;; Machine description for SPARC chip for GCC ;; Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, ;; 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. ;; Contributed by Michael Tiemann (tiemann@cygnus.com) ;; 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, ;; at Cygnus Support. ;; This file is part of GCC. ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. (define_constants [(UNSPEC_MOVE_PIC 0) (UNSPEC_UPDATE_RETURN 1) (UNSPEC_LOAD_PCREL_SYM 2) (UNSPEC_MOVE_PIC_LABEL 5) (UNSPEC_SETH44 6) (UNSPEC_SETM44 7) (UNSPEC_SETHH 9) (UNSPEC_SETLM 10) (UNSPEC_EMB_HISUM 11) (UNSPEC_EMB_TEXTUHI 13) (UNSPEC_EMB_TEXTHI 14) (UNSPEC_EMB_TEXTULO 15) (UNSPEC_EMB_SETHM 18) (UNSPEC_TLSGD 30) (UNSPEC_TLSLDM 31) (UNSPEC_TLSLDO 32) (UNSPEC_TLSIE 33) (UNSPEC_TLSLE 34) (UNSPEC_TLSLD_BASE 35) (UNSPEC_FPACK16 40) (UNSPEC_FPACK32 41) (UNSPEC_FPACKFIX 42) (UNSPEC_FEXPAND 43) (UNSPEC_FPMERGE 44) (UNSPEC_MUL16AL 45) (UNSPEC_MUL8UL 46) (UNSPEC_MULDUL 47) (UNSPEC_ALIGNDATA 48) (UNSPEC_ALIGNADDR 49) (UNSPEC_PDIST 50) ]) (define_constants [(UNSPECV_BLOCKAGE 0) (UNSPECV_FLUSHW 1) (UNSPECV_GOTO 2) (UNSPECV_FLUSH 4) (UNSPECV_SETJMP 5) (UNSPECV_SAVEW 6) ]) ;; The upper 32 fp regs on the v9 can't hold SFmode values. To deal with this ;; a second register class, EXTRA_FP_REGS, exists for the v9 chip. The name ;; is a bit of a misnomer as it covers all 64 fp regs. The corresponding ;; constraint letter is 'e'. To avoid any confusion, 'e' is used instead of ;; 'f' for all DF/TFmode values, including those that are specific to the v8. ;; Attribute for cpu type. ;; These must match the values for enum processor_type in sparc.h. (define_attr "cpu" "v7, cypress, v8, supersparc, sparclite,f930,f934, hypersparc,sparclite86x, sparclet,tsc701, v9, ultrasparc, ultrasparc3" (const (symbol_ref "sparc_cpu_attr"))) ;; Attribute for the instruction set. ;; At present we only need to distinguish v9/!v9, but for clarity we ;; test TARGET_V8 too. (define_attr "isa" "v7,v8,v9,sparclet" (const (cond [(symbol_ref "TARGET_V9") (const_string "v9") (symbol_ref "TARGET_V8") (const_string "v8") (symbol_ref "TARGET_SPARCLET") (const_string "sparclet")] (const_string "v7")))) ;; Insn type. (define_attr "type" "ialu,compare,shift, load,sload,store, uncond_branch,branch,call,sibcall,call_no_delay_slot,return, imul,idiv, fpload,fpstore, fp,fpmove, fpcmove,fpcrmove, fpcmp, fpmul,fpdivs,fpdivd, fpsqrts,fpsqrtd, fga,fgm_pack,fgm_mul,fgm_pdist,fgm_cmp, cmove, ialuX, multi,savew,flushw,iflush,trap" (const_string "ialu")) ;; True if branch/call has empty delay slot and will emit a nop in it (define_attr "empty_delay_slot" "false,true" (symbol_ref "empty_delay_slot (insn)")) (define_attr "branch_type" "none,icc,fcc,reg" (const_string "none")) (define_attr "pic" "false,true" (symbol_ref "flag_pic != 0")) (define_attr "calls_alloca" "false,true" (symbol_ref "current_function_calls_alloca != 0")) (define_attr "calls_eh_return" "false,true" (symbol_ref "current_function_calls_eh_return !=0 ")) (define_attr "leaf_function" "false,true" (symbol_ref "current_function_uses_only_leaf_regs != 0")) (define_attr "delayed_branch" "false,true" (symbol_ref "flag_delayed_branch != 0")) ;; Length (in # of insns). ;; Beware that setting a length greater or equal to 3 for conditional branches ;; has a side-effect (see output_cbranch and output_v9branch). (define_attr "length" "" (cond [(eq_attr "type" "uncond_branch,call") (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (eq_attr "type" "sibcall") (if_then_else (eq_attr "leaf_function" "true") (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 3) (const_int 2)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1))) (eq_attr "branch_type" "icc") (if_then_else (match_operand 0 "noov_compare64_operator" "") (if_then_else (lt (pc) (match_dup 1)) (if_then_else (lt (minus (match_dup 1) (pc)) (const_int 260000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3))) (if_then_else (lt (minus (pc) (match_dup 