/* Subroutines for insn-output.c for VAX. Copyright (C) 1987, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "function.h" #include "output.h" #include "insn-attr.h" #include "recog.h" #include "expr.h" #include "optabs.h" #include "flags.h" #include "debug.h" #include "toplev.h" #include "tm_p.h" #include "target.h" #include "target-def.h" static void vax_output_function_prologue (FILE *, HOST_WIDE_INT); static void vax_file_start (void); static void vax_init_libfuncs (void); static void vax_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); static int vax_address_cost_1 (rtx); static int vax_address_cost (rtx, bool); static bool vax_rtx_costs (rtx, int, int, int *, bool); static rtx vax_struct_value_rtx (tree, int); /* Initialize the GCC target structure. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE vax_output_function_prologue #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START vax_file_start #undef TARGET_ASM_FILE_START_APP_OFF #define TARGET_ASM_FILE_START_APP_OFF true #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS vax_init_libfuncs #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK vax_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS vax_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST vax_address_cost #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX vax_struct_value_rtx struct gcc_target targetm = TARGET_INITIALIZER; /* Set global variables as needed for the options enabled. */ void override_options (void) { /* We're VAX floating point, not IEEE floating point. */ if (TARGET_G_FLOAT) REAL_MODE_FORMAT (DFmode) = &vax_g_format; } /* Generate the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This function is responsible for knowing which registers should not be saved even if used. */ static void vax_output_function_prologue (FILE * file, HOST_WIDE_INT size) { int regno; int mask = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) mask |= 1 << regno; fprintf (file, "\t.word 0x%x\n", mask); if (dwarf2out_do_frame ()) { const char *label = dwarf2out_cfi_label (); int offset = 0; for (regno = FIRST_PSEUDO_REGISTER-1; regno >= 0; --regno) if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) dwarf2out_reg_save (label, regno, offset -= 4); dwarf2out_reg_save (label, PC_REGNUM, offset -= 4); dwarf2out_reg_save (label, FRAME_POINTER_REGNUM, offset -= 4); dwarf2out_reg_save (label, ARG_POINTER_REGNUM, offset -= 4); dwarf2out_def_cfa (label, FRAME_POINTER_REGNUM, -(offset - 4)); } size -= STARTING_FRAME_OFFSET; if (size >= 64) asm_fprintf (file, "\tmovab %wd(%Rsp),%Rsp\n", -size); else if (size) asm_fprintf (file, "\tsubl2 $%wd,%Rsp\n", size); } /* When debugging with stabs, we want to output an extra dummy label so that gas can distinguish between D_float and G_float prior to processing the .stabs directive identifying type double. */ static void vax_file_start (void) { default_file_start (); if (write_symbols == DBX_DEBUG) fprintf (asm_out_file, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); } /* We can use the BSD C library routines for the libgcc calls that are still generated, since that's what they boil down to anyways. When ELF, avoid the user's namespace. */ static void vax_init_libfuncs (void) { set_optab_libfunc (udiv_optab, SImode, TARGET_ELF ? "*__udiv" : "*udiv"); set_optab_libfunc (umod_optab, SImode, TARGET_ELF ? "*__urem" : "*urem"); } /* This is like nonimmediate_operand with a restriction on