/* Process declarations and variables for C++ compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Process declarations and symbol lookup for C++ front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "expr.h" #include "flags.h" #include "cp-tree.h" #include "decl.h" #include "lex.h" #include "output.h" #include "except.h" #include "toplev.h" #include "timevar.h" #include "cpplib.h" #include "target.h" #include "c-common.h" #include "tree-mudflap.h" #include "cgraph.h" #include "tree-inline.h" extern cpp_reader *parse_in; /* This structure contains information about the initializations and/or destructions required for a particular priority level. */ typedef struct priority_info_s { /* Nonzero if there have been any initializations at this priority throughout the translation unit. */ int initializations_p; /* Nonzero if there have been any destructions at this priority throughout the translation unit. */ int destructions_p; } *priority_info; static void mark_vtable_entries (tree); static void grok_function_init (tree, tree); static bool maybe_emit_vtables (tree); static tree build_anon_union_vars (tree); static bool acceptable_java_type (tree); static tree start_objects (int, int); static void finish_objects (int, int, tree); static tree start_static_storage_duration_function (unsigned); static void finish_static_storage_duration_function (tree); static priority_info get_priority_info (int); static void do_static_initialization (tree, tree); static void do_static_destruction (tree); static tree start_static_initialization_or_destruction (tree, int); static void finish_static_initialization_or_destruction (tree); static void generate_ctor_or_dtor_function (bool, int, location_t *); static int generate_ctor_and_dtor_functions_for_priority (splay_tree_node, void *); static tree prune_vars_needing_no_initialization (tree *); static void write_out_vars (tree); static void import_export_class (tree); static tree get_guard_bits (tree); /* A list of static class variables. This is needed, because a static class variable can be declared inside the class without an initializer, and then initialized, statically, outside the class. */ static GTY(()) varray_type pending_statics; #define pending_statics_used \ (pending_statics ? pending_statics->elements_used : 0) /* A list of functions which were declared inline, but which we may need to emit outline anyway. */ static GTY(()) varray_type deferred_fns; #define deferred_fns_used \ (deferred_fns ? deferred_fns->elements_used : 0) /* Flag used when debugging spew.c */ extern int spew_debug; /* Nonzero if we're done parsing and into end-of-file activities. */ int at_eof; /* Functions called along with real static constructors and destructors. */ tree static_ctors; tree static_dtors; /* Incorporate `const' and `volatile' qualifiers for member functions. FUNCTION is a TYPE_DECL or a FUNCTION_DECL. QUALS is a list of qualifiers. Returns any explicit top-level qualifiers of the method's this pointer, anything other than TYPE_UNQUALIFIED will be an extension. */ int grok_method_quals (tree ctype, tree function, tree quals) { tree fntype = TREE_TYPE (function); tree raises = TYPE_RAISES_EXCEPTIONS (fntype); int type_quals = TYPE_UNQUALIFIED; int dup_quals = TYPE_UNQUALIFIED; int this_quals = TYPE_UNQUALIFIED; do { int tq = cp_type_qual_from_rid (TREE_VALUE (quals)); if ((type_quals | this_quals) & tq) dup_quals |= tq; else if (tq & TYPE_QUAL_RESTRICT) this_quals |= tq; else type_quals |= tq; quals = TREE_CHAIN (quals); } while (quals); if (dup_quals != TYPE_UNQUALIFIED) error ("duplicate type qualifiers in %s declaration", TREE_CODE (function) == FUNCTION_DECL ? "member function" : "type"); ctype = cp_build_qualified_type (ctype, type_quals); fntype = build_method_type_directly (ctype, TREE_TYPE (fntype), (TREE_CODE (fntype) == METHOD_TYPE ? TREE_CHAIN (TYPE_ARG_TYPES (fntype)) : TYPE_ARG_TYPES (fntype))); if (raises) fntype = build_exception_variant (fntype, raises); TREE_TYPE (function) = fntype; return this_quals; } /* A subroutine of the parser, to handle a component list. */ void grok_x_components (tree specs) { tree t; specs = strip_attrs (specs); check_tag_decl (specs); t = groktypename (build_tree_list (specs, NULL_TREE)); /* The only case where we need to do anything additional here is an anonymous union field, e.g.: `struct S { union { int i; }; };'. */ if (t == NULL_TREE || !ANON_AGGR_TYPE_P (t)) return; fixup_anonymous_aggr (t); finish_member_declaration (build_decl (FIELD_DECL, NULL_TREE, t)); } /* Build a PARM_DECL with NAME and TYPE, and set DECL_ARG_TYPE appropriately. */ tree cp_build_parm_decl (tree name, tree type) { tree parm = build_decl (PARM_DECL, name, type); /* DECL_ARG_TYPE is only used by the back end and the back end never sees templates. */ if (!processing_template_decl) DECL_ARG_TYPE (parm) = type_passed_as (type); return parm; } /* Returns a PARM_DECL for a parameter of the indicated TYPE, with the indicated NAME. */ tree build_artificial_parm (tree name, tree type) { tree parm = cp_build_parm_decl (name, type); DECL_ARTIFICIAL (parm) = 1; /* All our artificial parms are implicitly `const'; they cannot be assigned to. */ TREE_READONLY (parm) = 1; return parm; } /* Constructors for types with virtual baseclasses need an "in-charge" flag saying whether this constructor is responsible for initialization of virtual baseclasses or not. All destructors also need this "in-charge" flag, which additionally determines whether or not the destructor should free the memory for the object. This function adds the "in-charge" flag to member function FN if appropriate. It is called from grokclassfn and tsubst. FN must be either a constructor or destructor. The in-charge flag follows the 'this' parameter, and is followed by the VTT parm (if any), then the user-written parms. */ void maybe_retrofit_in_chrg (tree fn) { tree basetype, arg_types, parms, parm, fntype; /* If we've already add the in-charge parameter don't do it again. */ if (DECL_HAS_IN_CHARGE_PARM_P (fn)) return; /* When processing templates we can't know, in general, whether or not we're going to have virtual baseclasses. */ if (processing_template_decl) return; /* We don't need an in-charge parameter for constructors that don't have virtual bases. */ if (DECL_CONSTRUCTOR_P (fn) && !TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn))) return; arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn)); basetype = TREE_TYPE (TREE_VALUE (arg_types)); arg_types = TREE_CHAIN (arg_types); parms = TREE_CHAIN (DECL_ARGUMENTS (fn)); /* If this is a subobject constructor or destructor, our caller will pass us a pointer to our VTT. */ if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn))) { parm = build_artificial_parm (vtt_parm_identifier, vtt_parm_type); /* First add it to DECL_ARGUMENTS between 'this' and the real args... */ TREE_CHAIN (parm) = parms; parms = parm; /* ...and then to TYPE_ARG_TYPES. */ arg_types = hash_tree_chain (vtt_parm_type, arg_types); DECL_HAS_VTT_PARM_P (fn) = 1; } /* Then add the in-charge parm (before the VTT parm). */ parm = build_artificial_parm (in_charge_identifier, integer_type_node); TREE_CHAIN (parm) = parms; parms = parm; arg_types = hash_tree_chain (integer_type_node, arg_types); /* Insert our new parameter(s) into the list. */ TREE_CHAIN (DECL_ARGUMENTS (fn)) = parms; /* And rebuild the function type. */ fntype = build_method_type_directly (basetype, TREE_TYPE (TREE_TYPE (fn)), arg_types); if (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))) fntype = build_exception_variant (fntype, TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))); TREE_TYPE (fn) = fntype; /* Now we've got the in-charge parameter. */ DECL_HAS_IN_CHARGE_PARM_P (fn) = 1; } /* Classes overload their constituent function names automatically. When a function name is declared in a record structure, its name is changed to it overloaded name. Since names for constructors and destructors can conflict, we place a leading '$' for destructors. CNAME is the name of the class we are grokking for. FUNCTION is a FUNCTION_DECL. It was created by `grokdeclarator'. FLAGS contains bits saying what's special about today's arguments. 1 == DESTRUCTOR. 2 == OPERATOR. If FUNCTION is a destructor, then we must add the `auto-delete' field as a second parameter. There is some hair associated with the fact that we must "declare" this variable in the manner consistent with the way the rest of the arguments were declared. QUALS are the qualifiers for the this pointer. */ void grokclassfn (tree ctype, tree function, enum overload_flags flags, tree quals) { tree fn_name = DECL_NAME (function); int this_quals = TYPE_UNQUALIFIED; /* Even within an `extern "C"' block, members get C++ linkage. See [dcl.link] for details. */ SET_DECL_LANGUAGE (function, lang_cplusplus); if (fn_name == NULL_TREE) { error ("name missing for member function"); fn_name = get_identifier (""); DECL_NAME (function) = fn_name; } if (quals) this_quals = grok_method_quals (ctype, function, quals); if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) { /* Must add the class instance variable up front. */ /* Right now we just make this a pointer. But later we may wish to make it special. */ tree type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (function))); tree qual_type; tree parm; /* The `this' parameter is implicitly `const'; it cannot be assigned to. */ this_quals |= TYPE_QUAL_CONST; qual_type = cp_build_qualified_type (type, this_quals); parm = build_artificial_parm (this_identifier, qual_type); c_apply_type_quals_to_decl (this_quals, parm); TREE_CHAIN (parm) = DECL_ARGUMENTS (function); DECL_ARGUMENTS (function) = parm; } DECL_CONTEXT (function) = ctype; if (flags == DTOR_FLAG) DECL_DESTRUCTOR_P (function) = 1; if (flags == DTOR_FLAG || DECL_CONSTRUCTOR_P (function)) maybe_retrofit_in_chrg (function); } /* Create an ARRAY_REF, checking for the user doing things backwards along the way. */ tree grok_array_decl (tree array_expr, tree index_exp) { tree type; tree expr; tree orig_array_expr = array_expr; tree orig_index_exp = index_exp; if (error_operand_p (array_expr) || error_operand_p (index_exp)) return error_mark_node; if (processing_template_decl) { if (type_dependent_expression_p (array_expr) || type_dependent_expression_p (index_exp)) return