/* Handle initialization things in C++.
Copyright (C) 1987-2015 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* High-level class interface. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "cp-tree.h"
#include "stringpool.h"
#include "varasm.h"
#include "gimplify.h"
#include "c-family/c-ubsan.h"
static bool begin_init_stmts (tree *, tree *);
static tree finish_init_stmts (bool, tree, tree);
static void construct_virtual_base (tree, tree);
static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
static void perform_member_init (tree, tree);
static int member_init_ok_or_else (tree, tree, tree);
static void expand_virtual_init (tree, tree);
static tree sort_mem_initializers (tree, tree);
static tree initializing_context (tree);
static void expand_cleanup_for_base (tree, tree);
static tree dfs_initialize_vtbl_ptrs (tree, void *);
static tree build_field_list (tree, tree, int *);
static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
/* We are about to generate some complex initialization code.
Conceptually, it is all a single expression. However, we may want
to include conditionals, loops, and other such statement-level
constructs. Therefore, we build the initialization code inside a
statement-expression. This function starts such an expression.
STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
pass them back to finish_init_stmts when the expression is
complete. */
static bool
begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
{
bool is_global = !building_stmt_list_p ();
*stmt_expr_p = begin_stmt_expr ();
*compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
return is_global;
}
/* Finish out the statement-expression begun by the previous call to
begin_init_stmts. Returns the statement-expression itself. */
static tree
finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
{
finish_compound_stmt (compound_stmt);
stmt_expr = finish_stmt_expr (stmt_expr, true);
gcc_assert (!building_stmt_list_p () == is_global);
return stmt_expr;
}
/* Constructors */
/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
which we want to initialize the vtable pointer for, DATA is
TREE_LIST whose TREE_VALUE is the this ptr expression. */
static tree
dfs_initialize_vtbl_ptrs (tree binfo, void *data)
{
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
return dfs_skip_bases;
if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
{
tree base_ptr = TREE_VALUE ((tree) data);
base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
tf_warning_or_error);
expand_virtual_init (binfo, base_ptr);
}
return NULL_TREE;
}
/* Initialize all the vtable pointers in the object pointed to by
ADDR. */
void
initialize_vtbl_ptrs (tree addr)
{
tree list;
tree type;
type = TREE_TYPE (TREE_TYPE (addr));
list = build_tree_list (type, addr);
/* Walk through the hierarchy, initializing the vptr in each base
class. We do these in pre-order because we can't find the virtual
bases for a class until we've initialized the vtbl for that
class. */
dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
}
/* Return an expression for the zero-initialization of an object with
type T. This expression will either be a constant (in the case
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
aggregate), or NULL (in the case that T does not require
initialization). In either case, the value can be used as
DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
is the number of elements in the array. If STATIC_STORAGE_P is
TRUE, initializers are only generated for entities for which
zero-initialization does not simply mean filling the storage with
zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
subfields with bit positions at or above that bit size shouldn't
be added. Note that this only works when the result is assigned
to a base COMPONENT_REF; if we only have a pointer to the base subobject,
expand_assignment will end up clearing the full size of TYPE. */
static tree
build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
tree field_size)
{
tree init = NULL_TREE;
/* [dcl.init]
To zero-initialize an object of type T means:
-- if T is a scalar type, the storage is set to the value of zero
converted to T.
-- if T is a non-union class type, the storage for each nonstatic
data member and each base-class subobject is zero-initialized.
-- if T is a union type, the storage for its first data member is
zero-initialized.
-- if T is an array type, the storage for each element is
zero-initialized.
-- if T is a reference type, no initialization is performed. */
gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
if (type == error_mark_node)
;
else if (static_storage_p && zero_init_p (type))
/* In order to save space, we do not explicitly build initializers
for items that do not need them. GCC's semantics are that
items with static storage duration that are not otherwise
initialized are initialized to zero. */
;
else if (TYPE_PTR_OR_PTRMEM_P (type))
init = fold (convert (type, nullptr_node));
else if (SCALAR_TYPE_P (type))
init = fold (convert (type, integer_zero_node));
else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
{
tree field;
vec *v = NULL;
/* Iterate over the fields, building initializations. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (TREE_TYPE (field) == error_mark_node)
continue;
/* Don't add virtual bases for base classes if they are beyond
the size of the current field, that means it is present
somewhere else in the object. */
if (field_size)
{
tree bitpos = bit_position (field);
if (TREE_CODE (bitpos) == INTEGER_CST
&& !tree_int_cst_lt (bitpos, field_size))
continue;
}
/* Note that for class types there will be FIELD_DECLs
corresponding to base classes as well. Thus, iterating
over TYPE_FIELDs will result in correct initialization of
all of the subobjects. */
if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
{
tree new_field_size
= (DECL_FIELD_IS_BASE (field)
&& DECL_SIZE (field)
&& TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
? DECL_SIZE (field) : NULL_TREE;
tree value = build_zero_init_1 (TREE_TYPE (field),
/*nelts=*/NULL_TREE,
static_storage_p,
new_field_size);
if (value)
CONSTRUCTOR_APPEND_ELT(v, field, value);
}
/* For unions, only the first field is initialized. */
if (TREE_CODE (type) == UNION_TYPE)
break;
}
/* Build a constructor to contain the initializations. */
init = build_constructor (type, v);
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
tree max_index;
vec *v = NULL;
/* Iterate over the array elements, building initializations. */
if (nelts)
max_index = fold_build2_loc (input_location,
MINUS_EXPR, TREE_TYPE (nelts),
nelts, integer_one_node);
else
max_index = array_type_nelts (type);
/* If we have an error_mark here, we should just return error mark
as we don't know the size of the array yet. */
if (max_index == error_mark_node)
return error_mark_node;
gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
/* A zero-sized array, which is accepted as an extension, will
have an upper bound of -1. */
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
{
constructor_elt ce;
/* If this is a one element array, we just use a regular init. */
if (tree_int_cst_equal (size_zero_node, max_index))
ce.index = size_zero_node;
else
ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
max_index);
ce.value = build_zero_init_1 (TREE_TYPE (type),
/*nelts=*/NULL_TREE,
static_storage_p, NULL_TREE);
if (ce.value)
{
vec_alloc (v, 1);
v->quick_push (ce);
}
}
/* Build a constructor to contain the initializations. */
init = build_constructor (type, v);
}
else if (VECTOR_TYPE_P (type))
init = build_zero_cst (type);
else
gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
/* In all cases, the initializer is a constant. */
if (init)
TREE_CONSTANT (init) = 1;
return init;
}
/* Return an expression for the zero-initialization of an object with
type T. This expression will either be a constant (in the case
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
aggregate), or NULL (in the case that T does not require
initialization). In either case, the value can be used as
DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
is the number of elements in the array. If STATIC_STORAGE_P is
TRUE, initializers are only generated for entities for which
zero-initialization does not simply mean filling the storage with
zero bytes. */
tree
build_zero_init (tree type, tree nelts, bool static_storage_p)
{
return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
}
/* Return a suitable initializer for value-initializing an object of type
TYPE, as described in [dcl.init]. */
tree
build_value_init (tree type, tsubst_flags_t complain)
{
/* [dcl.init]
To value-initialize an object of type T means:
- if T is a class type (clause 9) with either no default constructor
(12.1) or a default constructor that is user-provided or deleted,
then the object is default-initialized;
- if T is a (possibly cv-qualified) class type without a user-provided
or deleted default constructor, then the object is zero-initialized
and the semantic constraints for default-initialization are checked,
and if T has a non-trivial default constructor, the object is
default-initialized;
- if T is an array type, then each element is value-initialized;
- otherwise, the object is zero-initialized.
A program that calls for default-initialization or
value-initialization of an entity of reference type is ill-formed. */
/* The AGGR_INIT_EXPR tweaking below breaks in templates. */
gcc_assert (!processing_template_decl
|| (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
if (CLASS_TYPE_P (type)
&& type_build_ctor_call (type))
{
tree ctor =
build_special_member_call (NULL_TREE, complete_ctor_identifier,
NULL, type, LOOKUP_NORMAL,
complain);
if (ctor == error_mark_node)
return ctor;
tree fn = NULL_TREE;
if (TREE_CODE (ctor) == CALL_EXPR)
fn = get_callee_fndecl (ctor);
ctor = build_aggr_init_expr (type, ctor);
if (fn && user_provided_p (fn))
return ctor;
else if (TYPE_HAS_COMPLEX_DFLT (type))
{
/* This is a class that needs constructing, but doesn't have
a user-provided constructor. So we need to zero-initialize
the object and then call the implicitly defined ctor.
This will be handled in simplify_aggr_init_expr. */
AGGR_INIT_ZERO_FIRST (ctor) = 1;
return ctor;
}
}
/* Discard any access checking during subobject initialization;
the checks are implied by the call to the ctor which we have
verified is OK (cpp0x/defaulted46.C). */
push_deferring_access_checks (dk_deferred);
tree r = build_value_init_noctor (type, complain);
pop_deferring_access_checks ();
return r;
}
/* Like build_value_init, but don't call the constructor for TYPE. Used
for base initializers. */
tree
build_value_init_noctor (tree type, tsubst_flags_t complain)
{
if (!COMPLETE_TYPE_P (type))
{
if (complain & tf_error)
error ("value-initialization of incomplete type %qT", type);
return error_mark_node;
}
/* FIXME the class and array cases should just use digest_init once it is
SFINAE-enabled. */
if (CLASS_TYPE_P (type))
{
gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
|| errorcount != 0);
if (TREE_CODE (type) != UNION_TYPE)
{
tree field;
vec *v = NULL;
/* Iterate over the fields, building initializations. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
tree ftype, value;
if (TREE_CODE (field) != FIELD_DECL)
continue;
ftype = TREE_TYPE (field);
if (ftype == error_mark_node)
continue;
/* We could skip vfields and fields of types with
user-defined constructors, but I think that won't improve
performance at all; it should be simpler in general just
to zero out the entire object than try to only zero the
bits that actually need it. */
/* Note that for class types there will be FIELD_DECLs
corresponding to base classes as well. Thus, iterating
over TYPE_FIELDs will result in correct initialization of
all of the subobjects. */
value = build_value_init (ftype, complain);
value = maybe_constant_init (value);
if (value == error_mark_node)
return error_mark_node;
CONSTRUCTOR_APPEND_ELT(v, field, value);
/* We shouldn't have gotten here for anything that would need
non-trivial initialization, and gimplify_init_ctor_preeval
would need to be fixed to allow it. */
gcc_assert (TREE_CODE (value) != TARGET_EXPR
&& TREE_CODE (value) != AGGR_INIT_EXPR);
}
/* Build a constructor to contain the zero- initializations. */
return build_constructor (type, v);
}
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
vec *v = NULL;
/* Iterate over the array elements, building initializations. */
tree max_index = array_type_nelts (type);
/* If we have an error_mark here, we should just return error mark
as we don't know the size of the array yet. */
if (max_index == error_mark_node)
{
if (complain & tf_error)
error ("cannot value-initialize array of unknown bound %qT",
type);
return error_mark_node;
}
gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
/* A zero-sized array, which is accepted as an extension, will
have an upper bound of -1. */
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
{
constructor_elt ce;
/* If this is a one element array, we just use a regular init. */
if (tree_int_cst_equal (size_zero_node, max_index))
ce.index = size_zero_node;
else
ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
ce.value = build_value_init (TREE_TYPE (type), complain);
ce.value = maybe_constant_init (ce.value);
if (ce.value == error_mark_node)
return error_mark_node;
vec_alloc (v, 1);
v->quick_push (ce);
/* We shouldn't have gotten here for anything that would need
non-trivial initialization, and gimplify_init_ctor_preeval
would need to be fixed to allow it. */
gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
&& TREE_CODE (ce.value) != AGGR_INIT_EXPR);
}
/* Build a constructor to contain the initializations. */
return build_constructor (type, v);
}
else if (TREE_CODE (type) == FUNCTION_TYPE)
{
if (complain & tf_error)
error ("value-initialization of function type %qT", type);
return error_mark_node;
}
else if (TREE_CODE (type) == REFERENCE_TYPE)
{
if (complain & tf_error)
error ("value-initialization of reference type %qT", type);
return error_mark_node;
}
return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
}
/* Initialize current class with INIT, a TREE_LIST of
arguments for a target constructor. If TREE_LIST is void_type_node,
an empty initializer list was given. */
static void
perform_target_ctor (tree init)
{
tree decl = current_class_ref;
tree type = current_class_type;
finish_expr_stmt (build_aggr_init (decl, init,
LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
tf_warning_or_error));
if (type_build_dtor_call (type))
{
tree expr = build_delete (type, decl, sfk_complete_destructor,
LOOKUP_NORMAL
|LOOKUP_NONVIRTUAL
|LOOKUP_DESTRUCTOR,
0, tf_warning_or_error);
if (expr != error_mark_node
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
finish_eh_cleanup (expr);
}
}
/* Return the non-static data initializer for FIELD_DECL MEMBER. */
tree
get_nsdmi (tree member, bool in_ctor)
{
tree init;
tree save_ccp = current_class_ptr;
tree save_ccr = current_class_ref;
if (!in_ctor)
{
/* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
refer to; constexpr evaluation knows what to do with it. */
current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
current_class_ptr = build_address (current_class_ref);
}
if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
{
init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
if (TREE_CODE (init) == DEFAULT_ARG)
goto unparsed;
/* Check recursive instantiation. */
if (DECL_INSTANTIATING_NSDMI_P (member))
{
error ("recursive instantiation of non-static data member "
"initializer for %qD", member);
init = error_mark_node;
}
else
{
DECL_INSTANTIATING_NSDMI_P (member) = 1;
/* Do deferred instantiation of the NSDMI. */
init = (tsubst_copy_and_build
(init, DECL_TI_ARGS (member),
tf_warning_or_error, member, /*function_p=*/false,
/*integral_constant_expression_p=*/false));
init = digest_nsdmi_init (member, init);
DECL_INSTANTIATING_NSDMI_P (member) = 0;
}
}
else
{
init = DECL_INITIAL (member);
if (init && TREE_CODE (init) == DEFAULT_ARG)
{
unparsed:
error ("constructor required before non-static data member "
"for %qD has been parsed", member);
DECL_INITIAL (member) = error_mark_node;
init = error_mark_node;
}
/* Strip redundant TARGET_EXPR so we don't need to remap it, and
so the aggregate init code below will see a CONSTRUCTOR. */
if (init && SIMPLE_TARGET_EXPR_P (init))
init = TARGET_EXPR_INITIAL (init);
init = break_out_target_exprs (init);
}
current_class_ptr = save_ccp;
current_class_ref = save_ccr;
return init;
}
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
arguments. If TREE_LIST is void_type_node, an empty initializer
list was given; if NULL_TREE no initializer was given. */
static void
perform_member_init (tree member, tree init)
{
tree decl;
tree type = TREE_TYPE (member);
/* Use the non-static data member initializer if there was no
