/* Standard problems for dataflow support routines. Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Originally contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com) Major rewrite contributed by Danny Berlin (dberlin@dberlin.org) and Kenneth Zadeck (zadeck@naturalbridge.com). This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tm_p.h" #include "insn-config.h" #include "recog.h" #include "function.h" #include "regs.h" #include "output.h" #include "alloc-pool.h" #include "flags.h" #include "hard-reg-set.h" #include "basic-block.h" #include "sbitmap.h" #include "bitmap.h" #include "timevar.h" #include "df.h" #include "except.h" #include "dce.h" #include "vecprim.h" /* Note that turning REG_DEAD_DEBUGGING on will cause gcc.c-torture/unsorted/dump-noaddr.c to fail because it prints addresses in the dumps. */ #if 0 #define REG_DEAD_DEBUGGING #endif #define DF_SPARSE_THRESHOLD 32 static bitmap seen_in_block = NULL; static bitmap seen_in_insn = NULL; /*---------------------------------------------------------------------------- Public functions access functions for the dataflow problems. ----------------------------------------------------------------------------*/ /* Get the live at out set for BB no matter what problem happens to be defined. This function is used by the register allocators who choose different dataflow problems depending on the optimization level. */ bitmap df_get_live_out (basic_block bb) { gcc_assert (df_lr); if (df_urec) return DF_RA_LIVE_OUT (bb); else if (df_live) return DF_LIVE_OUT (bb); else return DF_LR_OUT (bb); } /* Get the live at in set for BB no matter what problem happens to be defined. This function is used by the register allocators who choose different dataflow problems depending on the optimization level. */ bitmap df_get_live_in (basic_block bb) { gcc_assert (df_lr); if (df_urec) return DF_RA_LIVE_IN (bb); else if (df_live) return DF_LIVE_IN (bb); else return DF_LR_IN (bb); } /* Get the live at top set for BB no matter what problem happens to be defined. This function is used by the register allocators who choose different dataflow problems depending on the optimization level. */ bitmap df_get_live_top (basic_block bb) { gcc_assert (df_lr); if (df_urec) return DF_RA_LIVE_TOP (bb); else return DF_LR_TOP (bb); } /*---------------------------------------------------------------------------- Utility functions. ----------------------------------------------------------------------------*/ /* Generic versions to get the void* version of the block info. Only used inside the problem instance vectors. */ /* Grow the bb_info array. */ void df_grow_bb_info (struct dataflow *dflow) { unsigned int new_size = last_basic_block + 1; if (dflow->block_info_size < new_size) { new_size += new_size / 4; dflow->block_info = xrealloc (dflow->block_info, new_size *sizeof (void*)); memset (dflow->block_info + dflow->block_info_size, 0, (new_size - dflow->block_info_size) *sizeof (void *)); dflow->block_info_size = new_size; } } /* Dump a def-use or use-def chain for REF to FILE. */ void df_chain_dump (struct df_link *link, FILE *file) { fprintf (file, "{ "); for (; link; link = link->next) { fprintf (file, "%c%d(bb %d insn %d) ", DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u', DF_REF_ID (link->ref), DF_REF_BBNO (link->ref), DF_REF_INSN (link->ref) ? DF_REF_INSN_UID (link->ref) : -1); } fprintf (file, "}"); } /* Print some basic block info as part of df_dump. */ void df_print_bb_index (basic_block bb, FILE *file) { edge e; edge_iterator ei; fprintf (file, "\n( "); FOR_EACH_EDGE (e, ei, bb->preds) { basic_block pred = e->src; fprintf (file, "%d%s ", pred->index, e->flags & EDGE_EH ? "(EH)" : ""); } fprintf (file, ")->[%d]->( ", bb->index); FOR_EACH_EDGE (e, ei, bb->succs) { basic_block succ = e->dest; fprintf (file, "%d%s ", succ->index, e->flags & EDGE_EH ? "(EH)" : ""); } fprintf (file, ")\n"); } /* Make sure that the seen_in_insn and seen_in_block sbitmaps are set up correctly. */ static void df_set_seen (void) { seen_in_block = BITMAP_ALLOC (&df_bitmap_obstack); seen_in_insn = BITMAP_ALLOC (&df_bitmap_obstack); } static void df_unset_seen (void) { BITMAP_FREE (seen_in_block); BITMAP_FREE (seen_in_insn); } /*---------------------------------------------------------------------------- REACHING USES Find the locations in the function where each use site for a pseudo can reach backwards. In and out bitvectors are built for each basic block. The id field in the ref is used to index into these sets. See df.h for details. ----------------------------------------------------------------------------*/ /* This problem plays a large number of games for the sake of efficiency. 1) The order of the bits in the bitvectors. After the scanning phase, all of the uses are sorted. All of the uses for the reg 0 are first, followed by all uses for reg 1 and so on. 2) There are two kill sets, one if the number of uses is less or equal to DF_SPARSE_THRESHOLD and another if it is greater. <= : Data is built directly in the kill set. > : One level of indirection is used to keep from generating long strings of 1 bits in the kill sets. Bitvectors that are indexed by the regnum are used to represent that there is a killing def for the register. The confluence and transfer functions use these along with the bitmap_clear_range call to remove ranges of bits without actually generating a knockout vector. The kill and sparse_kill and the dense_invalidated_by_call and sparse_invalidated_by_call both play this game. */ /* Private data used to compute the solution for this problem. These data structures are not accessible outside of this module. */ struct df_ru_problem_data { /* The set of defs to regs invalidated by call. */ bitmap sparse_invalidated_by_call; /* The set of defs to regs invalidated by call for ru. */ bitmap dense_invalidated_by_call; /* An obstack for the bitmaps we need for this problem. */ bitmap_obstack ru_bitmaps; }; /* Set basic block info. */ static void df_ru_set_bb_info (unsigned int index, struct df_ru_bb_info *bb_info) { gcc_assert (df_ru); gcc_assert (index < df_ru->block_info_size); df_ru->block_info[index] = bb_info; } /* Free basic block info. */ static void df_ru_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, void *vbb_info) { struct df_ru_bb_info *bb_info = (struct df_ru_bb_info *) vbb_info; if (bb_info) { BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->sparse_kill); BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); pool_free (df_ru->block_pool, bb_info); } } /* Allocate or reset bitmaps for DF_RU blocks. The solution bits are not touched unless the block is new. */ static void df_ru_alloc (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; struct df_ru_problem_data *problem_data; if (!df_ru->block_pool) df_ru->block_pool = create_alloc_pool ("df_ru_block pool", sizeof (struct df_ru_bb_info), 50); if (df_ru->problem_data) { problem_data = (struct df_ru_problem_data *) df_ru->problem_data; bitmap_clear (problem_data->sparse_invalidated_by_call); bitmap_clear (problem_data->dense_invalidated_by_call); } else { problem_data = XNEW (struct df_ru_problem_data); df_ru->problem_data = problem_data; bitmap_obstack_initialize (&problem_data->ru_bitmaps); problem_data->sparse_invalidated_by_call = BITMAP_ALLOC (&problem_data->ru_bitmaps); problem_data->dense_invalidated_by_call = BITMAP_ALLOC (&problem_data->ru_bitmaps); } df_grow_bb_info (df_ru); /* Because of the clustering of all def sites for the same pseudo, we have to process all of the blocks before doing the analysis. */ EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb_index); if (bb_info) { bitmap_clear (bb_info->kill); bitmap_clear (bb_info->sparse_kill); bitmap_clear (bb_info->gen); } else { bb_info = (struct df_ru_bb_info *) pool_alloc (df_ru->block_pool); df_ru_set_bb_info (bb_index, bb_info); bb_info->kill = BITMAP_ALLOC (&problem_data->ru_bitmaps); bb_info->sparse_kill = BITMAP_ALLOC (&problem_data->ru_bitmaps); bb_info->gen = BITMAP_ALLOC (&problem_data->ru_bitmaps); bb_info->in = BITMAP_ALLOC (&problem_data->ru_bitmaps); bb_info->out = BITMAP_ALLOC (&problem_data->ru_bitmaps); } } df_ru->optional_p = true; } /* Process a list of DEFs for df_ru_bb_local_compute. */ static void df_ru_bb_local_compute_process_def (struct df_ru_bb_info *bb_info, struct df_ref **def_rec, enum df_ref_flags top_flag) { while (*def_rec) { struct df_ref *def = *def_rec; if ((top_flag == (DF_REF_FLAGS (def) & DF_REF_AT_TOP)) /* If the def is to only part of the reg, it is as if it did not happen, since some of the bits may get thru. */ && (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))) { unsigned int regno = DF_REF_REGNO (def); unsigned int begin = DF_USES_BEGIN (regno); unsigned int n_uses = DF_USES_COUNT (regno); if (!bitmap_bit_p (seen_in_block, regno)) { /* The first def for regno in the insn, causes the kill info to be generated. Do not modify the gen set because the only values in it are the uses from here to the top of the block and this def does not effect them. */ if (!bitmap_bit_p (seen_in_insn, regno)) { if (n_uses > DF_SPARSE_THRESHOLD) bitmap_set_bit (bb_info->sparse_kill, regno); else bitmap_set_range (bb_info->kill, begin, n_uses); } bitmap_set_bit (seen_in_insn, regno); } } def_rec++; } } /* Process a list of USEs for df_ru_bb_local_compute. */ static void df_ru_bb_local_compute_process_use (struct df_ru_bb_info *bb_info, struct df_ref **use_rec, enum df_ref_flags top_flag) { while (*use_rec) { struct df_ref *use = *use_rec; if (top_flag == (DF_REF_FLAGS (use) & DF_REF_AT_TOP)) { /* Add use to set of gens in this BB unless we have seen a def in a previous instruction. */ unsigned int regno = DF_REF_REGNO (use); if (!bitmap_bit_p (seen_in_block, regno)) bitmap_set_bit (bb_info->gen, DF_REF_ID (use)); } use_rec++; } } /* Compute local reaching use (upward exposed use) info for basic block BB. USE_INFO->REGS[R] caches the set of uses for register R. */ static void df_ru_bb_local_compute (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb_index); rtx insn; /* Set when a def for regno is seen. */ bitmap_clear (seen_in_block); bitmap_clear (seen_in_insn); #ifdef EH_USES /* Variables defined in the prolog that are used by the exception handler. */ df_ru_bb_local_compute_process_use (bb_info, df_get_artificial_uses (bb_index), DF_REF_AT_TOP); #endif df_ru_bb_local_compute_process_def (bb_info, df_get_artificial_defs (bb_index), DF_REF_AT_TOP); FOR_BB_INSNS (bb, insn) { unsigned int uid = INSN_UID (insn); if (!INSN_P (insn)) continue; df_ru_bb_local_compute_process_use (bb_info, DF_INSN_UID_USES (uid), 0); if (df->changeable_flags & DF_EQ_NOTES) df_ru_bb_local_compute_process_use (bb_info, DF_INSN_UID_EQ_USES (uid), 0); df_ru_bb_local_compute_process_def (bb_info, DF_INSN_UID_DEFS (uid), 0); bitmap_ior_into (seen_in_block, seen_in_insn); bitmap_clear (seen_in_insn); } /* Process the hardware registers that are always live. */ df_ru_bb_local_compute_process_use (bb_info, df_get_artificial_uses (bb_index), 0); df_ru_bb_local_compute_process_def (bb_info, df_get_artificial_defs (bb_index), 0); } /* Compute local reaching use (upward exposed use) info for each basic block within BLOCKS. */ static void df_ru_local_compute (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; unsigned int regno; struct df_ru_problem_data *problem_data = (struct df_ru_problem_data *) df_ru->problem_data; bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; bitmap dense_invalidated = problem_data->dense_invalidated_by_call; df_set_seen (); df_maybe_reorganize_use_refs (df->changeable_flags & DF_EQ_NOTES ? DF_REF_ORDER_BY_REG_WITH_NOTES : DF_REF_ORDER_BY_REG); EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { df_ru_bb_local_compute (bb_index); } /* Set up the knockout bit vectors to be applied across EH_EDGES. */ EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, regno, bi) { if (DF_USES_COUNT (regno) > DF_SPARSE_THRESHOLD) bitmap_set_bit (sparse_invalidated, regno); else bitmap_set_range (dense_invalidated, DF_USES_BEGIN (regno), DF_USES_COUNT (regno)); } df_unset_seen (); } /* Initialize the solution bit vectors for problem. */ static void df_ru_init_solution (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb_index); bitmap_copy (bb_info->in, bb_info->gen); bitmap_clear (bb_info->out); } } /* Out of target gets or of in of source. */ static void df_ru_confluence_n (edge e) { bitmap op1 = df_ru_get_bb_info (e->src->index)->out; bitmap op2 = df_ru_get_bb_info (e->dest->index)->in; if (e->flags & EDGE_EH) { struct df_ru_problem_data *problem_data = (struct df_ru_problem_data *) df_ru->problem_data; bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; bitmap dense_invalidated = problem_data->dense_invalidated_by_call; bitmap_iterator bi; unsigned int