build_min_nt (ARRAY_REF, array_expr, index_exp); array_expr = build_non_dependent_expr (array_expr); index_exp = build_non_dependent_expr (index_exp); } type = TREE_TYPE (array_expr); my_friendly_assert (type, 20030626); type = non_reference (type); /* If they have an `operator[]', use that. */ if (IS_AGGR_TYPE (type) || IS_AGGR_TYPE (TREE_TYPE (index_exp))) expr = build_new_op (ARRAY_REF, LOOKUP_NORMAL, array_expr, index_exp, NULL_TREE, /*overloaded_p=*/NULL); else { tree p1, p2, i1, i2; /* Otherwise, create an ARRAY_REF for a pointer or array type. It is a little-known fact that, if `a' is an array and `i' is an int, you can write `i[a]', which means the same thing as `a[i]'. */ if (TREE_CODE (type) == ARRAY_TYPE) p1 = array_expr; else p1 = build_expr_type_conversion (WANT_POINTER, array_expr, false); if (TREE_CODE (TREE_TYPE (index_exp)) == ARRAY_TYPE) p2 = index_exp; else p2 = build_expr_type_conversion (WANT_POINTER, index_exp, false); i1 = build_expr_type_conversion (WANT_INT | WANT_ENUM, array_expr, false); i2 = build_expr_type_conversion (WANT_INT | WANT_ENUM, index_exp, false); if ((p1 && i2) && (i1 && p2)) error ("ambiguous conversion for array subscript"); if (p1 && i2) array_expr = p1, index_exp = i2; else if (i1 && p2) array_expr = p2, index_exp = i1; else { error ("invalid types `%T[%T]' for array subscript", type, TREE_TYPE (index_exp)); return error_mark_node; } if (array_expr == error_mark_node || index_exp == error_mark_node) error ("ambiguous conversion for array subscript"); expr = build_array_ref (array_expr, index_exp); } if (processing_template_decl && expr != error_mark_node) return build_min_non_dep (ARRAY_REF, expr, orig_array_expr, orig_index_exp); return expr; } /* Given the cast expression EXP, checking out its validity. Either return an error_mark_node if there was an unavoidable error, return a cast to void for trying to delete a pointer w/ the value 0, or return the call to delete. If DOING_VEC is true, we handle things differently for doing an array delete. Implements ARM $5.3.4. This is called from the parser. */ tree delete_sanity (tree exp, tree size, bool doing_vec, int use_global_delete) { tree t, type; if (exp == error_mark_node) return exp; if (processing_template_decl) { t = build_min (DELETE_EXPR, void_type_node, exp, size); DELETE_EXPR_USE_GLOBAL (t) = use_global_delete; DELETE_EXPR_USE_VEC (t) = doing_vec; return t; } exp = convert_from_reference (exp); /* An array can't have been allocated by new, so complain. */ if (TREE_CODE (exp) == VAR_DECL && TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE) warning ("deleting array `%#D'", exp); t = build_expr_type_conversion (WANT_POINTER, exp, true); if (t == NULL_TREE || t == error_mark_node) { error ("type `%#T' argument given to `delete', expected pointer", TREE_TYPE (exp)); return error_mark_node; } type = TREE_TYPE (t); /* As of Valley Forge, you can delete a pointer to const. */ /* You can't delete functions. */ if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) { error ("cannot delete a function. Only pointer-to-objects are valid arguments to `delete'"); return error_mark_node; } /* Deleting ptr to void is undefined behavior [expr.delete/3]. */ if (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE) { warning ("deleting `%T' is undefined", type); doing_vec = 0; } /* Deleting a pointer with the value zero is valid and has no effect. */ if (integer_zerop (t)) return build1 (NOP_EXPR, void_type_node, t); if (doing_vec) return build_vec_delete (t, /*maxindex=*/NULL_TREE, sfk_deleting_destructor, use_global_delete); else return build_delete (type, t, sfk_deleting_destructor, LOOKUP_NORMAL, use_global_delete); } /* Report an error if the indicated template declaration is not the sort of thing that should be a member template. */ void check_member_template (tree tmpl) { tree decl; my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0); decl = DECL_TEMPLATE_RESULT (tmpl); if (TREE_CODE (decl) == FUNCTION_DECL || (TREE_CODE (decl) == TYPE_DECL && IS_AGGR_TYPE (TREE_TYPE (decl)))) { if (current_function_decl) /* 14.5.2.2 [temp.mem] A local class shall not have member templates. */ error ("invalid declaration of member template `%#D' in local class", decl); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) { /* 14.5.2.3 [temp.mem] A member function template shall not be virtual. */ error ("invalid use of `virtual' in template declaration of `%#D'", decl); DECL_VIRTUAL_P (decl) = 0; } /* The debug-information generating code doesn't know what to do with member templates. */ DECL_IGNORED_P (tmpl) = 1; } else error ("template declaration of `%#D'", decl); } /* Return true iff TYPE is a valid Java parameter or return type. */ static bool acceptable_java_type (tree type) { if (TREE_CODE (type) == VOID_TYPE || TYPE_FOR_JAVA (type)) return 1; if (TREE_CODE (type) == POINTER_TYPE || TREE_CODE (type) == REFERENCE_TYPE) { type = TREE_TYPE (type); if (TREE_CODE (type) == RECORD_TYPE) { tree args; int i; if (! TYPE_FOR_JAVA (type)) return false; if (! CLASSTYPE_TEMPLATE_INFO (type)) return true; args = CLASSTYPE_TI_ARGS (type); i = TREE_VEC_LENGTH (args); while (--i >= 0) { type = TREE_VEC_ELT (args, i); if (TREE_CODE (type) == POINTER_TYPE) type = TREE_TYPE (type); if (! TYPE_FOR_JAVA (type)) return false; } return true; } } return false; } /* For a METHOD in a Java class CTYPE, return true if the parameter and return types are valid Java types. Otherwise, print appropriate error messages, and return false. */ bool check_java_method (tree method) { bool jerr = false; tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (method)); tree ret_type = TREE_TYPE (TREE_TYPE (method)); if (!acceptable_java_type (ret_type)) { error ("Java method '%D' has non-Java return type `%T'", method, ret_type); jerr = true; } arg_types = TREE_CHAIN (arg_types); if (DECL_HAS_IN_CHARGE_PARM_P (method)) arg_types = TREE_CHAIN (arg_types); if (DECL_HAS_VTT_PARM_P (method)) arg_types = TREE_CHAIN (arg_types); for (; arg_types != NULL_TREE; arg_types = TREE_CHAIN (arg_types)) { tree type = TREE_VALUE (arg_types); if (!acceptable_java_type (type)) { error ("Java method '%D' has non-Java parameter type `%T'", method, type); jerr = true; } } return !jerr; } /* Sanity check: report error if this function FUNCTION is not really a member of the class (CTYPE) it is supposed to belong to. TEMPLATE_PARMS is used to specifiy the template parameters of a member template passed as FUNCTION_DECL. If the member template is passed as a TEMPLATE_DECL, it can be NULL since the parameters can be extracted from the declaration. If the function is not a function template, it must be NULL. It returns the original declaration for the function, or NULL_TREE if no declaration was found (and an error was emitted). */ tree check_classfn (tree ctype, tree function, tree template_parms) { int ix; bool is_template; if (DECL_USE_TEMPLATE (function) && !(TREE_CODE (function) == TEMPLATE_DECL && DECL_TEMPLATE_SPECIALIZATION (function)) && is_member_template (DECL_TI_TEMPLATE (function))) /* Since this is a specialization of a member template, we're not going to find the declaration in the class. For example, in: struct S { template void f(T); }; template <> void S::f(int); we're not going to find `S::f(int)', but there's no reason we should, either. We let our callers know we didn't find the method, but we don't complain. */ return NULL_TREE; /* Basic sanity check: for a template function, the template parameters either were not passed, or they are the same of DECL_TEMPLATE_PARMS. */ if (TREE_CODE (function) == TEMPLATE_DECL) { my_friendly_assert (!template_parms || comp_template_parms (template_parms, DECL_TEMPLATE_PARMS (function)), 20040303); template_parms = DECL_TEMPLATE_PARMS (function); } /* OK, is this a definition of a member template? */ is_template = (template_parms != NULL_TREE); ix = lookup_fnfields_1 (complete_type (ctype), DECL_CONSTRUCTOR_P (function) ? ctor_identifier : DECL_DESTRUCTOR_P (function) ? dtor_identifier : DECL_NAME (function)); if (ix >= 0) { tree methods = CLASSTYPE_METHOD_VEC (ctype); tree fndecls, fndecl = 0; bool is_conv_op; bool pop_p; const char *format = NULL; pop_p = push_scope (ctype); for (fndecls = TREE_VEC_ELT (methods, ix); fndecls; fndecls = OVL_NEXT (fndecls)) { tree p1, p2; fndecl = OVL_CURRENT (fndecls); p1 = TYPE_ARG_TYPES (TREE_TYPE (function)); p2 = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); /* We cannot simply call decls_match because this doesn't work for static member functions that are pretending to be methods, and because the name may have been changed by asm("new_name"). */ /* Get rid of the this parameter on functions that become static. */ if (DECL_STATIC_FUNCTION_P (fndecl) && TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) p1 = TREE_CHAIN (p1); /* A member template definition only matches a member template declaration. */ if (is_template != (TREE_CODE (fndecl) == TEMPLATE_DECL)) continue; if (same_type_p (TREE_TYPE (TREE_TYPE (function)), TREE_TYPE (TREE_TYPE (fndecl))) && compparms (p1, p2) && (!is_template || comp_template_parms (template_parms, DECL_TEMPLATE_PARMS (fndecl))) && (DECL_TEMPLATE_SPECIALIZATION (function) == DECL_TEMPLATE_SPECIALIZATION (fndecl)) && (!DECL_TEMPLATE_SPECIALIZATION (function) || (DECL_TI_TEMPLATE (function) == DECL_TI_TEMPLATE (fndecl)))) break; } if (pop_p) pop_scope (ctype); if (fndecls) return OVL_CURRENT (fndecls); error ("prototype for `%#D' does not match any in class `%T'", function, ctype); is_conv_op = DECL_CONV_FN_P (fndecl); if (is_conv_op) ix = CLASSTYPE_FIRST_CONVERSION_SLOT; fndecls = TREE_VEC_ELT (methods, ix); while (fndecls) { fndecl = OVL_CURRENT (fndecls); fndecls = OVL_NEXT (fndecls); if (!fndecls && is_conv_op) { if (TREE_VEC_LENGTH (methods) > ix) { ix++; fndecls = TREE_VEC_ELT (methods, ix); if (!DECL_CONV_FN_P (OVL_CURRENT (fndecls))) { fndecls = NULL_TREE; is_conv_op = false; } } else is_conv_op = false; } if (format) format = " %#D"; else if (fndecls) format = "candidates are: %#D"; else format = "candidate is: %#D"; cp_error_at (format, fndecl); } } else if (!COMPLETE_TYPE_P (ctype)) cxx_incomplete_type_error (function, ctype); else error ("no `%#D' member function declared in class `%T'", function, ctype); /* If we did not find the method in the class, add it to avoid spurious errors (unless the CTYPE is not yet defined, in which case we'll only confuse ourselves when the function is declared properly within the class. */ if (COMPLETE_TYPE_P (ctype)) add_method (ctype, function, /*error_p=*/1); return NULL_TREE; } /* We have just processed the DECL, which is a static data member. Its initializer, if present, is INIT. The ASMSPEC_TREE, if present, is the assembly-language name for the data member. FLAGS is as for cp_finish_decl. */ void finish_static_data_member_decl (tree decl, tree init, tree asmspec_tree, int flags) { my_friendly_assert (TREE_PUBLIC (decl), 0); DECL_CONTEXT (decl) = current_class_type; /* We cannot call pushdecl here, because that would fill in the TREE_CHAIN of our decl. Instead, we modify cp_finish_decl to do the right thing, namely, to put this decl out straight away. */ /* current_class_type can be NULL_TREE in case of error. */ if (!asmspec_tree && current_class_type) DECL_INITIAL (decl) = error_mark_node; if (! processing_template_decl) { if (!pending_statics) VARRAY_TREE_INIT (pending_statics, 32, "pending_statics"); VARRAY_PUSH_TREE (pending_statics, decl); } if (LOCAL_CLASS_P (current_class_type)) pedwarn ("local class `%#T' shall not have static data member `%#D'", current_class_type, decl); /* Static consts need not be initialized in the class definition. */ if (init != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))) { static int explained = 0; error ("initializer invalid for static member with constructor"); if (!explained) { error ("(an out of class initialization is required)"); explained = 1; } init = NULL_TREE; } /* Force the compiler to know when an uninitialized static const member is being used. */ if (CP_TYPE_CONST_P (TREE_TYPE (decl)) && init == 0) TREE_USED (decl) = 1; DECL_INITIAL (decl) = init; DECL_IN_AGGR_P (decl) = 1; cp_finish_decl (decl, init, asmspec_tree, flags); } /* Process the specs, declarator (NULL if omitted) and width (NULL if omitted) of a structure component, returning a _DECL node. QUALS is a list of type qualifiers for this decl (such as for declaring const member functions). This is done during the parsing of the struct declaration. The _DECL nodes are chained together and the lot of them are ultimately passed to `build_struct' to make the RECORD_TYPE node. If class A defines that certain functions in class B are friends, then the way I have set things up, it is B who is interested in permission granted by A. However, it is in A's context that these declarations are parsed. By returning a void_type_node, class A does not attempt to incorporate the declarations of the friends within its structure. DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `start_method'. */ tree grokfield (tree declarator, tree declspecs, tree init, tree asmspec_tree, tree attrlist) { tree value; const char *asmspec = 0; int flags = LOOKUP_ONLYCONVERTING; if (declspecs == NULL_TREE && TREE_CODE (declarator) == SCOPE_REF && TREE_CODE (TREE_OPERAND (declarator, 1)) == IDENTIFIER_NODE) { /* Access declaration */ if (! IS_AGGR_TYPE_CODE (TREE_CODE (TREE_OPERAND (declarator, 0)))) ; else if (TREE_COMPLEXITY (declarator) == current_class_depth) pop_nested_class (); return do_class_using_decl (declarator); } if (init && TREE_CODE (init) == TREE_LIST && TREE_VALUE (init) == error_mark_node && TREE_CHAIN (init) == NULL_TREE) init = NULL_TREE; value = grokdeclarator (declarator, declspecs, FIELD, init != 0, &attrlist); if (! value || error_operand_p (value)) /* friend or constructor went bad. */ return error_mark_node; if (TREE_CODE (value) == TYPE_DECL && init) { error ("typedef `%D' is initialized (use __typeof__ instead)", value); init = NULL_TREE; } /* Pass friendly classes back. */ if (value == void_type_node) return value; /* Pass friend decls back. */ if ((TREE_CODE (value) == FUNCTION_DECL || TREE_CODE (value) == TEMPLATE_DECL) && DECL_CONTEXT (value) != current_class_type) return value; if (DECL_NAME (value) != NULL_TREE && IDENTIFIER_POINTER (DECL_NAME (value))[0] == '_' && ! strcmp (IDENTIFIER_POINTER (DECL_NAME (value)), "_vptr")) error ("member `%D' conflicts with virtual function table field name", value); /* Stash away type declarations. */ if (TREE_CODE (value) == TYPE_DECL) { DECL_NONLOCAL (value) = 1; DECL_CONTEXT (value) = current_class_type; if (processing_template_decl) value = push_template_decl (value); return value; } if (DECL_IN_AGGR_P (value)) { error ("`%D' is already defined in `%T'", value, DECL_CONTEXT (value)); return void_type_node; } if (asmspec_tree) asmspec = TREE_STRING_POINTER (asmspec_tree); if (init) { if (TREE_CODE (value) == FUNCTION_DECL) { grok_function_init (value, init); init = NULL_TREE; } else if (pedantic && TREE_CODE (value) != VAR_DECL) /* Already complained in grokdeclarator. */ init = NULL_TREE; else { /* We allow initializers to become parameters to base initializers. */ if (TREE_CODE (init) == TREE_LIST) { if (TREE_CHAIN (init) == NULL_TREE) init = TREE_VALUE (init); else init = digest_init (TREE_TYPE (value), init, (tree *)0); } if (!processing_template_decl) { if (TREE_CODE (init) == CONST_DECL) init = DECL_INITIAL (init); else if (TREE_READONLY_DECL_P (init)) init = decl_constant_value (init); else if (TREE_CODE (init) == CONSTRUCTOR) init = digest_init (TREE_TYPE (value), init, (tree *)0); if (init != error_mark_node && ! TREE_CONSTANT (init)) { /* We can allow references to things that are effectively static, since references are initialized with the address. */ if (TREE_CODE (TREE_TYPE (value)) != REFERENCE_TYPE || (TREE_STATIC (init) == 0 && (!DECL_P (init) || DECL_EXTERNAL (init) == 0))) { error ("field initializer is not constant"); init = error_mark_node; } } } } } if (processing_template_decl && (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == FUNCTION_DECL)) { value = push_template_decl (value); if (error_operand_p (value)) return error_mark_node; } if (attrlist) cplus_decl_attributes (&value, attrlist, 0); if (TREE_CODE (value) == VAR_DECL) { finish_static_data_member_decl (value, init, asmspec_tree, flags); return value; } if (TREE_CODE (value) == FIELD_DECL) { if (asmspec) error ("`asm' specifiers are not permitted on non-static data members"); if (DECL_INITIAL (value) == error_mark_node) init = error_mark_node; cp_finish_decl (value, init, NULL_TREE, flags); DECL_INITIAL (value) = init; DECL_IN_AGGR_P (value) = 1; return value; } if (TREE_CODE (value) == FUNCTION_DECL) { if (asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ SET_DECL_RTL (value, NULL_RTX); change_decl_assembler_name (value, get_identifier (asmspec)); } if (!DECL_FRIEND_P (value)) grok_special_member_properties (value); cp_finish_decl (value, init, asmspec_tree, flags); /* Pass friends back this way. */ if (DECL_FRIEND_P (value)) return void_type_node; DECL_IN_AGGR_P (value) = 1; return value; } abort (); /* NOTREACHED */ return NULL_TREE; } /* Like `grokfield', but for bitfields. WIDTH is non-NULL for bit fields only, and is an INTEGER_CST node. */ tree grokbitfield (tree declarator, tree declspecs, tree width) { tree value = grokdeclarator (declarator, declspecs, BITFIELD, 0, NULL); if (! value) return NULL_TREE; /* friends went bad. */ /* Pass friendly classes back. */ if (TREE_CODE (value) == VOID_TYPE) return void_type_node; if (TREE_CODE (value) == TYPE_DECL) { error ("cannot declare `%D' to be a bit-field type", value); return NULL_TREE; } /* Usually, finish_struct_1 catches bitfields with invalid types. But, in the case of bitfields with function type, we confuse ourselves into thinking they are member functions, so we must check here. */ if (TREE_CODE (value) == FUNCTION_DECL) { error ("cannot declare bit-field `%D' with function type", DECL_NAME (value)); return NULL_TREE; } if (DECL_IN_AGGR_P (value)) { error ("`%D' is already defined in the class %T", value, DECL_CONTEXT (value)); return void_type_node; } if (TREE_STATIC (value)) { error ("static member `%D' cannot be a bit-field", value); return NULL_TREE; } cp_finish_decl (value, NULL_TREE, NULL_TREE, 0); if (width != error_mark_node) { constant_expression_warning (width); DECL_INITIAL (value) = width; SET_DECL_C_BIT_FIELD (value); } DECL_IN_AGGR_P (value) = 1; return value; } /* When a function is declared with an initializer, do the right thing. Currently, there are two possibilities: class B { public: // initialization possibility #1. virtual void f () = 0; int g (); }; class D1 : B { public: int d1; // error, no f (); }; class D2 : B { public: int d2; void f (); }; class D3 : B { public: int d3; // initialization possibility #2 void f () = B::f; }; */ static void grok_function_init (tree decl, tree init) { /* An initializer for a function tells how this function should be inherited. */ tree type = TREE_TYPE (decl); if (TREE_CODE (type) == FUNCTION_TYPE) error ("initializer specified for non-member function `%D'", decl); else if (integer_zerop (init)) DECL_PURE_VIRTUAL_P (decl) = 1; else error ("invalid initializer for virtual method `%D'", decl); } void cplus_decl_attributes (tree *decl, tree attributes, int flags) { if (*decl == NULL_TREE || *decl == void_type_node) return; if (TREE_CODE (*decl) == TEMPLATE_DECL) decl = &DECL_TEMPLATE_RESULT (*decl); decl_attributes (decl, attributes, flags); if (TREE_CODE (*decl) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (*decl), TREE_TYPE (*decl)); } /* Defer the compilation of the FN until the end of compilation. */ void defer_fn (tree fn) { if (DECL_DEFERRED_FN (fn)) return; DECL_DEFERRED_FN (fn) = 1; DECL_DEFER_OUTPUT (fn) = 1; if (!deferred_fns) VARRAY_TREE_INIT (deferred_fns, 32, "deferred_fns"); VARRAY_PUSH_TREE (deferred_fns, fn); } /* Walks through the namespace- or function-scope anonymous union OBJECT, building appropriate ALIAS_DECLs. Returns one of the fields for use in the mangled name. */ static tree build_anon_union_vars (tree object) { tree type = TREE_TYPE (object); tree main_decl = NULL_TREE; tree field; /* Rather than write the code to handle the non-union case, just give an error. */ if (TREE_CODE (type) != UNION_TYPE) error ("anonymous struct not inside named type"); for (field = TYPE_FIELDS (type); field != NULL_TREE; field = TREE_CHAIN (field)) { tree decl; tree ref; if (DECL_ARTIFICIAL (field)) continue; if (TREE_CODE (field) != FIELD_DECL) { cp_pedwarn_at ("\ `%#D' invalid; an anonymous union can only have non-static data members", field); continue; } if (TREE_PRIVATE (field)) cp_pedwarn_at ("private member `%#D' in anonymous union", field); else if (TREE_PROTECTED (field)) cp_pedwarn_at ("protected member `%#D' in anonymous union", field); if (processing_template_decl) ref = build_min_nt (COMPONENT_REF, object, DECL_NAME (field)); else ref = build_class_member_access_expr (object, field, NULL_TREE, false); if (DECL_NAME (field)) { decl = build_decl (ALIAS_DECL, DECL_NAME (field), TREE_TYPE (field)); DECL_INITIAL (decl) = ref; TREE_PUBLIC (decl) = 0; TREE_STATIC (decl) = 0; DECL_EXTERNAL (decl) = 1; decl = pushdecl (decl); } else if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) decl = build_anon_union_vars (ref); else decl = 0; if (main_decl == NULL_TREE) main_decl = decl; } return main_decl; } /* Finish off the processing of a UNION_TYPE structure. If the union is an anonymous union, then all members must be laid out together. PUBLIC_P is nonzero if this union is not declared static. */ void finish_anon_union (tree anon_union_decl) { tree type = TREE_TYPE (anon_union_decl); tree main_decl; bool public_p = TREE_PUBLIC (anon_union_decl); /* The VAR_DECL's context is the same as the TYPE's context. */ DECL_CONTEXT (anon_union_decl) = DECL_CONTEXT (TYPE_NAME (type)); if (TYPE_FIELDS (type) == NULL_TREE) return; if (public_p) { error ("namespace-scope anonymous aggregates must be static"); return; } main_decl = build_anon_union_vars (anon_union_decl); if (main_decl == NULL_TREE) { warning ("anonymous union with no members"); return; } if (!processing_template_decl) { /* Use main_decl to set the mangled name. */ DECL_NAME (anon_union_decl) = DECL_NAME (main_decl); mangle_decl (anon_union_decl); DECL_NAME (anon_union_decl) = NULL_TREE; } pushdecl (anon_union_decl); if (building_stmt_tree () && at_function_scope_p ()) add_decl_stmt (anon_union_decl); else if (!processing_template_decl) rest_of_decl_compilation (anon_union_decl, NULL, toplevel_bindings_p (), at_eof); } /* Auxiliary functions to make type signatures for `operator new' and `operator delete' correspond to what compiler will be expecting. */ tree coerce_new_type (tree type) { int e = 0; tree args = TYPE_ARG_TYPES (type); my_friendly_assert (TREE_CODE (type) == FUNCTION_TYPE, 20001107); if (!same_type_p (TREE_TYPE (type), ptr_type_node)) e = 1, error ("`operator new' must return type `%T'", ptr_type_node); if (!args || args == void_list_node || !same_type_p (TREE_VALUE (args), size_type_node)) { e = 2; if (args && args != void_list_node) args = TREE_CHAIN (args); pedwarn ("`operator new' takes type `size_t' (`%T') as first parameter", size_type_node); } switch (e) { case 2: args = tree_cons (NULL_TREE, size_type_node, args); /* Fall through. */ case 1: type = build_exception_variant (build_function_type (ptr_type_node, args), TYPE_RAISES_EXCEPTIONS (type)); /* Fall through. */ default:; } return type; } tree coerce_delete_type (tree type) { int e = 0; tree args = TYPE_ARG_TYPES (type); my_friendly_assert (TREE_CODE (type) == FUNCTION_TYPE, 20001107); if (!same_type_p (TREE_TYPE (type), void_type_node)) e = 1, error ("`operator delete' must return type `%T'", void_type_node); if (!args || args == void_list_node || !same_type_p (TREE_VALUE (args), ptr_type_node)) { e = 2; if (args && args != void_list_node) args = TREE_CHAIN (args); error ("`operator delete' takes type `%T' as first parameter", ptr_type_node); } switch (e) { case 2: args = tree_cons (NULL_TREE, ptr_type_node, args); /* Fall through. */ case 1: type = build_exception_variant (build_function_type (void_type_node, args), TYPE_RAISES_EXCEPTIONS (type)); /* Fall through. */ default:; } return type; } static void mark_vtable_entries (tree decl) { tree entries = CONSTRUCTOR_ELTS (DECL_INITIAL (decl)); for (; entries; entries = TREE_CHAIN (entries)) { tree fnaddr = TREE_VALUE (entries); tree fn; STRIP_NOPS (fnaddr); if (TREE_CODE (fnaddr) != ADDR_EXPR && TREE_CODE (fnaddr) != FDESC_EXPR) /* This entry is an offset: a virtual base class offset, a virtual call offset, an RTTI offset, etc. */ continue; fn = TREE_OPERAND (fnaddr, 0); TREE_ADDRESSABLE (fn) = 1; /* When we don't have vcall offsets, we output thunks whenever we output the vtables that contain them. With vcall offsets, we know all the thunks we'll need when we emit a virtual function, so we emit the thunks there instead. */ if (DECL_THUNK_P (fn)) use_thunk (fn, /*emit_p=*/0); mark_used (fn); } } /* Set DECL up to have the closest approximation of "initialized common" linkage available. */ void comdat_linkage (tree decl) { if (flag_weak) make_decl_one_only (decl); else if (TREE_CODE (decl) == FUNCTION_DECL || (TREE_CODE (decl) == VAR_DECL && DECL_ARTIFICIAL (decl))) /* We can just emit function and compiler-generated variables statically; having multiple copies is (for the most part) only a waste of space. There are two correctness issues, however: the address of a template instantiation with external linkage should be the same, independent of what translation unit asks for the address, and this will not hold when we emit multiple copies of the function. However, there's little else we can do. Also, by default, the typeinfo implementation assumes that there will be only one copy of the string used as the name for each type. Therefore, if weak symbols are unavailable, the run-time library should perform a more conservative check; it should perform a string comparison, rather than an address comparison. */ TREE_PUBLIC (decl) = 0; else { /* Static data member template instantiations, however, cannot have multiple copies. */ if (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node) DECL_COMMON (decl) = 1; else if (EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))) { DECL_COMMON (decl) = 1; DECL_INITIAL (decl) = error_mark_node; } else if (!DECL_EXPLICIT_INSTANTIATION (decl)) { /* We can't do anything useful; leave vars for explicit instantiation. */ DECL_EXTERNAL (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 0; } } if (DECL_LANG_SPECIFIC (decl)) DECL_COMDAT (decl) = 1; } /* For win32 we also want to put explicit instantiations in linkonce sections, so that they will be merged with implicit instantiations; otherwise we get duplicate symbol errors. For Darwin we do not want explicit instantiations to be linkonce. */ void maybe_make_one_only (tree decl) { /* We used to say that this was not necessary on targets that support weak symbols, because the implicit instantiations will defer to the explicit one. However, that's not actually the case in SVR4; a strong definition after a weak one is an error. Also, not making explicit instantiations one_only means that we can end up with two copies of some template instantiations. */ if (! flag_weak) return; /* We can't set DECL_COMDAT on functions, or finish_file will think we can get away with not emitting them if they aren't used. We need to for variables so that cp_finish_decl will update their linkage, because their DECL_INITIAL may not have been set properly yet. */ if (TARGET_EXPLICIT_INSTANTIATIONS_ONE_ONLY || (! DECL_EXPLICIT_INSTANTIATION (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl))) { make_decl_one_only (decl); if (TREE_CODE (decl) == VAR_DECL) { DECL_COMDAT (decl) = 1; /* Mark it needed so we don't forget to emit it. */ mark_referenced (DECL_ASSEMBLER_NAME (decl)); } } } /* Set TREE_PUBLIC and/or DECL_EXTERN on the vtable DECL, based on TYPE and other static flags. Note that anything public is tagged TREE_PUBLIC, whether it's public in this file or in another one. */ void import_export_vtable (tree decl, tree type, int final) { if (DECL_INTERFACE_KNOWN (decl)) return; if (TYPE_FOR_JAVA (type)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; DECL_INTERFACE_KNOWN (decl) = 1; } else if (CLASSTYPE_INTERFACE_KNOWN (type)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = CLASSTYPE_INTERFACE_ONLY (type); DECL_INTERFACE_KNOWN (decl) = 1; } else { /* We can only wait to decide if we have real non-inline virtual functions in our class, or if we come from a template. */ int found = (CLASSTYPE_TEMPLATE_INSTANTIATION (type) || CLASSTYPE_KEY_METHOD (type) != NULL_TREE); if (final || ! found) { comdat_linkage (decl); DECL_EXTERNAL (decl) = 0; } else { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; } } } /* Determine whether or not we want to specifically import or export CTYPE, using various heuristics. */ static void import_export_class (tree ctype) { /* -1 for imported, 1 for exported. */ int import_export = 0; /* It only makes sense to call this function at EOF. The reason is that this function looks at whether or not the first non-inline non-abstract virtual member function has been defined in this translation unit. But, we can't possibly know that until we've seen the entire translation unit. */ my_friendly_assert (at_eof, 20000226); if (CLASSTYPE_INTERFACE_KNOWN (ctype)) return; /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma interface, we will have CLASSTYPE_INTERFACE_ONLY set but not CLASSTYPE_INTERFACE_KNOWN. In that case, we don't want to use this heuristic because someone will supply a #pragma implementation elsewhere, and deducing it here would produce a conflict. */ if (CLASSTYPE_INTERFACE_ONLY (ctype)) return; if (lookup_attribute ("dllimport", TYPE_ATTRIBUTES (ctype))) import_export = -1; else if (lookup_attribute ("dllexport", TYPE_ATTRIBUTES (ctype))) import_export = 1; /* If we got -fno-implicit-templates, we import template classes that weren't explicitly instantiated. */ if (import_export == 0 && CLASSTYPE_IMPLICIT_INSTANTIATION (ctype) && ! flag_implicit_templates) import_export = -1; /* Base our import/export status on that of the first non-inline, non-pure virtual function, if any. */ if (import_export == 0 && TYPE_POLYMORPHIC_P (ctype)) { tree method = CLASSTYPE_KEY_METHOD (ctype); if (method) import_export = (DECL_REALLY_EXTERN (method) ? -1 : 1); } #ifdef MULTIPLE_SYMBOL_SPACES if (import_export == -1) import_export = 0; #endif if (import_export) { SET_CLASSTYPE_INTERFACE_KNOWN (ctype); CLASSTYPE_INTERFACE_ONLY (ctype) = (import_export < 0); } } /* Return true if VAR has already been provided to the back end; in that case VAR should not be modified further by the front end. */ static bool