1)) (const_int 260000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3)))) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1))) (eq_attr "branch_type" "fcc") (if_then_else (match_operand 0 "fcc0_register_operand" "") (if_then_else (eq_attr "empty_delay_slot" "true") (if_then_else (eq (symbol_ref "TARGET_V9") (const_int 0)) (const_int 3) (const_int 2)) (if_then_else (eq (symbol_ref "TARGET_V9") (const_int 0)) (const_int 2) (const_int 1))) (if_then_else (lt (pc) (match_dup 2)) (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 260000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3))) (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 260000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3))))) (eq_attr "branch_type" "reg") (if_then_else (lt (pc) (match_dup 2)) (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 32000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3))) (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 32000)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 4) (const_int 3)))) ] (const_int 1))) ;; FP precision. (define_attr "fptype" "single,double" (const_string "single")) ;; UltraSPARC-III integer load type. (define_attr "us3load_type" "2cycle,3cycle" (const_string "2cycle")) (define_asm_attributes [(set_attr "length" "2") (set_attr "type" "multi")]) ;; Attributes for instruction and branch scheduling (define_attr "tls_call_delay" "false,true" (symbol_ref "tls_call_delay (insn)")) (define_attr "in_call_delay" "false,true" (cond [(eq_attr "type" "uncond_branch,branch,call,sibcall,call_no_delay_slot,multi") (const_string "false") (eq_attr "type" "load,fpload,store,fpstore") (if_then_else (eq_attr "length" "1") (const_string "true") (const_string "false"))] (if_then_else (and (eq_attr "length" "1") (eq_attr "tls_call_delay" "true")) (const_string "true") (const_string "false")))) (define_attr "eligible_for_sibcall_delay" "false,true" (symbol_ref "eligible_for_sibcall_delay (insn)")) (define_attr "eligible_for_return_delay" "false,true" (symbol_ref "eligible_for_return_delay (insn)")) ;; ??? !v9: Should implement the notion of predelay slots for floating-point ;; branches. This would allow us to remove the nop always inserted before ;; a floating point branch. ;; ??? It is OK for fill_simple_delay_slots to put load/store instructions ;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so. ;; This is because doing so will add several pipeline stalls to the path ;; that the load/store did not come from. Unfortunately, there is no way ;; to prevent fill_eager_delay_slots from using load/store without completely ;; disabling them. For the SPEC benchmark set, this is a serious lose, ;; because it prevents us from moving back the final store of inner loops. (define_attr "in_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_attr "in_uncond_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_attr "in_annul_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_delay (eq_attr "type" "call") [(eq_attr "in_call_delay" "true") (nil) (nil)]) (define_delay (eq_attr "type" "sibcall") [(eq_attr "eligible_for_sibcall_delay" "true") (nil) (nil)]) (define_delay (eq_attr "type" "branch") [(eq_attr "in_branch_delay" "true") (nil) (eq_attr "in_annul_branch_delay" "true")]) (define_delay (eq_attr "type" "uncond_branch") [(eq_attr "in_uncond_branch_delay" "true") (nil) (nil)]) (define_delay (eq_attr "type" "return") [(eq_attr "eligible_for_return_delay" "true") (nil) (nil)]) ;; Include SPARC DFA schedulers (include "cypress.md") (include "supersparc.md") (include "hypersparc.md") (include "sparclet.md") (include "ultra1_2.md") (include "ultra3.md") ;; Operand and operator predicates. (include "predicates.md") ;; Compare instructions. ;; We generate RTL for comparisons and branches by having the cmpxx ;; patterns store away the operands. Then, the scc and bcc patterns ;; emit RTL for both the compare and the branch. ;; ;; We do this because we want