regno; bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack); bitmap_copy (tmp, op2); bitmap_and_compl_into (tmp, dense_invalidated); EXECUTE_IF_SET_IN_BITMAP (sparse_invalidated, 0, regno, bi) { bitmap_clear_range (tmp, DF_USES_BEGIN (regno), DF_USES_COUNT (regno)); } bitmap_ior_into (op1, tmp); BITMAP_FREE (tmp); } else bitmap_ior_into (op1, op2); } /* Transfer function. */ static bool df_ru_transfer_function (int bb_index) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb_index); unsigned int regno; bitmap_iterator bi; bitmap in = bb_info->in; bitmap out = bb_info->out; bitmap gen = bb_info->gen; bitmap kill = bb_info->kill; bitmap sparse_kill = bb_info->sparse_kill; if (bitmap_empty_p (sparse_kill)) return bitmap_ior_and_compl (in, gen, out, kill); else { struct df_ru_problem_data *problem_data; bitmap tmp; bool changed = false; /* Note that TMP is _not_ a temporary bitmap if we end up replacing IN with TMP. Therefore, allocate TMP in the RU bitmaps obstack. */ problem_data = (struct df_ru_problem_data *) df_ru->problem_data; tmp = BITMAP_ALLOC (&problem_data->ru_bitmaps); bitmap_copy (tmp, out); EXECUTE_IF_SET_IN_BITMAP (sparse_kill, 0, regno, bi) { bitmap_clear_range (tmp, DF_USES_BEGIN (regno), DF_USES_COUNT (regno)); } bitmap_and_compl_into (tmp, kill); bitmap_ior_into (tmp, gen); changed = !bitmap_equal_p (tmp, in); if (changed) { BITMAP_FREE (in); bb_info->in = tmp; } else BITMAP_FREE (tmp); return changed; } } /* Free all storage associated with the problem. */ static void df_ru_free (void) { unsigned int i; struct df_ru_problem_data *problem_data = (struct df_ru_problem_data *) df_ru->problem_data; if (problem_data) { for (i = 0; i < df_ru->block_info_size; i++) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (i); if (bb_info) { BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->sparse_kill); BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); } } free_alloc_pool (df_ru->block_pool); BITMAP_FREE (problem_data->sparse_invalidated_by_call); BITMAP_FREE (problem_data->dense_invalidated_by_call); bitmap_obstack_release (&problem_data->ru_bitmaps); df_ru->block_info_size = 0; free (df_ru->block_info); free (df_ru->problem_data); } free (df_ru); } /* Debugging info. */ static void df_ru_start_dump (FILE *file) { struct df_ru_problem_data *problem_data = (struct df_ru_problem_data *) df_ru->problem_data; unsigned int m = DF_REG_SIZE(df); unsigned int regno; if (!df_ru->block_info) return; fprintf (file, ";; Reaching uses:\n"); fprintf (file, ";; sparse invalidated \t"); dump_bitmap (file, problem_data->sparse_invalidated_by_call); fprintf (file, " dense invalidated \t"); dump_bitmap (file, problem_data->dense_invalidated_by_call); for (regno = 0; regno < m; regno++) if (DF_USES_COUNT (regno)) fprintf (file, "%d[%d,%d] ", regno, DF_USES_BEGIN (regno), DF_USES_COUNT (regno)); fprintf (file, "\n"); } /* Debugging info at top of bb. */ static void df_ru_top_dump (basic_block bb, FILE *file) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb->index); if (!bb_info || !bb_info->in) return; fprintf (file, ";; ru in \t(%d)\n", (int) bitmap_count_bits (bb_info->in)); dump_bitmap (file, bb_info->in); fprintf (file, ";; ru gen \t(%d)\n", (int) bitmap_count_bits (bb_info->gen)); dump_bitmap (file, bb_info->gen); fprintf (file, ";; ru kill\t(%d)\n", (int) bitmap_count_bits (bb_info->kill)); dump_bitmap (file, bb_info->kill); } /* Debugging info at bottom of bb. */ static void df_ru_bottom_dump (basic_block bb, FILE *file) { struct df_ru_bb_info *bb_info = df_ru_get_bb_info (bb->index); if (!bb_info || !bb_info->out) return; fprintf (file, ";; ru out \t(%d)\n", (int) bitmap_count_bits (bb_info->out)); dump_bitmap (file, bb_info->out); } /* All of the information associated with every instance of the problem. */ static struct df_problem problem_RU = { DF_RU, /* Problem id. */ DF_BACKWARD, /* Direction. */ df_ru_alloc, /* Allocate the problem specific data. */ NULL, /* Reset global information. */ df_ru_free_bb_info, /* Free basic block info. */ df_ru_local_compute, /* Local compute function. */ df_ru_init_solution, /* Init the solution specific data. */ df_worklist_dataflow, /* Worklist solver. */ NULL, /* Confluence operator 0. */ df_ru_confluence_n, /* Confluence operator n. */ df_ru_transfer_function, /* Transfer function. */ NULL, /* Finalize function. */ df_ru_free, /* Free all of the problem information. */ df_ru_free, /* Remove this problem from the stack of dataflow problems. */ df_ru_start_dump, /* Debugging. */ df_ru_top_dump, /* Debugging start block. */ df_ru_bottom_dump, /* Debugging end block. */ NULL, /* Incremental solution verify start. */ NULL, /* Incremental solution verify end. */ NULL, /* Dependent problem. */ TV_DF_RU, /* Timing variable. */ true /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_ru_add_problem (void) { df_add_problem (&problem_RU); } /*---------------------------------------------------------------------------- REACHING DEFINITIONS Find the locations in the function where each definition site for a pseudo reaches. In and out bitvectors are built for each basic block. The id field in the ref is used to index into these sets. See df.h for details. ----------------------------------------------------------------------------*/ /* See the comment at the top of the Reaching Uses problem for how the uses are represented in the kill sets. The same games are played here for the defs. */ /* Private data used to compute the solution for this problem. These data structures are not accessible outside of this module. */ struct df_rd_problem_data { /* The set of defs to regs invalidated by call. */ bitmap sparse_invalidated_by_call; /* The set of defs to regs invalidate by call for rd. */ bitmap dense_invalidated_by_call; /* An obstack for the bitmaps we need for this problem. */ bitmap_obstack rd_bitmaps; }; /* Set basic block info. */ static void df_rd_set_bb_info (unsigned int index, struct df_rd_bb_info *bb_info) { gcc_assert (df_rd); gcc_assert (index < df_rd->block_info_size); df_rd->block_info[index] = bb_info; } /* Free basic block info. */ static void df_rd_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, void *vbb_info) { struct df_rd_bb_info *bb_info = (struct df_rd_bb_info *) vbb_info; if (bb_info) { BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->sparse_kill); BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); pool_free (df_rd->block_pool, bb_info); } } /* Allocate or reset bitmaps for DF_RD blocks. The solution bits are not touched unless the block is new. */ static void df_rd_alloc (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; struct df_rd_problem_data *problem_data; if (!df_rd->block_pool) df_rd->block_pool = create_alloc_pool ("df_rd_block pool", sizeof (struct df_rd_bb_info), 50); if (df_rd->problem_data) { problem_data = (struct df_rd_problem_data *) df_rd->problem_data; bitmap_clear (problem_data->sparse_invalidated_by_call); bitmap_clear (problem_data->dense_invalidated_by_call); } else { problem_data = XNEW (struct df_rd_problem_data); df_rd->problem_data = problem_data; bitmap_obstack_initialize (&problem_data->rd_bitmaps); problem_data->sparse_invalidated_by_call = BITMAP_ALLOC (&problem_data->rd_bitmaps); problem_data->dense_invalidated_by_call = BITMAP_ALLOC (&problem_data->rd_bitmaps); } df_grow_bb_info (df_rd); /* Because of the clustering of all use sites for the same pseudo, we have to process all of the blocks before doing the analysis. */ EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); if (bb_info) { bitmap_clear (bb_info->kill); bitmap_clear (bb_info->sparse_kill); bitmap_clear (bb_info->gen); } else { bb_info = (struct df_rd_bb_info *) pool_alloc (df_rd->block_pool); df_rd_set_bb_info (bb_index, bb_info); bb_info->kill = BITMAP_ALLOC (&problem_data->rd_bitmaps); bb_info->sparse_kill = BITMAP_ALLOC (&problem_data->rd_bitmaps); bb_info->gen = BITMAP_ALLOC (&problem_data->rd_bitmaps); bb_info->in = BITMAP_ALLOC (&problem_data->rd_bitmaps); bb_info->out = BITMAP_ALLOC (&problem_data->rd_bitmaps); } } df_rd->optional_p = true; } /* Process a list of DEFs for df_rd_bb_local_compute. */ static void df_rd_bb_local_compute_process_def (struct df_rd_bb_info *bb_info, struct df_ref **def_rec, enum df_ref_flags top_flag) { while (*def_rec) { struct df_ref *def = *def_rec; if (top_flag == (DF_REF_FLAGS (def) & DF_REF_AT_TOP)) { unsigned int regno = DF_REF_REGNO (def); unsigned int begin = DF_DEFS_BEGIN (regno); unsigned int n_defs = DF_DEFS_COUNT (regno); if ((!(df->changeable_flags & DF_NO_HARD_REGS)) || (regno >= FIRST_PSEUDO_REGISTER)) { /* Only the last def(s) for a regno in the block has any effect. */ if (!bitmap_bit_p (seen_in_block, regno)) { /* The first def for regno in insn gets to knock out the defs from other instructions. */ if ((!bitmap_bit_p (seen_in_insn, regno)) /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ && (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)))) { if (n_defs > DF_SPARSE_THRESHOLD) { bitmap_set_bit (bb_info->sparse_kill, regno); bitmap_clear_range(bb_info->gen, begin, n_defs); } else { bitmap_set_range (bb_info->kill, begin, n_defs); bitmap_clear_range (bb_info->gen, begin, n_defs); } } bitmap_set_bit (seen_in_insn, regno); /* All defs for regno in the instruction may be put into the gen set. */ if (!(DF_REF_FLAGS (def) & (DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER))) bitmap_set_bit (bb_info->gen, DF_REF_ID (def)); } } } def_rec++; } } /* Compute local reaching def info for basic block BB. */ static void df_rd_bb_local_compute (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); rtx insn; bitmap_clear (seen_in_block); bitmap_clear (seen_in_insn); /* Artificials are only hard regs. */ if (!(df->changeable_flags & DF_NO_HARD_REGS)) df_rd_bb_local_compute_process_def (bb_info, df_get_artificial_defs (bb_index), 0); FOR_BB_INSNS_REVERSE (bb, insn) { unsigned int uid = INSN_UID (insn); if (!INSN_P (insn)) continue; df_rd_bb_local_compute_process_def (bb_info, DF_INSN_UID_DEFS (uid), 0); /* This complex dance with the two bitmaps is required because instructions can assign twice to the same pseudo. This generally happens with calls that will have one def for the result and another def for the clobber. If only one vector is used and the clobber goes first, the result will be lost. */ bitmap_ior_into (seen_in_block, seen_in_insn); bitmap_clear (seen_in_insn); } /* Process the artificial defs at the top of the block last since we are going backwards through the block and these are logically at the start. */ if (!(df->changeable_flags & DF_NO_HARD_REGS)) df_rd_bb_local_compute_process_def (bb_info, df_get_artificial_defs (bb_index), DF_REF_AT_TOP); } /* Compute local reaching def info for each basic block within BLOCKS. */ static void df_rd_local_compute (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; unsigned int regno; struct df_rd_problem_data *problem_data = (struct df_rd_problem_data *) df_rd->problem_data; bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; bitmap dense_invalidated = problem_data->dense_invalidated_by_call; df_set_seen (); df_maybe_reorganize_def_refs (DF_REF_ORDER_BY_REG); EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { df_rd_bb_local_compute (bb_index); } /* Set up the knockout bit vectors to be applied across EH_EDGES. */ EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, regno, bi) { if (DF_DEFS_COUNT (regno) > DF_SPARSE_THRESHOLD) bitmap_set_bit (sparse_invalidated, regno); else bitmap_set_range (dense_invalidated, DF_DEFS_BEGIN (regno), DF_DEFS_COUNT (regno)); } df_unset_seen (); } /* Initialize the solution bit vectors for problem. */ static void df_rd_init_solution (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); bitmap_copy (bb_info->out, bb_info->gen); bitmap_clear (bb_info->in); } } /* In of target gets or of out of source. */ static void df_rd_confluence_n (edge e) { bitmap op1 = df_rd_get_bb_info (e->dest->index)->in; bitmap op2 = df_rd_get_bb_info (e->src->index)->out; if (e->flags & EDGE_EH) { struct df_rd_problem_data *problem_data = (struct df_rd_problem_data *) df_rd->problem_data; bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; bitmap dense_invalidated = problem_data->dense_invalidated_by_call; bitmap_iterator bi; unsigned int regno; bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack); bitmap_copy (tmp, op2); bitmap_and_compl_into (tmp, dense_invalidated); EXECUTE_IF_SET_IN_BITMAP (sparse_invalidated, 0, regno, bi) { bitmap_clear_range (tmp, DF_DEFS_BEGIN (regno), DF_DEFS_COUNT (regno)); } bitmap_ior_into (op1, tmp); BITMAP_FREE (tmp); } else bitmap_ior_into (op1, op2); } /* Transfer function. */ static bool df_rd_transfer_function (int bb_index) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); unsigned int regno; bitmap_iterator