var_finalized_p (tree var) { if (flag_unit_at_a_time) return cgraph_varpool_node (var)->finalized; else return TREE_ASM_WRITTEN (var); } /* If necessary, write out the vtables for the dynamic class CTYPE. Returns true if any vtables were emitted. */ static bool maybe_emit_vtables (tree ctype) { tree vtbl; tree primary_vtbl; bool needed = false; /* If the vtables for this class have already been emitted there is nothing more to do. */ primary_vtbl = CLASSTYPE_VTABLES (ctype); if (var_finalized_p (primary_vtbl)) return false; /* Ignore dummy vtables made by get_vtable_decl. */ if (TREE_TYPE (primary_vtbl) == void_type_node) return false; import_export_class (ctype); import_export_vtable (primary_vtbl, ctype, 1); /* See if any of the vtables are needed. */ for (vtbl = CLASSTYPE_VTABLES (ctype); vtbl; vtbl = TREE_CHAIN (vtbl)) if (!DECL_EXTERNAL (vtbl) && DECL_NEEDED_P (vtbl)) break; if (!vtbl) { /* If the references to this class' vtables are optimized away, still emit the appropriate debugging information. See dfs_debug_mark. */ if (DECL_COMDAT (primary_vtbl) && CLASSTYPE_DEBUG_REQUESTED (ctype)) note_debug_info_needed (ctype); return false; } else if (TREE_PUBLIC (vtbl) && !DECL_COMDAT (vtbl)) needed = true; /* The ABI requires that we emit all of the vtables if we emit any of them. */ for (vtbl = CLASSTYPE_VTABLES (ctype); vtbl; vtbl = TREE_CHAIN (vtbl)) { /* Write it out. */ import_export_vtable (vtbl, ctype, 1); mark_vtable_entries (vtbl); /* If we know that DECL is needed, mark it as such for the varpool. */ if (needed) cgraph_varpool_mark_needed_node (cgraph_varpool_node (vtbl)); if (TREE_TYPE (DECL_INITIAL (vtbl)) == 0) { /* It had better be all done at compile-time. */ if (store_init_value (vtbl, DECL_INITIAL (vtbl))) abort (); } if (write_symbols == DWARF_DEBUG || write_symbols == DWARF2_DEBUG) { /* Mark the VAR_DECL node representing the vtable itself as a "gratuitous" one, thereby forcing dwarfout.c to ignore it. It is rather important that such things be ignored because any effort to actually generate DWARF for them will run into trouble when/if we encounter code like: #pragma interface struct S { virtual void member (); }; because the artificial declaration of the vtable itself (as manufactured by the g++ front end) will say that the vtable is a static member of `S' but only *after* the debug output for the definition of `S' has already been output. This causes grief because the DWARF entry for the definition of the vtable will try to refer back to an earlier *declaration* of the vtable as a static member of `S' and there won't be one. We might be able to arrange to have the "vtable static member" attached to the member list for `S' before the debug info for `S' get written (which would solve the problem) but that would require more intrusive changes to the g++ front end. */ DECL_IGNORED_P (vtbl) = 1; } /* Always make vtables weak. */ if (flag_weak) comdat_linkage (vtbl); rest_of_decl_compilation (vtbl, NULL, 1, 1); /* Because we're only doing syntax-checking, we'll never end up actually marking the variable as written. */ if (flag_syntax_only) TREE_ASM_WRITTEN (vtbl) = 1; } /* Since we're writing out the vtable here, also write the debug info. */ note_debug_info_needed (ctype); return true; } /* Determines the proper settings of TREE_PUBLIC and DECL_EXTERNAL for an inline function or template instantiation at end-of-file. */ void import_export_decl (tree decl) { if (DECL_INTERFACE_KNOWN (decl)) return; if (DECL_TEMPLATE_INSTANTIATION (decl) || DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl)) { DECL_NOT_REALLY_EXTERN (decl) = 1; if ((DECL_IMPLICIT_INSTANTIATION (decl) || DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl)) && (flag_implicit_templates || (flag_implicit_inline_templates && TREE_CODE (decl) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (decl)))) { if (!TREE_PUBLIC (decl)) /* Templates are allowed to have internal linkage. See [basic.link]. */ ; else comdat_linkage (decl); } else { DECL_EXTERNAL (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 0; } } else if (DECL_FUNCTION_MEMBER_P (decl)) { if (!DECL_DECLARED_INLINE_P (decl)) { tree ctype = DECL_CONTEXT (decl); import_export_class (ctype); if (CLASSTYPE_INTERFACE_KNOWN (ctype)) { DECL_NOT_REALLY_EXTERN (decl) = ! (CLASSTYPE_INTERFACE_ONLY (ctype) || (DECL_DECLARED_INLINE_P (decl) && ! flag_implement_inlines && !DECL_VINDEX (decl))); if (!DECL_NOT_REALLY_EXTERN (decl)) DECL_EXTERNAL (decl) = 1; /* Always make artificials weak. */ if (DECL_ARTIFICIAL (decl) && flag_weak) comdat_linkage (decl); else maybe_make_one_only (decl); } } else comdat_linkage (decl); } else comdat_linkage (decl); DECL_INTERFACE_KNOWN (decl) = 1; } /* Here, we only decide whether or not the tinfo node should be emitted with the vtable. IS_IN_LIBRARY is nonzero iff the typeinfo for TYPE should be in the runtime library. */ void import_export_tinfo (tree decl, tree type, bool is_in_library) { if (DECL_INTERFACE_KNOWN (decl)) return; if (IS_AGGR_TYPE (type)) import_export_class (type); if (IS_AGGR_TYPE (type) && CLASSTYPE_INTERFACE_KNOWN (type) && TYPE_POLYMORPHIC_P (type) /* If -fno-rtti, we're not necessarily emitting this stuff with the class, so go ahead and emit it now. This can happen when a class is used in exception handling. */ && flag_rtti) { DECL_NOT_REALLY_EXTERN (decl) = !CLASSTYPE_INTERFACE_ONLY (type); DECL_COMDAT (decl) = 0; } else { DECL_NOT_REALLY_EXTERN (decl) = 1; DECL_COMDAT (decl) = 1; } /* Now override some cases. */ if (flag_weak) DECL_COMDAT (decl) = 1; else if (is_in_library) DECL_COMDAT (decl) = 0; DECL_INTERFACE_KNOWN (decl) = 1; } /* Return an expression that performs the destruction of DECL, which must be a VAR_DECL whose type has a non-trivial destructor, or is an array whose (innermost) elements have a non-trivial destructor. */ tree build_cleanup (tree decl) { tree temp; tree type = TREE_TYPE (decl); /* This function should only be called for declarations that really require cleanups. */ my_friendly_assert (!TYPE_HAS_TRIVIAL_DESTRUCTOR (type), 20030106); /* Treat all objects with destructors as used; the destructor may do something substantive. */ mark_used (decl); if (TREE_CODE (type) == ARRAY_TYPE) temp = decl; else { cxx_mark_addressable (decl); temp = build1 (ADDR_EXPR, build_pointer_type (type), decl); } temp = build_delete (TREE_TYPE (temp), temp, sfk_complete_destructor, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); return temp; } /* Returns the initialization guard variable for the variable DECL, which has static storage duration. */ tree get_guard (tree decl) { tree sname; tree guard; sname = mangle_guard_variable (decl); guard = IDENTIFIER_GLOBAL_VALUE (sname); if (! guard) { tree guard_type; /* We use a type that is big enough to contain a mutex as well as an integer counter. */ guard_type = long_long_integer_type_node; guard = build_decl (VAR_DECL, sname, guard_type); /* The guard should have the same linkage as what it guards. */ TREE_PUBLIC (guard) = TREE_PUBLIC (decl); TREE_STATIC (guard) = TREE_STATIC (decl); DECL_COMMON (guard) = DECL_COMMON (decl); DECL_ONE_ONLY (guard) = DECL_ONE_ONLY (decl); if (TREE_PUBLIC (decl)) DECL_WEAK (guard) = DECL_WEAK (decl); DECL_ARTIFICIAL (guard) = 1; TREE_USED (guard) = 1; pushdecl_top_level_and_finish (guard, NULL_TREE); } return guard; } /* Return those bits of the GUARD variable that should be set when the guarded entity is actually initialized. */ static tree get_guard_bits (tree guard) { /* We only set the first byte of the guard, in order to leave room for a mutex in the high-order bits. */ guard = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (guard)), guard); guard = build1 (NOP_EXPR, build_pointer_type (char_type_node), guard); guard = build1 (INDIRECT_REF, char_type_node, guard); return guard; } /* Return an expression which determines whether or not the GUARD variable has already been initialized. */ tree get_guard_cond (tree guard) { tree guard_value; /* Check to see if the GUARD is zero. */ guard = get_guard_bits (guard); guard_value = integer_zero_node; if (!same_type_p (TREE_TYPE (guard_value), TREE_TYPE (guard))) guard_value = convert (TREE_TYPE (guard), guard_value); return cp_build_binary_op (EQ_EXPR, guard, guard_value); } /* Return an expression which sets the GUARD variable, indicating that the variable being guarded has been initialized. */ tree set_guard (tree guard) { tree guard_init; /* Set the GUARD to one. */ guard = get_guard_bits (guard); guard_init = integer_one_node; if (!same_type_p (TREE_TYPE (guard_init), TREE_TYPE (guard))) guard_init = convert (TREE_TYPE (guard), guard_init); return build_modify_expr (guard, NOP_EXPR, guard_init); } /* Start the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static tree start_objects (int method_type, int initp) { tree fnname; tree body; char type[10]; /* Make ctor or dtor function. METHOD_TYPE may be 'I' or 'D'. */ if (initp != DEFAULT_INIT_PRIORITY) { char joiner; #ifdef JOINER joiner = JOINER; #else joiner = '_'; #endif sprintf (type, "%c%c%.5u", method_type, joiner, initp); } else sprintf (type, "%c", method_type); fnname = get_file_function_name_long (type); start_function (void_list_node, make_call_declarator (fnname, void_list_node, NULL_TREE, NULL_TREE), NULL_TREE, SF_DEFAULT); /* It can be a static function as long as collect2 does not have to scan the object file to find its ctor/dtor routine. */ TREE_PUBLIC (current_function_decl) = ! targetm.have_ctors_dtors; /* Mark this declaration as used to avoid spurious warnings. */ TREE_USED (current_function_decl) = 1; /* Mark this function as a global constructor or destructor. */ if (method_type == 'I') DECL_GLOBAL_CTOR_P (current_function_decl) = 1; else DECL_GLOBAL_DTOR_P (current_function_decl) = 1; DECL_LANG_SPECIFIC (current_function_decl)->decl_flags.u2sel = 1; body = begin_compound_stmt (/*has_no_scope=*/false); /* We cannot allow these functions to be elided, even if they do not have external linkage. And, there's no point in deferring compilation of thes functions; they're all going to have to be out anyhow. */ current_function_cannot_inline = "static constructors and destructors cannot be inlined"; return body; } /* Finish the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static void finish_objects (int method_type, int