to generate different code for an sne and ;; seq insn. In those cases, if the second operand of the compare is not ;; const0_rtx, we want to compute the xor of the two operands and test ;; it against zero. ;; ;; We start with the DEFINE_EXPANDs, then the DEFINE_INSNs to match ;; the patterns. Finally, we have the DEFINE_SPLITs for some of the scc ;; insns that actually require more than one machine instruction. (define_expand "cmpsi" [(set (reg:CC 100) (compare:CC (match_operand:SI 0 "compare_operand" "") (match_operand:SI 1 "arith_operand" "")))] "" { if (GET_CODE (operands[0]) == ZERO_EXTRACT && operands[1] != const0_rtx) operands[0] = force_reg (SImode, operands[0]); sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }) (define_expand "cmpdi" [(set (reg:CCX 100) (compare:CCX (match_operand:DI 0 "compare_operand" "") (match_operand:DI 1 "arith_operand" "")))] "TARGET_ARCH64" { if (GET_CODE (operands[0]) == ZERO_EXTRACT && operands[1] != const0_rtx) operands[0] = force_reg (DImode, operands[0]); sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }) (define_expand "cmpsf" ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "register_operand" "")))] "TARGET_FPU" { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }) (define_expand "cmpdf" ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" "")))] "TARGET_FPU" { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }) (define_expand "cmptf" ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:TF 0 "register_operand" "") (match_operand:TF 1 "register_operand" "")))] "TARGET_FPU" { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }) ;; Now the compare DEFINE_INSNs. (define_insn "*cmpsi_insn" [(set (reg:CC 100) (compare:CC (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "arith_operand" "rI")))] "" "cmp\t%0, %1" [(set_attr "type" "compare")]) (define_insn "*cmpdi_sp64" [(set (reg:CCX 100) (compare:CCX (match_operand:DI 0 "register_operand" "r") (match_operand:DI 1 "arith_operand" "rI")))] "TARGET_ARCH64" "cmp\t%0, %1" [(set_attr "type" "compare")]) (define_insn "*cmpsf_fpe" [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") (compare:CCFPE (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" { if (TARGET_V9) return "fcmpes\t%0, %1, %2"; return "fcmpes\t%1, %2"; } [(set_attr "type" "fpcmp")]) (define_insn "*cmpdf_fpe" [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") (compare:CCFPE (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" { if (TARGET_V9) return "fcmped\t%0, %1, %2"; return "fcmped\t%1, %2"; } [(set_attr "type" "fpcmp") (set_attr "fptype" "double")]) (define_insn "*cmptf_fpe" [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") (compare:CCFPE (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" { if (TARGET_V9) return "fcmpeq\t%0, %1, %2"; return "fcmpeq\t%1, %2"; } [(set_attr "type" "fpcmp")]) (define_insn "*cmpsf_fp" [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") (compare:CCFP (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" { if (TARGET_V9) return "fcmps\t%0, %1, %2"; return "fcmps\t%1, %2"; } [(set_attr "type" "fpcmp")]) (define_insn "*cmpdf_fp" [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") (compare:CCFP (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" { if (TARGET_V9) return "fcmpd\t%0, %1, %2"; return "fcmpd\t%1, %2"; } [(set_attr "type" "fpcmp") (set_attr "fptype" "double")]) (define_insn "*cmptf_fp" [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") (compare:CCFP (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" { if (TARGET_V9) return "fcmpq\t%0, %1, %2"; return "fcmpq\t%1, %2"; } [(set_attr "type" "fpcmp")]) ;; Next come the scc insns. For seq, sne, sgeu, and sltu, we can do this ;; without jumps using the addx/subx instructions. For seq/sne on v9 we use ;; the same code as v8 (the addx/subx method has more applications). The ;; exception to this is "reg != 0" which can be done in one instruction on v9 ;; (so we do it). For the