bi; bitmap in = bb_info->in; bitmap out = bb_info->out; bitmap gen = bb_info->gen; bitmap kill = bb_info->kill; bitmap sparse_kill = bb_info->sparse_kill; if (bitmap_empty_p (sparse_kill)) return bitmap_ior_and_compl (out, gen, in, kill); else { struct df_rd_problem_data *problem_data; bool changed = false; bitmap tmp; /* Note that TMP is _not_ a temporary bitmap if we end up replacing OUT with TMP. Therefore, allocate TMP in the RD bitmaps obstack. */ problem_data = (struct df_rd_problem_data *) df_rd->problem_data; tmp = BITMAP_ALLOC (&problem_data->rd_bitmaps); bitmap_copy (tmp, in); EXECUTE_IF_SET_IN_BITMAP (sparse_kill, 0, regno, bi) { bitmap_clear_range (tmp, DF_DEFS_BEGIN (regno), DF_DEFS_COUNT (regno)); } bitmap_and_compl_into (tmp, kill); bitmap_ior_into (tmp, gen); changed = !bitmap_equal_p (tmp, out); if (changed) { BITMAP_FREE (out); bb_info->out = tmp; } else BITMAP_FREE (tmp); return changed; } } /* Free all storage associated with the problem. */ static void df_rd_free (void) { unsigned int i; struct df_rd_problem_data *problem_data = (struct df_rd_problem_data *) df_rd->problem_data; if (problem_data) { for (i = 0; i < df_rd->block_info_size; i++) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (i); if (bb_info) { BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->sparse_kill); BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); } } free_alloc_pool (df_rd->block_pool); BITMAP_FREE (problem_data->sparse_invalidated_by_call); BITMAP_FREE (problem_data->dense_invalidated_by_call); bitmap_obstack_release (&problem_data->rd_bitmaps); df_rd->block_info_size = 0; free (df_rd->block_info); free (df_rd->problem_data); } free (df_rd); } /* Debugging info. */ static void df_rd_start_dump (FILE *file) { struct df_rd_problem_data *problem_data = (struct df_rd_problem_data *) df_rd->problem_data; unsigned int m = DF_REG_SIZE(df); unsigned int regno; if (!df_rd->block_info) return; fprintf (file, ";; Reaching defs:\n\n"); fprintf (file, " sparse invalidated \t"); dump_bitmap (file, problem_data->sparse_invalidated_by_call); fprintf (file, " dense invalidated \t"); dump_bitmap (file, problem_data->dense_invalidated_by_call); for (regno = 0; regno < m; regno++) if (DF_DEFS_COUNT (regno)) fprintf (file, "%d[%d,%d] ", regno, DF_DEFS_BEGIN (regno), DF_DEFS_COUNT (regno)); fprintf (file, "\n"); } /* Debugging info at top of bb. */ static void df_rd_top_dump (basic_block bb, FILE *file) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb->index); if (!bb_info || !bb_info->in) return; fprintf (file, ";; rd in \t(%d)\n", (int) bitmap_count_bits (bb_info->in)); dump_bitmap (file, bb_info->in); fprintf (file, ";; rd gen \t(%d)\n", (int) bitmap_count_bits (bb_info->gen)); dump_bitmap (file, bb_info->gen); fprintf (file, ";; rd kill\t(%d)\n", (int) bitmap_count_bits (bb_info->kill)); dump_bitmap (file, bb_info->kill); } /* Debugging info at top of bb. */ static void df_rd_bottom_dump (basic_block bb, FILE *file) { struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb->index); if (!bb_info || !bb_info->out) return; fprintf (file, ";; rd out \t(%d)\n", (int) bitmap_count_bits (bb_info->out)); dump_bitmap (file, bb_info->out); } /* All of the information associated with every instance of the problem. */ static struct df_problem problem_RD = { DF_RD, /* Problem id. */ DF_FORWARD, /* Direction. */ df_rd_alloc, /* Allocate the problem specific data. */ NULL, /* Reset global information. */ df_rd_free_bb_info, /* Free basic block info. */ df_rd_local_compute, /* Local compute function. */ df_rd_init_solution, /* Init the solution specific data. */ df_worklist_dataflow, /* Worklist solver. */ NULL, /* Confluence operator 0. */ df_rd_confluence_n, /* Confluence operator n. */ df_rd_transfer_function, /* Transfer function. */ NULL, /* Finalize function. */ df_rd_free, /* Free all of the problem information. */ df_rd_free, /* Remove this problem from the stack of dataflow problems. */ df_rd_start_dump, /* Debugging. */ df_rd_top_dump, /* Debugging start block. */ df_rd_bottom_dump, /* Debugging end block. */ NULL, /* Incremental solution verify start. */ NULL, /* Incremental solution verify end. */ NULL, /* Dependent problem. */ TV_DF_RD, /* Timing variable. */ true /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_rd_add_problem (void) { df_add_problem (&problem_RD); } /*---------------------------------------------------------------------------- LIVE REGISTERS Find the locations in the function where any use of a pseudo can reach in the backwards direction. In and out bitvectors are built for each basic block. The regnum is used to index into these sets. See df.h for details. ----------------------------------------------------------------------------*/ /* Private data used to verify the solution for this problem. */ struct df_lr_problem_data { bitmap *in; bitmap *out; }; /* Set basic block info. */ static void df_lr_set_bb_info (unsigned int index, struct df_lr_bb_info *bb_info) { gcc_assert (df_lr); gcc_assert (index < df_lr->block_info_size); df_lr->block_info[index] = bb_info; } /* Free basic block info. */ static void df_lr_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, void *vbb_info) { struct df_lr_bb_info *bb_info = (struct df_lr_bb_info *) vbb_info; if (bb_info) { BITMAP_FREE (bb_info->use); BITMAP_FREE (bb_info->def); if (bb_info->in == bb_info->top) bb_info->top = NULL; else { BITMAP_FREE (bb_info->top); BITMAP_FREE (bb_info->ause); BITMAP_FREE (bb_info->adef); } BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); pool_free (df_lr->block_pool, bb_info); } } /* Allocate or reset bitmaps for DF_LR blocks. The solution bits are not touched unless the block is new. */ static void df_lr_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) { unsigned int bb_index; bitmap_iterator bi; if (!df_lr->block_pool) df_lr->block_pool = create_alloc_pool ("df_lr_block pool", sizeof (struct df_lr_bb_info), 50); df_grow_bb_info (df_lr); EXECUTE_IF_SET_IN_BITMAP (df_lr->out_of_date_transfer_functions, 0, bb_index, bi) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); if (bb_info) { bitmap_clear (bb_info->def); bitmap_clear (bb_info->use); if (bb_info->adef) { bitmap_clear (bb_info->adef); bitmap_clear (bb_info->ause); } } else { bb_info = (struct df_lr_bb_info *) pool_alloc (df_lr->block_pool); df_lr_set_bb_info (bb_index, bb_info); bb_info->use = BITMAP_ALLOC (NULL); bb_info->def = BITMAP_ALLOC (NULL); bb_info->in = BITMAP_ALLOC (NULL); bb_info->out = BITMAP_ALLOC (NULL); bb_info->top = bb_info->in; bb_info->adef = NULL; bb_info->ause = NULL; } } df_lr->optional_p = false; } /* Reset the global solution for recalculation. */ static void df_lr_reset (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); gcc_assert (bb_info); bitmap_clear (bb_info->in); bitmap_clear (bb_info->out); bitmap_clear (bb_info->top); } } /* Compute local live register info for basic block BB. */ static void df_lr_bb_local_compute (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); rtx insn; struct df_ref **def_rec; struct df_ref **use_rec; /* Process the registers set in an exception handler. */ for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) { unsigned int dregno = DF_REF_REGNO (def); bitmap_set_bit (bb_info->def, dregno); bitmap_clear_bit (bb_info->use, dregno); } } /* Process the hardware registers that are always live. */ for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) { struct df_ref *use = *use_rec; /* Add use to set of uses in this BB. */ if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) bitmap_set_bit (bb_info->use, DF_REF_REGNO (use)); } FOR_BB_INSNS_REVERSE (bb, insn) { unsigned int uid = INSN_UID (insn); if (!INSN_P (insn)) continue; if (CALL_P (insn)) { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if (DF_REF_FLAGS (def) & DF_REF_MUST_CLOBBER) { if (dregno >= FIRST_PSEUDO_REGISTER || !(SIBLING_CALL_P (insn) && bitmap_bit_p (df->exit_block_uses, dregno) && !refers_to_regno_p (dregno, dregno+1, current_function_return_rtx, (rtx *)0))) { /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) { bitmap_set_bit (bb_info->def, dregno); bitmap_clear_bit (bb_info->use, dregno); } } } else /* This is the return value. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) { bitmap_set_bit (bb_info->def, dregno); bitmap_clear_bit (bb_info->use, dregno); } } } else { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) { unsigned int dregno = DF_REF_REGNO (def); bitmap_set_bit (bb_info->def, dregno); bitmap_clear_bit (bb_info->use, dregno); } } } for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) { struct df_ref *use = *use_rec; /* Add use to set of uses in this BB. */ bitmap_set_bit (bb_info->use, DF_REF_REGNO (use)); } } /* Process the registers set in an exception handler. */ for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) && (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))) { unsigned int dregno = DF_REF_REGNO (def); if (bb_info->adef == NULL) { gcc_assert (bb_info->ause == NULL); gcc_assert (bb_info->top == bb_info->in); bb_info->adef = BITMAP_ALLOC (NULL); bb_info->ause = BITMAP_ALLOC (NULL); bb_info->top = BITMAP_ALLOC (NULL); } bitmap_set_bit (bb_info->adef, dregno); } } #ifdef EH_USES /* Process the uses that are live into an exception handler. */ for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) { struct df_ref *use = *use_rec; /* Add use to set of uses in this BB. */ if (DF_REF_FLAGS (use) & DF_REF_AT_TOP) { if (bb_info->adef == NULL) { gcc_assert (bb_info->ause == NULL); gcc_assert (bb_info->top == bb_info->in); bb_info->adef = BITMAP_ALLOC (NULL); bb_info->ause = BITMAP_ALLOC (NULL); bb_info->top = BITMAP_ALLOC (NULL); } bitmap_set_bit (bb_info->ause, DF_REF_REGNO (use)); } } #endif /* If the df_live problem is not defined, such as at -O0 and -O1, we still need to keep the luids up to date. This is normally done in the df_live problem since this problem has a forwards scan. */ if (!df_live) df_recompute_luids (bb); } /* Compute local live register info for each basic block within BLOCKS. */ static void df_lr_local_compute (bitmap all_blocks ATTRIBUTE_UNUSED) { unsigned int bb_index; bitmap_iterator bi; bitmap_clear (df->hardware_regs_used); /* The all-important stack pointer must always be live. */ bitmap_set_bit (df->hardware_regs_used, STACK_POINTER_REGNUM); /* Before reload, there are a few registers that must be forced live everywhere -- which might not already be the case for blocks within infinite loops. */ if (!reload_completed) { /* Any reference to any pseudo before reload is a potential reference of the frame pointer. */ bitmap_set_bit (df->hardware_regs_used, FRAME_POINTER_REGNUM); #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM /* Pseudos with argument area equivalences may require reloading via the argument pointer. */ if (fixed_regs[ARG_POINTER_REGNUM]) bitmap_set_bit (df->hardware_regs_used, ARG_POINTER_REGNUM); #endif /* Any constant, or pseudo with constant equivalences, may require reloading from memory using the pic register. */ if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) bitmap_set_bit (df->hardware_regs_used, PIC_OFFSET_TABLE_REGNUM); } EXECUTE_IF_SET_IN_BITMAP (df_lr->out_of_date_transfer_functions, 0, bb_index, bi) { if (bb_index == EXIT_BLOCK) { /* The exit block is special for this problem and its bits are computed from thin air. */ struct df_lr_bb_info *bb_info = df_lr_get_bb_info (EXIT_BLOCK); bitmap_copy (bb_info->use, df->exit_block_uses); } else df_lr_bb_local_compute (bb_index); } bitmap_clear (df_lr->out_of_date_transfer_functions); } /* Initialize the solution vectors. */ static void df_lr_init (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); bitmap_copy (bb_info->in, bb_info->use); bitmap_clear (bb_info->out); } } /* Confluence function that processes infinite loops. This might be a noreturn function that throws. And even if it isn't, getting the unwind info right helps debugging. */ static void df_lr_confluence_0 (basic_block bb) { bitmap op1 = df_lr_get_bb_info (bb->index)->out; if (bb != EXIT_BLOCK_PTR) bitmap_copy (op1, df->hardware_regs_used); } /* Confluence function that ignores fake edges. */ static void df_lr_confluence_n (edge e) { bitmap op1 = df_lr_get_bb_info (e->src->index)->out; bitmap op2 = df_lr_get_bb_info (e->dest->index)->in; /* Call-clobbered registers die across exception and call edges. */ /* ??? Abnormal call edges ignored for the moment, as this gets confused by sibling call edges, which crashes reg-stack. */ if (e->flags & EDGE_EH) bitmap_ior_and_compl_into (op1, op2, df_invalidated_by_call); else bitmap_ior_into (op1, op2); bitmap_ior_into (op1, df->hardware_regs_used); } /* Transfer function. */ static bool df_lr_transfer_function (int bb_index) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); bitmap in = bb_info->in; bitmap out = bb_info->out; bitmap use = bb_info->use; bitmap def = bb_info->def; bitmap top = bb_info->top; bitmap ause = bb_info->ause; bitmap adef = bb_info->adef; bool changed; changed = bitmap_ior_and_compl (top, use, out, def); if (in != top) { gcc_assert (ause && adef); changed |= bitmap_ior_and_compl (in, ause, top, adef); } return changed; } /* Run the fast dce as a side effect of building LR. */ static void df_lr_local_finalize (bitmap all_blocks ATTRIBUTE_UNUSED) { if (df->changeable_flags & DF_LR_RUN_DCE) { run_fast_df_dce (); if (df_lr->problem_data && df_lr->solutions_dirty) { /* If we are here, then it is because we are both verifying the solution and the dce changed the function. In that case the verification info built will be wrong. So we leave the dirty flag true so that the verifier will skip the checking part and just clean up.