initp, tree body) { tree fn; /* Finish up. */ finish_compound_stmt (body); fn = finish_function (0); expand_or_defer_fn (fn); /* When only doing semantic analysis, and no RTL generation, we can't call functions that directly emit assembly code; there is no assembly file in which to put the code. */ if (flag_syntax_only) return; if (targetm.have_ctors_dtors) { rtx fnsym = XEXP (DECL_RTL (fn), 0); if (method_type == 'I') (* targetm.asm_out.constructor) (fnsym, initp); else (* targetm.asm_out.destructor) (fnsym, initp); } } /* The names of the parameters to the function created to handle initializations and destructions for objects with static storage duration. */ #define INITIALIZE_P_IDENTIFIER "__initialize_p" #define PRIORITY_IDENTIFIER "__priority" /* The name of the function we create to handle initializations and destructions for objects with static storage duration. */ #define SSDF_IDENTIFIER "__static_initialization_and_destruction" /* The declaration for the __INITIALIZE_P argument. */ static GTY(()) tree initialize_p_decl; /* The declaration for the __PRIORITY argument. */ static GTY(()) tree priority_decl; /* The declaration for the static storage duration function. */ static GTY(()) tree ssdf_decl; /* All the static storage duration functions created in this translation unit. */ static GTY(()) varray_type ssdf_decls; /* A map from priority levels to information about that priority level. There may be many such levels, so efficient lookup is important. */ static splay_tree priority_info_map; /* Begins the generation of the function that will handle all initialization and destruction of objects with static storage duration. The function generated takes two parameters of type `int': __INITIALIZE_P and __PRIORITY. If __INITIALIZE_P is nonzero, it performs initializations. Otherwise, it performs destructions. It only performs those initializations or destructions with the indicated __PRIORITY. The generated function returns no value. It is assumed that this function will only be called once per translation unit. */ static tree start_static_storage_duration_function (unsigned count) { tree parm_types; tree type; tree body; char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 32]; /* Create the identifier for this function. It will be of the form SSDF_IDENTIFIER_. */ sprintf (id, "%s_%u", SSDF_IDENTIFIER, count); /* Create the parameters. */ parm_types = void_list_node; parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types); parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types); type = build_function_type (void_type_node, parm_types); /* Create the FUNCTION_DECL itself. */ ssdf_decl = build_lang_decl (FUNCTION_DECL, get_identifier (id), type); TREE_PUBLIC (ssdf_decl) = 0; DECL_ARTIFICIAL (ssdf_decl) = 1; /* Put this function in the list of functions to be called from the static constructors and destructors. */ if (!ssdf_decls) { VARRAY_TREE_INIT (ssdf_decls, 32, "ssdf_decls"); /* Take this opportunity to initialize the map from priority numbers to information about that priority level. */ priority_info_map = splay_tree_new (splay_tree_compare_ints, /*delete_key_fn=*/0, /*delete_value_fn=*/ (splay_tree_delete_value_fn) &free); /* We always need to generate functions for the DEFAULT_INIT_PRIORITY so enter it now. That way when we walk priorities later, we'll be sure to find the DEFAULT_INIT_PRIORITY. */ get_priority_info (DEFAULT_INIT_PRIORITY); } VARRAY_PUSH_TREE (ssdf_decls, ssdf_decl); /* Create the argument list. */ initialize_p_decl = cp_build_parm_decl (get_identifier (INITIALIZE_P_IDENTIFIER), integer_type_node); DECL_CONTEXT (initialize_p_decl) = ssdf_decl; TREE_USED (initialize_p_decl) = 1; priority_decl = cp_build_parm_decl (get_identifier (PRIORITY_IDENTIFIER), integer_type_node); DECL_CONTEXT (priority_decl) = ssdf_decl; TREE_USED (priority_decl) = 1; TREE_CHAIN (initialize_p_decl) = priority_decl; DECL_ARGUMENTS (ssdf_decl) = initialize_p_decl; /* Put the function in the global scope. */ pushdecl (ssdf_decl); /* Start the function itself. This is equivalent to declaring the function as: static void __ssdf (int __initialize_p, init __priority_p); It is static because we only need to call this function from the various constructor and destructor functions for this module. */ start_function (/*specs=*/NULL_TREE, ssdf_decl, /*attrs=*/NULL_TREE, SF_PRE_PARSED); /* Set up the scope of the outermost block in the function. */ body = begin_compound_stmt (/*has_no_scope=*/false); /* This function must not be deferred because we are depending on its compilation to tell us what is TREE_SYMBOL_REFERENCED. */ current_function_cannot_inline = "static storage duration functions cannot be inlined"; return body; } /* Finish the generation of the function which performs initialization and destruction of objects with static storage duration. After this point, no more such objects can be created. */ static void finish_static_storage_duration_function (tree body) { /* Close out the function. */ finish_compound_stmt (body); expand_or_defer_fn (finish_function (0)); } /* Return the information about the indicated PRIORITY level. If no code to handle this level has yet been generated, generate the appropriate prologue. */ static priority_info get_priority_info (int priority) { priority_info pi; splay_tree_node n; n = splay_tree_lookup (priority_info_map, (splay_tree_key) priority); if (!n) { /* Create a new priority information structure, and insert it into the map. */ pi = xmalloc (sizeof (struct priority_info_s)); pi->initializations_p = 0; pi->destructions_p = 0; splay_tree_insert (priority_info_map, (splay_tree_key) priority, (splay_tree_value) pi); } else pi = (priority_info) n->value; return pi; } /* Set up to handle the initialization or destruction of DECL. If INITP is nonzero, we are initializing the variable. Otherwise, we are destroying it. */ static tree start_static_initialization_or_destruction (tree decl, int initp) { tree guard_if_stmt = NULL_TREE; int priority; tree cond; tree guard; tree init_cond; priority_info pi; /* Figure out the priority for this declaration. */ priority = DECL_INIT_PRIORITY (decl); if (!priority) priority = DEFAULT_INIT_PRIORITY; /* Remember that we had an initialization or finalization at this priority. */ pi = get_priority_info (priority); if (initp) pi->initializations_p = 1; else pi->destructions_p = 1; /* Trick the compiler into thinking we are at the file and line where DECL was declared so that error-messages make sense, and so that the debugger will show somewhat sensible file and line information. */ input_location = DECL_SOURCE_LOCATION (decl); /* Because of: [class.access.spec] Access control for implicit calls to the constructors, the conversion functions, or the destructor called to create and destroy a static data member is performed as if these calls appeared in the scope of the member's class. we pretend we are in a static member function of the class of which the DECL is a member. */ if (member_p (decl)) { DECL_CONTEXT (current_function_decl) = DECL_CONTEXT (decl); DECL_STATIC_FUNCTION_P (current_function_decl) = 1; } /* Conditionalize this initialization on being in the right priority and being initializing/finalizing appropriately. */ guard_if_stmt = begin_if_stmt (); cond = cp_build_binary_op (EQ_EXPR, priority_decl, build_int_2 (priority, 0)); init_cond = initp ? integer_one_node : integer_zero_node; init_cond = cp_build_binary_op (EQ_EXPR, initialize_p_decl, init_cond); cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, init_cond); /* Assume we don't need a guard. */ guard = NULL_TREE; /* We need a guard if this is an object with external linkage that might be initialized in more than one place. (For example, a static data member of a template, when the data member requires construction.) */ if (TREE_PUBLIC (decl) && (DECL_COMMON (decl) || DECL_ONE_ONLY (decl) || DECL_WEAK (decl))) { tree guard_cond; guard = get_guard (decl); /* When using __cxa_atexit, we just check the GUARD as we would for a local static. */ if (flag_use_cxa_atexit) { /* When using __cxa_atexit, we never try to destroy anything from a static destructor. */ my_friendly_assert (initp, 20000629); guard_cond = get_guard_cond (guard); } /* If we don't have __cxa_atexit, then we will be running destructors from .fini sections, or their equivalents. So, we need to know how many times we've tried to initialize this object. We do initializations only if the GUARD is zero, i.e., if we are the first to initialize the variable. We do destructions only if the GUARD is one, i.e., if we are the last to destroy the variable. */ else if (initp) guard_cond = cp_build_binary_op (EQ_EXPR, build_unary_op (PREINCREMENT_EXPR, guard, /*noconvert=*/1), integer_one_node); else guard_cond = cp_build_binary_op (EQ_EXPR, build_unary_op (PREDECREMENT_EXPR, guard, /*noconvert=*/1), integer_zero_node); cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, guard_cond); } finish_if_stmt_cond (cond, guard_if_stmt); /* If we're using __cxa_atexit, we have not already set the GUARD, so we must do so now. */ if (guard && initp && flag_use_cxa_atexit) finish_expr_stmt (set_guard (guard)); return guard_if_stmt; } /* We've just finished generating code to do an initialization or finalization. GUARD_IF_STMT is the if-statement we used to guard the initialization. */ static void finish_static_initialization_or_destruction (tree guard_if_stmt) { finish_then_clause (guard_if_stmt); finish_if_stmt (); /* Now that we're done with DECL we don't need to pretend to be a member of its class any longer. */ DECL_CONTEXT (current_function_decl) = NULL_TREE; DECL_STATIC_FUNCTION_P (current_function_decl) = 0; } /* Generate code to do the initialization of DECL, a VAR_DECL with static storage duration. The initialization is INIT. */ static void do_static_initialization (tree decl, tree init) { tree guard_if_stmt; /* Set up for the initialization. */ guard_if_stmt = start_static_initialization_or_destruction (decl, /*initp=*/1); /* Perform the initialization. */ if (init) finish_expr_stmt (init); /* If we're using __cxa_atexit, register a a function that calls the destructor for the object. */ if (flag_use_cxa_atexit) register_dtor_fn (decl); /* Finish up. */ finish_static_initialization_or_destruction (guard_if_stmt); } /* Generate code to