/* Fibonacci heap for GNU compiler. Copyright (C) 1998-2016 Free Software Foundation, Inc. Contributed by Daniel Berlin (dan@cgsoftware.com). Re-implemented in C++ by Martin Liska This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Fibonacci heaps are somewhat complex, but, there's an article in DDJ that explains them pretty well: http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms Introduction to algorithms by Corman and Rivest also goes over them. The original paper that introduced them is "Fibonacci heaps and their uses in improved network optimization algorithms" by Tarjan and Fredman (JACM 34(3), July 1987). Amortized and real worst case time for operations: ExtractMin: O(lg n) amortized. O(n) worst case. DecreaseKey: O(1) amortized. O(lg n) worst case. Insert: O(1) amortized. Union: O(1) amortized. */ #ifndef GCC_FIBONACCI_HEAP_H #define GCC_FIBONACCI_HEAP_H /* Forward definition. */ template class fibonacci_heap; /* Fibonacci heap node class. */ template class fibonacci_node { typedef fibonacci_node fibonacci_node_t; friend class fibonacci_heap; public: /* Default constructor. */ fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this), m_right (this), m_degree (0), m_mark (0) { } /* Constructor for a node with given KEY. */ fibonacci_node (K key, V *data = NULL): m_parent (NULL), m_child (NULL), m_left (this), m_right (this), m_key (key), m_data (data), m_degree (0), m_mark (0) { } /* Compare fibonacci node with OTHER node. */ int compare (fibonacci_node_t *other) { if (m_key < other->m_key) return -1; if (m_key > other->m_key) return 1; return 0; } /* Compare the node with a given KEY. */ int compare_data (K key) { return fibonacci_node_t (key).compare (this); } /* Remove fibonacci heap node. */ fibonacci_node_t *remove (); /* Link the node with PARENT. */ void link (fibonacci_node_t *parent); /* Return key associated with the node. */ K get_key () { return m_key; } /* Return data associated with the node. */ V *get_data () { return m_data; } private: /* Put node B after this node. */ void insert_after (fibonacci_node_t *b); /* Insert fibonacci node B after this node. */ void insert_before (fibonacci_node_t *b) { m_left->insert_after (b); } /* Parent node. */ fibonacci_node *m_parent; /* Child node. */ fibonacci_node *m_child; /* Left sibling. */ fibonacci_node *m_left; /* Right node. */ fibonacci_node *m_right; /* Key associated with node. */ K m_key; /* Data associated with node. */ V *m_data; #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4) /* Degree of the node. */ __extension__ unsigned long int m_degree : 31; /* Mark of the node. */ __extension__ unsigned long int m_mark : 1; #else /* Degree of the node. */ unsigned int m_degree : 31; /* Mark of the node. */ unsigned int m_mark : 1; #endif }; /* Fibonacci heap class. */ template class fibonacci_heap { typedef fibonacci_node fibonacci_node_t; friend class fibonacci_node; public: /* Default constructor. */ fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL), m_global_min_key (global_min_key) { } /* Destructor. */ ~fibonacci_heap () { while (m_min != NULL) delete (extract_minimum_node ()); } /* Insert new node given by KEY and DATA associated with the key. */ fibonacci_node_t *insert (K key, V *data); /* Return true if no entry is present. */ bool empty () { return m_nodes == 0; } /* Return the number of nodes. */ size_t nodes () { return m_nodes; } /* Return minimal key presented in the heap. */ K min_key () { if (m_min == NULL) gcc_unreachable (); return m_min->m_key; } /* For given NODE, set new KEY value. */ K replace_key (fibonacci_node_t *node, K key) { K okey = node->m_key; replace_key_data (node, key, node->m_data); return okey; } /* For given NODE, decrease value to new KEY. */ K decrease_key (fibonacci_node_t *node, K key) { gcc_assert (key <= node->m_key); return replace_key (node, key); } /* For given NODE, set new KEY and DATA value. */ V *replace_key_data (fibonacci_node_t *node, K key, V *data); /* Extract minimum node in the heap. If RELEASE is specified, memory is released. */ V *extract_min (bool release = true); /* Return value associated with minimum node in