*/ df_lr->solutions_dirty = true; } else df_lr->solutions_dirty = false; } else df_lr->solutions_dirty = false; } /* Free all storage associated with the problem. */ static void df_lr_free (void) { if (df_lr->block_info) { unsigned int i; for (i = 0; i < df_lr->block_info_size; i++) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (i); if (bb_info) { BITMAP_FREE (bb_info->use); BITMAP_FREE (bb_info->def); if (bb_info->in == bb_info->top) bb_info->top = NULL; else { BITMAP_FREE (bb_info->top); BITMAP_FREE (bb_info->ause); BITMAP_FREE (bb_info->adef); } BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); } } free_alloc_pool (df_lr->block_pool); df_lr->block_info_size = 0; free (df_lr->block_info); } BITMAP_FREE (df_lr->out_of_date_transfer_functions); free (df_lr); } /* Debugging info at top of bb. */ static void df_lr_top_dump (basic_block bb, FILE *file) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); struct df_lr_problem_data *problem_data; if (!bb_info || !bb_info->in) return; fprintf (file, ";; lr in \t"); df_print_regset (file, bb_info->in); if (df_lr->problem_data) { problem_data = (struct df_lr_problem_data *)df_lr->problem_data; fprintf (file, ";; old in \t"); df_print_regset (file, problem_data->in[bb->index]); } fprintf (file, ";; lr use \t"); df_print_regset (file, bb_info->use); fprintf (file, ";; lr def \t"); df_print_regset (file, bb_info->def); } /* Debugging info at bottom of bb. */ static void df_lr_bottom_dump (basic_block bb, FILE *file) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); struct df_lr_problem_data *problem_data; if (!bb_info || !bb_info->out) return; fprintf (file, ";; lr out \t"); df_print_regset (file, bb_info->out); if (df_lr->problem_data) { problem_data = (struct df_lr_problem_data *)df_lr->problem_data; fprintf (file, ";; old out \t"); df_print_regset (file, problem_data->out[bb->index]); } } /* Build the datastructure to verify that the solution to the dataflow equations is not dirty. */ static void df_lr_verify_solution_start (void) { basic_block bb; struct df_lr_problem_data *problem_data; if (df_lr->solutions_dirty) { df_lr->problem_data = NULL; return; } /* Set it true so that the solution is recomputed. */ df_lr->solutions_dirty = true; problem_data = XNEW (struct df_lr_problem_data); df_lr->problem_data = problem_data; problem_data->in = XNEWVEC (bitmap, last_basic_block); problem_data->out = XNEWVEC (bitmap, last_basic_block); FOR_ALL_BB (bb) { problem_data->in[bb->index] = BITMAP_ALLOC (NULL); problem_data->out[bb->index] = BITMAP_ALLOC (NULL); bitmap_copy (problem_data->in[bb->index], DF_LR_IN (bb)); bitmap_copy (problem_data->out[bb->index], DF_LR_OUT (bb)); } } /* Compare the saved datastructure and the new solution to the dataflow equations. */ static void df_lr_verify_solution_end (void) { struct df_lr_problem_data *problem_data; basic_block bb; if (df_lr->problem_data == NULL) return; problem_data = (struct df_lr_problem_data *)df_lr->problem_data; if (df_lr->solutions_dirty) /* Do not check if the solution is still dirty. See the comment in df_lr_local_finalize for details. */ df_lr->solutions_dirty = false; else FOR_ALL_BB (bb) { if ((!bitmap_equal_p (problem_data->in[bb->index], DF_LR_IN (bb))) || (!bitmap_equal_p (problem_data->out[bb->index], DF_LR_OUT (bb)))) { /*df_dump (stderr);*/ gcc_unreachable (); } } /* Cannot delete them immediately because you may want to dump them if the comparison fails. */ FOR_ALL_BB (bb) { BITMAP_FREE (problem_data->in[bb->index]); BITMAP_FREE (problem_data->out[bb->index]); } free (problem_data->in); free (problem_data->out); free (problem_data); df_lr->problem_data = NULL; } /* All of the information associated with every instance of the problem. */ static struct df_problem problem_LR = { DF_LR, /* Problem id. */ DF_BACKWARD, /* Direction. */ df_lr_alloc, /* Allocate the problem specific data. */ df_lr_reset, /* Reset global information. */ df_lr_free_bb_info, /* Free basic block info. */ df_lr_local_compute, /* Local compute function. */ df_lr_init, /* Init the solution specific data. */ df_worklist_dataflow, /* Worklist solver. */ df_lr_confluence_0, /* Confluence operator 0. */ df_lr_confluence_n, /* Confluence operator n. */ df_lr_transfer_function, /* Transfer function. */ df_lr_local_finalize, /* Finalize function. */ df_lr_free, /* Free all of the problem information. */ NULL, /* Remove this problem from the stack of dataflow problems. */ NULL, /* Debugging. */ df_lr_top_dump, /* Debugging start block. */ df_lr_bottom_dump, /* Debugging end block. */ df_lr_verify_solution_start,/* Incremental solution verify start. */ df_lr_verify_solution_end, /* Incremental solution verify end. */ NULL, /* Dependent problem. */ TV_DF_LR, /* Timing variable. */ false /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_lr_add_problem (void) { df_add_problem (&problem_LR); /* These will be initialized when df_scan_blocks processes each block. */ df_lr->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); } /* Verify that all of the lr related info is consistent and correct. */ void df_lr_verify_transfer_functions (void) { basic_block bb; bitmap saved_def; bitmap saved_use; bitmap saved_adef; bitmap saved_ause; bitmap all_blocks; bool need_as; if (!df) return; saved_def = BITMAP_ALLOC (NULL); saved_use = BITMAP_ALLOC (NULL); saved_adef = BITMAP_ALLOC (NULL); saved_ause = BITMAP_ALLOC (NULL); all_blocks = BITMAP_ALLOC (NULL); FOR_ALL_BB (bb) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); bitmap_set_bit (all_blocks, bb->index); if (bb_info) { /* Make a copy of the transfer functions and then compute new ones to see if the transfer functions have changed. */ if (!bitmap_bit_p (df_lr->out_of_date_transfer_functions, bb->index)) { bitmap_copy (saved_def, bb_info->def); bitmap_copy (saved_use, bb_info->use); bitmap_clear (bb_info->def); bitmap_clear (bb_info->use); if (bb_info->adef) { need_as = true; bitmap_copy (saved_adef, bb_info->adef); bitmap_copy (saved_ause, bb_info->ause); bitmap_clear (bb_info->adef); bitmap_clear (bb_info->ause); } else need_as = false; df_lr_bb_local_compute (bb->index); gcc_assert (bitmap_equal_p (saved_def, bb_info->def)); gcc_assert (bitmap_equal_p (saved_use, bb_info->use)); if (need_as) { gcc_assert (bb_info->adef); gcc_assert (bb_info->ause); gcc_assert (bitmap_equal_p (saved_adef, bb_info->adef)); gcc_assert (bitmap_equal_p (saved_ause, bb_info->ause)); } else { gcc_assert (!bb_info->adef); gcc_assert (!bb_info->ause); } } } else { /* If we do not have basic block info, the block must be in the list of dirty blocks or else some one has added a block behind our backs. */ gcc_assert (bitmap_bit_p (df_lr->out_of_date_transfer_functions, bb->index)); } /* Make sure no one created a block without following procedures. */ gcc_assert (df_scan_get_bb_info (bb->index)); } /* Make sure there are no dirty bits in blocks that have been deleted. */ gcc_assert (!bitmap_intersect_compl_p (df_lr->out_of_date_transfer_functions, all_blocks)); BITMAP_FREE (saved_def); BITMAP_FREE (saved_use); BITMAP_FREE (saved_adef); BITMAP_FREE (saved_ause); BITMAP_FREE (all_blocks); } /*---------------------------------------------------------------------------- COMBINED LIVE REGISTERS AND UNINITIALIZED REGISTERS. First find the set of uses for registers that are reachable from the entry block without passing thru a definition. In and out bitvectors are built for each basic block. The regnum is used to index into these sets. See df.h for details. Then the in and out sets here are the anded results of the in and out sets from the lr and ur problems. ----------------------------------------------------------------------------*/ /* Private data used to verify the solution for this problem. */ struct df_live_problem_data { bitmap *in; bitmap *out; }; /* Set basic block info. */ static void df_live_set_bb_info (unsigned int index, struct df_live_bb_info *bb_info) { gcc_assert (df_live); gcc_assert (index < df_live->block_info_size); df_live->block_info[index] = bb_info; } /* Free basic block info. */ static void df_live_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, void *vbb_info) { struct df_live_bb_info *bb_info = (struct df_live_bb_info *) vbb_info; if (bb_info) { BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); pool_free (df_live->block_pool, bb_info); } } /* Allocate or reset bitmaps for DF_LIVE blocks. The solution bits are not touched unless the block is new. */ static void df_live_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) { unsigned int bb_index; bitmap_iterator bi; if (!df_live->block_pool) df_live->block_pool = create_alloc_pool ("df_live_block pool", sizeof (struct df_live_bb_info), 100); df_grow_bb_info (df_live); EXECUTE_IF_SET_IN_BITMAP (df_live->out_of_date_transfer_functions, 0, bb_index, bi) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); if (bb_info) { bitmap_clear (bb_info->kill); bitmap_clear (bb_info->gen); } else { bb_info = (struct df_live_bb_info *) pool_alloc (df_live->block_pool); df_live_set_bb_info (bb_index, bb_info); bb_info->kill = BITMAP_ALLOC (NULL); bb_info->gen = BITMAP_ALLOC (NULL); bb_info->in = BITMAP_ALLOC (NULL); bb_info->out = BITMAP_ALLOC (NULL); } } df_live->optional_p = (optimize <= 1); } /* Reset the global solution for recalculation. */ static void df_live_reset (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); gcc_assert (bb_info); bitmap_clear (bb_info->in); bitmap_clear (bb_info->out); } } /* Compute local uninitialized register info for basic block BB. */ static void df_live_bb_local_compute (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); rtx insn; struct df_ref **def_rec; int luid = 0; for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) bitmap_set_bit (bb_info->gen, DF_REF_REGNO (def)); } FOR_BB_INSNS (bb, insn) { unsigned int uid = INSN_UID (insn); struct df_insn_info *insn_info = DF_INSN_UID_GET (uid); /* Inserting labels does not always trigger the incremental rescanning. */ if (!insn_info) { gcc_assert (!INSN_P (insn)); df_insn_create_insn_record (insn); } DF_INSN_LUID (insn) = luid; if (!INSN_P (insn)) continue; luid++; for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int regno = DF_REF_REGNO (def); if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL | DF_REF_CONDITIONAL)) /* All partial or conditional def seen are included in the gen set. */ bitmap_set_bit (bb_info->gen, regno); else if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER)) /* Only must clobbers for the entire reg destroy the value. */ bitmap_set_bit (bb_info->kill, regno); else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER)) bitmap_set_bit (bb_info->gen, regno); } } for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) bitmap_set_bit (bb_info->gen, DF_REF_REGNO (def)); } } /* Compute local uninitialized register info. */ static void df_live_local_compute (bitmap all_blocks ATTRIBUTE_UNUSED) { unsigned int bb_index; bitmap_iterator bi; df_grow_insn_info (); EXECUTE_IF_SET_IN_BITMAP (df_live->out_of_date_transfer_functions, 0, bb_index, bi) { df_live_bb_local_compute (bb_index); } bitmap_clear (df_live->out_of_date_transfer_functions); } /* Initialize the solution vectors. */ static void df_live_init (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); bitmap_copy (bb_info->out, bb_info->gen); bitmap_clear (bb_info->in); } } /* Confluence function that ignores fake edges. */ static void df_live_confluence_n (edge e) { bitmap op1 = df_live_get_bb_info (e->dest->index)->in; bitmap op2 = df_live_get_bb_info (e->src->index)->out; if (e->flags & EDGE_FAKE) return; bitmap_ior_into (op1, op2); } /* Transfer function. */ static bool df_live_transfer_function (int bb_index) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); bitmap in = bb_info->in; bitmap out = bb_info->out; bitmap gen = bb_info->gen; bitmap kill = bb_info->kill; return bitmap_ior_and_compl (out, gen, in, kill); } /* And the LR and UR