do the static destruction of DECL. If DECL may be initialized more than once in different object files, GUARD is the guard variable to check. PRIORITY is the priority for the destruction. */ static void do_static_destruction (tree decl) { tree guard_if_stmt; /* If we're using __cxa_atexit, then destructors are registered immediately after objects are initialized. */ my_friendly_assert (!flag_use_cxa_atexit, 20000121); /* If we don't need a destructor, there's nothing to do. */ if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl))) return; /* Actually do the destruction. */ guard_if_stmt = start_static_initialization_or_destruction (decl, /*initp=*/0); finish_expr_stmt (build_cleanup (decl)); finish_static_initialization_or_destruction (guard_if_stmt); } /* VARS is a list of variables with static storage duration which may need initialization and/or finalization. Remove those variables that don't really need to be initialized or finalized, and return the resulting list. The order in which the variables appear in VARS is in reverse order of the order in which they should actually be initialized. The list we return is in the unreversed order; i.e., the first variable should be initialized first. */ static tree prune_vars_needing_no_initialization (tree *vars) { tree *var = vars; tree result = NULL_TREE; while (*var) { tree t = *var; tree decl = TREE_VALUE (t); tree init = TREE_PURPOSE (t); /* Deal gracefully with error. */ if (decl == error_mark_node) { var = &TREE_CHAIN (t); continue; } /* The only things that can be initialized are variables. */ my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 19990420); /* If this object is not defined, we don't need to do anything here. */ if (DECL_EXTERNAL (decl)) { var = &TREE_CHAIN (t); continue; } /* Also, if the initializer already contains errors, we can bail out now. */ if (init && TREE_CODE (init) == TREE_LIST && value_member (error_mark_node, init)) { var = &TREE_CHAIN (t); continue; } /* This variable is going to need initialization and/or finalization, so we add it to the list. */ *var = TREE_CHAIN (t); TREE_CHAIN (t) = result; result = t; } return result; } /* Make sure we have told the back end about all the variables in VARS. */ static void write_out_vars (tree vars) { tree v; for (v = vars; v; v = TREE_CHAIN (v)) if (!var_finalized_p (TREE_VALUE (v))) rest_of_decl_compilation (TREE_VALUE (v), 0, 1, 1); } /* Generate a static constructor (if CONSTRUCTOR_P) or destructor (otherwise) that will initialize all gobal objects with static storage duration having the indicated PRIORITY. */ static void generate_ctor_or_dtor_function (bool constructor_p, int priority, location_t *locus) { char function_key; tree arguments; tree fndecl; tree body; size_t i; input_location = *locus; locus->line++; /* We use `I' to indicate initialization and `D' to indicate destruction. */ function_key = constructor_p ? 'I' : 'D'; /* We emit the function lazily, to avoid generating empty global constructors and destructors. */ body = NULL_TREE; /* Call the static storage duration function with appropriate arguments. */ if (ssdf_decls) for (i = 0; i < ssdf_decls->elements_used; ++i) { fndecl = VARRAY_TREE (ssdf_decls, i); /* Calls to pure or const functions will expand to nothing. */ if (! (flags_from_decl_or_type (fndecl) & (ECF_CONST | ECF_PURE))) { if (! body) body = start_objects (function_key, priority); arguments = tree_cons (NULL_TREE, build_int_2 (priority, 0), NULL_TREE); arguments = tree_cons (NULL_TREE, build_int_2 (constructor_p, 0), arguments); finish_expr_stmt (build_function_call (fndecl, arguments)); } } /* If we're generating code for the DEFAULT_INIT_PRIORITY, throw in calls to any functions marked with attributes indicating that they should be called at initialization- or destruction-time. */ if (priority == DEFAULT_INIT_PRIORITY) { tree fns; for (fns = constructor_p ? static_ctors : static_dtors; fns; fns = TREE_CHAIN (fns)) { fndecl = TREE_VALUE (fns); /* Calls to pure/const functions will expand to nothing. */ if (! (flags_from_decl_or_type (fndecl) & (ECF_CONST | ECF_PURE))) { if (! body) body = start_objects (function_key, priority); finish_expr_stmt (build_function_call (fndecl, NULL_TREE)); } } } /* Close out the function. */ if (body) finish_objects (function_key, priority, body); } /* Generate constructor and destructor functions for the priority indicated by N. */ static int generate_ctor_and_dtor_functions_for_priority (splay_tree_node n, void * data) { location_t *locus = data; int priority = (int) n->key; priority_info pi = (priority_info) n->value; /* Generate the functions themselves, but only if they are really needed. */ if (pi->initializations_p || (priority == DEFAULT_INIT_PRIORITY && static_ctors)) generate_ctor_or_dtor_function (/*constructor_p=*/true, priority, locus); if (pi->destructions_p || (priority == DEFAULT_INIT_PRIORITY && static_dtors)) generate_ctor_or_dtor_function (/*constructor_p=*/false, priority, locus); /* Keep iterating. */ return 0; } /* Called via LANGHOOK_CALLGRAPH_ANALYZE_EXPR. It is supposed to mark decls referenced from frontend specific constructs; it will be called only for language-specific tree nodes. Here we must deal with member pointers. */ tree cxx_callgraph_analyze_expr (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, tree from ATTRIBUTE_UNUSED) { tree t = *tp; if (flag_unit_at_a_time) switch (TREE_CODE (t)) { case PTRMEM_CST: if (TYPE_PTRMEMFUNC_P (TREE_TYPE (t))) cgraph_mark_needed_node (cgraph_node (PTRMEM_CST_MEMBER (t))); break; case BASELINK: if (TREE_CODE (BASELINK_FUNCTIONS (t)) == FUNCTION_DECL) cgraph_mark_needed_node (cgraph_node (BASELINK_FUNCTIONS (t))); break; default: break; } return NULL; } /* This routine is called from the last rule in yyparse (). Its job is to create all the code needed to initialize and destroy the global aggregates. We do the destruction first, since that way we only need to reverse the decls once. */ void finish_file (void) { tree vars; bool reconsider; size_t i; location_t locus; unsigned ssdf_count = 0; locus = input_location; at_eof = 1; /* Bad parse errors. Just forget about it. */ if (! global_bindings_p () || current_class_type || decl_namespace_list) return; if (pch_file) c_common_write_pch (); /* Otherwise, GDB can get confused, because in only knows about source for LINENO-1 lines. */ input_line -= 1; interface_unknown = 1; interface_only = 0; /* We now have to write out all the stuff we put off writing out. These include: o Template specializations that we have not yet instantiated, but which are needed. o Initialization and destruction for non-local objects with static storage duration. (Local objects with static storage duration are initialized when their scope is first entered, and are cleaned up via atexit.) o Virtual function tables. All of these may cause others to be needed. For example, instantiating one function may cause another to be needed, and generating the initializer for an object may cause templates to be instantiated, etc., etc. */ timevar_push (TV_VARCONST); emit_support_tinfos (); do { tree t; size_t n_old, n_new; reconsider = false; /* If there are templates that we've put off instantiating, do them now. */ instantiate_pending_templates (); ggc_collect (); /* Write out virtual tables as required. Note that writing out the virtual table for a template class may cause the instantiation of members of that class. If we write out vtables then we remove the class from our list so we don't have to look at it again. */ while (keyed_classes != NULL_TREE && maybe_emit_vtables (TREE_VALUE (keyed_classes))) { reconsider = true; keyed_classes = TREE_CHAIN (keyed_classes); } t = keyed_classes; if (t != NULL_TREE) { tree next = TREE_CHAIN (t); while (next) { if (maybe_emit_vtables (TREE_VALUE (next))) { reconsider = true; TREE_CHAIN (t) = TREE_CHAIN (next); } else t = next; next = TREE_CHAIN (t); } } /* Write out needed type info variables. We have to be careful looping through unemitted decls, because emit_tinfo_decl may cause other variables to be needed. We stick new elements (and old elements that we may need to reconsider) at the end of the array, then shift them back to the beginning once we're done. */ n_old = VARRAY_ACTIVE_SIZE (unemitted_tinfo_decls); for (i = 0; i < n_old; ++i) { tree tinfo_decl = VARRAY_TREE (unemitted_tinfo_decls, i); if (emit_tinfo_decl (tinfo_decl)) reconsider = true; else VARRAY_PUSH_TREE (unemitted_tinfo_decls, tinfo_decl); } /* The only elements we want to keep are the new ones. Copy them to the beginning of the array, then get rid of the leftovers. */ n_new = VARRAY_ACTIVE_SIZE (unemitted_tinfo_decls) - n_old; if (n_new) memmove (&VARRAY_TREE (unemitted_tinfo_decls, 0), &VARRAY_TREE (unemitted_tinfo_decls, n_old), n_new * sizeof (tree)); memset (&VARRAY_TREE (unemitted_tinfo_decls, n_new), 0, n_old * sizeof (tree)); VARRAY_ACTIVE_SIZE (unemitted_tinfo_decls) = n_new; /* The list of objects with static storage duration is built up in reverse order. We clear STATIC_AGGREGATES so that any new aggregates added during the initialization of these will be initialized in the correct order when we next come around the loop. */ vars = prune_vars_needing_no_initialization (&static_aggregates); if (vars) { tree v; /* We need to start a new initialization function each time through the loop. That's because we need to know which vtables have been referenced, and TREE_SYMBOL_REFERENCED isn't computed until a function is finished, and written out. That's a deficiency in the back-end. When this is fixed, these initialization functions could all become inline, with resulting performance improvements. */ tree ssdf_body; /* Set the line and file, so that it is obviously not from the source file. */ input_location = locus; ssdf_body = start_static_storage_duration_function (ssdf_count); /* Make sure the back end knows about all the variables. */ write_out_vars (vars); /* First generate code to do all the initializations. */ for (v = vars; v; v = TREE_CHAIN (v)) do_static_initialization (TREE_VALUE (v), TREE_PURPOSE (v)); /* Then, generate code to do all the destructions. Do these in reverse order so that the most recently constructed variable is the first destroyed. If we're using __cxa_atexit, then we don't need to do this; functions were registered