mem-initializer for this field. */
if (init == NULL_TREE)
init = get_nsdmi (member, /*ctor*/true);
if (init == error_mark_node)
return;
/* Effective C++ rule 12 requires that all data members be
initialized. */
if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
"%qD should be initialized in the member initialization list",
member);
/* Get an lvalue for the data member. */
decl = build_class_member_access_expr (current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/true,
tf_warning_or_error);
if (decl == error_mark_node)
return;
if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
&& TREE_CHAIN (init) == NULL_TREE)
{
tree val = TREE_VALUE (init);
/* Handle references. */
if (REFERENCE_REF_P (val))
val = TREE_OPERAND (val, 0);
if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
&& TREE_OPERAND (val, 0) == current_class_ref)
warning_at (DECL_SOURCE_LOCATION (current_function_decl),
OPT_Winit_self, "%qD is initialized with itself",
member);
}
if (init == void_type_node)
{
/* mem() means value-initialization. */
if (TREE_CODE (type) == ARRAY_TYPE)
{
init = build_vec_init_expr (type, init, tf_warning_or_error);
init = build2 (INIT_EXPR, type, decl, init);
finish_expr_stmt (init);
}
else
{
tree value = build_value_init (type, tf_warning_or_error);
if (value == error_mark_node)
return;
init = build2 (INIT_EXPR, type, decl, value);
finish_expr_stmt (init);
}
}
/* Deal with this here, as we will get confused if we try to call the
assignment op for an anonymous union. This can happen in a
synthesized copy constructor. */
else if (ANON_AGGR_TYPE_P (type))
{
if (init)
{
init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
finish_expr_stmt (init);
}
}
else if (init
&& (TREE_CODE (type) == REFERENCE_TYPE
/* Pre-digested NSDMI. */
|| (((TREE_CODE (init) == CONSTRUCTOR
&& TREE_TYPE (init) == type)
/* { } mem-initializer. */
|| (TREE_CODE (init) == TREE_LIST
&& DIRECT_LIST_INIT_P (TREE_VALUE (init))))
&& (CP_AGGREGATE_TYPE_P (type)
|| is_std_init_list (type)))))
{
/* With references and list-initialization, we need to deal with
extending temporary lifetimes. 12.2p5: "A temporary bound to a
reference member in a constructor’s ctor-initializer (12.6.2)
persists until the constructor exits." */
unsigned i; tree t;
vec *cleanups = make_tree_vector ();
if (TREE_CODE (init) == TREE_LIST)
init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
tf_warning_or_error);
if (TREE_TYPE (init) != type)
{
if (BRACE_ENCLOSED_INITIALIZER_P (init)
&& CP_AGGREGATE_TYPE_P (type))
init = reshape_init (type, init, tf_warning_or_error);
init = digest_init (type, init, tf_warning_or_error);
}
if (init == error_mark_node)
return;
/* A FIELD_DECL doesn't really have a suitable lifetime, but
make_temporary_var_for_ref_to_temp will treat it as automatic and
set_up_extended_ref_temp wants to use the decl in a warning. */
init = extend_ref_init_temps (member, init, &cleanups);
if (TREE_CODE (type) == ARRAY_TYPE
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
init = build_vec_init_expr (type, init, tf_warning_or_error);
init = build2 (INIT_EXPR, type, decl, init);
finish_expr_stmt (init);
FOR_EACH_VEC_ELT (*cleanups, i, t)
push_cleanup (decl, t, false);
release_tree_vector (cleanups);
}
else if (type_build_ctor_call (type)
|| (init && CLASS_TYPE_P (strip_array_types (type))))
{
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (init)
{
if (TREE_CHAIN (init))
init = error_mark_node;
else
init = TREE_VALUE (init);
if (BRACE_ENCLOSED_INITIALIZER_P (init))
init = digest_init (type, init, tf_warning_or_error);
}
if (init == NULL_TREE
|| same_type_ignoring_top_level_qualifiers_p (type,
TREE_TYPE (init)))
{
init = build_vec_init_expr (type, init, tf_warning_or_error);
init = build2 (INIT_EXPR, type, decl, init);
finish_expr_stmt (init);
}
else
error ("invalid initializer for array member %q#D", member);
}
else
{
int flags = LOOKUP_NORMAL;
if (DECL_DEFAULTED_FN (current_function_decl))
flags |= LOOKUP_DEFAULTED;
if (CP_TYPE_CONST_P (type)
&& init == NULL_TREE
&& default_init_uninitialized_part (type))
{
/* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
vtable; still give this diagnostic. */
if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
"uninitialized const member in %q#T", type))
inform (DECL_SOURCE_LOCATION (member),
"%q#D should be initialized", member );
}
finish_expr_stmt (build_aggr_init (decl, init, flags,
tf_warning_or_error));
}
}
else
{
if (init == NULL_TREE)
{
tree core_type;
/* member traversal: note it leaves init NULL */
if (TREE_CODE (type) == REFERENCE_TYPE)
{
if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
"uninitialized reference member in %q#T", type))
inform (DECL_SOURCE_LOCATION (member),
"%q#D should be initialized", member);
}
else if (CP_TYPE_CONST_P (type))
{
if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
"uninitialized const member in %q#T", type))
inform (DECL_SOURCE_LOCATION (member),
"%q#D should be initialized", member );
}
core_type = strip_array_types (type);
if (CLASS_TYPE_P (core_type)
&& (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
|| CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
diagnose_uninitialized_cst_or_ref_member (core_type,
/*using_new=*/false,
/*complain=*/true);
}
else if (TREE_CODE (init) == TREE_LIST)
/* There was an explicit member initialization. Do some work
in that case. */
init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
tf_warning_or_error);
if (init)
finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
tf_warning_or_error));
}
if (type_build_dtor_call (type))
{
tree expr;
expr = build_class_member_access_expr (current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/false,
tf_warning_or_error);
expr = build_delete (type, expr, sfk_complete_destructor,
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
tf_warning_or_error);
if (expr != error_mark_node
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
finish_eh_cleanup (expr);
}
}
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
static tree
build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
{
tree fields;
/* Note whether or not T is a union. */
if (TREE_CODE (t) == UNION_TYPE)
*uses_unions_or_anon_p = 1;
for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
{
tree fieldtype;
/* Skip CONST_DECLs for enumeration constants and so forth. */
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
continue;
fieldtype = TREE_TYPE (fields);
/* For an anonymous struct or union, we must recursively
consider the fields of the anonymous type. They can be
directly initialized from the constructor. */
if (ANON_AGGR_TYPE_P (fieldtype))
{
/* Add this field itself. Synthesized copy constructors
initialize the entire aggregate. */
list = tree_cons (fields, NULL_TREE, list);
/* And now add the fields in the anonymous aggregate. */
list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
*uses_unions_or_anon_p = 1;
}
/* Add this field. */
else if (DECL_NAME (fields))
list = tree_cons (fields, NULL_TREE, list);
}
return list;
}
/* Return the innermost aggregate scope for FIELD, whether that is
the enclosing class or an anonymous aggregate within it. */
static tree
innermost_aggr_scope (tree field)
{
if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
return TREE_TYPE (field);
else
return DECL_CONTEXT (field);
}
/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
a FIELD_DECL or BINFO in T that needs initialization. The
TREE_VALUE gives the initializer, or list of initializer arguments.
Return a TREE_LIST containing all of the initializations required
for T, in the order in which they should be performed. The output
list has the same format as the input. */
static tree
sort_mem_initializers (tree t, tree mem_inits)
{
tree init;
tree base, binfo, base_binfo;
tree sorted_inits;
tree next_subobject;
vec *vbases;
int i;
int uses_unions_or_anon_p = 0;
/* Build up a list of initializations. The TREE_PURPOSE of entry
will be the subobject (a FIELD_DECL or BINFO) to initialize. The
TREE_VALUE will be the constructor arguments, or NULL if no
explicit initialization was provided. */
sorted_inits = NULL_TREE;
/* Process the virtual bases. */
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
vec_safe_iterate (vbases, i, &base); i++)
sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
/* Process the direct bases. */
for (binfo = TYPE_BINFO (t), i = 0;
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
if (!BINFO_VIRTUAL_P (base_binfo))
sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
/* Process the non-static data members. */
sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
/* Reverse the entire list of initializations, so that they are in
the order that they will actually be performed. */
sorted_inits = nreverse (sorted_inits);
/* If the user presented the initializers in an order different from
that in which they will actually occur, we issue a warning. Keep
track of the next subobject which can be explicitly initialized
without issuing a warning. */
next_subobject = sorted_inits;
/* Go through the explicit initializers, filling in TREE_PURPOSE in
the SORTED_INITS. */
for (init = mem_inits; init; init = TREE_CHAIN (init))
{
tree subobject;
tree subobject_init;
subobject = TREE_PURPOSE (init);
/* If the explicit initializers are in sorted order, then
SUBOBJECT will be NEXT_SUBOBJECT, or something following
it. */
for (subobject_init = next_subobject;
subobject_init;
subobject_init = TREE_CHAIN (subobject_init))
if (TREE_PURPOSE (subobject_init) == subobject)
break;
/* Issue a warning if the explicit initializer order does not
match that which will actually occur.
??? Are all these on the correct lines? */
if (warn_reorder && !subobject_init)
{
if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
OPT_Wreorder, "%qD will be initialized after",
TREE_PURPOSE (next_subobject));
else
warning (OPT_Wreorder, "base %qT will be initialized after",
TREE_PURPOSE (next_subobject));
if (TREE_CODE (subobject) == FIELD_DECL)
warning_at (DECL_SOURCE_LOCATION (subobject),
OPT_Wreorder, " %q#D", subobject);
else
warning (OPT_Wreorder, " base %qT", subobject);
warning_at (DECL_SOURCE_LOCATION (current_function_decl),
OPT_Wreorder, " when initialized here");
}
/* Look again, from the beginning of the list. */
if (!subobject_init)
{
subobject_init = sorted_inits;
while (TREE_PURPOSE (subobject_init) != subobject)
subobject_init = TREE_CHAIN (subobject_init);
}
/* It is invalid to initialize the same subobject more than
once. */
if (TREE_VALUE (subobject_init))
{
if (TREE_CODE (subobject) == FIELD_DECL)
error_at (DECL_SOURCE_LOCATION (current_function_decl),
"multiple initializations given for %qD",
subobject);
else
error_at (DECL_SOURCE_LOCATION (current_function_decl),
"multiple initializations given for base %qT",
subobject);
}
/* Record the initialization. */
TREE_VALUE (subobject_init) = TREE_VALUE (init);
next_subobject = subobject_init;
}
/* [class.base.init]
If a ctor-initializer specifies more than one mem-initializer for
multiple members of the same union (including members of
anonymous unions), the ctor-initializer is ill-formed.
Here we also splice out uninitialized union members. */
if (uses_unions_or_anon_p)
{
tree *last_p = NULL;
tree *p;
for (p = &sorted_inits; *p; )
{
tree field;
tree ctx;
init = *p;
field = TREE_PURPOSE (init);
/* Skip base classes. */
if (TREE_CODE (field) != FIELD_DECL)
goto next;
/* If this is an anonymous aggregate with no explicit initializer,
splice it out. */
if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
goto splice;
/* See if this field is a member of a union, or a member of a
structure contained in a union, etc. */
ctx = innermost_aggr_scope (field);
/* If this field is not a member of a union, skip it. */
if (TREE_CODE (ctx) != UNION_TYPE
&& !ANON_AGGR_TYPE_P (ctx))
goto next;
/* If this union member has no explicit initializer and no NSDMI,
splice it out. */
if (TREE_VALUE (init) || DECL_INITIAL (field))
/* OK. */;
else
goto splice;
/* It's only an error if we have two initializers for the same
union type. */
if (!last_p)
{
last_p = p;
goto next;
}
/* See if LAST_FIELD and the field initialized by INIT are
members of the same union (or the union itself). If so, there's
a problem, unless they're actually members of the same structure
which is itself a member of a union. For example, given:
union { struct { int i; int j; }; };
initializing both `i' and `j' makes sense. */
ctx = common_enclosing_class
(innermost_aggr_scope (field),
innermost_aggr_scope (TREE_PURPOSE (*last_p)));
if (ctx && (TREE_CODE (ctx) == UNION_TYPE
|| ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
{
/* A mem-initializer hides an NSDMI. */
if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
*last_p = TREE_CHAIN (*last_p);
else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
goto splice;
else
{
error_at (DECL_SOURCE_LOCATION (current_function_decl),
"initializations for multiple members of %qT",
ctx);
goto splice;
}
}
last_p = p;
next:
p = &TREE_CHAIN (*p);
continue;
splice:
*p = TREE_CHAIN (*p);
continue;
}
}
return sorted_inits;
}
/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
is a TREE_LIST giving the explicit mem-initializer-list for the
constructor. The TREE_PURPOSE of each entry is a subobject (a
FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
is a TREE_LIST giving the arguments to the constructor or
void_type_node for an empty list of arguments. */
void
emit_mem_initializers (tree mem_inits)
{
int flags = LOOKUP_NORMAL;
/* We will already have issued an error message about the fact that
the type is incomplete. */
if (!COMPLETE_TYPE_P (current_class_type))
return;
if (mem_inits
&& TYPE_P (TREE_PURPOSE (mem_inits))
&& same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
{
/* Delegating constructor. */
gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
perform_target_ctor (TREE_VALUE (mem_inits));
return;
}
if (DECL_DEFAULTED_FN (current_function_decl)
&& ! DECL_INHERITED_CTOR_BASE (current_function_decl))
flags |= LOOKUP_DEFAULTED;
/* Sort the mem-initializers into the order in which the
initializations should be performed. */
mem_inits = sort_mem_initializers (current_class_type, mem_inits);
in_base_initializer = 1;
/* Initialize base classes. */
for (; (mem_inits
&& TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
mem_inits = TREE_CHAIN (mem_inits))
{
tree subobject = TREE_PURPOSE (mem_inits);
tree arguments = TREE_VALUE (mem_inits);
/* We already have issued an error message. */
if (arguments == error_mark_node)
continue;
if (arguments == NULL_TREE)
{
/* If these initializations are taking place in a copy constructor,
the base class should probably be explicitly initialized if there
is a user-defined constructor in the base class (other than the
default constructor, which will be called anyway). */
if (extra_warnings
&& DECL_COPY_CONSTRUCTOR_P (current_function_decl)
&& type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
warning_at (DECL_SOURCE_LOCATION (current_function_decl),
OPT_Wextra, "base class %q#T should be explicitly "
"initialized in the copy constructor",
BINFO_TYPE (subobject));
}
/* Initialize the base. */
if (BINFO_VIRTUAL_P (subobject))
construct_virtual_base (subobject, arguments);
else
{
tree base_addr;
base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
subobject, 1, tf_warning_or_error);
expand_aggr_init_1 (subobject, NULL_TREE,
cp_build_indirect_ref (base_addr, RO_NULL,
tf_warning_or_error),
arguments,
flags,
tf_warning_or_error);
expand_cleanup_for_base (subobject, NULL_TREE);
}
}
in_base_initializer = 0;
/* Initialize the vptrs. */
initialize_vtbl_ptrs (current_class_ptr);
/* Initialize the data members. */
while (mem_inits)
{
perform_member_init (TREE_PURPOSE (mem_inits),
TREE_VALUE (mem_inits));
mem_inits = TREE_CHAIN (mem_inits);
}
}
/* Returns the address of the vtable (i.e., the value that should be
assigned to the vptr) for BINFO. */
tree
build_vtbl_address (tree binfo)
{
tree binfo_for = binfo;
tree vtbl;
if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
/* If this is a virtual primary base, then the vtable we want to store
is that for the base this is being used as the primary base of. We
can't simply skip the initialization, because we may be expanding the
inits of a subobject constructor where the virtual base layout
can be different. */
while (BINFO_PRIMARY_P (binfo_for))
binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
/* Figure out what vtable BINFO's vtable is based on, and mark it as
used. */
vtbl = get_vtbl_decl_for_binfo (binfo_for);
TREE_USED (vtbl) = true;
/* Now compute the address to use when initializing the vptr. */
vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
if (VAR_P (vtbl))
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
return vtbl;
}
/* This code sets up the virtual function tables appropriate for
the pointer DECL. It is a one-ply initialization.
