, gfc_expr * mask) { if (same_type_check (tsource, 0, fsource, 1) == FAILURE) return FAILURE; if (type_check (mask, 2, BT_LOGICAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_nearest (gfc_expr * x, gfc_expr * s) { if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; if (type_check (s, 1, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_null (gfc_expr * mold) { symbol_attribute attr; if (mold == NULL) return SUCCESS; if (variable_check (mold, 0) == FAILURE) return FAILURE; attr = gfc_variable_attr (mold, NULL); if (!attr.pointer) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be a POINTER", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &mold->where); return FAILURE; } return SUCCESS; } try gfc_check_pack (gfc_expr * array, gfc_expr * mask, gfc_expr * vector) { if (array_check (array, 0) == FAILURE) return FAILURE; if (type_check (mask, 1, BT_LOGICAL) == FAILURE) return FAILURE; if (mask->rank != 0 && mask->rank != array->rank) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be conformable " "with '%s' argument", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &array->where, gfc_current_intrinsic_arg[1]); return FAILURE; } if (vector != NULL) { if (same_type_check (array, 0, vector, 2) == FAILURE) return FAILURE; if (rank_check (vector, 2, 1) == FAILURE) return FAILURE; /* TODO: More constraints here. */ } return SUCCESS; } try gfc_check_precision (gfc_expr * x) { if (x->ts.type != BT_REAL && x->ts.type != BT_COMPLEX) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be of type " "REAL or COMPLEX", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &x->where); return FAILURE; } return SUCCESS; } try gfc_check_present (gfc_expr * a) { gfc_symbol *sym; if (variable_check (a, 0) == FAILURE) return FAILURE; sym = a->symtree->n.sym; if (!sym->attr.dummy) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be of a " "dummy variable", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &a->where); return FAILURE; } if (!sym->attr.optional) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be of " "an OPTIONAL dummy variable", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &a->where); return FAILURE; } return SUCCESS; } try gfc_check_radix (gfc_expr * x) { if (int_or_real_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_range (gfc_expr * x) { if (numeric_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } /* real, float, sngl. */ try gfc_check_real (gfc_expr * a, gfc_expr * kind) { if (numeric_check (a, 0) == FAILURE) return FAILURE; if (kind_check (kind, 1, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_rename (gfc_expr * path1, gfc_expr * path2) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_rename_sub (gfc_expr * path1, gfc_expr * path2, gfc_expr * status) { if (type_check (path1, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (path2, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_repeat (gfc_expr * x, gfc_expr * y) { if (type_check (x, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (x, 0) == FAILURE) return FAILURE; if (type_check (y, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (y, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_reshape (gfc_expr * source, gfc_expr * shape, gfc_expr * pad, gfc_expr * order) { mpz_t size; int m; if (array_check (source, 0) == FAILURE) return FAILURE; if (rank_check (shape, 1, 1) == FAILURE) return FAILURE; if (type_check (shape, 1, BT_INTEGER) == FAILURE) return FAILURE; if (gfc_array_size (shape, &size) != SUCCESS) { gfc_error ("'shape' argument of 'reshape' intrinsic at %L must be an " "array of constant size", &shape->where); return FAILURE; } m = mpz_cmp_ui (size, GFC_MAX_DIMENSIONS); mpz_clear (size); if (m > 0) { gfc_error ("'shape' argument of 'reshape' intrinsic at %L has more " "than %d elements", &shape->where, GFC_MAX_DIMENSIONS); return FAILURE; } if (pad != NULL) { if (same_type_check (source, 0, pad, 2) == FAILURE) return FAILURE; if (array_check (pad, 2) == FAILURE) return FAILURE; } if (order != NULL && array_check (order, 3) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_scale (gfc_expr * x, gfc_expr * i) { if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; if (type_check (i, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_scan (gfc_expr * x, gfc_expr * y, gfc_expr * z) { if (type_check (x, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (y, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (z != NULL && type_check (z, 2, BT_LOGICAL) == FAILURE) return FAILURE; if (same_type_check (x, 0, y, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_secnds (gfc_expr * r) { if (type_check (r, 0, BT_REAL) == FAILURE) return FAILURE; if (kind_value_check (r, 0, 