at initialization time to destroy the local statics. */ if (!flag_use_cxa_atexit) { vars = nreverse (vars); for (v = vars; v; v = TREE_CHAIN (v)) do_static_destruction (TREE_VALUE (v)); } else vars = NULL_TREE; /* Finish up the static storage duration function for this round. */ input_location = locus; finish_static_storage_duration_function (ssdf_body); /* All those initializations and finalizations might cause us to need more inline functions, more template instantiations, etc. */ reconsider = true; ssdf_count++; locus.line++; } for (i = 0; i < deferred_fns_used; ++i) { tree decl = VARRAY_TREE (deferred_fns, i); /* Does it need synthesizing? */ if (DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl) && TREE_USED (decl) && (! DECL_REALLY_EXTERN (decl) || DECL_INLINE (decl))) { /* Even though we're already at the top-level, we push there again. That way, when we pop back a few lines hence, all of our state is restored. Otherwise, finish_function doesn't clean things up, and we end up with CURRENT_FUNCTION_DECL set. */ push_to_top_level (); synthesize_method (decl); pop_from_top_level (); reconsider = true; } /* If the function has no body, avoid calling import_export_decl. On a system without weak symbols, calling import_export_decl will make an inline template instantiation "static", which will result in errors about the use of undefined functions if there is no body for the function. */ if (!DECL_SAVED_TREE (decl)) continue; import_export_decl (decl); /* We lie to the back-end, pretending that some functions are not defined when they really are. This keeps these functions from being put out unnecessarily. But, we must stop lying when the functions are referenced, or if they are not comdat since they need to be put out now. This is done in a separate for cycle, because if some deferred function is contained in another deferred function later in deferred_fns varray, rest_of_compilation would skip this function and we really cannot expand the same function twice. */ if (DECL_NOT_REALLY_EXTERN (decl) && DECL_INITIAL (decl) && DECL_NEEDED_P (decl)) DECL_EXTERNAL (decl) = 0; /* If we're going to need to write this function out, and there's already a body for it, create RTL for it now. (There might be no body if this is a method we haven't gotten around to synthesizing yet.) */ if (!DECL_EXTERNAL (decl) && DECL_NEEDED_P (decl) && DECL_SAVED_TREE (decl) && !TREE_ASM_WRITTEN (decl) && (!flag_unit_at_a_time || !cgraph_node (decl)->local.finalized)) { /* We will output the function; no longer consider it in this loop. */ DECL_DEFER_OUTPUT (decl) = 0; /* Generate RTL for this function now that we know we need it. */ expand_or_defer_fn (decl); /* If we're compiling -fsyntax-only pretend that this function has been written out so that we don't try to expand it again. */ if (flag_syntax_only) TREE_ASM_WRITTEN (decl) = 1; reconsider = true; } } if (walk_namespaces (wrapup_globals_for_namespace, /*data=*/0)) reconsider = true; /* Static data members are just like namespace-scope globals. */ for (i = 0; i < pending_statics_used; ++i) { tree decl = VARRAY_TREE (pending_statics, i); if (var_finalized_p (decl)) continue; import_export_decl (decl); if (DECL_NOT_REALLY_EXTERN (decl) && ! DECL_IN_AGGR_P (decl)) DECL_EXTERNAL (decl) = 0; } if (pending_statics && wrapup_global_declarations (&VARRAY_TREE (pending_statics, 0), pending_statics_used)) reconsider = true; if (cgraph_assemble_pending_functions ()) reconsider = true; } while (reconsider); /* All used inline functions must have a definition at this point. */ for (i = 0; i < deferred_fns_used; ++i) { tree decl = VARRAY_TREE (deferred_fns, i); if (TREE_USED (decl) && DECL_DECLARED_INLINE_P (decl) && !(TREE_ASM_WRITTEN (decl) || DECL_SAVED_TREE (decl) /* An explicit instantiation can be used to specify that the body is in another unit. It will have already verified there was a definition. */ || DECL_EXPLICIT_INSTANTIATION (decl))) { cp_warning_at ("inline function `%D' used but never defined", decl); /* This symbol is effectively an "extern" declaration now. This is not strictly necessary, but removes a duplicate warning. */ TREE_PUBLIC (decl) = 1; } } /* We give C linkage to static constructors and destructors. */ push_lang_context (lang_name_c); /* Generate initialization and destruction functions for all priorities for which they are required. */ if (priority_info_map) splay_tree_foreach (priority_info_map, generate_ctor_and_dtor_functions_for_priority, /*data=*/&locus); else { if (static_ctors) generate_ctor_or_dtor_function (/*constructor_p=*/true, DEFAULT_INIT_PRIORITY, &locus); if (static_dtors) generate_ctor_or_dtor_function (/*constructor_p=*/false, DEFAULT_INIT_PRIORITY, &locus); } /* We're done with the splay-tree now. */ if (priority_info_map) splay_tree_delete (priority_info_map); /* We're done with static constructors, so we can go back to "C++" linkage now. */ pop_lang_context (); if (flag_unit_at_a_time) { cgraph_finalize_compilation_unit (); cgraph_optimize (); } /* Emit mudflap static registration function. This must be done after all the user functions have been expanded. */ if (flag_mudflap) mudflap_finish_file (); /* Now, issue warnings about static, but not defined, functions, etc., and emit debugging information. */ walk_namespaces (wrapup_globals_for_namespace, /*data=*/&reconsider); if (pending_statics) check_global_declarations (&VARRAY_TREE (pending_statics, 0), pending_statics_used); finish_repo (); /* The entire file is now complete. If requested, dump everything to a file. */ { int flags; FILE *stream = dump_begin (TDI_tu, &flags); if (stream) { dump_node (global_namespace, flags & ~TDF_SLIM, stream); dump_end (TDI_tu, stream); } } timevar_pop (TV_VARCONST); if (flag_detailed_statistics) { dump_tree_statistics (); dump_time_statistics (); } input_location = locus; #ifdef ENABLE_CHECKING validate_conversion_obstack (); #endif /* ENABLE_CHECKING */ } /* FN is an OFFSET_REF, DOTSTAR_EXPR or MEMBER_REF indicating the function to call in parse-tree form; it has not yet been semantically analyzed. ARGS are the arguments to the function. They have already been semantically analyzed. */ tree build_offset_ref_call_from_tree (tree fn, tree args) { tree orig_fn; tree orig_args; tree expr; tree object; orig_fn = fn; orig_args = args; object = TREE_OPERAND (fn, 0); if (processing_template_decl) { my_friendly_assert (TREE_CODE (fn) == DOTSTAR_EXPR || TREE_CODE (fn) == MEMBER_REF, 20030708); if (type_dependent_expression_p (fn) || any_type_dependent_arguments_p (args)) return build_min_nt (CALL_EXPR, fn, args, NULL_TREE); /* Transform the arguments and add the implicit "this" parameter. That must be done before the FN is transformed because we depend on the form of FN. */ args = build_non_dependent_args (args); if (TREE_CODE (fn) == DOTSTAR_EXPR) object = build_unary_op (ADDR_EXPR, object, 0); object = build_non_dependent_expr (object); args = tree_cons (NULL_TREE, object, args); /* Now that the arguments are done, transform FN. */ fn = build_non_dependent_expr (fn); } /* A qualified name corresponding to a bound pointer-to-member is represented as an OFFSET_REF: struct B { void g(); }; void (B::*p)(); void B::g() { (this->*p)(); } */ if (TREE_CODE (fn) == OFFSET_REF) { tree object_addr = build_unary_op (ADDR_EXPR, object, 0); fn = TREE_OPERAND (fn, 1); fn = get_member_function_from_ptrfunc (&object_addr, fn); args = tree_cons (NULL_TREE, object_addr, args); } expr = build_function_call (fn, args); if (processing_template_decl && expr != error_mark_node) return build_min_non_dep (CALL_EXPR, expr, orig_fn, orig_args, NULL_TREE); return expr; } void check_default_args (tree x) { tree arg = TYPE_ARG_TYPES (TREE_TYPE (x)); bool saw_def = false; int i = 0 - (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE); for (; arg && arg != void_list_node; arg = TREE_CHAIN (arg), ++i) { if (TREE_PURPOSE (arg)) saw_def = true; else if (saw_def) { cp_error_at ("default argument missing for parameter %P of `%+#D'", i, x); break; } } } void mark_used (tree decl) { TREE_USED (decl) = 1; if (processing_template_decl || skip_evaluation) return; if (TREE_CODE (decl) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (decl) && !TREE_ASM_WRITTEN (decl)) /* Remember it, so we can check it was defined. */ defer_fn (decl); assemble_external (decl); /* Is it a synthesized method that needs to be synthesized? */ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl) && DECL_ARTIFICIAL (decl) && !DECL_THUNK_P (decl) && ! DECL_INITIAL (decl) /* Kludge: don't synthesize for default args. */ && current_function_decl) { synthesize_method (decl); /* If we've already synthesized the method we don't need to instantiate it, so we can return right away. */ return; } /* If this is a function or variable that is an instance of some template, we now know that we will need to actually do the instantiation. We check that DECL is not an explicit instantiation because that is not checked in instantiate_decl. */ if ((DECL_NON_THUNK_FUNCTION_P (decl) || TREE_CODE (decl) == VAR_DECL) && DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl) && (!DECL_EXPLICIT_INSTANTIATION (decl) || (TREE_CODE (decl) == FUNCTION_DECL && DECL_INLINE (DECL_TEMPLATE_RESULT (template_for_substitution (decl)))))) { bool defer; /* Normally, we put off instantiating functions in order to improve compile times. Maintaining a stack of active functions is expensive, and the inliner knows to instantiate any functions it might need. However, if instantiating this function might help us mark the current function TREE_NOTHROW, we go ahead and instantiate it now. This is not needed for unit-at-a-time since we reorder the functions in topological order anyway. */ defer = (!flag_exceptions || flag_unit_at_a_time || !optimize || TREE_CODE (decl) != FUNCTION_DECL /* If the called function can't throw, we don't need to generate its body to find that out. */ || TREE_NOTHROW (decl) || !cfun || !current_function_decl /* If we already know the current function can't throw, then we don't need to work hard to prove it. */ || TREE_NOTHROW (current_function_decl) /* If we already know that the current function *can* throw, there's no point in gathering more information. */ || cp_function_chain->can_throw); instantiate_decl (decl, defer); } } #include "gt-cp-decl2.h"