BINFO is the exact type that DECL is supposed to be. In
multiple inheritance, this might mean "C's A" if C : A, B. */
static void
expand_virtual_init (tree binfo, tree decl)
{
tree vtbl, vtbl_ptr;
tree vtt_index;
/* Compute the initializer for vptr. */
vtbl = build_vtbl_address (binfo);
/* We may get this vptr from a VTT, if this is a subobject
constructor or subobject destructor. */
vtt_index = BINFO_VPTR_INDEX (binfo);
if (vtt_index)
{
tree vtbl2;
tree vtt_parm;
/* Compute the value to use, when there's a VTT. */
vtt_parm = current_vtt_parm;
vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
/* The actual initializer is the VTT value only in the subobject
constructor. In maybe_clone_body we'll substitute NULL for
the vtt_parm in the case of the non-subobject constructor. */
vtbl = build3 (COND_EXPR,
TREE_TYPE (vtbl),
build2 (EQ_EXPR, boolean_type_node,
current_in_charge_parm, integer_zero_node),
vtbl2,
vtbl);
}
/* Compute the location of the vtpr. */
vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
tf_warning_or_error),
TREE_TYPE (binfo));
gcc_assert (vtbl_ptr != error_mark_node);
/* Assign the vtable to the vptr. */
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
tf_warning_or_error));
}
/* If an exception is thrown in a constructor, those base classes already
constructed must be destroyed. This function creates the cleanup
for BINFO, which has just been constructed. If FLAG is non-NULL,
it is a DECL which is nonzero when this base needs to be
destroyed. */
static void
expand_cleanup_for_base (tree binfo, tree flag)
{
tree expr;
if (!type_build_dtor_call (BINFO_TYPE (binfo)))
return;
/* Call the destructor. */
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL,
binfo,
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
tf_warning_or_error);
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
return;
if (flag)
expr = fold_build3_loc (input_location,
COND_EXPR, void_type_node,
c_common_truthvalue_conversion (input_location, flag),
expr, integer_zero_node);
finish_eh_cleanup (expr);
}
/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
constructor. */
static void
construct_virtual_base (tree vbase, tree arguments)
{
tree inner_if_stmt;
tree exp;
tree flag;
/* If there are virtual base classes with destructors, we need to
emit cleanups to destroy them if an exception is thrown during
the construction process. These exception regions (i.e., the
period during which the cleanups must occur) begin from the time
the construction is complete to the end of the function. If we
create a conditional block in which to initialize the
base-classes, then the cleanup region for the virtual base begins
inside a block, and ends outside of that block. This situation
confuses the sjlj exception-handling code. Therefore, we do not
create a single conditional block, but one for each
initialization. (That way the cleanup regions always begin
in the outer block.) We trust the back end to figure out
that the FLAG will not change across initializations, and
avoid doing multiple tests. */
flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
inner_if_stmt = begin_if_stmt ();
finish_if_stmt_cond (flag, inner_if_stmt);
/* Compute the location of the virtual base. If we're
constructing virtual bases, then we must be the most derived
class. Therefore, we don't have to look up the virtual base;
we already know where it is. */
exp = convert_to_base_statically (current_class_ref, vbase);
expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
0, tf_warning_or_error);
finish_then_clause (inner_if_stmt);
finish_if_stmt (inner_if_stmt);
expand_cleanup_for_base (vbase, flag);
}
/* Find the context in which this FIELD can be initialized. */
static tree
initializing_context (tree field)
{
tree t = DECL_CONTEXT (field);
/* Anonymous union members can be initialized in the first enclosing
non-anonymous union context. */
while (t && ANON_AGGR_TYPE_P (t))
t = TYPE_CONTEXT (t);
return t;
}
/* Function to give error message if member initialization specification
is erroneous. FIELD is the member we decided to initialize.
TYPE is the type for which the initialization is being performed.
FIELD must be a member of TYPE.
MEMBER_NAME is the name of the member. */
static int
member_init_ok_or_else (tree field, tree type, tree member_name)
{
if (field == error_mark_node)
return 0;
if (!field)
{
error ("class %qT does not have any field named %qD", type,
member_name);
return 0;
}
if (VAR_P (field))
{
error ("%q#D is a static data member; it can only be "
"initialized at its definition",
field);
return 0;
}
if (TREE_CODE (field) != FIELD_DECL)
{
error ("%q#D is not a non-static data member of %qT",
field, type);
return 0;
}
if (initializing_context (field) != type)
{
error ("class %qT does not have any field named %qD", type,
member_name);
return 0;
}
return 1;
}
/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
is a _TYPE node or TYPE_DECL which names a base for that type.
Check the validity of NAME, and return either the base _TYPE, base
binfo, or the FIELD_DECL of the member. If NAME is invalid, return
NULL_TREE and issue a diagnostic.
An old style unnamed direct single base construction is permitted,
where NAME is NULL. */
tree
expand_member_init (tree name)
{
tree basetype;
tree field;
if (!current_class_ref)
return NULL_TREE;
if (!name)
{
/* This is an obsolete unnamed base class initializer. The
parser will already have warned about its use. */
switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
{
case 0:
error ("unnamed initializer for %qT, which has no base classes",
current_class_type);
return NULL_TREE;
case 1:
basetype = BINFO_TYPE
(BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
break;
default:
error ("unnamed initializer for %qT, which uses multiple inheritance",
current_class_type);
return NULL_TREE;
}
}
else if (TYPE_P (name))
{
basetype = TYPE_MAIN_VARIANT (name);
name = TYPE_NAME (name);
}
else if (TREE_CODE (name) == TYPE_DECL)
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
else
basetype = NULL_TREE;
if (basetype)
{
tree class_binfo;
tree direct_binfo;
tree virtual_binfo;
int i;
if (current_template_parms
|| same_type_p (basetype, current_class_type))
return basetype;
class_binfo = TYPE_BINFO (current_class_type);
direct_binfo = NULL_TREE;
virtual_binfo = NULL_TREE;
/* Look for a direct base. */
for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
break;
/* Look for a virtual base -- unless the direct base is itself
virtual. */
if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
virtual_binfo = binfo_for_vbase (basetype, current_class_type);
/* [class.base.init]
If a mem-initializer-id is ambiguous because it designates
both a direct non-virtual base class and an inherited virtual
base class, the mem-initializer is ill-formed. */
if (direct_binfo && virtual_binfo)
{
error ("%qD is both a direct base and an indirect virtual base",
basetype);
return NULL_TREE;
}
if (!direct_binfo && !virtual_binfo)
{
if (CLASSTYPE_VBASECLASSES (current_class_type))
error ("type %qT is not a direct or virtual base of %qT",
basetype, current_class_type);
else
error ("type %qT is not a direct base of %qT",
basetype, current_class_type);
return NULL_TREE;
}
return direct_binfo ? direct_binfo : virtual_binfo;
}
else
{
if (identifier_p (name))
field = lookup_field (current_class_type, name, 1, false);
else
field = name;
if (member_init_ok_or_else (field, current_class_type, name))
return field;
}
return NULL_TREE;
}
/* This is like `expand_member_init', only it stores one aggregate
value into another.
INIT comes in two flavors: it is either a value which
is to be stored in EXP, or it is a parameter list
to go to a constructor, which will operate on EXP.
If INIT is not a parameter list for a constructor, then set
LOOKUP_ONLYCONVERTING.
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
the initializer, if FLAGS is 0, then it is the (init) form.
If `init' is a CONSTRUCTOR, then we emit a warning message,
explaining that such initializations are invalid.
If INIT resolves to a CALL_EXPR which happens to return
something of the type we are looking for, then we know
that we can safely use that call to perform the
initialization.
The virtual function table pointer cannot be set up here, because
we do not really know its type.
This never calls operator=().
When initializing, nothing is CONST.
A default copy constructor may have to be used to perform the
initialization.
A constructor or a conversion operator may have to be used to
perform the initialization, but not both, as it would be ambiguous. */
tree
build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
{
tree stmt_expr;
tree compound_stmt;
int destroy_temps;
tree type = TREE_TYPE (exp);
int was_const = TREE_READONLY (exp);
int was_volatile = TREE_THIS_VOLATILE (exp);
int is_global;
if (init == error_mark_node)
return error_mark_node;
TREE_READONLY (exp) = 0;
TREE_THIS_VOLATILE (exp) = 0;
if (init && init != void_type_node
&& TREE_CODE (init) != TREE_LIST
&& !(TREE_CODE (init) == TARGET_EXPR
&& TARGET_EXPR_DIRECT_INIT_P (init))
&& !DIRECT_LIST_INIT_P (init))
flags |= LOOKUP_ONLYCONVERTING;
if (TREE_CODE (type) == ARRAY_TYPE)
{
tree itype;
/* An array may not be initialized use the parenthesized
initialization form -- unless the initializer is "()". */
if (init && TREE_CODE (init) == TREE_LIST)
{
if (complain & tf_error)
error ("bad array initializer");
return error_mark_node;
}
/* Must arrange to initialize each element of EXP
from elements of INIT. */
itype = init ? TREE_TYPE (init) : NULL_TREE;
if (cv_qualified_p (type))
TREE_TYPE (exp) = cv_unqualified (type);
if (itype && cv_qualified_p (itype))
TREE_TYPE (init) = cv_unqualified (itype);
stmt_expr = build_vec_init (exp, NULL_TREE, init,
/*explicit_value_init_p=*/false,
itype && same_type_p (TREE_TYPE (init),
TREE_TYPE (exp)),
complain);
TREE_READONLY (exp) = was_const;
TREE_THIS_VOLATILE (exp) = was_volatile;
TREE_TYPE (exp) = type;
/* Restore the type of init unless it was used directly. */
if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
TREE_TYPE (init) = itype;
return stmt_expr;
}
if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
&& !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
/* Just know that we've seen something for this node. */
TREE_USED (exp) = 1;
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
destroy_temps = stmts_are_full_exprs_p ();
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
init, LOOKUP_NORMAL|flags, complain);
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
TREE_READONLY (exp) = was_const;
TREE_THIS_VOLATILE (exp) = was_volatile;
return stmt_expr;
}
static void
expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
tsubst_flags_t complain)
{
tree type = TREE_TYPE (exp);
tree ctor_name;
/* It fails because there may not be a constructor which takes
its own type as the first (or only parameter), but which does
take other types via a conversion. So, if the thing initializing
the expression is a unit element of type X, first try X(X&),
followed by initialization by X. If neither of these work
out, then look hard. */
tree rval;
vec *parms;
/* If we have direct-initialization from an initializer list, pull
it out of the TREE_LIST so the code below can see it. */
if (init && TREE_CODE (init) == TREE_LIST
&& DIRECT_LIST_INIT_P (TREE_VALUE (init)))
{
gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
&& TREE_CHAIN (init) == NULL_TREE);
init = TREE_VALUE (init);
}
if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
&& CP_AGGREGATE_TYPE_P (type))
/* A brace-enclosed initializer for an aggregate. In C++0x this can
happen for direct-initialization, too. */
{
init = reshape_init (type, init, complain);
init = digest_init (type, init, complain);
}
/* A CONSTRUCTOR of the target's type is a previously digested
initializer, whether that happened just above or in
cp_parser_late_parsing_nsdmi.
A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
set represents the whole initialization, so we shouldn't build up
another ctor call. */
if (init
&& (TREE_CODE (init) == CONSTRUCTOR
|| (TREE_CODE (init) == TARGET_EXPR
&& (TARGET_EXPR_DIRECT_INIT_P (init)
|| TARGET_EXPR_LIST_INIT_P (init))))
&& same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
{
/* Early initialization via a TARGET_EXPR only works for
complete objects. */
gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
TREE_SIDE_EFFECTS (init) = 1;
finish_expr_stmt (init);
return;
}
if (init && TREE_CODE (init) != TREE_LIST
&& (flags & LOOKUP_ONLYCONVERTING))
{
/* Base subobjects should only get direct-initialization. */
gcc_assert (true_exp == exp);
if (flags & DIRECT_BIND)
/* Do nothing. We hit this in two cases: Reference initialization,
where we aren't initializing a real variable, so we don't want
to run a new constructor; and catching an exception, where we
have already built up the constructor call so we could wrap it
in an exception region. */;
else
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
flags, complain);
if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
/* We need to protect the initialization of a catch parm with a
call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
around the TARGET_EXPR for the copy constructor. See
initialize_handler_parm. */
{
TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
TREE_OPERAND (init, 0));
TREE_TYPE (init) = void_type_node;
}
else
init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
TREE_SIDE_EFFECTS (init) = 1;
finish_expr_stmt (init);
return;
}
if (init == NULL_TREE)
parms = NULL;
else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
{
parms = make_tree_vector ();
for (; init != NULL_TREE; init = TREE_CHAIN (init))
vec_safe_push (parms, TREE_VALUE (init));
}
else
parms = make_tree_vector_single (init);
if (exp == current_class_ref && current_function_decl
&& DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
{
/* Delegating constructor. */
tree complete;
tree base;
tree elt; unsigned i;
/* Unshare the arguments for the second call. */
vec *parms2 = make_tree_vector ();
FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
{
elt = break_out_target_exprs (elt);
vec_safe_push (parms2, elt);
}
complete = build_special_member_call (exp, complete_ctor_identifier,
&parms2, binfo, flags,
complain);
complete = fold_build_cleanup_point_expr (void_type_node, complete);
release_tree_vector (parms2);
base = build_special_member_call (exp, base_ctor_identifier,
&parms, binfo, flags,
complain);
base = fold_build_cleanup_point_expr (void_type_node, base);
rval = build3 (COND_EXPR, void_type_node,
build2 (EQ_EXPR, boolean_type_node,
current_in_charge_parm, integer_zero_node),
base,
complete);
}
else
{
if (true_exp == exp)
ctor_name = complete_ctor_identifier;
else
ctor_name = base_ctor_identifier;
rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
complain);
}
if (parms != NULL)
release_tree_vector (parms);
if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
{
tree fn = get_callee_fndecl (rval);
if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
{
tree e = maybe_constant_init (rval, exp);
if (TREE_CONSTANT (e))
rval = build2 (INIT_EXPR, type, exp, e);
}
}
/* FIXME put back convert_to_void? */
if (TREE_SIDE_EFFECTS (rval))
finish_expr_stmt (rval);
}
/* This function is responsible for initializing EXP with INIT
(if any).