4) == FAILURE) return FAILURE; if (scalar_check (r, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_selected_int_kind (gfc_expr * r) { if (type_check (r, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (r, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_selected_real_kind (gfc_expr * p, gfc_expr * r) { if (p == NULL && r == NULL) { gfc_error ("Missing arguments to %s intrinsic at %L", gfc_current_intrinsic, gfc_current_intrinsic_where); return FAILURE; } if (p != NULL && type_check (p, 0, BT_INTEGER) == FAILURE) return FAILURE; if (r != NULL && type_check (r, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_set_exponent (gfc_expr * x, gfc_expr * i) { if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; if (type_check (i, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_shape (gfc_expr * source) { gfc_array_ref *ar; if (source->rank == 0 || source->expr_type != EXPR_VARIABLE) return SUCCESS; ar = gfc_find_array_ref (source); if (ar->as && ar->as->type == AS_ASSUMED_SIZE) { gfc_error ("'source' argument of 'shape' intrinsic at %L must not be " "an assumed size array", &source->where); return FAILURE; } return SUCCESS; } try gfc_check_sign (gfc_expr * a, gfc_expr * b) { if (int_or_real_check (a, 0) == FAILURE) return FAILURE; if (same_type_check (a, 0, b, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_size (gfc_expr * array, gfc_expr * dim) { if (array_check (array, 0) == FAILURE) return FAILURE; if (dim != NULL) { if (type_check (dim, 1, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check (dim, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; if (dim_rank_check (dim, array, 0) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_sleep_sub (gfc_expr * seconds) { if (type_check (seconds, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (seconds, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_spread (gfc_expr * source, gfc_expr * dim, gfc_expr * ncopies) { if (source->rank >= GFC_MAX_DIMENSIONS) { gfc_error ("'%s' argument of '%s' intrinsic at %L must be less " "than rank %d", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &source->where, GFC_MAX_DIMENSIONS); return FAILURE; } if (dim_check (dim, 1, 0) == FAILURE) return FAILURE; if (type_check (ncopies, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (ncopies, 2) == FAILURE) return FAILURE; return SUCCESS; } /* Functions for checking FGETC, FPUTC, FGET and FPUT (subroutines and functions). */ try gfc_check_fgetputc_sub (gfc_expr * unit, gfc_expr * c, gfc_expr * status) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (c, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE || kind_value_check (status, 2, gfc_default_integer_kind) == FAILURE || scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_fgetputc (gfc_expr * unit, gfc_expr * c) { return gfc_check_fgetputc_sub (unit, c, NULL); } try gfc_check_fgetput_sub (gfc_expr * c, gfc_expr * status) { if (type_check (c, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 1, BT_INTEGER) == FAILURE || kind_value_check (status, 1, gfc_default_integer_kind) == FAILURE || scalar_check (status, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_fgetput (gfc_expr * c) { return gfc_check_fgetput_sub (c, NULL); } try gfc_check_fstat (gfc_expr * unit, gfc_expr * array) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (array, 1, BT_INTEGER) == FAILURE || kind_value_check (unit, 0, gfc_default_integer_kind) == FAILURE) return FAILURE; if (array_check (array, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_fstat_sub (gfc_expr * unit, gfc_expr * array, gfc_expr * status) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (array, 1, BT_INTEGER) == FAILURE || kind_value_check (array, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; if (array_check (array, 1) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE || kind_value_check (status, 2, gfc_default_integer_kind) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ftell (gfc_expr * unit) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ftell_sub (gfc_expr * unit, gfc_expr * offset) { if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (offset, 1, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (offset, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_stat (gfc_expr * name, gfc_expr * array) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (array, 1, BT_INTEGER) == FAILURE || kind_value_check (array, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; if (array_check (array, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_stat_sub (gfc_expr * name, gfc_expr * array, gfc_expr * status) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (type_check (array, 1, BT_INTEGER) == FAILURE || kind_value_check (array, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; if (array_check (array, 1) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE || kind_value_check (array, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_transfer (gfc_expr * source ATTRIBUTE_UNUSED, gfc_expr * mold ATTRIBUTE_UNUSED, gfc_expr * size) { if (size != NULL) { if (type_check (size, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (size, 2) == FAILURE) return FAILURE; if (nonoptional_check (size, 2) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_transpose (gfc_expr * matrix) { if (rank_check (matrix, 0, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ubound (gfc_expr * array, gfc_expr * dim) { if (array_check (array, 0) == FAILURE) return FAILURE; if (dim != NULL) { if (dim_check (dim, 1, 1) == FAILURE) return FAILURE; if (dim_rank_check (dim, array, 0) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_unpack (gfc_expr * vector, gfc_expr * mask, gfc_expr * field) { if (rank_check (vector, 0, 1) == FAILURE) return FAILURE; if (array_check (mask, 1) == FAILURE) return FAILURE; if (type_check (mask, 1, BT_LOGICAL) == FAILURE) return FAILURE; if (same_type_check (vector, 0, field, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_verify (gfc_expr * x, gfc_expr * y, gfc_expr * z) { if (type_check (x, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (same_type_check (x, 0, y, 1) == FAILURE) return FAILURE; if (z != NULL && type_check (z, 2, BT_LOGICAL) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_trim (gfc_expr * x) { if (type_check (x, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (x, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ttynam (gfc_expr * unit) { if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } /* Common check function for the half a dozen intrinsics that have a single real argument. */ try gfc_check_x (gfc_expr * x) { if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; return SUCCESS; } /************* Check functions for intrinsic subroutines *************/ try gfc_check_cpu_time (gfc_expr * time) { if (scalar_check (time, 0) == FAILURE) return FAILURE; if (type_check (time, 0, BT_REAL) == FAILURE) return FAILURE; if (variable_check (time, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_date_and_time (gfc_expr * date, gfc_expr * time, gfc_expr * zone, gfc_expr * values) { if (date != NULL) { if (type_check (date, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (date, 0) == FAILURE) return FAILURE; if (variable_check (date, 0) == FAILURE) return FAILURE; } if (time != NULL) { if (type_check (time, 1, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (time, 1) == FAILURE) return FAILURE; if (variable_check (time, 1) == FAILURE) return FAILURE; } if (zone != NULL) { if (type_check (zone, 2, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (zone, 2) == FAILURE) return FAILURE; if (variable_check (zone, 2) == FAILURE) return FAILURE; } if (values != NULL) { if (type_check (values, 3, BT_INTEGER) == FAILURE) return FAILURE; if (array_check (values, 3) == FAILURE) return FAILURE; if (rank_check (values, 3, 1) == FAILURE) return FAILURE; if (variable_check (values, 3) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_mvbits (gfc_expr * from, gfc_expr * frompos, gfc_expr * len, gfc_expr * to, gfc_expr * topos) { if (type_check (from, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (frompos, 1, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (len, 2, BT_INTEGER) == FAILURE) return FAILURE; if (same_type_check (from, 0, to, 3) == FAILURE) return FAILURE; if (variable_check (to, 3) == FAILURE) return FAILURE; if (type_check (topos, 4, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_random_number (gfc_expr * harvest) { if (type_check (harvest, 0, BT_REAL) == FAILURE) return FAILURE; if (variable_check (harvest, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_random_seed (gfc_expr * size, gfc_expr * put, gfc_expr * get) { if (size != NULL) { if (scalar_check (size, 0) == FAILURE) return FAILURE; if (type_check (size, 0, BT_INTEGER) == FAILURE) return FAILURE; if (variable_check (size, 0) == FAILURE) return FAILURE; if (kind_value_check (size, 0, gfc_default_integer_kind) == FAILURE) return FAILURE; } if (put != NULL) { if (size != NULL) gfc_error ("Too many arguments to %s at %L", gfc_current_intrinsic, &put->where); if (array_check (put, 1) == FAILURE) return FAILURE; if (rank_check (put, 1, 1) == FAILURE) return FAILURE; if (type_check (put, 1, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check (put, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; } if (get != NULL) { if (size != NULL || put != NULL) gfc_error ("Too many arguments to %s at %L", gfc_current_intrinsic, &get->where); if (array_check (get, 2) == FAILURE) return FAILURE; if (rank_check (get, 2, 1) == FAILURE) return FAILURE; if (type_check (get, 2, BT_INTEGER) == FAILURE) return FAILURE; if (variable_check (get, 2) == FAILURE) return FAILURE; if (kind_value_check (get, 2, gfc_default_integer_kind) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_second_sub (gfc_expr * time) { if (scalar_check (time, 0) == FAILURE) return FAILURE; if (type_check (time, 0, BT_REAL) == FAILURE) return FAILURE; if (kind_value_check(time, 0, 4) == FAILURE) return FAILURE; return SUCCESS; } /* The arguments of SYSTEM_CLOCK are scalar, integer variables. Note, count, count_rate, and count_max are all optional arguments */ try gfc_check_system_clock (gfc_expr * count, gfc_expr * count_rate, gfc_expr * count_max) { if (count != NULL) { if (scalar_check (count, 0) == FAILURE) return FAILURE; if (type_check (count, 0, BT_INTEGER) == FAILURE) return FAILURE; if (variable_check (count, 0) == FAILURE) return FAILURE; } if (count_rate != NULL) { if (scalar_check (count_rate, 1) == FAILURE) return FAILURE; if (type_check (count_rate, 1, BT_INTEGER) == FAILURE) return FAILURE; if (variable_check (count_rate, 1) == FAILURE) return FAILURE; if (count != NULL && same_type_check (count, 0, count_rate, 1) == FAILURE) return FAILURE; } if (count_max != NULL) { if (scalar_check (count_max, 2) == FAILURE) return FAILURE; if (type_check (count_max, 2, BT_INTEGER) == FAILURE) return FAILURE; if (variable_check (count_max, 2) == FAILURE) return FAILURE; if (count != NULL && same_type_check (count, 0, count_max, 2) == FAILURE) return FAILURE; if (count_rate != NULL && same_type_check (count_rate, 1, count_max, 2) == FAILURE) return FAILURE; } return SUCCESS; } try gfc_check_irand (gfc_expr * x) { if (x == NULL) return SUCCESS; if (scalar_check (x, 0) == FAILURE) return FAILURE; if (type_check (x, 0, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check(x, 0, 4) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_alarm_sub (gfc_expr * seconds, gfc_expr * handler, gfc_expr * status) { if (scalar_check (seconds, 0) == FAILURE) return FAILURE; if (type_check (seconds, 0, BT_INTEGER) == FAILURE) return FAILURE; if (handler->ts.type != BT_INTEGER && handler->ts.type != BT_PROCEDURE) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or PROCEDURE", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &handler->where); return FAILURE; } if (handler->ts.type == BT_INTEGER && scalar_check (handler, 1) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (scalar_check (status, 2) == FAILURE) return FAILURE; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_rand (gfc_expr * x) { if (x == NULL) return SUCCESS; if (scalar_check (x, 0) == FAILURE) return FAILURE; if (type_check (x, 0, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check(x, 0, 4) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_srand (gfc_expr * x) { if (scalar_check (x, 0) == FAILURE) return FAILURE; if (type_check (x, 0, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check(x, 0, 4) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ctime_sub (gfc_expr * time, gfc_expr * result) { if (scalar_check (time, 0) == FAILURE) return FAILURE; if (type_check (time, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (result, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_etime (gfc_expr * x) { if (array_check (x, 0) == FAILURE) return FAILURE; if (rank_check (x, 0, 1) == FAILURE) return FAILURE; if (variable_check (x, 0) == FAILURE) return FAILURE; if (type_check (x, 0, BT_REAL) == FAILURE) return FAILURE; if (kind_value_check(x, 0, 4) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_etime_sub (gfc_expr * values, gfc_expr * time) { if (array_check (values, 0) == FAILURE) return FAILURE; if (rank_check (values, 0, 1) == FAILURE) return FAILURE; if (variable_check (values, 0) == FAILURE) return FAILURE; if (type_check (values, 0, BT_REAL) == FAILURE) return FAILURE; if (kind_value_check(values, 0, 4) == FAILURE) return FAILURE; if (scalar_check (time, 1) == FAILURE) return FAILURE; if (type_check (time, 1, BT_REAL) == FAILURE) return FAILURE; if (kind_value_check(time, 1, 4) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_fdate_sub (gfc_expr * date) { if (type_check (date, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_gerror (gfc_expr * msg) { if (type_check (msg, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_getcwd_sub (gfc_expr * cwd, gfc_expr * status) { if (type_check (cwd, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (scalar_check (status, 1) == FAILURE) return FAILURE; if (type_check (status, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_getlog (gfc_expr * msg) { if (type_check (msg, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_exit (gfc_expr * status) { if (status == NULL) return SUCCESS; if (type_check (status, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_flush (gfc_expr * unit) { if (unit == NULL) return SUCCESS; if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_free (gfc_expr * i) { if (type_check (i, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (i, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_hostnm (gfc_expr * name) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_hostnm_sub (gfc_expr * name, gfc_expr * status) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (scalar_check (status, 1) == FAILURE) return FAILURE; if (type_check (status, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_ttynam_sub (gfc_expr * unit, gfc_expr * name) { if (scalar_check (unit, 0) == FAILURE) return FAILURE; if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (type_check (name, 1, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_isatty (gfc_expr * unit) { if (unit == NULL) return FAILURE; if (type_check (unit, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (unit, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_perror (gfc_expr * string) { if (type_check (string, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_umask (gfc_expr * mask) { if (type_check (mask, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (mask, 0) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_umask_sub (gfc_expr * mask, gfc_expr * old) { if (type_check (mask, 0, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (mask, 0) == FAILURE) return FAILURE; if (old == NULL) return SUCCESS; if (scalar_check (old, 1) == FAILURE) return FAILURE; if (type_check (old, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_unlink (gfc_expr * name) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_unlink_sub (gfc_expr * name, gfc_expr * status) { if (type_check (name, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (scalar_check (status, 1) == FAILURE) return FAILURE; if (type_check (status, 1, BT_INTEGER) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_signal (gfc_expr * number, gfc_expr * handler) { if (scalar_check (number, 0) == FAILURE) return FAILURE; if (type_check (number, 0, BT_INTEGER) == FAILURE) return FAILURE; if (handler->ts.type != BT_INTEGER && handler->ts.type != BT_PROCEDURE) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or PROCEDURE", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &handler->where); return FAILURE; } if (handler->ts.type == BT_INTEGER && scalar_check (handler, 1) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_signal_sub (gfc_expr * number, gfc_expr * handler, gfc_expr * status) { if (scalar_check (number, 0) == FAILURE) return FAILURE; if (type_check (number, 0, BT_INTEGER) == FAILURE) return FAILURE; if (handler->ts.type != BT_INTEGER && handler->ts.type != BT_PROCEDURE) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or PROCEDURE", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &handler->where); return FAILURE; } if (handler->ts.type == BT_INTEGER && scalar_check (handler, 1) == FAILURE) return FAILURE; if (status == NULL) return SUCCESS; if (type_check (status, 2, BT_INTEGER) == FAILURE) return FAILURE; if (scalar_check (status, 2) == FAILURE) return FAILURE; return SUCCESS; } try gfc_check_system_sub (gfc_expr * cmd, gfc_expr * status) { if (type_check (cmd, 0, BT_CHARACTER) == FAILURE) return FAILURE; if (scalar_check (status, 1) == FAILURE) return FAILURE; if (type_check (status, 1, BT_INTEGER) == FAILURE) return FAILURE; if (kind_value_check (status, 1, gfc_default_integer_kind) == FAILURE) return FAILURE; return SUCCESS; } /* This is used for the GNU intrinsics AND, OR and XOR. */ try gfc_check_and (gfc_expr * i, gfc_expr * j) { if (i->ts.type != BT_INTEGER && i->ts.type != BT_LOGICAL) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or LOGICAL", gfc_current_intrinsic_arg[0], gfc_current_intrinsic, &i->where); return FAILURE; } if (j->ts.type != BT_INTEGER && j->ts.type != BT_LOGICAL) { gfc_error ( "'%s' argument of '%s' intrinsic at %L must be INTEGER or LOGICAL", gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &j->where); return FAILURE; } if (i->ts.type != j->ts.type) { gfc_error ("'%s' and '%s' arguments of '%s' intrinsic at %L must " "have the same type", gfc_current_intrinsic_arg[0], gfc_current_intrinsic_arg[1], gfc_current_intrinsic, &j->where); return FAILURE; } if (scalar_check (i, 0) == FAILURE) return FAILURE; if (scalar_check (j, 1) == FAILURE) return FAILURE; return SUCCESS; }