the heap. */ V *min () { if (m_min == NULL) return NULL; return m_min->m_data; } /* Replace data associated with NODE and replace it with DATA. */ V *replace_data (fibonacci_node_t *node, V *data) { return replace_key_data (node, node->m_key, data); } /* Delete NODE in the heap. */ V *delete_node (fibonacci_node_t *node, bool release = true); /* Union the heap with HEAPB. */ fibonacci_heap *union_with (fibonacci_heap *heapb); private: /* Insert new NODE given by KEY and DATA associated with the key. */ fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data); /* Insert new NODE that has already filled key and value. */ fibonacci_node_t *insert_node (fibonacci_node_t *node); /* Insert it into the root list. */ void insert_root (fibonacci_node_t *node); /* Remove NODE from PARENT's child list. */ void cut (fibonacci_node_t *node, fibonacci_node_t *parent); /* Process cut of node Y and do it recursivelly. */ void cascading_cut (fibonacci_node_t *y); /* Extract minimum node from the heap. */ fibonacci_node_t * extract_minimum_node (); /* Remove root NODE from the heap. */ void remove_root (fibonacci_node_t *node); /* Consolidate heap. */ void consolidate (); /* Number of nodes. */ size_t m_nodes; /* Minimum node of the heap. */ fibonacci_node_t *m_min; /* Root node of the heap. */ fibonacci_node_t *m_root; /* Global minimum given in the heap construction. */ K m_global_min_key; }; /* Remove fibonacci heap node. */ template fibonacci_node * fibonacci_node::remove () { fibonacci_node *ret; if (this == m_left) ret = NULL; else ret = m_left; if (m_parent != NULL && m_parent->m_child == this) m_parent->m_child = ret; m_right->m_left = m_left; m_left->m_right = m_right; m_parent = NULL; m_left = this; m_right = this; return ret; } /* Link the node with PARENT. */ template void fibonacci_node::link (fibonacci_node *parent) { if (parent->m_child == NULL) parent->m_child = this; else parent->m_child->insert_before (this); m_parent = parent; parent->m_degree++; m_mark = 0; } /* Put node B after this node. */ template void fibonacci_node::insert_after (fibonacci_node *b) { fibonacci_node *a = this; if (a == a->m_right) { a->m_right = b; a->m_left = b; b->m_right = a; b->m_left = a; } else { b->m_right = a->m_right; a->m_right->m_left = b; a->m_right = b; b->m_left = a; } } /* Insert new node given by KEY and DATA associated with the key. */ template fibonacci_node* fibonacci_heap::insert (K key, V *data) { /* Create the new node. */ fibonacci_node *node = new fibonacci_node_t (key, data); return insert_node (node); } /* Insert new NODE given by DATA associated with the key. */ template fibonacci_node* fibonacci_heap::insert (fibonacci_node_t *node, K key, V *data) { /* Set the node's data. */ node->m_data = data; node->m_key = key; return insert_node (node); } /* Insert new NODE that has already filled key and value. */ template fibonacci_node* fibonacci_heap::insert_node (fibonacci_node_t *node) { /* Insert it into the root list. */ insert_root (node); /* If their was no minimum, or this key is less than the min, it's the new min. */ if (m_min == NULL || node->m_key < m_min->m_key) m_min = node; m_nodes++; return node; } /* For given NODE, set new KEY and DATA value. */ template V* fibonacci_heap::replace_key_data (fibonacci_node *node, K key, V *data) { K okey; fibonacci_node *y; V *odata = node->m_data; /* If we wanted to, we do a real increase by redeleting and inserting. */ if (node->compare_data (key) > 0) { delete_node (node, false); node = new (node) fibonacci_node_t (); insert (node, key, data); return odata; } okey = node->m_key; node->m_data = data; node->m_key = key; y = node->m_parent; /* Short-circuit if the key is the same, as we then don't have to do anything. Except if we're trying to force the new node to be the new minimum for delete. */ if (okey == key && okey != m_global_min_key) return odata; /* These two compares are specifically <= 0 to make sure that in the case of equality, a node we replaced the data on, becomes the new min. This is needed so that delete's call to extractmin gets the right node. */ if (y != NULL && node->compare (y) <= 0) { cut (node, y); cascading_cut (y); } if (node->compare (m_min) <= 0) m_min = node; return odata; } /* Extract minimum node in the heap. Delete fibonacci node if RELEASE is true. */ template V* fibonacci_heap::extract_min (bool release) { fibonacci_node *z; V *ret = NULL; /* If we don't have a min set, it means we have no nodes. */ if (m_min != NULL) { /* Otherwise, extract the min node, free the node, and return the node's data. */ z = extract_minimum_node (); ret = z->m_data; if (release) delete (z); } return ret; } /* Delete NODE in the heap, if RELEASE is specified memory is released. */ template V* fibonacci_heap::delete_node (fibonacci_node *node, bool release) { V *ret = node->m_data; /* To perform delete, we just make it the min key, and extract. */ replace_key (node, m_global_min_key); if (node != m_min) { fprintf (stderr, "Can't force minimum on fibheap.\n"); abort (); } extract_min (release); return ret; } /* Union the heap with HEAPB. One of the heaps is going to be deleted. */ template fibonacci_heap* fibonacci_heap::union_with (fibonacci_heap *heapb) { fibonacci_heap *heapa = this; fibonacci_node *a_root, *b_root; /* If one of the heaps is empty, the union is just the other heap. */ if ((a_root = heapa->m_root) == NULL) { delete (heapa); return heapb; } if ((b_root = heapb->m_root) == NULL) { delete (heapb); return heapa; } /* Merge them to the next nodes on the opposite chain. */ a_root->m_left->m_right = b_root; b_root->m_left->m_right = a_root; std::swap (a_root->m_left, b_root->m_left); heapa->m_nodes += heapb->m_nodes; /* And set the new minimum, if it's changed. */ if (heapb->m_min->compare (heapa->m_min) < 0) heapa->m_min = heapb->m_min; /* Set m_min to NULL to not to delete live fibonacci nodes. */ heapb->m_min = NULL; delete (heapb); return heapa; } /* Insert it into the root list. */ template void fibonacci_heap::insert_root (fibonacci_node_t *node) { /* If the heap is currently empty, the new node becomes the singleton circular root list. */ if (m_root == NULL) { m_root = node; node->m_left = node; node->m_right = node; return; } /* Otherwise, insert it in the circular root list between the root and it's right node. */ m_root->insert_after (node); } /* Remove NODE from PARENT's child list. */ template void fibonacci_heap::cut (fibonacci_node *node, fibonacci_node *parent) { node->remove (); parent->m_degree--; insert_root (node); node->m_parent = NULL; node->m_mark = 0; } /* Process cut of node Y and do it recursivelly. */ template void fibonacci_heap::cascading_cut (fibonacci_node *y) { fibonacci_node *z; while ((z = y->m_parent) != NULL) { if (y->m_mark == 0) { y->m_mark = 1; return; } else { cut (y, z); y = z; } } } /* Extract minimum node from the heap. */ template fibonacci_node* fibonacci_heap::extract_minimum_node () { fibonacci_node *ret = m_min; fibonacci_node *x, *y, *orig; /* Attach the child list of the minimum node to the root list of the heap. If there is no child list, we don't do squat. */ for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y) { if (orig == NULL) orig = x; y = x->m_right; x->m_parent = NULL; insert_root (x); } /* Remove the old root. */ remove_root (ret); m_nodes--; /* If we are left with no nodes, then the min is NULL. */ if (m_nodes == 0) m_min = NULL; else { /* Otherwise, consolidate to find new minimum, as well as do the reorg work that needs to be done. */ m_min = ret->m_right; consolidate (); } return ret; } /* Remove root NODE from the heap. */ template void fibonacci_heap::remove_root (fibonacci_node *node) { if (node->m_left == node) m_root = NULL; else m_root = node->remove (); } /* Consolidate heap. */ template void fibonacci_heap::consolidate () { int D = 1 + 8 * sizeof (long); auto_vec *> a (D); a.safe_grow_cleared (D); fibonacci_node *w, *x, *y; int i, d; while ((w = m_root) != NULL) { x = w; remove_root (w); d = x->m_degree; while (a[d] != NULL) { y = a[d]; if (x->compare (y) > 0) std::swap (x, y); y->link (x); a[d] = NULL; d++; } a[d] = x; } m_min = NULL; for (i = 0; i < D; i++) if (a[i] != NULL) { insert_root (a[i]); if (m_min == NULL || a[i]->compare (m_min) < 0) m_min = a[i]; } } #endif // GCC_FIBONACCI_HEAP_H