info to produce the LIVE info. */ static void df_live_local_finalize (bitmap all_blocks) { if (df_live->solutions_dirty) { bitmap_iterator bi; unsigned int bb_index; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_lr_bb_info *bb_lr_info = df_lr_get_bb_info (bb_index); struct df_live_bb_info *bb_live_info = df_live_get_bb_info (bb_index); /* No register may reach a location where it is not used. Thus we trim the rr result to the places where it is used. */ bitmap_and_into (bb_live_info->in, bb_lr_info->in); bitmap_and_into (bb_live_info->out, bb_lr_info->out); } df_live->solutions_dirty = false; } } /* Free all storage associated with the problem. */ static void df_live_free (void) { if (df_live->block_info) { unsigned int i; for (i = 0; i < df_live->block_info_size; i++) { struct df_live_bb_info *bb_info = df_live_get_bb_info (i); if (bb_info) { BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); } } free_alloc_pool (df_live->block_pool); df_live->block_info_size = 0; free (df_live->block_info); } BITMAP_FREE (df_live->out_of_date_transfer_functions); free (df_live); } /* Debugging info at top of bb. */ static void df_live_top_dump (basic_block bb, FILE *file) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); struct df_live_problem_data *problem_data; if (!bb_info || !bb_info->in) return; fprintf (file, ";; live in \t"); df_print_regset (file, bb_info->in); if (df_live->problem_data) { problem_data = (struct df_live_problem_data *)df_live->problem_data; fprintf (file, ";; old in \t"); df_print_regset (file, problem_data->in[bb->index]); } fprintf (file, ";; live gen \t"); df_print_regset (file, bb_info->gen); fprintf (file, ";; live kill\t"); df_print_regset (file, bb_info->kill); } /* Debugging info at bottom of bb. */ static void df_live_bottom_dump (basic_block bb, FILE *file) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); struct df_live_problem_data *problem_data; if (!bb_info || !bb_info->out) return; fprintf (file, ";; live out \t"); df_print_regset (file, bb_info->out); if (df_live->problem_data) { problem_data = (struct df_live_problem_data *)df_live->problem_data; fprintf (file, ";; old out \t"); df_print_regset (file, problem_data->out[bb->index]); } } /* Build the datastructure to verify that the solution to the dataflow equations is not dirty. */ static void df_live_verify_solution_start (void) { basic_block bb; struct df_live_problem_data *problem_data; if (df_live->solutions_dirty) { df_live->problem_data = NULL; return; } /* Set it true so that the solution is recomputed. */ df_live->solutions_dirty = true; problem_data = XNEW (struct df_live_problem_data); df_live->problem_data = problem_data; problem_data->in = XNEWVEC (bitmap, last_basic_block); problem_data->out = XNEWVEC (bitmap, last_basic_block); FOR_ALL_BB (bb) { problem_data->in[bb->index] = BITMAP_ALLOC (NULL); problem_data->out[bb->index] = BITMAP_ALLOC (NULL); bitmap_copy (problem_data->in[bb->index], DF_LIVE_IN (bb)); bitmap_copy (problem_data->out[bb->index], DF_LIVE_OUT (bb)); } } /* Compare the saved datastructure and the new solution to the dataflow equations. */ static void df_live_verify_solution_end (void) { struct df_live_problem_data *problem_data; basic_block bb; if (df_live->problem_data == NULL) return; problem_data = (struct df_live_problem_data *)df_live->problem_data; FOR_ALL_BB (bb) { if ((!bitmap_equal_p (problem_data->in[bb->index], DF_LIVE_IN (bb))) || (!bitmap_equal_p (problem_data->out[bb->index], DF_LIVE_OUT (bb)))) { /*df_dump (stderr);*/ gcc_unreachable (); } } /* Cannot delete them immediately because you may want to dump them if the comparison fails. */ FOR_ALL_BB (bb) { BITMAP_FREE (problem_data->in[bb->index]); BITMAP_FREE (problem_data->out[bb->index]); } free (problem_data->in); free (problem_data->out); free (problem_data); df_live->problem_data = NULL; } /* All of the information associated with every instance of the problem. */ static struct df_problem problem_LIVE = { DF_LIVE, /* Problem id. */ DF_FORWARD, /* Direction. */ df_live_alloc, /* Allocate the problem specific data. */ df_live_reset, /* Reset global information. */ df_live_free_bb_info, /* Free basic block info. */ df_live_local_compute, /* Local compute function. */ df_live_init, /* Init the solution specific data. */ df_worklist_dataflow, /* Worklist solver. */ NULL, /* Confluence operator 0. */ df_live_confluence_n, /* Confluence operator n. */ df_live_transfer_function, /* Transfer function. */ df_live_local_finalize, /* Finalize function. */ df_live_free, /* Free all of the problem information. */ df_live_free, /* Remove this problem from the stack of dataflow problems. */ NULL, /* Debugging. */ df_live_top_dump, /* Debugging start block. */ df_live_bottom_dump, /* Debugging end block. */ df_live_verify_solution_start,/* Incremental solution verify start. */ df_live_verify_solution_end, /* Incremental solution verify end. */ &problem_LR, /* Dependent problem. */ TV_DF_LIVE, /* Timing variable. */ false /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_live_add_problem (void) { df_add_problem (&problem_LIVE); /* These will be initialized when df_scan_blocks processes each block. */ df_live->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); } /* Set all of the blocks as dirty. This needs to be done if this problem is added after all of the insns have been scanned. */ void df_live_set_all_dirty (void) { basic_block bb; FOR_ALL_BB (bb) bitmap_set_bit (df_live->out_of_date_transfer_functions, bb->index); } /* Verify that all of the lr related info is consistent and correct. */ void df_live_verify_transfer_functions (void) { basic_block bb; bitmap saved_gen; bitmap saved_kill; bitmap all_blocks; if (!df) return; saved_gen = BITMAP_ALLOC (NULL); saved_kill = BITMAP_ALLOC (NULL); all_blocks = BITMAP_ALLOC (NULL); df_grow_insn_info (); FOR_ALL_BB (bb) { struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); bitmap_set_bit (all_blocks, bb->index); if (bb_info) { /* Make a copy of the transfer functions and then compute new ones to see if the transfer functions have changed. */ if (!bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index)) { bitmap_copy (saved_gen, bb_info->gen); bitmap_copy (saved_kill, bb_info->kill); bitmap_clear (bb_info->gen); bitmap_clear (bb_info->kill); df_live_bb_local_compute (bb->index); gcc_assert (bitmap_equal_p (saved_gen, bb_info->gen)); gcc_assert (bitmap_equal_p (saved_kill, bb_info->kill)); } } else { /* If we do not have basic block info, the block must be in the list of dirty blocks or else some one has added a block behind our backs. */ gcc_assert (bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index)); } /* Make sure no one created a block without following procedures. */ gcc_assert (df_scan_get_bb_info (bb->index)); } /* Make sure there are no dirty bits in blocks that have been deleted. */ gcc_assert (!bitmap_intersect_compl_p (df_live->out_of_date_transfer_functions, all_blocks)); BITMAP_FREE (saved_gen); BITMAP_FREE (saved_kill); BITMAP_FREE (all_blocks); } /*---------------------------------------------------------------------------- UNINITIALIZED REGISTERS WITH EARLYCLOBBER Find the set of uses for registers that are reachable from the entry block without passing thru a definition. In and out bitvectors are built for each basic block. The regnum is used to index into these sets. See df.h for details. This is a variant of the UR problem above that has a lot of special features just for the register allocation phase. This problem should go away if someone would fix the interference graph. ----------------------------------------------------------------------------*/ /* Private data used to compute the solution for this problem. These data structures are not accessible outside of this module. */ struct df_urec_problem_data { bool earlyclobbers_found; /* True if any instruction contains an earlyclobber. */ #ifdef STACK_REGS bitmap stack_regs; /* Registers that may be allocated to a STACK_REGS. */ #endif }; /* Set basic block info. */ static void df_urec_set_bb_info (unsigned int index, struct df_urec_bb_info *bb_info) { gcc_assert (df_urec); gcc_assert (index < df_urec->block_info_size); df_urec->block_info[index] = bb_info; } /* Free basic block info. */ static void df_urec_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, void *vbb_info) { struct df_urec_bb_info *bb_info = (struct df_urec_bb_info *) vbb_info; if (bb_info) { BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); BITMAP_FREE (bb_info->earlyclobber); pool_free (df_urec->block_pool, bb_info); } } /* Allocate or reset bitmaps for DF_UREC blocks. The solution bits are not touched unless the block is new. */ static void df_urec_alloc (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; struct df_urec_problem_data *problem_data = (struct df_urec_problem_data *) df_urec->problem_data; if (!df_urec->block_pool) df_urec->block_pool = create_alloc_pool ("df_urec_block pool", sizeof (struct df_urec_bb_info), 50); if (!df_urec->problem_data) { problem_data = XNEW (struct df_urec_problem_data); df_urec->problem_data = problem_data; } problem_data->earlyclobbers_found = false; df_grow_bb_info (df_urec); EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb_index); if (bb_info) { bitmap_clear (bb_info->kill); bitmap_clear (bb_info->gen); bitmap_clear (bb_info->earlyclobber); } else { bb_info = (struct df_urec_bb_info *) pool_alloc (df_urec->block_pool); df_urec_set_bb_info (bb_index, bb_info); bb_info->kill = BITMAP_ALLOC (NULL); bb_info->gen = BITMAP_ALLOC (NULL); bb_info->in = BITMAP_ALLOC (NULL); bb_info->out = BITMAP_ALLOC (NULL); bb_info->top = BITMAP_ALLOC (NULL); bb_info->earlyclobber = BITMAP_ALLOC (NULL); } } df_urec->optional_p = true; } /* The function modifies local info for register REG being changed in SETTER. DATA is used to pass the current basic block info. */ static void df_urec_mark_reg_change (rtx reg, const_rtx setter, void *data) { int regno; int endregno; int i; struct df_urec_bb_info *bb_info = (struct df_urec_bb_info*) data; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (!REG_P (reg)) return; regno = REGNO (reg); if (regno < FIRST_PSEUDO_REGISTER) { endregno = END_HARD_REGNO (reg); for (i = regno; i < endregno; i++) { bitmap_set_bit (bb_info->kill, i); if (GET_CODE (setter) != CLOBBER) bitmap_set_bit (bb_info->gen, i); else bitmap_clear_bit (bb_info->gen, i); } } else { bitmap_set_bit (bb_info->kill, regno); if (GET_CODE (setter) != CLOBBER) bitmap_set_bit (bb_info->gen, regno); else bitmap_clear_bit (bb_info->gen, regno); } } /* Classes of registers which could be early clobbered in the current insn. */ static VEC(int,heap) *earlyclobber_regclass; /* This function finds and stores register classes that could be early clobbered in INSN. If any earlyclobber classes are found, the function returns TRUE, in all other cases it returns FALSE. */ static bool df_urec_check_earlyclobber (rtx insn) { int opno; bool found = false; extract_insn (insn); VEC_truncate (int, earlyclobber_regclass, 0); for (opno = 0; opno < recog_data.n_operands; opno++) { char c; bool amp_p; int i; enum reg_class class; const char *p = recog_data.constraints[opno]; class = NO_REGS; amp_p = false; for (;;) { c = *p; switch (c) { case '=': case '+': case '?': case '#': case '!': case '*': case '%': case 'm': case '<': case '>': case 'V': case 'o': case 'E': case 'F': case 'G': case 'H': case 's': case 'i': case 'n': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'X': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* These don't say anything we care about. */ break; case '&': amp_p = true; break; case '\0': case ',': if (amp_p && class != NO_REGS) { int rc; found = true; for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++) { if (rc == (int) class) goto found_rc; } /* We use VEC_quick_push here because earlyclobber_regclass holds no more than N_REG_CLASSES elements. */ VEC_quick_push (int, earlyclobber_regclass, (int) class); found_rc: ; } amp_p = false; class = NO_REGS; break; case 'r': class = GENERAL_REGS; break; default: class = REG_CLASS_FROM_CONSTRAINT (c, p); break; } if (c == '\0') break; p += CONSTRAINT_LEN (c, p); } } return found; } /* The function checks that pseudo-register *X has a class intersecting with the class of pseudo-register could be early clobbered in the same insn. This function is a no-op if earlyclobber_regclass is empty. Reload can assign the same hard register to uninitialized pseudo-register and early clobbered pseudo-register in an insn if the pseudo-register is used first time in given BB and not lived at the BB start. To prevent this we don't change life information for such pseudo-registers. */ static int df_urec_mark_reg_use_for_earlyclobber (rtx *x, void *data) { enum reg_class pref_class, alt_class; int