rest, on v9 we use conditional moves; on v8, we do ;; branches. ;; Seq_special[_xxx] and sne_special[_xxx] clobber the CC reg, because they ;; generate addcc/subcc instructions. (define_expand "seqsi_special" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:SI 0 "register_operand" "") (eq:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "" { operands[3] = gen_reg_rtx (SImode); }) (define_expand "seqdi_special" [(set (match_dup 3) (xor:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (set (match_operand:DI 0 "register_operand" "") (eq:DI (match_dup 3) (const_int 0)))] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (DImode); }) (define_expand "snesi_special" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:SI 0 "register_operand" "") (ne:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "" { operands[3] = gen_reg_rtx (SImode); }) (define_expand "snedi_special" [(set (match_dup 3) (xor:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (set (match_operand:DI 0 "register_operand" "") (ne:DI (match_dup 3) (const_int 0)))] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (DImode); }) (define_expand "seqdi_special_trunc" [(set (match_dup 3) (xor:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (set (match_operand:SI 0 "register_operand" "") (eq:SI (match_dup 3) (const_int 0)))] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (DImode); }) (define_expand "snedi_special_trunc" [(set (match_dup 3) (xor:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (set (match_operand:SI 0 "register_operand" "") (ne:SI (match_dup 3) (const_int 0)))] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (DImode); }) (define_expand "seqsi_special_extend" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:DI 0 "register_operand" "") (eq:DI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (SImode); }) (define_expand "snesi_special_extend" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:DI 0 "register_operand" "") (ne:DI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "TARGET_ARCH64" { operands[3] = gen_reg_rtx (SImode); }) ;; ??? v9: Operand 0 needs a mode, so SImode was chosen. ;; However, the code handles both SImode and DImode. (define_expand "seq" [(set (match_operand:SI 0 "int_register_operand" "") (eq:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == SImode) { rtx pat; if (GET_MODE (operands[0]) == SImode) pat = gen_seqsi_special (operands[0], sparc_compare_op0, sparc_compare_op1); else if (! TARGET_ARCH64) FAIL; else pat = gen_seqsi_special_extend (operands[0], sparc_compare_op0, sparc_compare_op1); emit_insn (pat); DONE; } else if (GET_MODE (sparc_compare_op0) == DImode) { rtx pat; if (! TARGET_ARCH64) FAIL; else if (GET_MODE (operands[0]) == SImode) pat = gen_seqdi_special_trunc (operands[0], sparc_compare_op0, sparc_compare_op1); else pat = gen_seqdi_special (operands[0], sparc_compare_op0, sparc_compare_op1); emit_insn (pat); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (EQ, operands)) DONE; /* fall through */ } FAIL; }) ;; ??? v9: Operand 0 needs a mode, so SImode was chosen. ;; However, the code handles both SImode and DImode. (define_expand "sne" [(set (match_operand:SI 0 "int_register_operand" "") (ne:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == SImode) { rtx pat; if (GET_MODE (operands[0]) == SImode) pat = gen_snesi_special (operands[0], sparc_compare_op0, sparc_compare_op1); else if (! TARGET_ARCH64) FAIL; else pat = gen_snesi_special_extend (operands[0], sparc_compare_op0, sparc_compare_op1); emit_insn (pat); DONE; } else if (GET_MODE (sparc_compare_op0) == DImode) { rtx pat; if (! TARGET_ARCH64) FAIL; else if (GET_MODE (operands[0]) == SImode) pat = gen_snedi_special_trunc (operands[0], sparc_compare_op0, sparc_compare_op1); else pat = gen_snedi_special (operands[0], sparc_compare_op0, sparc_compare_op1); emit_insn (pat); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (NE, operands)) DONE; /* fall through */ } FAIL; }) (define_expand "sgt" [(set (match_operand:SI 0 "int_register_operand" "") (gt:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (GT, operands)) DONE; /* fall through */ } FAIL; }) (define_expand "slt" [(set (match_operand:SI 0 "int_register_operand" "") (lt:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (LT, operands)) DONE; /* fall through */ } FAIL; }) (define_expand "sge" [(set (match_operand:SI 0 "int_register_operand" "") (ge:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (GE, operands)) DONE; /* fall through */ } FAIL; }) (define_expand "sle" [(set (match_operand:SI 0 "int_register_operand" "") (le:SI (match_dup 1) (const_int 0)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (LE, operands)) DONE; /* fall through */ } FAIL; }) (define_expand "sgtu" [(set (match_operand:SI 0 "int_register_operand" "") (gtu:SI (match_dup 1) (const_int 0)))] "" { if (! TARGET_V9) { rtx tem, pat; /* We can do ltu easily, so if both operands are registers, swap them and do a LTU. */ if ((GET_CODE (sparc_compare_op0) == REG || GET_CODE (sparc_compare_op0) == SUBREG) && (GET_CODE (sparc_compare_op1) == REG || GET_CODE (sparc_compare_op1) == SUBREG)) { tem = sparc_compare_op0; sparc_compare_op0 = sparc_compare_op1; sparc_compare_op1 = tem; pat = gen_sltu (operands[0]); if (pat == NULL_RTX) FAIL; emit_insn (pat); DONE; } } else { if (gen_v9_scc (GTU, operands)) DONE; } FAIL; }) (define_expand "sltu" [(set (match_operand:SI 0 "int_register_operand" "") (ltu:SI (match_dup 1) (const_int 0)))] "" { if (TARGET_V9) { if (gen_v9_scc (LTU, operands)) DONE; } operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "sgeu" [(set (match_operand:SI 0 "int_register_operand" "") (geu:SI (match_dup 1) (const_int 0)))] "" { if (TARGET_V9) { if (gen_v9_scc (GEU, operands)) DONE; } operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "sleu" [(set (match_operand:SI 0 "int_register_operand" "") (leu:SI (match_dup 1) (const_int 0)))] "" { if (! TARGET_V9) { rtx tem, pat; /* We can do geu easily, so if both operands are registers, swap them and do a GEU. */ if ((GET_CODE (sparc_compare_op0) == REG || GET_CODE (sparc_compare_op0) == SUBREG) && (GET_CODE (sparc_compare_op1) == REG || GET_CODE (sparc_compare_op1) == SUBREG)) { tem = sparc_compare_op0; sparc_compare_op0 = sparc_compare_op1; sparc_compare_op1 = tem; pat = gen_sgeu (operands[0]); if (pat == NULL_RTX) FAIL; emit_insn (pat); DONE; } } else { if (gen_v9_scc (LEU, operands)) DONE; } FAIL; }) ;; Now the DEFINE_INSNs for the scc cases. ;; The SEQ and SNE patterns are special because they can be done ;; without any branching and do not involve a COMPARE. We want ;; them to always use the splits below so the results can be ;; scheduled. (define_insn_and_split "*snesi_zero" [(set (match_operand:SI 0 "register_operand" "=r") (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (ltu:SI (reg:CC 100) (const_int 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*neg_snesi_zero" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (ltu:SI (reg:CC 100) (const_int 0))))] "" [(set_attr "length" "2")]) (define_insn_and_split "*snesi_zero_extend" [(set (match_operand:DI 0 "register_operand" "=r") (ne:DI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 100))] "TARGET_ARCH64" "#" "&& 1" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 1)) (const_int 0))) (set (match_dup 0) (zero_extend:DI (plus:SI (plus:SI (const_int 0) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "" [(set_attr "length" "2")]) (define_insn_and_split "*snedi_zero" [(set (match_operand:DI 0 "register_operand" "=&r") (ne:DI (match_operand:DI 1 "register_operand" "r") (const_int 0)))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*neg_snedi_zero" [(set (match_operand:DI 0 "register_operand" "=&r") (neg:DI (ne:DI (match_operand:DI 1 "register_operand" "r") (const_int 0))))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1) (const_int 0)) (const_int -1) (match_dup 