BINFO is the binfo of the type for who we are performing the
initialization. For example, if W is a virtual base class of A and B,
and C : A, B.
If we are initializing B, then W must contain B's W vtable, whereas
were we initializing C, W must contain C's W vtable.
TRUE_EXP is nonzero if it is the true expression being initialized.
In this case, it may be EXP, or may just contain EXP. The reason we
need this is because if EXP is a base element of TRUE_EXP, we
don't necessarily know by looking at EXP where its virtual
baseclass fields should really be pointing. But we do know
from TRUE_EXP. In constructors, we don't know anything about
the value being initialized.
FLAGS is just passed to `build_new_method_call'. See that function
for its description. */
static void
expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
tsubst_flags_t complain)
{
tree type = TREE_TYPE (exp);
gcc_assert (init != error_mark_node && type != error_mark_node);
gcc_assert (building_stmt_list_p ());
/* Use a function returning the desired type to initialize EXP for us.
If the function is a constructor, and its first argument is
NULL_TREE, know that it was meant for us--just slide exp on
in and expand the constructor. Constructors now come
as TARGET_EXPRs. */
if (init && VAR_P (exp)
&& COMPOUND_LITERAL_P (init))
{
vec *cleanups = NULL;
/* If store_init_value returns NULL_TREE, the INIT has been
recorded as the DECL_INITIAL for EXP. That means there's
nothing more we have to do. */
init = store_init_value (exp, init, &cleanups, flags);
if (init)
finish_expr_stmt (init);
gcc_assert (!cleanups);
return;
}
/* If an explicit -- but empty -- initializer list was present,
that's value-initialization. */
if (init == void_type_node)
{
/* If the type has data but no user-provided ctor, we need to zero
out the object. */
if (!type_has_user_provided_constructor (type)
&& !is_really_empty_class (type))
{
tree field_size = NULL_TREE;
if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
/* Don't clobber already initialized virtual bases. */
field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
field_size);
init = build2 (INIT_EXPR, type, exp, init);
finish_expr_stmt (init);
}
/* If we don't need to mess with the constructor at all,
then we're done. */
if (! type_build_ctor_call (type))
return;
/* Otherwise fall through and call the constructor. */
init = NULL_TREE;
}
/* We know that expand_default_init can handle everything we want
at this point. */
expand_default_init (binfo, true_exp, exp, init, flags, complain);
}
/* Report an error if TYPE is not a user-defined, class type. If
OR_ELSE is nonzero, give an error message. */
int
is_class_type (tree type, int or_else)
{
if (type == error_mark_node)
return 0;
if (! CLASS_TYPE_P (type))
{
if (or_else)
error ("%qT is not a class type", type);
return 0;
}
return 1;
}
tree
get_type_value (tree name)
{
if (name == error_mark_node)
return NULL_TREE;
if (IDENTIFIER_HAS_TYPE_VALUE (name))
return IDENTIFIER_TYPE_VALUE (name);
else
return NULL_TREE;
}
/* Build a reference to a member of an aggregate. This is not a C++
`&', but really something which can have its address taken, and
then act as a pointer to member, for example TYPE :: FIELD can have
its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
this expression is the operand of "&".
@@ Prints out lousy diagnostics for operator
@@ fields.
@@ This function should be rewritten and placed in search.c. */
tree
build_offset_ref (tree type, tree member, bool address_p,
tsubst_flags_t complain)
{
tree decl;
tree basebinfo = NULL_TREE;
/* class templates can come in as TEMPLATE_DECLs here. */
if (TREE_CODE (member) == TEMPLATE_DECL)
return member;
if (dependent_scope_p (type) || type_dependent_expression_p (member))
return build_qualified_name (NULL_TREE, type, member,
/*template_p=*/false);
gcc_assert (TYPE_P (type));
if (! is_class_type (type, 1))
return error_mark_node;
gcc_assert (DECL_P (member) || BASELINK_P (member));
/* Callers should call mark_used before this point. */
gcc_assert (!DECL_P (member) || TREE_USED (member));
type = TYPE_MAIN_VARIANT (type);
if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
{
if (complain & tf_error)
error ("incomplete type %qT does not have member %qD", type, member);
return error_mark_node;
}
/* Entities other than non-static members need no further
processing. */
if (TREE_CODE (member) == TYPE_DECL)
return member;
if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
return convert_from_reference (member);
if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
{
if (complain & tf_error)
error ("invalid pointer to bit-field %qD", member);
return error_mark_node;
}
/* Set up BASEBINFO for member lookup. */
decl = maybe_dummy_object (type, &basebinfo);
/* A lot of this logic is now handled in lookup_member. */
if (BASELINK_P (member))
{
/* Go from the TREE_BASELINK to the member function info. */
tree t = BASELINK_FUNCTIONS (member);
if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
{
/* Get rid of a potential OVERLOAD around it. */
t = OVL_CURRENT (t);
/* Unique functions are handled easily. */
/* For non-static member of base class, we need a special rule
for access checking [class.protected]:
If the access is to form a pointer to member, the
nested-name-specifier shall name the derived class
(or any class derived from that class). */
if (address_p && DECL_P (t)
&& DECL_NONSTATIC_MEMBER_P (t))
perform_or_defer_access_check (TYPE_BINFO (type), t, t,
complain);
else
perform_or_defer_access_check (basebinfo, t, t,
complain);
if (DECL_STATIC_FUNCTION_P (t))
return t;
member = t;
}
else
TREE_TYPE (member) = unknown_type_node;
}
else if (address_p && TREE_CODE (member) == FIELD_DECL)
/* We need additional test besides the one in
check_accessibility_of_qualified_id in case it is
a pointer to non-static member. */
perform_or_defer_access_check (TYPE_BINFO (type), member, member,
complain);
if (!address_p)
{
/* If MEMBER is non-static, then the program has fallen afoul of
[expr.prim]:
An id-expression that denotes a nonstatic data member or
nonstatic member function of a class can only be used:
-- as part of a class member access (_expr.ref_) in which the
object-expression refers to the member's class or a class
derived from that class, or
-- to form a pointer to member (_expr.unary.op_), or
-- in the body of a nonstatic member function of that class or
of a class derived from that class (_class.mfct.nonstatic_), or
-- in a mem-initializer for a constructor for that class or for
a class derived from that class (_class.base.init_). */
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
{
/* Build a representation of the qualified name suitable
for use as the operand to "&" -- even though the "&" is
not actually present. */
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
/* In Microsoft mode, treat a non-static member function as if
it were a pointer-to-member. */
if (flag_ms_extensions)
{
PTRMEM_OK_P (member) = 1;
return cp_build_addr_expr (member, complain);
}
if (complain & tf_error)
error ("invalid use of non-static member function %qD",
TREE_OPERAND (member, 1));
return error_mark_node;
}
else if (TREE_CODE (member) == FIELD_DECL)
{
if (complain & tf_error)
error ("invalid use of non-static data member %qD", member);
return error_mark_node;
}
return member;
}
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
PTRMEM_OK_P (member) = 1;
return member;
}
/* If DECL is a scalar enumeration constant or variable with a
constant initializer, return the initializer (or, its initializers,
recursively); otherwise, return DECL. If STRICT_P, the
initializer is only returned if DECL is a
constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
return an aggregate constant. */
static tree
constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
{
while (TREE_CODE (decl) == CONST_DECL
|| (strict_p
? decl_constant_var_p (decl)
: (VAR_P (decl)
&& CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
{
tree init;
/* If DECL is a static data member in a template
specialization, we must instantiate it here. The
initializer for the static data member is not processed
until needed; we need it now. */
mark_used (decl, tf_none);
mark_rvalue_use (decl);
init = DECL_INITIAL (decl);
if (init == error_mark_node)
{
if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
/* Treat the error as a constant to avoid cascading errors on
excessively recursive template instantiation (c++/9335). */
return init;
else
return decl;
}
/* Initializers in templates are generally expanded during
instantiation, so before that for const int i(2)
INIT is a TREE_LIST with the actual initializer as
TREE_VALUE. */
if (processing_template_decl
&& init
&& TREE_CODE (init) == TREE_LIST
&& TREE_CHAIN (init) == NULL_TREE)
init = TREE_VALUE (init);
if (!init
|| !TREE_TYPE (init)
|| !TREE_CONSTANT (init)
|| (!return_aggregate_cst_ok_p
/* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
return an aggregate constant (of which string
literals are a special case), as we do not want
to make inadvertent copies of such entities, and
we must be sure that their addresses are the
same everywhere. */
&& (TREE_CODE (init) == CONSTRUCTOR
|| TREE_CODE (init) == STRING_CST)))
break;
decl = unshare_expr (init);
}
return decl;
}
/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
of integral or enumeration type, or a constexpr variable of scalar type,
then return that value. These are those variables permitted in constant
expressions by [5.19/1]. */
tree
scalar_constant_value (tree decl)
{
return constant_value_1 (decl, /*strict_p=*/true,
/*return_aggregate_cst_ok_p=*/false);
}
/* Like scalar_constant_value, but can also return aggregate initializers. */
tree
decl_really_constant_value (tree decl)
{
return constant_value_1 (decl, /*strict_p=*/true,
/*return_aggregate_cst_ok_p=*/true);
}
/* A more relaxed version of scalar_constant_value, used by the
common C/C++ code. */
tree
decl_constant_value (tree decl)
{
return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
/*return_aggregate_cst_ok_p=*/true);
}
/* Common subroutines of build_new and build_vec_delete. */
/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
the type of the object being allocated; otherwise, it's just TYPE.
INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
a vector of arguments to be provided as arguments to a placement
new operator. This routine performs no semantic checks; it just
creates and returns a NEW_EXPR. */
static tree
build_raw_new_expr (vec *placement, tree type, tree nelts,
vec *init, int use_global_new)
{
tree init_list;
tree new_expr;
/* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
permits us to distinguish the case of a missing initializer "new
int" from an empty initializer "new int()". */
if (init == NULL)
init_list = NULL_TREE;
else if (init->is_empty ())
init_list = void_node;
else
init_list = build_tree_list_vec (init);
new_expr = build4 (NEW_EXPR, build_pointer_type (type),
build_tree_list_vec (placement), type, nelts,
init_list);
NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
TREE_SIDE_EFFECTS (new_expr) = 1;
return new_expr;
}
/* Diagnose uninitialized const members or reference members of type
TYPE. USING_NEW is used to disambiguate the diagnostic between a
new expression without a new-initializer and a declaration. Returns
the error count. */
static int
diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
bool using_new, bool complain)
{
tree field;
int error_count = 0;
if (type_has_user_provided_constructor (type))
return 0;
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
tree field_type;
if (TREE_CODE (field) != FIELD_DECL)
continue;
field_type = strip_array_types (TREE_TYPE (field));
if (type_has_user_provided_constructor (field_type))
continue;
if (TREE_CODE (field_type) == REFERENCE_TYPE)
{
++ error_count;
if (complain)
{
if (DECL_CONTEXT (field) == origin)
{
if (using_new)
error ("uninitialized reference member in %q#T "
"using % without new-initializer", origin);
else
error ("uninitialized reference member in %q#T", origin);
}
else
{
if (using_new)
error ("uninitialized reference member in base %q#T "
"of %q#T using % without new-initializer",
DECL_CONTEXT (field), origin);
else
error ("uninitialized reference member in base %q#T "
"of %q#T", DECL_CONTEXT (field), origin);
}
inform (DECL_SOURCE_LOCATION (field),
"%q#D should be initialized", field);
}
}
if (CP_TYPE_CONST_P (field_type))
{
++ error_count;
if (complain)
{
if (DECL_CONTEXT (field) == origin)
{
if (using_new)
error ("uninitialized const member in %q#T "
"using % without new-initializer", origin);
else
error ("uninitialized const member in %q#T", origin);
}
else
{
if (using_new)
error ("uninitialized const member in base %q#T "
"of %q#T using % without new-initializer",
DECL_CONTEXT (field), origin);
else
error ("uninitialized const member in base %q#T "
"of %q#T", DECL_CONTEXT (field), origin);
}
inform (DECL_SOURCE_LOCATION (field),
"%q#D should be initialized", field);
}
}
if (CLASS_TYPE_P (field_type))
error_count
+= diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
using_new, complain);
}
return error_count;
}
int
diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
{
return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
}
/* Call __cxa_bad_array_new_length to indicate that the size calculation
overflowed. Pretend it returns sizetype so that it plays nicely in the
COND_EXPR. */
tree
throw_bad_array_new_length (void)
{
tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
if (!get_global_value_if_present (fn, &fn))
fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
NULL_TREE));
return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
}
/* Attempt to verify that the argument, OPER, of a placement new expression
refers to an object sufficiently large for an object of TYPE or an array
of NELTS of such objects when NELTS is non-null, and issue a warning when
it does not. SIZE specifies the size needed to construct the object or
array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
greater when the array under construction requires a cookie to store
NELTS. GCC's placement new expression stores the cookie when invoking
a user-defined placement new operator function but not the default one.
Placement new expressions with user-defined placement new operator are
not diagnosed since we don't know how they use the buffer (this could
be a future extension). */
static void
warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
{
location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
/* The number of bytes to add to or subtract from the size of the provided
buffer based on an offset into an array or an array element reference.
Although intermediate results may be negative (as in a[3] - 2) the final
result cannot be. */
HOST_WIDE_INT adjust = 0;
/* True when the size of the entire destination object should be used
to compute the possibly optimistic estimate of the available space. */
bool use_obj_size = false;
/* True when the reference to the destination buffer is an ADDR_EXPR. */
bool addr_expr = false;
STRIP_NOPS (oper);
/* Using a function argument or a (non-array) variable as an argument
to placement new is not checked since it's unknown what it might
point to. */
if (TREE_CODE (oper) == PARM_DECL
|| TREE_CODE (oper) == VAR_DECL
|| TREE_CODE (oper) == COMPONENT_REF)
return;
/* Evaluate any constant expressions. */
size = fold_non_dependent_expr (size);
/* Handle the common case of array + offset expression when the offset
is a constant. */
if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
{
/* If the offset is comple-time constant, use it to compute a more
accurate estimate of the size of the buffer. Since the operand
of POINTER_PLUS_EXPR is represented as an unsigned type, convert
it to signed first.