i, regno; struct df_urec_bb_info *bb_info = (struct df_urec_bb_info*) data; if (REG_P (*x) && REGNO (*x) >= FIRST_PSEUDO_REGISTER) { int rc; regno = REGNO (*x); if (bitmap_bit_p (bb_info->kill, regno) || bitmap_bit_p (bb_info->gen, regno)) return 0; pref_class = reg_preferred_class (regno); alt_class = reg_alternate_class (regno); for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++) { if (reg_classes_intersect_p (rc, pref_class) || (rc != NO_REGS && reg_classes_intersect_p (rc, alt_class))) { bitmap_set_bit (bb_info->earlyclobber, regno); break; } } } return 0; } /* The function processes all pseudo-registers in *X with the aid of previous function. */ static void df_urec_mark_reg_use_for_earlyclobber_1 (rtx *x, void *data) { for_each_rtx (x, df_urec_mark_reg_use_for_earlyclobber, data); } /* Compute local uninitialized register info for basic block BB. */ static void df_urec_bb_local_compute (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb_index); rtx insn; struct df_ref **def_rec; for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) { unsigned int regno = DF_REF_REGNO (def); bitmap_set_bit (bb_info->gen, regno); } } FOR_BB_INSNS (bb, insn) { if (INSN_P (insn)) { note_stores (PATTERN (insn), df_urec_mark_reg_change, bb_info); if (df_urec_check_earlyclobber (insn)) { struct df_urec_problem_data *problem_data = (struct df_urec_problem_data *) df_urec->problem_data; problem_data->earlyclobbers_found = true; note_uses (&PATTERN (insn), df_urec_mark_reg_use_for_earlyclobber_1, bb_info); } } } for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) { unsigned int regno = DF_REF_REGNO (def); bitmap_set_bit (bb_info->gen, regno); } } } /* Compute local uninitialized register info. */ static void df_urec_local_compute (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; #ifdef STACK_REGS int i; HARD_REG_SET stack_hard_regs, used; struct df_urec_problem_data *problem_data = (struct df_urec_problem_data *) df_urec->problem_data; /* Any register that MAY be allocated to a register stack (like the 387) is treated poorly. Each such register is marked as being live everywhere. This keeps the register allocator and the subsequent passes from doing anything useful with these values. FIXME: This seems like an incredibly poor idea. */ CLEAR_HARD_REG_SET (stack_hard_regs); for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) SET_HARD_REG_BIT (stack_hard_regs, i); problem_data->stack_regs = BITMAP_ALLOC (NULL); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) { COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]); IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]); AND_HARD_REG_SET (used, stack_hard_regs); if (!hard_reg_set_empty_p (used)) bitmap_set_bit (problem_data->stack_regs, i); } #endif /* We know that earlyclobber_regclass holds no more than N_REG_CLASSES elements. See df_urec_check_earlyclobber. */ earlyclobber_regclass = VEC_alloc (int, heap, N_REG_CLASSES); EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { df_urec_bb_local_compute (bb_index); } VEC_free (int, heap, earlyclobber_regclass); } /* Initialize the solution vectors. */ static void df_urec_init (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb_index); bitmap_copy (bb_info->out, bb_info->gen); bitmap_clear (bb_info->in); } } /* Or in the stack regs, hard regs and early clobber regs into the urec_in sets of all of the blocks. */ static void df_urec_local_finalize (bitmap all_blocks) { bitmap tmp = BITMAP_ALLOC (NULL); bitmap_iterator bi; unsigned int bb_index; struct df_urec_problem_data *problem_data = (struct df_urec_problem_data *) df_urec->problem_data; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb_index); struct df_lr_bb_info *bb_lr_info = df_lr_get_bb_info (bb_index); if (bb_index != ENTRY_BLOCK && bb_index != EXIT_BLOCK) { if (problem_data->earlyclobbers_found) bitmap_ior_into (bb_info->in, bb_info->earlyclobber); #ifdef STACK_REGS /* We can not use the same stack register for uninitialized pseudo-register and another living pseudo-register because if the uninitialized pseudo-register dies, subsequent pass reg-stack will be confused (it will believe that the other register dies). */ bitmap_ior_into (bb_info->in, problem_data->stack_regs); bitmap_ior_into (bb_info->out, problem_data->stack_regs); #endif } /* No register may reach a location where it is not used. Thus we trim the rr result to the places where it is used. */ bitmap_and_into (bb_info->in, bb_lr_info->in); bitmap_and_into (bb_info->out, bb_lr_info->out); bitmap_copy (bb_info->top, bb_info->in); if (bb_lr_info->adef) bitmap_ior_into (bb_info->top, bb_lr_info->adef); bitmap_and_into (bb_info->top, bb_lr_info->top); #if 0 /* Hard registers may still stick in the ur_out set, but not be in the ur_in set, if their only mention was in a call in this block. This is because a call kills in the lr problem but does not kill in the rr problem. To clean this up, we execute the transfer function on the lr_in set and then use that to knock bits out of ur_out. */ bitmap_ior_and_compl (tmp, bb_info->gen, bb_lr_info->in, bb_info->kill); bitmap_and_into (bb_info->out, tmp); #endif } #ifdef STACK_REGS BITMAP_FREE (problem_data->stack_regs); #endif BITMAP_FREE (tmp); } /* Confluence function that ignores fake edges. */ static void df_urec_confluence_n (edge e) { bitmap op1 = df_urec_get_bb_info (e->dest->index)->in; bitmap op2 = df_urec_get_bb_info (e->src->index)->out; if (e->flags & EDGE_FAKE) return; bitmap_ior_into (op1, op2); } /* Transfer function. */ static bool df_urec_transfer_function (int bb_index) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb_index); bitmap in = bb_info->in; bitmap out = bb_info->out; bitmap gen = bb_info->gen; bitmap kill = bb_info->kill; return bitmap_ior_and_compl (out, gen, in, kill); } /* Free all storage associated with the problem. */ static void df_urec_free (void) { if (df_urec->block_info) { unsigned int i; for (i = 0; i < df_urec->block_info_size; i++) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (i); if (bb_info) { BITMAP_FREE (bb_info->gen); BITMAP_FREE (bb_info->kill); BITMAP_FREE (bb_info->in); BITMAP_FREE (bb_info->out); BITMAP_FREE (bb_info->earlyclobber); BITMAP_FREE (bb_info->top); } } free_alloc_pool (df_urec->block_pool); df_urec->block_info_size = 0; free (df_urec->block_info); free (df_urec->problem_data); } free (df_urec); } /* Debugging info at top of bb. */ static void df_urec_top_dump (basic_block bb, FILE *file) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb->index); if (!bb_info || !bb_info->in) return; fprintf (file, ";; urec in \t"); df_print_regset (file, bb_info->in); fprintf (file, ";; urec gen \t"); df_print_regset (file, bb_info->gen); fprintf (file, ";; urec kill\t"); df_print_regset (file, bb_info->kill); fprintf (file, ";; urec ec\t"); df_print_regset (file, bb_info->earlyclobber); } /* Debugging info at bottom of bb. */ static void df_urec_bottom_dump (basic_block bb, FILE *file) { struct df_urec_bb_info *bb_info = df_urec_get_bb_info (bb->index); if (!bb_info || !bb_info->out) return; fprintf (file, ";; urec out \t"); df_print_regset (file, bb_info->out); } /* All of the information associated with every instance of the problem. */ static struct df_problem problem_UREC = { DF_UREC, /* Problem id. */ DF_FORWARD, /* Direction. */ df_urec_alloc, /* Allocate the problem specific data. */ NULL, /* Reset global information. */ df_urec_free_bb_info, /* Free basic block info. */ df_urec_local_compute, /* Local compute function. */ df_urec_init, /* Init the solution specific data. */ df_worklist_dataflow, /* Worklist solver. */ NULL, /* Confluence operator 0. */ df_urec_confluence_n, /* Confluence operator n. */ df_urec_transfer_function, /* Transfer function. */ df_urec_local_finalize, /* Finalize function. */ df_urec_free, /* Free all of the problem information. */ df_urec_free, /* Remove this problem from the stack of dataflow problems. */ NULL, /* Debugging. */ df_urec_top_dump, /* Debugging start block. */ df_urec_bottom_dump, /* Debugging end block. */ NULL, /* Incremental solution verify start. */ NULL, /* Incremental solution verify end. */ &problem_LR, /* Dependent problem. */ TV_DF_UREC, /* Timing variable. */ false /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_urec_add_problem (void) { df_add_problem (&problem_UREC); } /*---------------------------------------------------------------------------- CREATE DEF_USE (DU) and / or USE_DEF (UD) CHAINS Link either the defs to the uses and / or the uses to the defs. These problems are set up like the other dataflow problems so that they nicely fit into the framework. They are much simpler and only involve a single traversal of instructions and an examination of the reaching defs information (the dependent problem). ----------------------------------------------------------------------------*/ #define df_chain_problem_p(FLAG) (((enum df_chain_flags)df_chain->local_flags)&(FLAG)) /* Create a du or ud chain from SRC to DST and link it into SRC. */ struct df_link * df_chain_create (struct df_ref *src, struct df_ref *dst) { struct df_link *head = DF_REF_CHAIN (src); struct df_link *link = pool_alloc (df_chain->block_pool);; DF_REF_CHAIN (src) = link; link->next = head; link->ref = dst; return link; } /* Delete any du or ud chains that start at REF and point to TARGET. */ static void df_chain_unlink_1 (struct df_ref *ref, struct df_ref *target) { struct df_link *chain = DF_REF_CHAIN (ref); struct df_link *prev = NULL; while (chain) { if (chain->ref == target) { if (prev) prev->next = chain->next; else DF_REF_CHAIN (ref) = chain->next; pool_free (df_chain->block_pool, chain); return; } prev = chain; chain = chain->next; } } /* Delete a du or ud chain that leave or point to REF. */ void df_chain_unlink (struct df_ref *ref) { struct df_link *chain = DF_REF_CHAIN (ref); while (chain) { struct df_link *next = chain->next; /* Delete the other side if it exists. */ df_chain_unlink_1 (chain->ref, ref); pool_free (df_chain->block_pool, chain); chain = next; } DF_REF_CHAIN (ref) = NULL; } /* Copy the du or ud chain starting at FROM_REF and attach it to TO_REF. */ void df_chain_copy (struct df_ref *to_ref, struct df_link *from_ref) { while (from_ref) { df_chain_create (to_ref, from_ref->ref); from_ref = from_ref->next; } } /* Remove this problem from the stack of dataflow problems. */ static void df_chain_remove_problem (void) { bitmap_iterator bi; unsigned int bb_index; /* Wholesale destruction of the old chains. */ if (df_chain->block_pool) free_alloc_pool (df_chain->block_pool); EXECUTE_IF_SET_IN_BITMAP (df_chain->out_of_date_transfer_functions, 0, bb_index, bi) { rtx insn; struct df_ref **def_rec; struct df_ref **use_rec; basic_block bb = BASIC_BLOCK (bb_index); if (df_chain_problem_p (DF_DU_CHAIN)) for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++) DF_REF_CHAIN (*def_rec) = NULL; if (df_chain_problem_p (DF_UD_CHAIN)) for (use_rec = df_get_artificial_uses (bb->index); *use_rec; use_rec++) DF_REF_CHAIN (*use_rec) = NULL; FOR_BB_INSNS (bb, insn) { unsigned int uid = INSN_UID (insn); if (INSN_P (insn)) { if (df_chain_problem_p (DF_DU_CHAIN)) for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) DF_REF_CHAIN (*def_rec) = NULL; if (df_chain_problem_p (DF_UD_CHAIN)) { for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) DF_REF_CHAIN (*use_rec) = NULL; for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++) DF_REF_CHAIN (*use_rec) = NULL; } } } } bitmap_clear (df_chain->out_of_date_transfer_functions); df_chain->block_pool = NULL; } /* Remove the chain problem completely. */ static void df_chain_fully_remove_problem (void) { df_chain_remove_problem (); BITMAP_FREE (df_chain->out_of_date_transfer_functions); free (df_chain); } /* Create def-use or use-def chains. */ static void df_chain_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) { df_chain_remove_problem (); df_chain->block_pool = create_alloc_pool ("df_chain_block pool", sizeof (struct df_link), 50); df_chain->optional_p = true; } /* Reset all of the chains when the set of basic blocks changes. */ static void df_chain_reset (bitmap blocks_to_clear ATTRIBUTE_UNUSED) { df_chain_remove_problem (); } /* Create the chains for a list of USEs. */ static void df_chain_create_bb_process_use (bitmap local_rd, struct df_ref **use_rec, enum df_ref_flags top_flag) { bitmap_iterator bi; unsigned int def_index; while (*use_rec) { struct df_ref *use = *use_rec; unsigned int uregno = DF_REF_REGNO (use); if ((!