the type of MEM. */ void split_quadword_operands (rtx * operands, rtx * low, int n ATTRIBUTE_UNUSED) { int i; /* Split operands. */ low[0] = low[1] = low[2] = 0; for (i = 0; i < 3; i++) { if (low[i]) /* it's already been figured out */; else if (MEM_P (operands[i]) && (GET_CODE (XEXP (operands[i], 0)) == POST_INC)) { rtx addr = XEXP (operands[i], 0); operands[i] = low[i] = gen_rtx_MEM (SImode, addr); if (which_alternative == 0 && i == 0) { addr = XEXP (operands[i], 0); operands[i+1] = low[i+1] = gen_rtx_MEM (SImode, addr); } } else { low[i] = operand_subword (operands[i], 0, 0, DImode); operands[i] = operand_subword (operands[i], 1, 0, DImode); } } } void print_operand_address (FILE * file, rtx addr) { rtx reg1, breg, ireg; rtx offset; retry: switch (GET_CODE (addr)) { case MEM: fprintf (file, "*"); addr = XEXP (addr, 0); goto retry; case REG: fprintf (file, "(%s)", reg_names[REGNO (addr)]); break; case PRE_DEC: fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]); break; case POST_INC: fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]); break; case PLUS: /* There can be either two or three things added here. One must be a REG. One can be either a REG or a MULT of a REG and an appropriate constant, and the third can only be a constant or a MEM. We get these two or three things and put the constant or MEM in OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have a register and can't tell yet if it is a base or index register, put it into REG1. */ reg1 = 0; ireg = 0; breg = 0; offset = 0; if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) || MEM_P (XEXP (addr, 0))) { offset = XEXP (addr, 0); addr = XEXP (addr, 1); } else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) || MEM_P (XEXP (addr, 1))) { offset = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 1)) == MULT) { ireg = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 0)) == MULT) { ireg = XEXP (addr, 0); addr = XEXP (addr, 1); } else if (REG_P (XEXP (addr, 1))) { reg1 = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (REG_P (XEXP (addr, 0))) { reg1 = XEXP (addr, 0); addr = XEXP (addr, 1); } else gcc_unreachable (); if (REG_P (addr)) { if (reg1) ireg = addr; else reg1 = addr; } else if (GET_CODE (addr) == MULT) ireg = addr; else { gcc_assert (GET_CODE (addr) == PLUS); if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) || MEM_P (XEXP (addr, 0))) { if (offset) { if (CONST_INT_P (offset)) offset = plus_constant (XEXP (addr, 0), INTVAL (offset)); else { gcc_assert (CONST_INT_P (XEXP (addr, 0))); offset = plus_constant (offset, INTVAL (XEXP (addr, 0))); } } offset = XEXP (addr, 0); } else if (REG_P (XEXP (addr, 0))) { if (reg1) ireg = reg1, breg = XEXP (addr, 0), reg1 = 0; else reg1 = XEXP (addr, 0); } else { gcc_assert (GET_CODE (XEXP (addr, 0)) == MULT); gcc_assert (!ireg); ireg = XEXP (addr, 0); } if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) || MEM_P (XEXP (addr, 1))) { if (offset) { if (CONST_INT_P (offset)) offset = plus_constant (XEXP (addr, 1), INTVAL (offset)); else { gcc_assert (CONST_INT_P (XEXP (addr, 1))); offset = plus_constant (offset, INTVAL (XEXP (addr, 1))); } } offset = XEXP (addr, 1); } else if (REG_P (XEXP (addr, 1))) { if (reg1) ireg = reg1, breg = XEXP (addr, 1), reg1 = 0; else reg1 = XEXP (addr, 1); } else { gcc_assert (GET_CODE (XEXP (addr, 1)) == MULT); gcc_assert (!ireg); ireg = XEXP (addr, 1); } } /* If REG1 is nonzero, figure out if it is a base or index