Otherwise, use the size of the entire array as an optimistic
estimate (this may lead to false negatives). */
tree adj = TREE_OPERAND (oper, 1);
if (CONSTANT_CLASS_P (adj))
adjust += tree_to_shwi (convert (ssizetype, adj));
else
use_obj_size = true;
oper = TREE_OPERAND (oper, 0);
STRIP_NOPS (oper);
}
if (TREE_CODE (oper) == TARGET_EXPR)
oper = TREE_OPERAND (oper, 1);
else if (TREE_CODE (oper) == ADDR_EXPR)
{
addr_expr = true;
oper = TREE_OPERAND (oper, 0);
}
STRIP_NOPS (oper);
if (TREE_CODE (oper) == ARRAY_REF)
{
/* Similar to the offset computed above, see if the array index
is a compile-time constant. If so, and unless the offset was
not a compile-time constant, use the index to determine the
size of the buffer. Otherwise, use the entire array as
an optimistic estimate of the size. */
const_tree adj = TREE_OPERAND (oper, 1);
if (!use_obj_size && CONSTANT_CLASS_P (adj))
adjust += tree_to_shwi (adj);
else
{
use_obj_size = true;
adjust = 0;
}
oper = TREE_OPERAND (oper, 0);
}
/* Descend into a struct or union to find the member whose address
is being used as the agument. */
while (TREE_CODE (oper) == COMPONENT_REF)
oper = TREE_OPERAND (oper, 1);
if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
&& (TREE_CODE (oper) == VAR_DECL
|| TREE_CODE (oper) == FIELD_DECL
|| TREE_CODE (oper) == PARM_DECL))
{
/* A possibly optimistic estimate of the number of bytes available
in the destination buffer. */
unsigned HOST_WIDE_INT bytes_avail;
/* True when the estimate above is in fact the exact size
of the destination buffer rather than an estimate. */
bool exact_size = true;
/* Treat members of unions and members of structs uniformly, even
though the size of a member of a union may be viewed as extending
to the end of the union itself (it is by __builtin_object_size). */
if ((TREE_CODE (oper) == VAR_DECL || use_obj_size)
&& DECL_SIZE_UNIT (oper))
{
/* Use the size of the entire array object when the expression
refers to a variable or its size depends on an expression
that's not a compile-time constant. */
bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
exact_size = !use_obj_size;
}
else if (TYPE_SIZE_UNIT (TREE_TYPE (oper)))
{
/* Use the size of the type of the destination buffer object
as the optimistic estimate of the available space in it. */
bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
}
else
{
/* Bail if neither the size of the object nor its type is known. */
return;
}
/* Avoid diagnosing flexible array members (accepted as an extension
and diagnosed with -Wpedantic).
Constructing objects that appear to overflow the C99 equivalent of
flexible array members (i.e., array members of size zero or one)
are diagnosed in C++ since their declaration cannot be diagnosed. */
if (bytes_avail == 0 && TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE)
return;
/* The size of the buffer can only be adjusted down but not up. */
gcc_checking_assert (0 <= adjust);
/* Reduce the size of the buffer by the adjustment computed above
from the offset and/or the index into the array. */
if (bytes_avail < static_cast(adjust))
bytes_avail = 0;
else
bytes_avail -= adjust;
/* The minimum amount of space needed for the allocation. This
is an optimistic estimate that makes it possible to detect
placement new invocation for some undersize buffers but not
others. */
unsigned HOST_WIDE_INT bytes_need;
if (CONSTANT_CLASS_P (size))
bytes_need = tree_to_uhwi (size);
else if (nelts && CONSTANT_CLASS_P (nelts))
bytes_need = tree_to_uhwi (nelts)
* tree_to_uhwi (TYPE_SIZE_UNIT (type));
else
bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
if (bytes_avail < bytes_need)
{
if (nelts)
if (CONSTANT_CLASS_P (nelts))
warning_at (loc, OPT_Wplacement_new,
exact_size ?
"placement new constructing an object of type "
"%<%T [%wu]%> and size %qwu in a region of type %qT "
"and size %qwi"
: "placement new constructing an object of type "
"%<%T [%wu]%> and size %qwu in a region of type %qT "
"and size at most %qwu",
type, tree_to_uhwi (nelts), bytes_need,
TREE_TYPE (oper),
bytes_avail);
else
warning_at (loc, OPT_Wplacement_new,
exact_size ?
"placement new constructing an array of objects "
"of type %qT and size %qwu in a region of type %qT "
"and size %qwi"
: "placement new constructing an array of objects "
"of type %qT and size %qwu in a region of type %qT "
"and size at most %qwu",
type, bytes_need, TREE_TYPE (oper),
bytes_avail);
else
warning_at (loc, OPT_Wplacement_new,
exact_size ?
"placement new constructing an object of type %qT "
"and size %qwu in a region of type %qT and size %qwi"
: "placement new constructing an object of type %qT"
"and size %qwu in a region of type %qT and size "
"at most %qwu",
type, bytes_need, TREE_TYPE (oper),
bytes_avail);
}
}
}
/* Generate code for a new-expression, including calling the "operator
new" function, initializing the object, and, if an exception occurs
during construction, cleaning up. The arguments are as for
build_raw_new_expr. This may change PLACEMENT and INIT.
TYPE is the type of the object being constructed, possibly an array
of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
be an array of the form U[inner], with the whole expression being
"new U[NELTS][inner]"). */
static tree
build_new_1 (vec **placement, tree type, tree nelts,
vec **init, bool globally_qualified_p,
tsubst_flags_t complain)
{
tree size, rval;
/* True iff this is a call to "operator new[]" instead of just
"operator new". */
bool array_p = false;
/* If ARRAY_P is true, the element type of the array. This is never
an ARRAY_TYPE; for something like "new int[3][4]", the
ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
TYPE. */
tree elt_type;
/* The type of the new-expression. (This type is always a pointer
type.) */
tree pointer_type;
tree non_const_pointer_type;
/* The most significant array bound in int[OUTER_NELTS][inner]. */
tree outer_nelts = NULL_TREE;
/* For arrays with a non-constant number of elements, a bounds checks
on the NELTS parameter to avoid integer overflow at runtime. */
tree outer_nelts_check = NULL_TREE;
bool outer_nelts_from_type = false;
/* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
offset_int inner_nelts_count = 1;
tree alloc_call, alloc_expr;
/* Size of the inner array elements (those with constant dimensions). */
offset_int inner_size;
/* The address returned by the call to "operator new". This node is
a VAR_DECL and is therefore reusable. */
tree alloc_node;
tree alloc_fn;
tree cookie_expr, init_expr;
int nothrow, check_new;
int use_java_new = 0;
/* If non-NULL, the number of extra bytes to allocate at the
beginning of the storage allocated for an array-new expression in
order to store the number of elements. */
tree cookie_size = NULL_TREE;
tree placement_first;
tree placement_expr = NULL_TREE;
/* True if the function we are calling is a placement allocation
function. */
bool placement_allocation_fn_p;
/* True if the storage must be initialized, either by a constructor
or due to an explicit new-initializer. */
bool is_initialized;
/* The address of the thing allocated, not including any cookie. In
particular, if an array cookie is in use, DATA_ADDR is the
address of the first array element. This node is a VAR_DECL, and
is therefore reusable. */
tree data_addr;
tree init_preeval_expr = NULL_TREE;
tree orig_type = type;
if (nelts)
{
outer_nelts = nelts;
array_p = true;
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
/* Transforms new (T[N]) to new T[N]. The former is a GNU
extension for variable N. (This also covers new T where T is
a VLA typedef.) */
array_p = true;
nelts = array_type_nelts_top (type);
outer_nelts = nelts;
type = TREE_TYPE (type);
outer_nelts_from_type = true;
}
/* Lots of logic below. depends on whether we have a constant number of
elements, so go ahead and fold it now. */
if (outer_nelts)
outer_nelts = maybe_constant_value (outer_nelts);
/* If our base type is an array, then make sure we know how many elements
it has. */
for (elt_type = type;
TREE_CODE (elt_type) == ARRAY_TYPE;
elt_type = TREE_TYPE (elt_type))
{
tree inner_nelts = array_type_nelts_top (elt_type);
tree inner_nelts_cst = maybe_constant_value (inner_nelts);
if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
{
bool overflow;
offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
inner_nelts_count, SIGNED, &overflow);
if (overflow)
{
if (complain & tf_error)
error ("integer overflow in array size");
nelts = error_mark_node;
}
inner_nelts_count = result;
}
else
{
if (complain & tf_error)
{
error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
"array size in new-expression must be constant");
cxx_constant_value(inner_nelts);
}
nelts = error_mark_node;
}
if (nelts != error_mark_node)
nelts = cp_build_binary_op (input_location,
MULT_EXPR, nelts,
inner_nelts_cst,
complain);
}
if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
{
error ("variably modified type not allowed in new-expression");
return error_mark_node;
}
if (nelts == error_mark_node)
return error_mark_node;
/* Warn if we performed the (T[N]) to T[N] transformation and N is
variable. */
if (outer_nelts_from_type
&& !TREE_CONSTANT (outer_nelts))
{
if (complain & tf_warning_or_error)
{
const char *msg;
if (typedef_variant_p (orig_type))
msg = ("non-constant array new length must be specified "
"directly, not by typedef");
else
msg = ("non-constant array new length must be specified "
"without parentheses around the type-id");
pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
OPT_Wvla, msg);
}
else
return error_mark_node;
}
if (VOID_TYPE_P (elt_type))
{
if (complain & tf_error)
error ("invalid type % for new");
return error_mark_node;
}
if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
return error_mark_node;
is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
if (*init == NULL && cxx_dialect < cxx11)
{
bool maybe_uninitialized_error = false;
/* A program that calls for default-initialization [...] of an
entity of reference type is ill-formed. */
if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
maybe_uninitialized_error = true;
/* A new-expression that creates an object of type T initializes
that object as follows:
- If the new-initializer is omitted:
-- If T is a (possibly cv-qualified) non-POD class type
(or array thereof), the object is default-initialized (8.5).
[...]
-- Otherwise, the object created has indeterminate
value. If T is a const-qualified type, or a (possibly
cv-qualified) POD class type (or array thereof)
containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed; */
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
maybe_uninitialized_error = true;
if (maybe_uninitialized_error
&& diagnose_uninitialized_cst_or_ref_member (elt_type,
/*using_new=*/true,
complain & tf_error))
return error_mark_node;
}
if (CP_TYPE_CONST_P (elt_type) && *init == NULL
&& default_init_uninitialized_part (elt_type))
{
if (complain & tf_error)
error ("uninitialized const in % of %q#T", elt_type);
return error_mark_node;
}
size = size_in_bytes (elt_type);
if (array_p)
{
/* Maximum available size in bytes. Half of the address space
minus the cookie size. */
offset_int max_size
= wi::set_bit_in_zero (TYPE_PRECISION (sizetype) - 1);
/* Maximum number of outer elements which can be allocated. */
offset_int max_outer_nelts;
tree max_outer_nelts_tree;
gcc_assert (TREE_CODE (size) == INTEGER_CST);
cookie_size = targetm.cxx.get_cookie_size (elt_type);
gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
/* Unconditionally subtract the cookie size. This decreases the
maximum object size and is safe even if we choose not to use
a cookie after all. */
max_size -= wi::to_offset (cookie_size);
bool overflow;
inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
&overflow);
if (overflow || wi::gtu_p (inner_size, max_size))
{
if (complain & tf_error)
error ("size of array is too large");
return error_mark_node;
}
max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
if (INTEGER_CST == TREE_CODE (outer_nelts))
{
if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
{
/* When the array size is constant, check it at compile time
to make sure it doesn't exceed the implementation-defined
maximum, as required by C++ 14 (in C++ 11 this requirement
isn't explicitly stated but it's enforced anyway -- see
grokdeclarator in cp/decl.c). */
if (complain & tf_error)
error ("size of array is too large");
return error_mark_node;
}
}
else
{
/* When a runtime check is necessary because the array size
isn't constant, keep only the top-most seven bits (starting
with the most significant non-zero bit) of the maximum size
to compare the array size against, to simplify encoding the
constant maximum size in the instruction stream. */
unsigned shift = (max_outer_nelts.get_precision ()) - 7
- wi::clz (max_outer_nelts);
max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
shift);
outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
outer_nelts,
max_outer_nelts_tree);
}
}
alloc_fn = NULL_TREE;
/* If PLACEMENT is a single simple pointer type not passed by
reference, prepare to capture it in a temporary variable. Do
this now, since PLACEMENT will change in the calls below. */
placement_first = NULL_TREE;
if (vec_safe_length (*placement) == 1
&& (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
placement_first = (**placement)[0];
bool member_new_p = false;
/* Allocate the object. */
if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
{
tree class_addr;
tree class_decl;
static const char alloc_name[] = "_Jv_AllocObject";
if (!MAYBE_CLASS_TYPE_P (elt_type))
{
error ("%qT isn%'t a valid Java class type", elt_type);
return error_mark_node;
}
class_decl = build_java_class_ref (elt_type);
if (class_decl == error_mark_node)
return error_mark_node;
use_java_new = 1;
if (!get_global_value_if_present (get_identifier (alloc_name),
&alloc_fn))
{
if (complain & tf_error)
error ("call to Java constructor with %qs undefined", alloc_name);
return error_mark_node;
}
else if (really_overloaded_fn (alloc_fn))
{
if (complain & tf_error)
error ("%qD should never be overloaded", alloc_fn);
return error_mark_node;
}
alloc_fn = OVL_CURRENT (alloc_fn);
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
alloc_call = cp_build_function_call_nary (alloc_fn, complain,
class_addr, NULL_TREE);
}
else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
{
error ("Java class %q#T object allocated using placement new", elt_type);
return error_mark_node;
}
else
{
tree fnname;
tree fns;
fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
member_new_p = !globally_qualified_p
&& CLASS_TYPE_P (elt_type)
&& (array_p
? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
: TYPE_HAS_NEW_OPERATOR (elt_type));
if (member_new_p)
{
/* Use a class-specific operator new. */
/* If a cookie is required, add some extra space. */
if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
size = size_binop (PLUS_EXPR, size, cookie_size);
else
{
cookie_size = NULL_TREE;
/* No size arithmetic necessary, so the size check is
not needed. */
if (outer_nelts_check != NULL && inner_size == 1)
outer_nelts_check = NULL_TREE;
}
/* Perform the overflow check. */
tree errval = TYPE_MAX_VALUE (sizetype);
if (cxx_dialect >= cxx11 && flag_exceptions)
errval = throw_bad_array_new_length ();
if (outer_nelts_check != NULL_TREE)
size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
size, errval);
/* Create the argument list. */
vec_safe_insert (*placement, 0, size);
/* Do name-lookup to find the appropriate operator. */
fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
if (fns == NULL_TREE)
{
if (complain & tf_error)
error ("no suitable %qD found in class %qT", fnname, elt_type);
return error_mark_node;
}
if (TREE_CODE (fns) == TREE_LIST)
{
if (complain & tf_error)
{
error ("request for member %qD is ambiguous", fnname);
print_candidates (fns);
}
return error_mark_node;
}
alloc_call = build_new_method_call (build_dummy_object (elt_type),
fns, placement,
/*conversion_path=*/NULL_TREE,
LOOKUP_NORMAL,
&alloc_fn,
complain);
}
else
{
/* Use a global operator new. */
/* See if a cookie might be required. */
if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
{
cookie_size = NULL_TREE;
/* No size arithmetic necessary, so the size check is
not needed. */
if (outer_nelts_check != NULL && inner_size == 1)
outer_nelts_check = NULL_TREE;
}
alloc_call = build_operator_new_call (fnname, placement,
&size, &cookie_size,
outer_nelts_check,
&alloc_fn, complain);
}
}
if (alloc_call == error_mark_node)
return error_mark_node;
gcc_assert (alloc_fn != NULL_TREE);
/* If we found a simple case of PLACEMENT_EXPR above, then copy it
into a temporary variable. */
if (!processing_template_decl
&& TREE_CODE (alloc_call) == CALL_EXPR
&& call_expr_nargs (alloc_call) == 2
&& TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
&& TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
{
tree placement = CALL_EXPR_ARG (alloc_call, 1);
if (placement_first != NULL_TREE
&& (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
|| VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
{
placement_expr = get_target_expr (placement_first);
CALL_EXPR_ARG (alloc_call, 1)
= fold_convert (TREE_TYPE (placement), placement_expr);
}
if (!member_new_p
&& VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
{
/* Attempt to make the warning point at the operator new argument. */
if (placement_first)
placement = placement_first;
warn_placement_new_too_small (orig_type, nelts, size, placement);
}
}
/* In the simple case, we can stop now. */
pointer_type = build_pointer_type (type);
if (!cookie_size && !is_initialized)
return build_nop (pointer_type, alloc_call);
/* Store the result of the allocation call in a variable so that we can
use it more than once. */
alloc_expr = get_target_expr (alloc_call);
alloc_node = TARGET_EXPR_SLOT (alloc_expr);
/* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
alloc_call = TREE_OPERAND (alloc_call, 1);
/* Now, check to see if this function is actually a placement
allocation function. This can happen even when PLACEMENT is NULL
because we might have something like:
struct S { void* operator new (size_t, int i = 0); };
A call to `new S' will get this allocation function, even though
there is no explicit placement argument. If there is more than
one argument, or there are variable arguments, then this is a
placement allocation function. */
placement_allocation_fn_p
= (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|| varargs_function_p (alloc_fn));
/* Preevaluate the placement args so that we don't reevaluate them for a
placement delete. */
if (placement_allocation_fn_p)
{
tree inits;
stabilize_call (alloc_call, &inits);
if (inits)
alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
alloc_expr);
}
/* unless an allocation function is declared with an empty excep-
tion-specification (_except.spec_), throw(), it indicates failure to
allocate storage by throwing a bad_alloc exception (clause _except_,
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
cation function is declared with an empty exception-specification,
throw(), it returns null to indicate failure to allocate storage and a
non-null pointer otherwise.