(df->changeable_flags & DF_NO_HARD_REGS)) || (uregno >= FIRST_PSEUDO_REGISTER)) { /* Do not want to go through this for an uninitialized var. */ int count = DF_DEFS_COUNT (uregno); if (count) { if (top_flag == (DF_REF_FLAGS (use) & DF_REF_AT_TOP)) { unsigned int first_index = DF_DEFS_BEGIN (uregno); unsigned int last_index = first_index + count - 1; EXECUTE_IF_SET_IN_BITMAP (local_rd, first_index, def_index, bi) { struct df_ref *def; if (def_index > last_index) break; def = DF_DEFS_GET (def_index); if (df_chain_problem_p (DF_DU_CHAIN)) df_chain_create (def, use); if (df_chain_problem_p (DF_UD_CHAIN)) df_chain_create (use, def); } } } } use_rec++; } } /* Create chains from reaching defs bitmaps for basic block BB. */ static void df_chain_create_bb (unsigned int bb_index) { basic_block bb = BASIC_BLOCK (bb_index); struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); rtx insn; bitmap cpy = BITMAP_ALLOC (NULL); struct df_ref **def_rec; bitmap_copy (cpy, bb_info->in); bitmap_set_bit (df_chain->out_of_date_transfer_functions, bb_index); /* Since we are going forwards, process the artificial uses first then the artificial defs second. */ #ifdef EH_USES /* Create the chains for the artificial uses from the EH_USES at the beginning of the block. */ /* Artificials are only hard regs. */ if (!(df->changeable_flags & DF_NO_HARD_REGS)) df_chain_create_bb_process_use (cpy, df_get_artificial_uses (bb->index), DF_REF_AT_TOP); #endif for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) { unsigned int dregno = DF_REF_REGNO (def); if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_clear_range (cpy, DF_DEFS_BEGIN (dregno), DF_DEFS_COUNT (dregno)); bitmap_set_bit (cpy, DF_REF_ID (def)); } } /* Process the regular instructions next. */ FOR_BB_INSNS (bb, insn) { struct df_ref **def_rec; unsigned int uid = INSN_UID (insn); if (!INSN_P (insn)) continue; /* Now scan the uses and link them up with the defs that remain in the cpy vector. */ df_chain_create_bb_process_use (cpy, DF_INSN_UID_USES (uid), 0); if (df->changeable_flags & DF_EQ_NOTES) df_chain_create_bb_process_use (cpy, DF_INSN_UID_EQ_USES (uid), 0); /* Since we are going forwards, process the defs second. This pass only changes the bits in cpy. */ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if ((!(df->changeable_flags & DF_NO_HARD_REGS)) || (dregno >= FIRST_PSEUDO_REGISTER)) { if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_clear_range (cpy, DF_DEFS_BEGIN (dregno), DF_DEFS_COUNT (dregno)); if (!(DF_REF_FLAGS (def) & (DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER))) bitmap_set_bit (cpy, DF_REF_ID (def)); } } } /* Create the chains for the artificial uses of the hard registers at the end of the block. */ if (!(df->changeable_flags & DF_NO_HARD_REGS)) df_chain_create_bb_process_use (cpy, df_get_artificial_uses (bb->index), 0); BITMAP_FREE (cpy); } /* Create def-use chains from reaching use bitmaps for basic blocks in BLOCKS. */ static void df_chain_finalize (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { df_chain_create_bb (bb_index); } } /* Free all storage associated with the problem. */ static void df_chain_free (void) { free_alloc_pool (df_chain->block_pool); BITMAP_FREE (df_chain->out_of_date_transfer_functions); free (df_chain); } /* Debugging info. */ static void df_chain_top_dump (basic_block bb, FILE *file) { if (df_chain_problem_p (DF_DU_CHAIN)) { rtx insn; struct df_ref **def_rec = df_get_artificial_defs (bb->index); if (*def_rec) { fprintf (file, ";; DU chains for artificial defs\n"); while (*def_rec) { struct df_ref *def = *def_rec; fprintf (file, ";; reg %d ", DF_REF_REGNO (def)); df_chain_dump (DF_REF_CHAIN (def), file); fprintf (file, "\n"); def_rec++; } } FOR_BB_INSNS (bb, insn) { unsigned int uid = INSN_UID (insn); if (INSN_P (insn)) { def_rec = DF_INSN_UID_DEFS (uid); if (*def_rec) { fprintf (file, ";; DU chains for insn luid %d uid %d\n", DF_INSN_LUID (insn), uid); while (*def_rec) { struct df_ref *def = *def_rec; fprintf (file, ";; reg %d ", DF_REF_REGNO (def)); if (def->flags & DF_REF_READ_WRITE) fprintf (file, "read/write "); df_chain_dump (DF_REF_CHAIN (def), file); fprintf (file, "\n"); def_rec++; } } } } } } static void df_chain_bottom_dump (basic_block bb, FILE *file) { if (df_chain_problem_p (DF_UD_CHAIN)) { rtx insn; struct df_ref **use_rec = df_get_artificial_uses (bb->index); if (*use_rec) { fprintf (file, ";; UD chains for artificial uses\n"); while (*use_rec) { struct df_ref *use = *use_rec; fprintf (file, ";; reg %d ", DF_REF_REGNO (use)); df_chain_dump (DF_REF_CHAIN (use), file); fprintf (file, "\n"); use_rec++; } } FOR_BB_INSNS (bb, insn) { unsigned int uid = INSN_UID (insn); if (INSN_P (insn)) { struct df_ref **eq_use_rec = DF_INSN_UID_EQ_USES (uid); use_rec = DF_INSN_UID_USES (uid); if (*use_rec || *eq_use_rec) { fprintf (file, ";; UD chains for insn luid %d uid %d\n", DF_INSN_LUID (insn), uid); while (*use_rec) { struct df_ref *use = *use_rec; fprintf (file, ";; reg %d ", DF_REF_REGNO (use)); if (use->flags & DF_REF_READ_WRITE) fprintf (file, "read/write "); df_chain_dump (DF_REF_CHAIN (use), file); fprintf (file, "\n"); use_rec++; } while (*eq_use_rec) { struct df_ref *use = *eq_use_rec; fprintf (file, ";; eq_note reg %d ", DF_REF_REGNO (use)); df_chain_dump (DF_REF_CHAIN (use), file); fprintf (file, "\n"); eq_use_rec++; } } } } } } static struct df_problem problem_CHAIN = { DF_CHAIN, /* Problem id. */ DF_NONE, /* Direction. */ df_chain_alloc, /* Allocate the problem specific data. */ df_chain_reset, /* Reset global information. */ NULL, /* Free basic block info. */ NULL, /* Local compute function. */ NULL, /* Init the solution specific data. */ NULL, /* Iterative solver. */ NULL, /* Confluence operator 0. */ NULL, /* Confluence operator n. */ NULL, /* Transfer function. */ df_chain_finalize, /* Finalize function. */ df_chain_free, /* Free all of the problem information. */ df_chain_fully_remove_problem,/* Remove this problem from the stack of dataflow problems. */ NULL, /* Debugging. */ df_chain_top_dump, /* Debugging start block. */ df_chain_bottom_dump, /* Debugging end block. */ NULL, /* Incremental solution verify start. */ NULL, /* Incremental solution verify end. */ &problem_RD, /* Dependent problem. */ TV_DF_CHAIN, /* Timing variable. */ false /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_chain_add_problem (enum df_chain_flags chain_flags) { df_add_problem (&problem_CHAIN); df_chain->local_flags = (unsigned int)chain_flags; df_chain->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); } #undef df_chain_problem_p /*---------------------------------------------------------------------------- This pass computes REG_DEAD and REG_UNUSED notes. ----------------------------------------------------------------------------*/ static void df_note_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) { df_note->optional_p = true; } #ifdef REG_DEAD_DEBUGGING static void df_print_note (const char *prefix, rtx insn, rtx note) { if (dump_file) { fprintf (dump_file, "%s %d ", prefix, INSN_UID (insn)); print_rtl (dump_file, note); fprintf (dump_file, "\n"); } } #endif /* After reg-stack, the x86 floating point stack regs are difficult to analyze because of all of the pushes, pops and rotations. Thus, we just leave the notes alone. */ #ifdef STACK_REGS static inline bool df_ignore_stack_reg (int regno) { return regstack_completed && IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG); } #else static inline bool df_ignore_stack_reg (int regno ATTRIBUTE_UNUSED) { return false; } #endif /* Remove all of the REG_DEAD or REG_UNUSED notes from INSN and add them to OLD_DEAD_NOTES and OLD_UNUSED_NOTES. */ static void df_kill_notes (rtx insn, rtx *old_dead_notes, rtx *old_unused_notes) { rtx *pprev = ®_NOTES (insn); rtx link = *pprev; rtx dead = NULL; rtx unused = NULL; while (link) { switch (REG_NOTE_KIND (link)) { case REG_DEAD: /* After reg-stack, we need to ignore any unused notes for the stack registers. */ if (df_ignore_stack_reg (REGNO (XEXP (link, 0)))) { pprev = &XEXP (link, 1); link = *pprev; } else { rtx next = XEXP (link, 1); #ifdef REG_DEAD_DEBUGGING df_print_note ("deleting: ", insn, link); #endif XEXP (link, 1) = dead; dead = link; *pprev = link = next; } break; case REG_UNUSED: /* After reg-stack, we need to ignore any unused notes for the stack registers. */ if (df_ignore_stack_reg (REGNO (XEXP (link, 0)))) { pprev = &XEXP (link, 1); link = *pprev; } else { rtx next = XEXP (link, 1); #ifdef REG_DEAD_DEBUGGING df_print_note ("deleting: ", insn, link); #endif XEXP (link, 1) = unused; unused = link; *pprev = link = next; } break; default: pprev = &XEXP (link, 1); link = *pprev; break; } } *old_dead_notes = dead; *old_unused_notes = unused; } /* Set a NOTE_TYPE note for REG in INSN. Try to pull it from the OLD list, otherwise create a new one. */ static inline rtx df_set_note (enum reg_note note_type, rtx insn, rtx old, rtx reg) { rtx this = old; rtx prev = NULL; while (this) if (XEXP (this, 0) == reg) { if (prev) XEXP (prev, 1) = XEXP (this, 1); else old = XEXP (this, 1); XEXP (this, 1) = REG_NOTES (insn); REG_NOTES (insn) = this; return old; } else { prev = this; this = XEXP (this, 1); } /* Did not find the note. */ REG_NOTES (insn) = alloc_EXPR_LIST (note_type, reg, REG_NOTES (insn)); return old; } /* A subroutine of df_set_unused_notes_for_mw, with a selection of its arguments. Return true if the register value described by MWS's mw_reg is known to be completely unused, and if mw_reg can therefore be used in a REG_UNUSED note. */ static bool df_whole_mw_reg_unused_p (struct df_mw_hardreg *mws, bitmap live, bitmap artificial_uses) { unsigned int r; /* If MWS describes a partial reference, create REG_UNUSED notes for individual hard registers. */ if (mws->flags & DF_REF_PARTIAL) return false; /* Likewise if some part of the register is used. */ for (r = mws->start_regno; r <= mws->end_regno; r++) if (bitmap_bit_p (live, r) || bitmap_bit_p (artificial_uses, r)) return false; gcc_assert (REG_P (mws->mw_reg)); return true; } /* Set the REG_UNUSED notes for the multiword hardreg defs in INSN based on the bits in LIVE. Do not generate notes for registers in artificial uses. DO_NOT_GEN is updated so that REG_DEAD notes are not generated if the reg is both read and written by the instruction. */ static rtx df_set_unused_notes_for_mw (rtx insn, rtx old, struct df_mw_hardreg *mws, bitmap live, bitmap do_not_gen, bitmap artificial_uses) { unsigned int r; #ifdef REG_DEAD_DEBUGGING if (dump_file) fprintf (dump_file, "mw_set_unused looking at mws[%d..%d]\n", mws->start_regno, mws->end_regno); #endif if (df_whole_mw_reg_unused_p (mws, live, artificial_uses)) { unsigned int regno = mws->start_regno; old = df_set_note (REG_UNUSED, insn, old, mws->mw_reg); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 1: ", insn, REG_NOTES (insn)); #endif bitmap_set_bit (do_not_gen, regno); /* Only do this if the value is totally dead. */ } else for (r = mws->start_regno; r <= mws->end_regno; r++) { if (!bitmap_bit_p (live, r) && !bitmap_bit_p (artificial_uses, r)) { old = df_set_note (REG_UNUSED, insn, old, regno_reg_rtx[r]); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 2: ", insn, REG_NOTES (insn)); #endif } bitmap_set_bit (do_not_gen, r); } return old; } /* A subroutine of df_set_dead_notes_for_mw, with a selection of its arguments. Return true if the register value described by MWS's mw_reg is known to be completely dead, and if mw_reg can therefore be used in a REG_DEAD note. */ static bool df_whole_mw_reg_dead_p (struct df_mw_hardreg *mws, bitmap live, bitmap artificial_uses, bitmap do_not_gen) { unsigned int r; /* If MWS describes a partial reference, create REG_DEAD notes for individual hard registers. */ if (mws->flags & DF_REF_PARTIAL) return false; /* Likewise if some part of the register is not dead. */ for (r = mws->start_regno; r <= mws->end_regno; r++) if (bitmap_bit_p (live, r) || bitmap_bit_p (artificial_uses, r) || bitmap_bit_p (do_not_gen, r)) return false; gcc_assert (REG_P (mws->mw_reg)); return true; } /* Set the REG_DEAD notes for the multiword hardreg use in INSN based on the bits in LIVE. DO_NOT_GEN is used to keep REG_DEAD notes from being set if the instruction both reads and writes the register. */ static rtx df_set_dead_notes_for_mw (rtx insn, rtx old, struct df_mw_hardreg *mws, bitmap live, bitmap do_not_gen, bitmap artificial_uses) { unsigned int r; #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, "mw_set_dead looking at mws[%d..