register. */ if (reg1) { if (breg != 0 || (offset && MEM_P (offset))) { gcc_assert (!ireg); ireg = reg1; } else breg = reg1; } if (offset != 0) output_address (offset); if (breg != 0) fprintf (file, "(%s)", reg_names[REGNO (breg)]); if (ireg != 0) { if (GET_CODE (ireg) == MULT) ireg = XEXP (ireg, 0); gcc_assert (REG_P (ireg)); fprintf (file, "[%s]", reg_names[REGNO (ireg)]); } break; default: output_addr_const (file, addr); } } const char * rev_cond_name (rtx op) { switch (GET_CODE (op)) { case EQ: return "neq"; case NE: return "eql"; case LT: return "geq"; case LE: return "gtr"; case GT: return "leq"; case GE: return "lss"; case LTU: return "gequ"; case LEU: return "gtru"; case GTU: return "lequ"; case GEU: return "lssu"; default: gcc_unreachable (); } } int vax_float_literal(rtx c) { enum machine_mode mode; REAL_VALUE_TYPE r, s; int i; if (GET_CODE (c) != CONST_DOUBLE) return 0; mode = GET_MODE (c); if (c == const_tiny_rtx[(int) mode][0] || c == const_tiny_rtx[(int) mode][1] || c == const_tiny_rtx[(int) mode][2]) return 1; REAL_VALUE_FROM_CONST_DOUBLE (r, c); for (i = 0; i < 7; i++) { int x = 1 << i; bool ok; REAL_VALUE_FROM_INT (s, x, 0, mode); if (REAL_VALUES_EQUAL (r, s)) return 1; ok = exact_real_inverse (mode, &s); gcc_assert (ok); if (REAL_VALUES_EQUAL (r, s)) return 1; } return 0; } /* Return the cost in cycles of a memory address, relative to register indirect. Each of the following adds the indicated number of cycles: 1 - symbolic address 1 - pre-decrement 1 - indexing and/or offset(register) 2 - indirect */ static int vax_address_cost_1 (rtx addr) { int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0; rtx plus_op0 = 0, plus_op1 = 0; restart: switch (GET_CODE (addr)) { case PRE_DEC: predec = 1; case REG: case SUBREG: case POST_INC: reg = 1; break; case MULT: indexed = 1; /* 2 on VAX 2 */ break; case CONST_INT: /* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */ if (offset == 0) offset = (unsigned HOST_WIDE_INT)(INTVAL(addr)+128) > 256; break; case CONST: case SYMBOL_REF: offset = 1; /* 2 on VAX 2 */ break; case LABEL_REF: /* this is probably a byte offset from the pc */ if (offset == 0) offset = 1; break; case PLUS: if (plus_op0) plus_op1 = XEXP (addr, 0); else plus_op0 = XEXP (addr, 0); addr = XEXP (addr, 1); goto restart; case MEM: indir = 2; /* 3 on VAX 2 */ addr = XEXP (addr, 0); goto restart; default: break; } /* Up to 3 things can be added in an address. They are stored in plus_op0, plus_op1, and addr. */ if (plus_op0) { addr = plus_op0; plus_op0 = 0; goto restart; } if (plus_op1) { addr = plus_op1; plus_op1 = 0; goto restart; } /* Indexing and register+offset can both be used (except on a VAX 2) without increasing execution time over either one alone. */ if (reg && indexed && offset) return reg + indir + offset + predec; return reg + indexed + indir + offset + predec; } static int vax_address_cost (rtx x, bool speed ATTRIBUTE_UNUSED) { return (1 + (REG_P (x) ? 