So check for a null exception spec on the op new we just called. */
nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
check_new = (flag_check_new || nothrow) && ! use_java_new;
if (cookie_size)
{
tree cookie;
tree cookie_ptr;
tree size_ptr_type;
/* Adjust so we're pointing to the start of the object. */
data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
/* Store the number of bytes allocated so that we can know how
many elements to destroy later. We use the last sizeof
(size_t) bytes to store the number of elements. */
cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
cookie_ptr = fold_build_pointer_plus_loc (input_location,
alloc_node, cookie_ptr);
size_ptr_type = build_pointer_type (sizetype);
cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
if (targetm.cxx.cookie_has_size ())
{
/* Also store the element size. */
cookie_ptr = fold_build_pointer_plus (cookie_ptr,
fold_build1_loc (input_location,
NEGATE_EXPR, sizetype,
size_in_bytes (sizetype)));
cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
cookie = build2 (MODIFY_EXPR, sizetype, cookie,
size_in_bytes (elt_type));
cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
cookie, cookie_expr);
}
}
else
{
cookie_expr = NULL_TREE;
data_addr = alloc_node;
}
/* Now use a pointer to the type we've actually allocated. */
/* But we want to operate on a non-const version to start with,
since we'll be modifying the elements. */
non_const_pointer_type = build_pointer_type
(cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
data_addr = fold_convert (non_const_pointer_type, data_addr);
/* Any further uses of alloc_node will want this type, too. */
alloc_node = fold_convert (non_const_pointer_type, alloc_node);
/* Now initialize the allocated object. Note that we preevaluate the
initialization expression, apart from the actual constructor call or
assignment--we do this because we want to delay the allocation as long
as possible in order to minimize the size of the exception region for
placement delete. */
if (is_initialized)
{
bool stable;
bool explicit_value_init_p = false;
if (*init != NULL && (*init)->is_empty ())
{
*init = NULL;
explicit_value_init_p = true;
}
if (processing_template_decl && explicit_value_init_p)
{
/* build_value_init doesn't work in templates, and we don't need
the initializer anyway since we're going to throw it away and
rebuild it at instantiation time, so just build up a single
constructor call to get any appropriate diagnostics. */
init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
if (type_build_ctor_call (elt_type))
init_expr = build_special_member_call (init_expr,
complete_ctor_identifier,
init, elt_type,
LOOKUP_NORMAL,
complain);
stable = stabilize_init (init_expr, &init_preeval_expr);
}
else if (array_p)
{
tree vecinit = NULL_TREE;
if (vec_safe_length (*init) == 1
&& DIRECT_LIST_INIT_P ((**init)[0]))
{
vecinit = (**init)[0];
if (CONSTRUCTOR_NELTS (vecinit) == 0)
/* List-value-initialization, leave it alone. */;
else
{
tree arraytype, domain;
if (TREE_CONSTANT (nelts))
domain = compute_array_index_type (NULL_TREE, nelts,
complain);
else
/* We'll check the length at runtime. */
domain = NULL_TREE;
arraytype = build_cplus_array_type (type, domain);
vecinit = digest_init (arraytype, vecinit, complain);
}
}
else if (*init)
{
if (complain & tf_error)
permerror (input_location,
"parenthesized initializer in array new");
else
return error_mark_node;
vecinit = build_tree_list_vec (*init);
}
init_expr
= build_vec_init (data_addr,
cp_build_binary_op (input_location,
MINUS_EXPR, outer_nelts,
integer_one_node,
complain),
vecinit,
explicit_value_init_p,
/*from_array=*/0,
complain);
/* An array initialization is stable because the initialization
of each element is a full-expression, so the temporaries don't
leak out. */
stable = true;
}
else
{
init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
if (type_build_ctor_call (type) && !explicit_value_init_p)
{
init_expr = build_special_member_call (init_expr,
complete_ctor_identifier,
init, elt_type,
LOOKUP_NORMAL,
complain);
}
else if (explicit_value_init_p)
{
/* Something like `new int()'. */
tree val = build_value_init (type, complain);
if (val == error_mark_node)
return error_mark_node;
init_expr = build2 (INIT_EXPR, type, init_expr, val);
}
else
{
tree ie;
/* We are processing something like `new int (10)', which
means allocate an int, and initialize it with 10. */
ie = build_x_compound_expr_from_vec (*init, "new initializer",
complain);
init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
complain);
}
stable = stabilize_init (init_expr, &init_preeval_expr);
}
if (init_expr == error_mark_node)
return error_mark_node;
/* If any part of the object initialization terminates by throwing an
exception and a suitable deallocation function can be found, the
deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues
to propagate in the context of the new-expression. If no
unambiguous matching deallocation function can be found,
propagating the exception does not cause the object's memory to be
freed. */
if (flag_exceptions && ! use_java_new)
{
enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
tree cleanup;
/* The Standard is unclear here, but the right thing to do
is to use the same method for finding deallocation
functions that we use for finding allocation functions. */
cleanup = (build_op_delete_call
(dcode,
alloc_node,
size,
globally_qualified_p,
placement_allocation_fn_p ? alloc_call : NULL_TREE,
alloc_fn,
complain));
if (!cleanup)
/* We're done. */;
else if (stable)
/* This is much simpler if we were able to preevaluate all of
the arguments to the constructor call. */
{
/* CLEANUP is compiler-generated, so no diagnostics. */
TREE_NO_WARNING (cleanup) = true;
init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
init_expr, cleanup);
/* Likewise, this try-catch is compiler-generated. */
TREE_NO_WARNING (init_expr) = true;
}
else
/* Ack! First we allocate the memory. Then we set our sentry
variable to true, and expand a cleanup that deletes the
memory if sentry is true. Then we run the constructor, and
finally clear the sentry.
We need to do this because we allocate the space first, so
if there are any temporaries with cleanups in the
constructor args and we weren't able to preevaluate them, we
need this EH region to extend until end of full-expression
to preserve nesting. */
{
tree end, sentry, begin;
begin = get_target_expr (boolean_true_node);
CLEANUP_EH_ONLY (begin) = 1;
sentry = TARGET_EXPR_SLOT (begin);
/* CLEANUP is compiler-generated, so no diagnostics. */
TREE_NO_WARNING (cleanup) = true;
TARGET_EXPR_CLEANUP (begin)
= build3 (COND_EXPR, void_type_node, sentry,
cleanup, void_node);
end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
sentry, boolean_false_node);
init_expr
= build2 (COMPOUND_EXPR, void_type_node, begin,
build2 (COMPOUND_EXPR, void_type_node, init_expr,
end));
/* Likewise, this is compiler-generated. */
TREE_NO_WARNING (init_expr) = true;
}
}
}
else
init_expr = NULL_TREE;
/* Now build up the return value in reverse order. */
rval = data_addr;
if (init_expr)
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
if (cookie_expr)
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
if (rval == data_addr)
/* If we don't have an initializer or a cookie, strip the TARGET_EXPR
and return the call (which doesn't need to be adjusted). */
rval = TARGET_EXPR_INITIAL (alloc_expr);
else
{
if (check_new)
{
tree ifexp = cp_build_binary_op (input_location,
NE_EXPR, alloc_node,
nullptr_node,
complain);
rval = build_conditional_expr (input_location, ifexp, rval,
alloc_node, complain);
}
/* Perform the allocation before anything else, so that ALLOC_NODE
has been initialized before we start using it. */
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
}
if (init_preeval_expr)
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
/* A new-expression is never an lvalue. */
gcc_assert (!lvalue_p (rval));
return convert (pointer_type, rval);
}
/* Generate a representation for a C++ "new" expression. *PLACEMENT
is a vector of placement-new arguments (or NULL if none). If NELTS
is NULL, TYPE is the type of the storage to be allocated. If NELTS
is not NULL, then this is an array-new allocation; TYPE is the type
of the elements in the array and NELTS is the number of elements in
the array. *INIT, if non-NULL, is the initializer for the new
object, or an empty vector to indicate an initializer of "()". If
USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
rather than just "new". This may change PLACEMENT and INIT. */
tree
build_new (vec **placement, tree type, tree nelts,
vec **init, int use_global_new, tsubst_flags_t complain)
{
tree rval;
vec *orig_placement = NULL;
tree orig_nelts = NULL_TREE;
vec *orig_init = NULL;
if (type == error_mark_node)
return error_mark_node;
if (nelts == NULL_TREE && vec_safe_length (*init) == 1
/* Don't do auto deduction where it might affect mangling. */
&& (!processing_template_decl || at_function_scope_p ()))
{
tree auto_node = type_uses_auto (type);
if (auto_node)
{
tree d_init = (**init)[0];
d_init = resolve_nondeduced_context (d_init);
type = do_auto_deduction (type, d_init, auto_node);
}
}
if (processing_template_decl)
{
if (dependent_type_p (type)
|| any_type_dependent_arguments_p (*placement)
|| (nelts && type_dependent_expression_p (nelts))
|| (nelts && *init)
|| any_type_dependent_arguments_p (*init))
return build_raw_new_expr (*placement, type, nelts, *init,
use_global_new);
orig_placement = make_tree_vector_copy (*placement);
orig_nelts = nelts;
if (*init)
orig_init = make_tree_vector_copy (*init);
make_args_non_dependent (*placement);
if (nelts)
nelts = build_non_dependent_expr (nelts);
make_args_non_dependent (*init);
}
if (nelts)
{
if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
{
if (complain & tf_error)
permerror (input_location, "size in array new must have integral type");
else
return error_mark_node;
}
/* Try to determine the constant value only for the purposes
of the diagnostic below but continue to use the original
value and handle const folding later. */
const_tree cst_nelts = maybe_constant_value (nelts);
/* The expression in a noptr-new-declarator is erroneous if it's of
non-class type and its value before converting to std::size_t is
less than zero. ... If the expression is a constant expression,
the program is ill-fomed. */
if (INTEGER_CST == TREE_CODE (cst_nelts)
&& tree_int_cst_sgn (cst_nelts) == -1)
{
if (complain & tf_error)
error ("size of array is negative");
return error_mark_node;
}
nelts = mark_rvalue_use (nelts);
nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
}
/* ``A reference cannot be created by the new operator. A reference
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
returned by new.'' ARM 5.3.3 */
if (TREE_CODE (type) == REFERENCE_TYPE)
{
if (complain & tf_error)
error ("new cannot be applied to a reference type");
else
return error_mark_node;
type = TREE_TYPE (type);
}
if (TREE_CODE (type) == FUNCTION_TYPE)
{
if (complain & tf_error)
error ("new cannot be applied to a function type");
return error_mark_node;
}
/* The type allocated must be complete. If the new-type-id was
"T[N]" then we are just checking that "T" is complete here, but
that is equivalent, since the value of "N" doesn't matter. */
if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
return error_mark_node;
rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
if (rval == error_mark_node)
return error_mark_node;
if (processing_template_decl)
{
tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
orig_init, use_global_new);
release_tree_vector (orig_placement);
release_tree_vector (orig_init);
return ret;
}
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
TREE_NO_WARNING (rval) = 1;
return rval;
}
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
tree
build_java_class_ref (tree type)
{
tree name = NULL_TREE, class_decl;
static tree CL_suffix = NULL_TREE;
if (CL_suffix == NULL_TREE)
CL_suffix = get_identifier("class$");
if (jclass_node == NULL_TREE)
{
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
if (jclass_node == NULL_TREE)
{
error ("call to Java constructor, while % undefined");
return error_mark_node;
}
jclass_node = TREE_TYPE (jclass_node);
}
/* Mangle the class$ field. */
{
tree field;
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (DECL_NAME (field) == CL_suffix)
{
mangle_decl (field);
name = DECL_ASSEMBLER_NAME (field);
break;
}
if (!field)
{
error ("can%'t find % in %qT", type);
return error_mark_node;
}
}
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
if (class_decl == NULL_TREE)
{
class_decl = build_decl (input_location,
VAR_DECL, name, TREE_TYPE (jclass_node));
TREE_STATIC (class_decl) = 1;
DECL_EXTERNAL (class_decl) = 1;
TREE_PUBLIC (class_decl) = 1;
DECL_ARTIFICIAL (class_decl) = 1;
DECL_IGNORED_P (class_decl) = 1;
pushdecl_top_level (class_decl);
make_decl_rtl (class_decl);
}
return class_decl;
}
static tree
build_vec_delete_1 (tree base, tree maxindex, tree type,
special_function_kind auto_delete_vec,
int use_global_delete, tsubst_flags_t complain)
{
tree virtual_size;
tree ptype = build_pointer_type (type = complete_type (type));
tree size_exp;
/* Temporary variables used by the loop. */
tree tbase, tbase_init;
/* This is the body of the loop that implements the deletion of a
single element, and moves temp variables to next elements. */
tree body;
/* This is the LOOP_EXPR that governs the deletion of the elements. */
tree loop = 0;
/* This is the thing that governs what to do after the loop has run. */
tree deallocate_expr = 0;
/* This is the BIND_EXPR which holds the outermost iterator of the
loop. It is convenient to set this variable up and test it before
executing any other code in the loop.