%d]\n do_not_gen =", mws->start_regno, mws->end_regno); df_print_regset (dump_file, do_not_gen); fprintf (dump_file, " live ="); df_print_regset (dump_file, live); fprintf (dump_file, " artificial uses ="); df_print_regset (dump_file, artificial_uses); } #endif if (df_whole_mw_reg_dead_p (mws, live, artificial_uses, do_not_gen)) { /* Add a dead note for the entire multi word register. */ old = df_set_note (REG_DEAD, insn, old, mws->mw_reg); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 1: ", insn, REG_NOTES (insn)); #endif } else { for (r = mws->start_regno; r <= mws->end_regno; r++) if (!bitmap_bit_p (live, r) && !bitmap_bit_p (artificial_uses, r) && !bitmap_bit_p (do_not_gen, r)) { old = df_set_note (REG_DEAD, insn, old, regno_reg_rtx[r]); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 2: ", insn, REG_NOTES (insn)); #endif } } return old; } /* Create a REG_UNUSED note if necessary for DEF in INSN updating LIVE. Do not generate notes for registers in ARTIFICIAL_USES. */ static rtx df_create_unused_note (rtx insn, rtx old, struct df_ref *def, bitmap live, bitmap artificial_uses) { unsigned int dregno = DF_REF_REGNO (def); #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, " regular looking at def "); df_ref_debug (def, dump_file); } #endif if (!(bitmap_bit_p (live, dregno) || (DF_REF_FLAGS (def) & DF_REF_MW_HARDREG) || bitmap_bit_p (artificial_uses, dregno) || df_ignore_stack_reg (dregno))) { rtx reg = (DF_REF_LOC (def)) ? *DF_REF_REAL_LOC (def): DF_REF_REG (def); old = df_set_note (REG_UNUSED, insn, old, reg); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 3: ", insn, REG_NOTES (insn)); #endif } return old; } /* Recompute the REG_DEAD and REG_UNUSED notes and compute register info: lifetime, bb, and number of defs and uses for basic block BB. The three bitvectors are scratch regs used here. */ static void df_note_bb_compute (unsigned int bb_index, bitmap live, bitmap do_not_gen, bitmap artificial_uses) { basic_block bb = BASIC_BLOCK (bb_index); rtx insn; struct df_ref **def_rec; struct df_ref **use_rec; bitmap_copy (live, df_get_live_out (bb)); bitmap_clear (artificial_uses); #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, "live at bottom "); df_print_regset (dump_file, live); } #endif /* Process the artificial defs and uses at the bottom of the block to begin processing. */ for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; #ifdef REG_DEAD_DEBUGGING if (dump_file) fprintf (dump_file, "artificial def %d\n", DF_REF_REGNO (def)); #endif if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) bitmap_clear_bit (live, DF_REF_REGNO (def)); } for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) { struct df_ref *use = *use_rec; if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) { unsigned int regno = DF_REF_REGNO (use); bitmap_set_bit (live, regno); /* Notes are not generated for any of the artificial registers at the bottom of the block. */ bitmap_set_bit (artificial_uses, regno); } } #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, "live before artificials out "); df_print_regset (dump_file, live); } #endif FOR_BB_INSNS_REVERSE (bb, insn) { unsigned int uid = INSN_UID (insn); struct df_mw_hardreg **mws_rec; rtx old_dead_notes; rtx old_unused_notes; if (!INSN_P (insn)) continue; bitmap_clear (do_not_gen); df_kill_notes (insn, &old_dead_notes, &old_unused_notes); /* Process the defs. */ if (CALL_P (insn)) { #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, "processing call %d\n live =", INSN_UID (insn)); df_print_regset (dump_file, live); } #endif /* We only care about real sets for calls. Clobbers cannot be depended on to really die. */ mws_rec = DF_INSN_UID_MWS (uid); while (*mws_rec) { struct df_mw_hardreg *mws = *mws_rec; if ((mws->type == DF_REF_REG_DEF) && !df_ignore_stack_reg (REGNO (mws->mw_reg))) old_unused_notes = df_set_unused_notes_for_mw (insn, old_unused_notes, mws, live, do_not_gen, artificial_uses); mws_rec++; } /* All of the defs except the return value are some sort of clobber. This code is for the return. */ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER)) { old_unused_notes = df_create_unused_note (insn, old_unused_notes, def, live, artificial_uses); bitmap_set_bit (do_not_gen, dregno); } if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL | DF_REF_CONDITIONAL)) bitmap_clear_bit (live, dregno); } } else { /* Regular insn. */ mws_rec = DF_INSN_UID_MWS (uid); while (*mws_rec) { struct df_mw_hardreg *mws = *mws_rec; if (mws->type == DF_REF_REG_DEF) old_unused_notes = df_set_unused_notes_for_mw (insn, old_unused_notes, mws, live, do_not_gen, artificial_uses); mws_rec++; } for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); old_unused_notes = df_create_unused_note (insn, old_unused_notes, def, live, artificial_uses); if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER)) bitmap_set_bit (do_not_gen, dregno); if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL | DF_REF_CONDITIONAL)) bitmap_clear_bit (live, dregno); } } /* Process the uses. */ mws_rec = DF_INSN_UID_MWS (uid); while (*mws_rec) { struct df_mw_hardreg *mws = *mws_rec; if ((mws->type != DF_REF_REG_DEF) && !df_ignore_stack_reg (REGNO (mws->mw_reg))) old_dead_notes = df_set_dead_notes_for_mw (insn, old_dead_notes, mws, live, do_not_gen, artificial_uses); mws_rec++; } for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) { struct df_ref *use = *use_rec; unsigned int uregno = DF_REF_REGNO (use); #ifdef REG_DEAD_DEBUGGING if (dump_file) { fprintf (dump_file, " regular looking at use "); df_ref_debug (use, dump_file); } #endif if (!bitmap_bit_p (live, uregno)) { if ( (!(DF_REF_FLAGS (use) & DF_REF_MW_HARDREG)) && (!bitmap_bit_p (do_not_gen, uregno)) && (!bitmap_bit_p (artificial_uses, uregno)) && (!(DF_REF_FLAGS (use) & DF_REF_READ_WRITE)) && (!df_ignore_stack_reg (uregno))) { rtx reg = (DF_REF_LOC (use)) ? *DF_REF_REAL_LOC (use) : DF_REF_REG (use); old_dead_notes = df_set_note (REG_DEAD, insn, old_dead_notes, reg); #ifdef REG_DEAD_DEBUGGING df_print_note ("adding 4: ", insn, REG_NOTES (insn)); #endif } /* This register is now live. */ bitmap_set_bit (live, uregno); } } while (old_unused_notes) { rtx next = XEXP (old_unused_notes, 1); free_EXPR_LIST_node (old_unused_notes); old_unused_notes = next; } while (old_dead_notes) { rtx next = XEXP (old_dead_notes, 1); free_EXPR_LIST_node (old_dead_notes); old_dead_notes = next; } } } /* Compute register info: lifetime, bb, and number of defs and uses. */ static void df_note_compute (bitmap all_blocks) { unsigned int bb_index; bitmap_iterator bi; bitmap live = BITMAP_ALLOC (&df_bitmap_obstack); bitmap do_not_gen = BITMAP_ALLOC (&df_bitmap_obstack); bitmap artificial_uses = BITMAP_ALLOC (&df_bitmap_obstack); #ifdef REG_DEAD_DEBUGGING if (dump_file) print_rtl_with_bb (dump_file, get_insns()); #endif EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) { df_note_bb_compute (bb_index, live, do_not_gen, artificial_uses); } BITMAP_FREE (live); BITMAP_FREE (do_not_gen); BITMAP_FREE (artificial_uses); } /* Free all storage associated with the problem. */ static void df_note_free (void) { free (df_note); } /* All of the information associated every instance of the problem. */ static struct df_problem problem_NOTE = { DF_NOTE, /* Problem id. */ DF_NONE, /* Direction. */ df_note_alloc, /* Allocate the problem specific data. */ NULL, /* Reset global information. */ NULL, /* Free basic block info. */ df_note_compute, /* Local compute function. */ NULL, /* Init the solution specific data. */ NULL, /* Iterative solver. */ NULL, /* Confluence operator 0. */ NULL, /* Confluence operator n. */ NULL, /* Transfer function. */ NULL, /* Finalize function. */ df_note_free, /* Free all of the problem information. */ df_note_free, /* Remove this problem from the stack of dataflow problems. */ NULL, /* Debugging. */ NULL, /* Debugging start block. */ NULL, /* Debugging end block. */ NULL, /* Incremental solution verify start. */ NULL, /* Incremental solution verify end. */ /* Technically this is only dependent on the live registers problem but it will produce information if built one of uninitialized register problems (UR, UREC) is also run. */ &problem_LR, /* Dependent problem. */ TV_DF_NOTE, /* Timing variable. */ false /* Reset blocks on dropping out of blocks_to_analyze. */ }; /* Create a new DATAFLOW instance and add it to an existing instance of DF. The returned structure is what is used to get at the solution. */ void df_note_add_problem (void) { df_add_problem (&problem_NOTE); } /*---------------------------------------------------------------------------- Functions for simulating the effects of single insns. You can either simulate in the forwards direction, starting from the top of a block or the backwards direction from the end of the block. The main difference is that if you go forwards, the uses are examined first then the defs, and if you go backwards, the defs are examined first then the uses. If you start at the top of the block, use one of DF_LIVE_IN or DF_LR_IN. If you start at the bottom of the block use one of DF_LIVE_OUT or DF_LR_OUT. BE SURE TO PASS A COPY OF THESE SETS, THEY WILL BE DESTROYED. ----------------------------------------------------------------------------*/ /* Find the set of DEFs for INSN. */ void df_simulate_find_defs (rtx insn, bitmap defs) { struct df_ref **def_rec; unsigned int uid = INSN_UID (insn); if (CALL_P (insn)) { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if (DF_REF_FLAGS (def) & DF_REF_MUST_CLOBBER) { if (dregno >= FIRST_PSEUDO_REGISTER || !(SIBLING_CALL_P (insn) && bitmap_bit_p (df->exit_block_uses, dregno) && !refers_to_regno_p (dregno, dregno+1, current_function_return_rtx, (rtx *)0))) { /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_set_bit (defs, dregno); } } else /* This is the return value. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_set_bit (defs, dregno); } } else { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_set_bit (defs, DF_REF_REGNO (def)); } } } /* Simulate the effects of the defs of INSN on LIVE. */ void df_simulate_defs (rtx insn, bitmap live) { struct df_ref **def_rec; unsigned int uid = INSN_UID (insn); if (CALL_P (insn)) { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if (DF_REF_FLAGS (def) & DF_REF_MUST_CLOBBER) { if (dregno >= FIRST_PSEUDO_REGISTER || !(SIBLING_CALL_P (insn) && bitmap_bit_p (df->exit_block_uses, dregno) && !refers_to_regno_p (dregno, dregno+1, current_function_return_rtx, (rtx *)0))) { /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_clear_bit (live, dregno); } } else /* This is the return value. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_clear_bit (live, dregno); } } else { for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { struct df_ref *def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); /* If the def is to only part of the reg, it does not kill the other defs that reach here. */ if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) bitmap_clear_bit (live, dregno); } } } /* Simulate the effects of the uses of INSN on LIVE. */ void df_simulate_uses (rtx insn, bitmap live) { struct df_ref **use_rec; unsigned int uid = INSN_UID (insn); for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) { struct df_ref *use = *use_rec; /* Add use to set of uses in this BB. */ bitmap_set_bit (live, DF_REF_REGNO (use)); } } /* Add back the always live regs in BB to LIVE. */ static inline void df_simulate_fixup_sets (basic_block bb, bitmap live) { /* These regs are considered always live so if they end up dying because of some def, we need to bring the back again. */ if (df_has_eh_preds (bb)) bitmap_ior_into (live, df->eh_block_artificial_uses); else bitmap_ior_into (live, df->regular_block_artificial_uses); } /* Apply the artificial uses and defs at the top of BB in a forwards direction. */ void df_simulate_artificial_refs_at_top (basic_block bb, bitmap live) { struct df_ref **def_rec; struct df_ref **use_rec; int bb_index = bb->index; for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) { struct df_ref *use = *use_rec; if (DF_REF_FLAGS (use) & DF_REF_AT_TOP) bitmap_set_bit (live, DF_REF_REGNO (use)); } for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) bitmap_clear_bit (live, DF_REF_REGNO (def)); } } /* Simulate the forwards effects of INSN on the bitmap LIVE. */ void df_simulate_one_insn_forwards (basic_block bb, rtx insn, bitmap live) { if (! INSN_P (insn)) return; df_simulate_uses (insn, live); df_simulate_defs (insn, live); df_simulate_fixup_sets (bb, live); } /* Apply the artificial uses and defs at the end of BB in a backwards direction. */ void df_simulate_artificial_refs_at_end (basic_block bb, bitmap live) { struct df_ref **def_rec; struct df_ref **use_rec; int bb_index = bb->index; for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) { struct df_ref *def = *def_rec; if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) bitmap_clear_bit (live, DF_REF_REGNO (def)); } for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) { struct df_ref *use = *use_rec; if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) bitmap_set_bit (live, DF_REF_REGNO (use)); } } /* Simulate the backwards effects of INSN on the bitmap LIVE. */ void df_simulate_one_insn_backwards (basic_block bb, rtx insn, bitmap live) { if (! INSN_P (insn)) return; df_simulate_defs (insn, live); df_simulate_uses (insn, live); df_simulate_fixup_sets (bb, live); }