0 : vax_address_cost_1 (x))); } /* Cost of an expression on a VAX. This version has costs tuned for the CVAX chip (found in the VAX 3 series) with comments for variations on other models. FIXME: The costs need review, particularly for TRUNCATE, FLOAT_EXTEND and FLOAT_TRUNCATE. We need a -mcpu option to allow provision of costs on a per cpu basis. */ static bool vax_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed ATTRIBUTE_UNUSED) { enum machine_mode mode = GET_MODE (x); int i = 0; /* may be modified in switch */ const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */ switch (code) { /* On a VAX, constants from 0..63 are cheap because they can use the 1 byte literal constant format. Compare to -1 should be made cheap so that decrement-and-branch insns can be formed more easily (if the value -1 is copied to a register some decrement-and-branch patterns will not match). */ case CONST_INT: if (INTVAL (x) == 0) return true; if (outer_code == AND) { *total = ((unsigned HOST_WIDE_INT) ~INTVAL (x) <= 077) ? 1 : 2; return true; } if ((unsigned HOST_WIDE_INT) INTVAL (x) <= 077 || (outer_code == COMPARE && INTVAL (x) == -1) || ((outer_code == PLUS || outer_code == MINUS) && (unsigned HOST_WIDE_INT) -INTVAL (x) <= 077)) { *total = 1; return true; } /* FALLTHRU */ case CONST: case LABEL_REF: case SYMBOL_REF: *total = 3; return true; case CONST_DOUBLE: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) *total = vax_float_literal (x) ? 5 : 8; else *total = ((CONST_DOUBLE_HIGH (x) == 0 && (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x) < 64) || (outer_code == PLUS && CONST_DOUBLE_HIGH (x) == -1 && (unsigned HOST_WIDE_INT)-CONST_DOUBLE_LOW (x) < 64)) ? 2 : 5; return true; case POST_INC: *total = 2; return true; /* Implies register operand. */ case PRE_DEC: *total = 3; return true; /* Implies register operand. */ case MULT: switch (mode) { case DFmode: *total = 16; /* 4 on VAX 9000 */ break; case SFmode: *total = 9; /* 4 on VAX 9000, 12 on VAX 2 */ break; case DImode: *total = 16; /* 6 on VAX 9000, 28 on VAX 2 */ break; case SImode: case HImode: case QImode: *total = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */ break; default: *total = MAX_COST; /* Mode is not supported. */ return true; } break; case UDIV: if (mode != SImode) { *total = MAX_COST; /* Mode is not supported. */ return true; } *total = 17; break; case DIV: if (mode == DImode) *total = 30; /* Highly variable. */ else if (mode == DFmode) /* divide takes 28 cycles if the result is not zero, 13 otherwise */ *total = 24; else *total = 11; /* 25 on VAX 2 */ break; case MOD: *total = 23; break; case UMOD: if (mode != SImode) { *total = MAX_COST; /* Mode is not supported. */ return true; } *total = 29; break; case FLOAT: *total = (6 /* 4 on VAX 9000 */ + (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode)); break; case FIX: *total = 7; /* 17 on VAX 2 */ break; case ASHIFT: case LSHIFTRT: case ASHIFTRT: if (mode == DImode) *total = 12; else *total = 10; /* 6 on VAX 9000 */ break; case ROTATE: case ROTATERT: *total = 6; /* 5 on VAX 2, 4 on VAX 9000 */ if (CONST_INT_P (XEXP (x, 1))) fmt = "e"; /* all constant rotate counts are short */ break; case PLUS: case MINUS: *total = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */ /* Small integer operands can use subl2 and addl2. */ if ((CONST_INT_P (XEXP (x, 1))) && (unsigned HOST_WIDE_INT)(INTVAL (XEXP (x, 1)) + 63) < 127) fmt = "e"; break; case IOR: case XOR: *total = 3; break; case AND: /* AND is special because the first operand is complemented. */ *total = 3; if (CONST_INT_P (XEXP (x, 0))) { if ((unsigned HOST_WIDE_INT)~INTVAL (XEXP (x, 0)) > 63) *total = 4; fmt = "e"; i = 1; } break; case NEG: if (mode == DFmode) *total = 9; else if (mode == SFmode) *total = 6; else if (mode == DImode) *total = 4; else *total = 2; break; case NOT: *total = 2; break; case ZERO_EXTRACT: case SIGN_EXTRACT: *total = 15; break; case MEM: if (mode == DImode || mode == DFmode) *total = 5; /* 7 on VAX 2 */ else *total = 3; /* 4 on VAX 2 */ x = XEXP (x, 0); if (!REG_P (x) && GET_CODE (x) != POST_INC) *total += vax_address_cost_1 (x); return true; case FLOAT_EXTEND: case FLOAT_TRUNCATE: case TRUNCATE: *total = 3; /* FIXME: Costs need to be checked */ break; default: return false; } /* Now look inside the expression. Operands which are not registers or short constants add to the cost. FMT and I may have been adjusted in the switch above for instructions which require special handling. */ while (*fmt++ == 'e') { rtx op = XEXP (x, i); i += 1; code = GET_CODE (op); /* A NOT is likely to be found as the first operand of an AND (in which case the relevant cost is of the operand inside the not) and not likely to be found anywhere else. */ if (code == NOT) op = XEXP (op, 0), code = GET_CODE (op); switch (code) { case CONST_INT: if ((unsigned HOST_WIDE_INT)INTVAL (op) > 63 && GET_MODE (x) != QImode) *total += 1; /* 2 on VAX 2 */ break; case CONST: case LABEL_REF: case SYMBOL_REF: *total += 1; /* 2 on VAX 2 */ break; case CONST_DOUBLE: if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT) { /* Registers are faster than floating point constants -- even those constants which can be encoded in a single byte. */ if (vax_float_literal (op)) *total += 1; else *total += (GET_MODE (x) == DFmode) ? 3 : 2; } else { if (CONST_DOUBLE_HIGH (op) != 0 || (unsigned)CONST_DOUBLE_LOW (op) > 63) *total += 2; } break; case MEM: *total += 1; /* 2 on VAX 2 */ if (!REG_P (XEXP (op, 0))) *total += vax_address_cost_1 (XEXP (op, 0)); break; case REG: case SUBREG: break; default: *total += 1; break; } } return true; } /* Output code to add DELTA to the first argument, and then jump to FUNCTION. Used for C++ multiple inheritance. .mask ^m #conservative entry mask addl2 $DELTA, 4(ap) #adjust first argument jmp FUNCTION+2 #jump beyond FUNCTION's entry mask */ static void vax_output_mi_thunk (FILE * file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED, tree function) { fprintf (file, "\t.word 0x0ffc\n\taddl2 $" HOST_WIDE_INT_PRINT_DEC, delta); asm_fprintf (file, ",4(%Rap)\n"); fprintf (file, "\tjmp "); assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); fprintf (file, "+2\n"); } static rtx vax_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, VAX_STRUCT_VALUE_REGNUM); } /* Worker function for NOTICE_UPDATE_CC. */ void vax_notice_update_cc (rtx exp, rtx insn ATTRIBUTE_UNUSED) { if (GET_CODE (exp) == SET) { if (GET_CODE (SET_SRC (exp)) == CALL) CC_STATUS_INIT; else if (GET_CODE (SET_DEST (exp)) != ZERO_EXTRACT && GET_CODE (SET_DEST (exp)) != PC) { cc_status.flags = 0; /* The integer operations below don't set carry or set it in an incompatible way. That's ok though as the Z bit is all we need when doing unsigned comparisons on the result of these insns (since they're always with 0). Set CC_NO_OVERFLOW to generate the correct unsigned branches. */ switch (GET_CODE (SET_SRC (exp))) { case NEG: if (GET_MODE_CLASS (GET_MODE (exp)) == MODE_FLOAT) break; case AND: case IOR: case XOR: case NOT: case MEM: case REG: cc_status.flags = CC_NO_OVERFLOW; break; default: break; } cc_status.value1 = SET_DEST (exp); cc_status.value2 = SET_SRC (exp); } } else if (GET_CODE (exp) == PARALLEL && GET_CODE (XVECEXP (exp, 0, 0)) == SET) { if (GET_CODE (SET_SRC (XVECEXP (exp, 0, 0))) == CALL) CC_STATUS_INIT; else if (GET_CODE (SET_DEST (XVECEXP (exp, 0, 0))) != PC) { cc_status.flags = 0; cc_status.value1 = SET_DEST (XVECEXP (exp, 0, 0)); cc_status.value2 = SET_SRC (XVECEXP (exp, 0, 0)); } else /* PARALLELs whose first element sets the PC are aob, sob insns. They do change the cc's. */ CC_STATUS_INIT; } else CC_STATUS_INIT; if (cc_status.value1 && REG_P (cc_status.value1) && cc_status.value2 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) cc_status.value2 = 0; if (cc_status.value1 && MEM_P (cc_status.value1) && cc_status.value2 && MEM_P (cc_status.value2)) cc_status.value2 = 0; /* Actual condition, one line up, should be that value2's address depends on value1, but that is too much of a pain. */ } /* Output integer move instructions. */ const char * vax_output_int_move (rtx insn ATTRIBUTE_UNUSED, rtx *operands, enum machine_mode mode) { switch (mode) { case SImode: if (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST) { if (push_operand (operands[0], SImode)) return "pushab %a1"; return "movab %a1,%0"; } if (operands[1] == const0_rtx) return "clrl %0"; if (CONST_INT_P (operands[1]) && (unsigned) INTVAL (operands[1]) >= 64) { int i = INTVAL (operands[1]); if ((unsigned)(~i) < 64) return "mcoml %N1,%0"; if ((unsigned)i < 0x100) return "movzbl %1,%0"; if (i >= -0x80 && i < 0) return "cvtbl %1,%0"; if ((unsigned)i < 0x10000) return "movzwl %1,%0"; if (i >= -0x8000 && i < 0) return "cvtwl %1,%0"; } if (push_operand (operands[0], SImode)) return "pushl %1"; return "movl %1,%0"; case HImode: if (CONST_INT_P (operands[1])) { int i = INTVAL (operands[1]); if (i == 0) return "clrw %0"; else if ((unsigned int)i < 64) return "movw %1,%0"; else if ((unsigned int)~i < 64) return "mcomw %H1,%0"; else if ((unsigned int)i < 256) return "movzbw %1,%0"; } return "movw %1,%0"; case QImode: if (CONST_INT_P (operands[1])) { int i = INTVAL (operands[1]); if (i == 0) return "clrb %0"; else if ((unsigned int)~i < 64) return "mcomb %B1,%0"; } return "movb %1,%0"; default: gcc_unreachable (); } } /* Output integer add instructions. The space-time-opcode tradeoffs for addition vary by model of VAX. On a VAX 3 "movab (r1)[r2],r3" is faster than "addl3 r1,r2,r3", but it not faster on other models. "movab #(r1),r2" is usually shorter than "addl3 #,r1,r2", and is faster on a VAX 3, but some VAXen (e.g. VAX 9000) will stall if a register is used in an address too soon after it is set. Compromise by using movab only when it is shorter than the add or the base register in the address is one of sp, ap, and fp, which are not modified very often. */ const char * vax_output_int_add (rtx insn ATTRIBUTE_UNUSED, rtx *operands, enum machine_mode mode) { switch (mode) { case SImode: if (rtx_equal_p (operands[0], operands[1])) { if (operands[2] == const1_rtx) return "incl %0"; if (operands[2] == constm1_rtx) return "decl %0"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subl2 $%n2,%0"; if (CONST_INT_P (operands[2]) && (unsigned) INTVAL (operands[2]) >= 64 && REG_P (operands[1]) && ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768) || REGNO (operands[1]) > 11)) return "movab %c2(%1),%0"; return "addl2 %2,%0"; } if (rtx_equal_p (operands[0], operands[2])) return "addl2 %1,%0"; if (CONST_INT_P (operands[2]) && INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768 && REG_P (operands[1]) && push_operand (operands[0], SImode)) return "pushab %c2(%1)"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subl3 $%n2,%1,%0"; if (CONST_INT_P (operands[2]) && (unsigned) INTVAL (operands[2]) >= 64 && REG_P (operands[1]) && ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768) || REGNO (operands[1]) > 11)) return "movab %c2(%1),%0"; /* Add this if using gcc on a VAX 3xxx: if (REG_P (operands[1]) && REG_P (operands[2])) return "movab (%1)[%2],%0"; */ return "addl3 %1,%2,%0"; case HImode: if (rtx_equal_p (operands[0], operands[1])) { if (operands[2] == const1_rtx) return "incw %0"; if (operands[2] == constm1_rtx) return "decw %0"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subw2 $%n2,%0"; return "addw2 %2,%0"; } if (rtx_equal_p (operands[0], operands[2])) return "addw2 %1,%0"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subw3 $%n2,%1,%0"; return "addw3 %1,%2,%0"; case QImode: if (rtx_equal_p (operands[0], operands[1])) { if (operands[2] == const1_rtx) return "incb %0"; if (operands[2] == constm1_rtx) return "decb %0"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subb2 $%n2,%0"; return "addb2 %2,%0"; } if (rtx_equal_p (operands[0], operands[2])) return "addb2 %1,%0"; if (CONST_INT_P (operands[2]) && (unsigned) (- INTVAL (operands[2])) < 64) return "subb3 $%n2,%1,%0"; return "addb3 %1,%2,%0"; default: gcc_unreachable (); } } /* Output a conditional branch. */ const char * vax_output_conditional_branch (enum rtx_code code) { switch (code) { case EQ: return "jeql %l0"; case NE: return "jneq %l0"; case GT: return "jgtr %l0"; case LT: return "jlss %l0"; case GTU: return "jgtru %l0"; case LTU: return "jlssu %l0"; case GE: return "jgeq %l0"; case LE: return "jleq %l0"; case GEU: return "jgequ %l0"; case LEU: return "jlequ %l0"; default: gcc_unreachable (); } } /* 1 if X is an rtx for a constant that is a valid address. */ int legitimate_constant_address_p (rtx x) { return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF || CONST_INT_P (x) || GET_CODE (x) == CONST || GET_CODE (x) == HIGH); } /* Nonzero if the constant value X is a legitimate general operand. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ int legitimate_constant_p (rtx x ATTRIBUTE_UNUSED) { return 1; } /* The other macros defined here are used only in legitimate_address_p (). */ /* Nonzero if X is a hard reg that can be used as an index or, if not strict, if it is a pseudo reg. */ #define INDEX_REGISTER_P(X, STRICT) \ (REG_P (X) && (!(STRICT) || REGNO_OK_FOR_INDEX_P (REGNO (X)))) /* Nonzero if X is a hard reg that can be used as a base reg or, if not strict, if it is a pseudo reg. */ #define BASE_REGISTER_P(X, STRICT) \ (REG_P (X) && (!(STRICT) || REGNO_OK_FOR_BASE_P (REGNO (X)))) #ifdef NO_EXTERNAL_INDIRECT_ADDRESS /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there are no SYMBOL_REFs for external symbols present. */ static int indirectable_constant_address_p (rtx x) { if (!CONSTANT_ADDRESS_P (x)) return 0; if (GET_CODE (x) == CONST && GET_CODE (XEXP ((x), 0)) == PLUS) x = XEXP (XEXP (x, 0), 0); if (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x)) return 0; return 1; } #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */ static int indirectable_constant_address_p (rtx x) { return CONSTANT_ADDRESS_P (x); } #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */ /* Nonzero if X is an address which can be indirected. External symbols could be in a sharable image library, so we disallow those. */ static int indirectable_address_p(rtx x, int strict) { if (indirectable_constant_address_p (x)) return 1; if (BASE_REGISTER_P (x, strict)) return 1; if (GET_CODE (x) == PLUS && BASE_REGISTER_P (XEXP (x, 0), strict) && indirectable_constant_address_p (XEXP (x, 1))) return 1; return 0; } /* Return 1 if x is a valid address not using indexing. (This much is the easy part.) */ static int nonindexed_address_p (rtx x, int strict) { rtx xfoo0; if (REG_P (x)) { extern rtx *reg_equiv_mem; if (!reload_in_progress || reg_equiv_mem[REGNO (x)] == 0 || indirectable_address_p (reg_equiv_mem[REGNO (x)], strict)) return 1; } if (indirectable_constant_address_p (x)) return 1; if (indirectable_address_p (x, strict)) return 1; xfoo0 = XEXP (x, 0); if (MEM_P (x) && indirectable_address_p (xfoo0, strict)) return 1; if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC) && BASE_REGISTER_P (xfoo0, strict)) return 1; return 0; } /* 1 if PROD is either a reg times size of mode MODE and MODE is less than or equal 8 bytes, or just a reg if MODE is one byte. */ static int index_term_p (rtx prod, enum machine_mode mode, int strict) { rtx xfoo0, xfoo1; if (GET_MODE_SIZE (mode) == 1) return BASE_REGISTER_P (prod, strict); if (GET_CODE (prod) != MULT || GET_MODE_SIZE (mode) > 8) return 0; xfoo0 = XEXP (prod, 0); xfoo1 = XEXP (prod, 1); if (CONST_INT_P (xfoo0) && INTVAL (xfoo0) == (int)GET_MODE_SIZE (mode) && INDEX_REGISTER_P (xfoo1, strict)) return 1; if (CONST_INT_P (xfoo1) && INTVAL (xfoo1) == (int)GET_MODE_SIZE (mode) && INDEX_REGISTER_P (xfoo0, strict)) return 1; return 0; } /* Return 1 if X is the sum of a register and a valid index term for mode MODE. */ static int reg_plus_index_p (rtx x, enum machine_mode mode, int strict) { rtx xfoo0, xfoo1; if (GET_CODE (x) != PLUS) return 0; xfoo0 = XEXP (x, 0); xfoo1 = XEXP (x, 1); if (BASE_REGISTER_P (xfoo0, strict) && index_term_p (xfoo1, mode, strict)) return 1; if (BASE_REGISTER_P (xfoo1, strict) && index_term_p (xfoo0, mode, strict)) return 1; return 0; } /* legitimate_address_p returns 1 if it recognizes an RTL expression "x" that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. */ int legitimate_address_p (enum machine_mode mode, rtx x, int strict) { rtx xfoo0, xfoo1; if (nonindexed_address_p (x, strict)) return 1; if (GET_CODE (x) != PLUS) return 0; /* Handle
[index] represented with index-sum outermost */ xfoo0 = XEXP (x, 0); xfoo1 = XEXP (x, 1); if (index_term_p (xfoo0, mode, strict) && nonindexed_address_p (xfoo1, strict)) return 1; if (index_term_p (xfoo1, mode, strict) && nonindexed_address_p (xfoo0, strict)) return 1; /* Handle offset(reg)[index] with offset added outermost */ if (indirectable_constant_address_p (xfoo0) && (BASE_REGISTER_P (xfoo1, strict) || reg_plus_index_p (xfoo1, mode, strict))) return 1; if (indirectable_constant_address_p (xfoo1) && (BASE_REGISTER_P (xfoo0, strict) || reg_plus_index_p (xfoo0, mode, strict))) return 1; return 0; } /* Return 1 if x (a legitimate address expression) has an effect that depends on the machine mode it is used for. On the VAX, the predecrement and postincrement address depend thus (the amount of decrement or increment being the length of the operand) and all indexed address depend thus (because the index scale factor is the length of the operand). */ int vax_mode_dependent_address_p (rtx x) { rtx xfoo0, xfoo1; /* Auto-increment cases are now dealt with generically in recog.c. */ if (GET_CODE (x) != PLUS) return 0; xfoo0 = XEXP (x, 0); xfoo1 = XEXP (x, 1); if (CONSTANT_ADDRESS_P (xfoo0) && REG_P (xfoo1)) return 0; if (CONSTANT_ADDRESS_P (xfoo1) && REG_P (xfoo0)) return 0; return 1; }