This is also the containing expression returned by this function. */
tree controller = NULL_TREE;
tree tmp;
/* We should only have 1-D arrays here. */
gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
if (base == error_mark_node || maxindex == error_mark_node)
return error_mark_node;
if (!COMPLETE_TYPE_P (type))
{
if ((complain & tf_warning)
&& warning (OPT_Wdelete_incomplete,
"possible problem detected in invocation of "
"delete [] operator:"))
{
cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
inform (input_location, "neither the destructor nor the "
"class-specific operator delete [] will be called, "
"even if they are declared when the class is defined");
}
/* This size won't actually be used. */
size_exp = size_one_node;
goto no_destructor;
}
size_exp = size_in_bytes (type);
if (! MAYBE_CLASS_TYPE_P (type))
goto no_destructor;
else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
{
/* Make sure the destructor is callable. */
if (type_build_dtor_call (type))
{
tmp = build_delete (ptype, base, sfk_complete_destructor,
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
complain);
if (tmp == error_mark_node)
return error_mark_node;
}
goto no_destructor;
}
/* The below is short by the cookie size. */
virtual_size = size_binop (MULT_EXPR, size_exp,
fold_convert (sizetype, maxindex));
tbase = create_temporary_var (ptype);
tbase_init
= cp_build_modify_expr (tbase, NOP_EXPR,
fold_build_pointer_plus_loc (input_location,
fold_convert (ptype,
base),
virtual_size),
complain);
if (tbase_init == error_mark_node)
return error_mark_node;
controller = build3 (BIND_EXPR, void_type_node, tbase,
NULL_TREE, NULL_TREE);
TREE_SIDE_EFFECTS (controller) = 1;
body = build1 (EXIT_EXPR, void_type_node,
build2 (EQ_EXPR, boolean_type_node, tbase,
fold_convert (ptype, base)));
tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
tmp = fold_build_pointer_plus (tbase, tmp);
tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
if (tmp == error_mark_node)
return error_mark_node;
body = build_compound_expr (input_location, body, tmp);
tmp = build_delete (ptype, tbase, sfk_complete_destructor,
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
complain);
if (tmp == error_mark_node)
return error_mark_node;
body = build_compound_expr (input_location, body, tmp);
loop = build1 (LOOP_EXPR, void_type_node, body);
loop = build_compound_expr (input_location, tbase_init, loop);
no_destructor:
/* Delete the storage if appropriate. */
if (auto_delete_vec == sfk_deleting_destructor)
{
tree base_tbd;
/* The below is short by the cookie size. */
virtual_size = size_binop (MULT_EXPR, size_exp,
fold_convert (sizetype, maxindex));
if (! TYPE_VEC_NEW_USES_COOKIE (type))
/* no header */
base_tbd = base;
else
{
tree cookie_size;
cookie_size = targetm.cxx.get_cookie_size (type);
base_tbd = cp_build_binary_op (input_location,
MINUS_EXPR,
cp_convert (string_type_node,
base, complain),
cookie_size,
complain);
if (base_tbd == error_mark_node)
return error_mark_node;
base_tbd = cp_convert (ptype, base_tbd, complain);
/* True size with header. */
virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
}
deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
base_tbd, virtual_size,
use_global_delete & 1,
/*placement=*/NULL_TREE,
/*alloc_fn=*/NULL_TREE,
complain);
}
body = loop;
if (!deallocate_expr)
;
else if (!body)
body = deallocate_expr;
else
body = build_compound_expr (input_location, body, deallocate_expr);
if (!body)
body = integer_zero_node;
/* Outermost wrapper: If pointer is null, punt. */
body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
fold_build2_loc (input_location,
NE_EXPR, boolean_type_node, base,
fold_convert (TREE_TYPE (base),
nullptr_node)),
body, integer_zero_node);
body = build1 (NOP_EXPR, void_type_node, body);
if (controller)
{
TREE_OPERAND (controller, 1) = body;
body = controller;
}
if (TREE_CODE (base) == SAVE_EXPR)
/* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
body = build2 (COMPOUND_EXPR, void_type_node, base, body);
return convert_to_void (body, ICV_CAST, complain);
}
/* Create an unnamed variable of the indicated TYPE. */
tree
create_temporary_var (tree type)
{
tree decl;
decl = build_decl (input_location,
VAR_DECL, NULL_TREE, type);
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
DECL_CONTEXT (decl) = current_function_decl;
return decl;
}
/* Create a new temporary variable of the indicated TYPE, initialized
to INIT.
It is not entered into current_binding_level, because that breaks
things when it comes time to do final cleanups (which take place
"outside" the binding contour of the function). */
tree
get_temp_regvar (tree type, tree init)
{
tree decl;
decl = create_temporary_var (type);
add_decl_expr (decl);
finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
tf_warning_or_error));
return decl;
}
/* Subroutine of build_vec_init. Returns true if assigning to an array of
INNER_ELT_TYPE from INIT is trivial. */
static bool
vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
{
tree fromtype = inner_elt_type;
if (real_lvalue_p (init))
fromtype = cp_build_reference_type (fromtype, /*rval*/false);
return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
}
/* `build_vec_init' returns tree structure that performs
initialization of a vector of aggregate types.
BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
to the first element, of POINTER_TYPE.
MAXINDEX is the maximum index of the array (one less than the
number of elements). It is only used if BASE is a pointer or
TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
INIT is the (possibly NULL) initializer.
If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
elements in the array are value-initialized.
FROM_ARRAY is 0 if we should init everything with INIT
(i.e., every element initialized from INIT).
FROM_ARRAY is 1 if we should index into INIT in parallel
with initialization of DECL.
FROM_ARRAY is 2 if we should index into INIT in parallel,
but use assignment instead of initialization. */
tree
build_vec_init (tree base, tree maxindex, tree init,
bool explicit_value_init_p,
int from_array, tsubst_flags_t complain)
{
tree rval;
tree base2 = NULL_TREE;
tree itype = NULL_TREE;
tree iterator;
/* The type of BASE. */
tree atype = TREE_TYPE (base);
/* The type of an element in the array. */
tree type = TREE_TYPE (atype);
/* The element type reached after removing all outer array
types. */
tree inner_elt_type;
/* The type of a pointer to an element in the array. */
tree ptype;
tree stmt_expr;
tree compound_stmt;
int destroy_temps;
tree try_block = NULL_TREE;
int num_initialized_elts = 0;
bool is_global;
tree obase = base;
bool xvalue = false;
bool errors = false;
if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
maxindex = array_type_nelts (atype);
if (maxindex == NULL_TREE || maxindex == error_mark_node)
return error_mark_node;
maxindex = maybe_constant_value (maxindex);
if (explicit_value_init_p)
gcc_assert (!init);
inner_elt_type = strip_array_types (type);
/* Look through the TARGET_EXPR around a compound literal. */
if (init && TREE_CODE (init) == TARGET_EXPR
&& TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
&& from_array != 2)
init = TARGET_EXPR_INITIAL (init);
/* If we have a braced-init-list, make sure that the array
is big enough for all the initializers. */
bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
&& CONSTRUCTOR_NELTS (init) > 0
&& !TREE_CONSTANT (maxindex));
if (init
&& TREE_CODE (atype) == ARRAY_TYPE
&& TREE_CONSTANT (maxindex)
&& (from_array == 2
? vec_copy_assign_is_trivial (inner_elt_type, init)
: !TYPE_NEEDS_CONSTRUCTING (type))
&& ((TREE_CODE (init) == CONSTRUCTOR
/* Don't do this if the CONSTRUCTOR might contain something
that might throw and require us to clean up. */
&& (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
|| ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|| from_array))
{
/* Do non-default initialization of trivial arrays resulting from
brace-enclosed initializers. In this case, digest_init and
store_constructor will handle the semantics for us. */
if (BRACE_ENCLOSED_INITIALIZER_P (init))
init = digest_init (atype, init, complain);
stmt_expr = build2 (INIT_EXPR, atype, base, init);
return stmt_expr;
}
maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
maxindex = fold_simple (maxindex);
if (TREE_CODE (atype) == ARRAY_TYPE)
{
ptype = build_pointer_type (type);
base = decay_conversion (base, complain);
if (base == error_mark_node)
return error_mark_node;
base = cp_convert (ptype, base, complain);
}
else
ptype = atype;
/* The code we are generating looks like:
({
T* t1 = (T*) base;
T* rval = t1;
ptrdiff_t iterator = maxindex;
try {
for (; iterator != -1; --iterator) {
... initialize *t1 ...
++t1;
}
} catch (...) {
... destroy elements that were constructed ...
}
rval;
})
We can omit the try and catch blocks if we know that the
initialization will never throw an exception, or if the array
elements do not have destructors. We can omit the loop completely if
the elements of the array do not have constructors.
We actually wrap the entire body of the above in a STMT_EXPR, for
tidiness.
When copying from array to another, when the array elements have
only trivial copy constructors, we should use __builtin_memcpy
rather than generating a loop. That way, we could take advantage
of whatever cleverness the back end has for dealing with copies
of blocks of memory. */
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
destroy_temps = stmts_are_full_exprs_p ();
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
rval = get_temp_regvar (ptype, base);
base = get_temp_regvar (ptype, rval);
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
/* If initializing one array from another, initialize element by
element. We rely upon the below calls to do the argument
checking. Evaluate the initializer before entering the try block. */
if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
{
if (lvalue_kind (init) & clk_rvalueref)
xvalue = true;
base2 = decay_conversion (init, complain);
if (base2 == error_mark_node)
return error_mark_node;
itype = TREE_TYPE (base2);
base2 = get_temp_regvar (itype, base2);
itype = TREE_TYPE (itype);
}
/* Protect the entire array initialization so that we can destroy
the partially constructed array if an exception is thrown.
But don't do this if we're assigning. */
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& from_array != 2)
{
try_block = begin_try_block ();
}
/* Should we try to create a constant initializer? */
bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
&& TREE_CONSTANT (maxindex)
&& (init ? TREE_CODE (init) == CONSTRUCTOR
: (type_has_constexpr_default_constructor
(inner_elt_type)))
&& (literal_type_p (inner_elt_type)
|| TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
vec *const_vec = NULL;
bool saw_non_const = false;
/* If we're initializing a static array, we want to do static
initialization of any elements with constant initializers even if
some are non-constant. */
bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
bool empty_list = false;
if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
&& CONSTRUCTOR_NELTS (init) == 0)
/* Skip over the handling of non-empty init lists. */
empty_list = true;
/* Maybe pull out constant value when from_array? */
else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
{
/* Do non-default initialization of non-trivial arrays resulting from
brace-enclosed initializers. */
unsigned HOST_WIDE_INT idx;
tree field, elt;
/* If the constructor already has the array type, it's been through
digest_init, so we shouldn't try to do anything more. */
bool digested = same_type_p (atype, TREE_TYPE (init));
from_array = 0;
if (length_check)
{
tree nelts = build_int_cst (ptrdiff_type_node,
CONSTRUCTOR_NELTS (init) - 1);
if (TREE_CODE (atype) != ARRAY_TYPE)
{
if (flag_exceptions)
{
tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
nelts);
c = build3 (COND_EXPR, void_type_node, c,
throw_bad_array_new_length (), void_node);
finish_expr_stmt (c);
}
/* Don't check an array new when -fno-exceptions. */
}
else if (flag_sanitize & SANITIZE_BOUNDS
&& do_ubsan_in_current_function ())
{
/* Make sure the last element of the initializer is in bounds. */
finish_expr_stmt
(ubsan_instrument_bounds
(input_location, obase, &nelts, /*ignore_off_by_one*/false));
}
}
if (try_const)
vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
{
tree baseref = build1 (INDIRECT_REF, type, base);
tree one_init;
num_initialized_elts++;
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
if (digested)
one_init = build2 (INIT_EXPR, type, baseref, elt);
else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
one_init = build_aggr_init (baseref, elt, 0, complain);
else
one_init = cp_build_modify_expr (baseref, NOP_EXPR,
elt, complain);
if (one_init == error_mark_node)
errors = true;
if (try_const)
{
tree e = maybe_constant_init (one_init);
if (reduced_constant_expression_p (e))
{
CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
if (do_static_init)
one_init = NULL_TREE;
else
one_init = build2 (INIT_EXPR, type, baseref, e);
}
else
{
if (do_static_init)
{
tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
true);
if (value)
CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
}
saw_non_const = true;
}
}
if (one_init)
finish_expr_stmt (one_init);
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
if (one_init == error_mark_node)
errors = true;
else
finish_expr_stmt (one_init);
one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
complain);
if (one_init == error_mark_node)
errors = true;
else
finish_expr_stmt (one_init);
}
/* Any elements without explicit initializers get T{}. */
empty_list = true;
}
else if (from_array)
{
if (init)
/* OK, we set base2 above. */;
else if (CLASS_TYPE_P (type)
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
{
if (complain & tf_error)
error ("initializer ends prematurely");
errors = true;
}
}
/* Now, default-initialize any remaining elements. We don't need to
do that if a) the type does not need constructing, or b) we've
already initialized all the elements.
We do need to keep going if we're copying an array. */
if (try_const && !init)
/* With a constexpr default constructor, which we checked for when
setting try_const above, default-initialization is equivalent to
value-initialization, and build_value_init gives us something more
friendly to maybe_constant_init. */
explicit_value_init_p = true;
if (from_array
|| ((type_build_ctor_call (type) || init || explicit_value_init_p)
&& ! (tree_fits_shwi_p (maxindex)
&& (num_initialized_elts
== tree_to_shwi (maxindex) + 1))))
{
/* If the ITERATOR is equal to -1, then we don't have to loop;
we've already initialized all the elements. */
tree for_stmt;
tree elt_init;
tree to;
for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
finish_for_init_stmt (for_stmt);
finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
build_int_cst (TREE_TYPE (iterator), -1)),
for_stmt, false);
elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
complain);
if (elt_init == error_mark_node)
errors = true;
finish_for_expr (elt_init, for_stmt);
to = build1 (INDIRECT_REF, type, base);
/* If the initializer is {}, then all elements are initialized from T{}.
But for non-classes, that's the same as value-initialization. */
if (empty_list)
{
if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
{
init = build_constructor (init_list_type_node, NULL);
}
else
{
init = NULL_TREE;
explicit_value_init_p = true;
}
}
if (from_array)
{
tree from;
if (base2)
{
from = build1 (INDIRECT_REF, itype, base2);
if (xvalue)
from = move (from);
}
else
from = NULL_TREE;
if (from_array == 2)
elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
complain);
else if (type_build_ctor_call (type))
elt_init = build_aggr_init (to, from, 0, complain);
else if (from)
elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
complain);
else
gcc_unreachable ();
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
sorry
("cannot initialize multi-dimensional array with initializer");
elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
0, init,
explicit_value_init_p,
0, complain);
}
else if (explicit_value_init_p)
{
elt_init = build_value_init (type, complain);
if (elt_init != error_mark_node)
elt_init = build2 (INIT_EXPR, type, to, elt_init);
}
else
{
gcc_assert (type_build_ctor_call (type) || init);
if (CLASS_TYPE_P (type))
elt_init = build_aggr_init (to, init, 0, complain);
else
{
if (TREE_CODE (init) == TREE_LIST)
init = build_x_compound_expr_from_list (init, ELK_INIT,
complain);
elt_init = build2 (INIT_EXPR, type, to, init);
}
}
if (elt_init == error_mark_node)
errors = true;
if (try_const)
{
/* FIXME refs to earlier elts */
tree e = maybe_constant_init (elt_init);
if (reduced_constant_expression_p (e))
{
if (initializer_zerop (e))
/* Don't fill the CONSTRUCTOR with zeros. */
e = NULL_TREE;
if (do_static_init)
elt_init = NULL_TREE;
}
else
{
saw_non_const = true;
if (do_static_init)
e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
else
e = NULL_TREE;
}
if (e)
{
int max = tree_to_shwi (maxindex)+1;
for (; num_initialized_elts < max; ++num_initialized_elts)
{
tree field = size_int (num_initialized_elts);
CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
}
}
}
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
if (elt_init)
finish_expr_stmt (elt_init);
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
complain));
if (base2)
finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
complain));
finish_for_stmt (for_stmt);
}
/* Make sure to cleanup any partially constructed elements. */
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& from_array != 2)
{
tree e;
tree m = cp_build_binary_op (input_location,
MINUS_EXPR, maxindex, iterator,
complain);
/* Flatten multi-dimensional array since build_vec_delete only
expects one-dimensional array. */
if (TREE_CODE (type) == ARRAY_TYPE)
m = cp_build_binary_op (input_location,
MULT_EXPR, m,
/* Avoid mixing signed and unsigned. */
convert (TREE_TYPE (m),
array_type_nelts_total (type)),
complain);
finish_cleanup_try_block (try_block);
e = build_vec_delete_1 (rval, m,
inner_elt_type, sfk_complete_destructor,
/*use_global_delete=*/0, complain);
if (e == error_mark_node)
errors = true;
finish_cleanup (e, try_block);
}
/* The value of the array initialization is the array itself, RVAL
is a pointer to the first element. */
finish_stmt_expr_expr (rval, stmt_expr);
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
if (errors)
return error_mark_node;
if (try_const)
{
if (!saw_non_const)
{
tree const_init = build_constructor (atype, const_vec);
return build2 (INIT_EXPR, atype, obase, const_init);
}
else if (do_static_init && !vec_safe_is_empty (const_vec))
DECL_INITIAL (obase) = build_constructor (atype, const_vec);
else
vec_free (const_vec);
}
/* Now make the result have the correct type. */
if (TREE_CODE (atype) == ARRAY_TYPE)
{
atype = build_pointer_type (atype);
stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
TREE_NO_WARNING (stmt_expr) = 1;
}
return stmt_expr;
}
/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
build_delete. */
static tree
build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
tsubst_flags_t complain)
{
tree name;
tree fn;
switch (dtor_kind)
{
case sfk_complete_destructor:
name = complete_dtor_identifier;
break;
case sfk_base_destructor:
name = base_dtor_identifier;
break;
case sfk_deleting_destructor:
name = deleting_dtor_identifier;
break;
default:
gcc_unreachable ();
}
fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
return build_new_method_call (exp, fn,
/*args=*/NULL,
/*conversion_path=*/NULL_TREE,
flags,
/*fn_p=*/NULL,
complain);
}
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
ADDR is an expression which yields the store to be destroyed.
AUTO_DELETE is the name of the destructor to call, i.e., either
sfk_complete_destructor, sfk_base_destructor, or
sfk_deleting_destructor.
FLAGS is the logical disjunction of zero or more LOOKUP_
flags. See cp-tree.h for more info. */
tree
build_delete (tree otype, tree addr, special_function_kind auto_delete,
int flags, int use_global_delete, tsubst_flags_t complain)
{
tree expr;
if (addr == error_mark_node)
return error_mark_node;
tree type = TYPE_MAIN_VARIANT (otype);
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
set to `error_mark_node' before it gets properly cleaned up. */
if (type == error_mark_node)
return error_mark_node;
if (TREE_CODE (type) == POINTER_TYPE)
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (TYPE_DOMAIN (type) == NULL_TREE)
{
if (complain & tf_error)
error ("unknown array size in delete");
return error_mark_node;
}
return build_vec_delete (addr, array_type_nelts (type),
auto_delete, use_global_delete, complain);
}
if (TYPE_PTR_P (otype))
{
addr = mark_rvalue_use (addr);
/* We don't want to warn about delete of void*, only other
incomplete types. Deleting other incomplete types
invokes undefined behavior, but it is not ill-formed, so
compile to something that would even do The Right Thing
(TM) should the type have a trivial dtor and no delete
operator. */
if (!VOID_TYPE_P (type))
{
complete_type (type);
if (!COMPLETE_TYPE_P (type))
{
if ((complain & tf_warning)
&& warning (OPT_Wdelete_incomplete,
"possible problem detected in invocation of "
"delete operator:"))
{
cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
inform (input_location,
"neither the destructor nor the class-specific "
"operator delete will be called, even if they are "
"declared when the class is defined");
}
}
else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
&& MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
&& TYPE_POLYMORPHIC_P (type))
{
tree dtor;
dtor = CLASSTYPE_DESTRUCTORS (type);
if (!dtor || !DECL_VINDEX (dtor))
{
if (CLASSTYPE_PURE_VIRTUALS (type))
warning (OPT_Wdelete_non_virtual_dtor,
"deleting object of abstract class type %qT"
" which has non-virtual destructor"
" will cause undefined behaviour", type);
else
warning (OPT_Wdelete_non_virtual_dtor,
"deleting object of polymorphic class type %qT"
" which has non-virtual destructor"
" might cause undefined behaviour", type);
}
}
}
if (TREE_SIDE_EFFECTS (addr))
addr = save_expr (addr);
/* Throw away const and volatile on target type of addr. */
addr = convert_force (build_pointer_type (type), addr, 0, complain);
}
else
{
/* Don't check PROTECT here; leave that decision to the
destructor. If the destructor is accessible, call it,
else report error. */
addr = cp_build_addr_expr (addr, complain);
if (addr == error_mark_node)
return error_mark_node;
if (TREE_SIDE_EFFECTS (addr))
addr = save_expr (addr);
addr = convert_force (build_pointer_type (type), addr, 0, complain);
}
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
{
/* Make sure the destructor is callable. */
if (type_build_dtor_call (type))
{
expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
complain),
sfk_complete_destructor, flags, complain);
if (expr == error_mark_node)
return error_mark_node;
}
if (auto_delete != sfk_deleting_destructor)
return void_node;
return build_op_delete_call (DELETE_EXPR, addr,
cxx_sizeof_nowarn (type),
use_global_delete,
/*placement=*/NULL_TREE,
/*alloc_fn=*/NULL_TREE,
complain);
}
else
{
tree head = NULL_TREE;
tree do_delete = NULL_TREE;
tree ifexp;
if (CLASSTYPE_LAZY_DESTRUCTOR (type))
lazily_declare_fn (sfk_destructor, type);
/* For `::delete x', we must not use the deleting destructor
since then we would not be sure to get the global `operator
delete'. */
if (use_global_delete && auto_delete == sfk_deleting_destructor)
{
/* We will use ADDR multiple times so we must save it. */
addr = save_expr (addr);
head = get_target_expr (build_headof (addr));
/* Delete the object. */
do_delete = build_op_delete_call (DELETE_EXPR,
head,
cxx_sizeof_nowarn (type),
/*global_p=*/true,
/*placement=*/NULL_TREE,
/*alloc_fn=*/NULL_TREE,
complain);
/* Otherwise, treat this like a complete object destructor
call. */
auto_delete = sfk_complete_destructor;
}
/* If the destructor is non-virtual, there is no deleting
variant. Instead, we must explicitly call the appropriate
`operator delete' here. */
else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
&& auto_delete == sfk_deleting_destructor)
{
/* We will use ADDR multiple times so we must save it. */
addr = save_expr (addr);
/* Build the call. */
do_delete = build_op_delete_call (DELETE_EXPR,
addr,
cxx_sizeof_nowarn (type),
/*global_p=*/false,
/*placement=*/NULL_TREE,
/*alloc_fn=*/NULL_TREE,
complain);
/* Call the complete object destructor. */
auto_delete = sfk_complete_destructor;
}
else if (auto_delete == sfk_deleting_destructor
&& TYPE_GETS_REG_DELETE (type))
{
/* Make sure we have access to the member op delete, even though
we'll actually be calling it from the destructor. */
build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
/*global_p=*/false,
/*placement=*/NULL_TREE,
/*alloc_fn=*/NULL_TREE,
complain);
}
expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
auto_delete, flags, complain);
if (expr == error_mark_node)
return error_mark_node;
if (do_delete)
expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
/* We need to calculate this before the dtor changes the vptr. */
if (head)
expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
if (flags & LOOKUP_DESTRUCTOR)
/* Explicit destructor call; don't check for null pointer. */
ifexp = integer_one_node;
else
{
/* Handle deleting a null pointer. */
ifexp = fold (cp_build_binary_op (input_location,
NE_EXPR, addr, nullptr_node,
complain));
if (ifexp == error_mark_node)
return error_mark_node;
}
if (ifexp != integer_one_node)
expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
return expr;
}
}
/* At the beginning of a destructor, push cleanups that will call the
destructors for our base classes and members.
Called from begin_destructor_body. */
void
push_base_cleanups (void)
{
tree binfo, base_binfo;
int i;
tree member;
tree expr;
vec *vbases;
/* Run destructors for all virtual baseclasses. */
if (CLASSTYPE_VBASECLASSES (current_class_type))
{
tree cond = (condition_conversion
(build2 (BIT_AND_EXPR, integer_type_node,
current_in_charge_parm,
integer_two_node)));
/* The CLASSTYPE_VBASECLASSES vector is in initialization
order, which is also the right order for pushing cleanups. */
for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
vec_safe_iterate (vbases, i, &base_binfo); i++)
{
if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
{
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL,
base_binfo,
(LOOKUP_NORMAL
| LOOKUP_NONVIRTUAL),
tf_warning_or_error);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
{
expr = build3 (COND_EXPR, void_type_node, cond,
expr, void_node);
finish_decl_cleanup (NULL_TREE, expr);
}
}
}
}
/* Take care of the remaining baseclasses. */
for (binfo = TYPE_BINFO (current_class_type), i = 0;
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
{
if (BINFO_VIRTUAL_P (base_binfo)
|| !type_build_dtor_call (BINFO_TYPE (base_binfo)))
continue;
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL, base_binfo,
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
tf_warning_or_error);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
finish_decl_cleanup (NULL_TREE, expr);
}
/* Don't automatically destroy union members. */
if (TREE_CODE (current_class_type) == UNION_TYPE)
return;
for (member = TYPE_FIELDS (current_class_type); member;
member = DECL_CHAIN (member))
{
tree this_type = TREE_TYPE (member);
if (this_type == error_mark_node
|| TREE_CODE (member) != FIELD_DECL
|| DECL_ARTIFICIAL (member))
continue;
if (ANON_AGGR_TYPE_P (this_type))
continue;
if (type_build_dtor_call (this_type))
{
tree this_member = (build_class_member_access_expr
(current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/false,
tf_warning_or_error));
expr = build_delete (this_type, this_member,
sfk_complete_destructor,
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
0, tf_warning_or_error);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
finish_decl_cleanup (NULL_TREE, expr);
}
}
}
/* Build a C++ vector delete expression.
MAXINDEX is the number of elements to be deleted.
ELT_SIZE is the nominal size of each element in the vector.
BASE is the expression that should yield the store to be deleted.
This function expands (or synthesizes) these calls itself.
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
This also calls delete for virtual baseclasses of elements of the vector.
Update: MAXINDEX is no longer needed. The size can be extracted from the
start of the vector for pointers, and from the type for arrays. We still
use MAXINDEX for arrays because it happens to already have one of the
values we'd have to extract. (We could use MAXINDEX with pointers to
confirm the size, and trap if the numbers differ; not clear that it'd
be worth bothering.) */
tree
build_vec_delete (tree base, tree maxindex,
special_function_kind auto_delete_vec,
int use_global_delete, tsubst_flags_t complain)
{
tree type;
tree rval;
tree base_init = NULL_TREE;
type = TREE_TYPE (base);
if (TYPE_PTR_P (type))
{
/* Step back one from start of vector, and read dimension. */
tree cookie_addr;
tree size_ptr_type = build_pointer_type (sizetype);
base = mark_rvalue_use (base);
if (TREE_SIDE_EFFECTS (base))
{
base_init = get_target_expr (base);
base = TARGET_EXPR_SLOT (base_init);
}
type = strip_array_types (TREE_TYPE (type));
cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
sizetype, TYPE_SIZE_UNIT (sizetype));
cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
cookie_addr);
maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
/* Get the total number of things in the array, maxindex is a
bad name. */
maxindex = array_type_nelts_total (type);
type = strip_array_types (type);
base = decay_conversion (base, complain);
if (base == error_mark_node)
return error_mark_node;
if (TREE_SIDE_EFFECTS (base))
{
base_init = get_target_expr (base);
base = TARGET_EXPR_SLOT (base_init);
}
}
else
{
if (base != error_mark_node && !(complain & tf_error))
error ("type to vector delete is neither pointer or array type");
return error_mark_node;
}
rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
use_global_delete, complain);
if (base_init && rval != error_mark_node)
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
return rval;
}