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*snedi_zero_trunc" [(set (match_operand:SI 0 "register_operand" "=&r") (ne:SI (match_operand:DI 1 "register_operand" "r") (const_int 0)))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (ne:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*seqsi_zero" [(set (match_operand:SI 0 "register_operand" "=r") (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (geu:SI (reg:CC 100) (const_int 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*neg_seqsi_zero" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (geu:SI (reg:CC 100) (const_int 0))))] "" [(set_attr "length" "2")]) (define_insn_and_split "*seqsi_zero_extend" [(set (match_operand:DI 0 "register_operand" "=r") (eq:DI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 100))] "TARGET_ARCH64" "#" "&& 1" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 1)) (const_int 0))) (set (match_dup 0) (zero_extend:DI (minus:SI (minus:SI (const_int 0) (const_int -1)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "" [(set_attr "length" "2")]) (define_insn_and_split "*seqdi_zero" [(set (match_operand:DI 0 "register_operand" "=&r") (eq:DI (match_operand:DI 1 "register_operand" "r") (const_int 0)))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*neg_seqdi_zero" [(set (match_operand:DI 0 "register_operand" "=&r") (neg:DI (eq:DI (match_operand:DI 1 "register_operand" "r") (const_int 0))))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1) (const_int 0)) (const_int -1) (match_dup 0)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*seqdi_zero_trunc" [(set (match_operand:SI 0 "register_operand" "=&r") (eq:SI (match_operand:DI 1 "register_operand" "r") (const_int 0)))] "TARGET_ARCH64" "#" "&& ! reg_overlap_mentioned_p (operands[1], operands[0])" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (eq:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "" [(set_attr "length" "2")]) ;; We can also do (x + (i == 0)) and related, so put them in. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9. (define_insn_and_split "*x_plus_i_ne_0" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)) (match_operand:SI 2 "register_operand" "r"))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_dup 2)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*x_minus_i_ne_0" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 2 "register_operand" "r") (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (ltu:SI (reg:CC 100) (const_int 0))))] "" [(set_attr "length" "2")]) (define_insn_and_split "*x_plus_i_eq_0" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)) (match_operand:SI 2 "register_operand" "r"))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (geu:SI (reg:CC 100) (const_int 0)) (match_dup 2)))] "" [(set_attr "length" "2")]) (define_insn_and_split "*x_minus_i_eq_0" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 2 "register_operand" "r") (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 100))] "" "#" "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (geu:SI (reg:CC 100) (const_int 0))))] "" [(set_attr "length" "2")]) ;; We can also do GEU and LTU directly, but these operate after a compare. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9. (define_insn "*sltu_insn" [(set (match_operand:SI 0 "register_operand" "=r") (ltu:SI (reg:CC 100) (const_int 0)))] "" "addx\t%%g0, 0, %0" [(set_attr "type" "ialuX")]) (define_insn "*neg_sltu_insn" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (ltu:SI (reg:CC 100) (const_int 0))))] "" "subx\t%%g0, 0, %0" [(set_attr "type" "ialuX")]) ;; ??? Combine should canonicalize these next two to the same pattern. (define_insn "*neg_sltu_minus_x" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (neg:SI (ltu:SI (reg:CC 100) (const_int 0))) (match_operand:SI 1 "arith_operand" "rI")))] "" "subx\t%%g0, %1, %0" [(set_attr "type" "ialuX")]) (define_insn "*neg_sltu_plus_x" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 "arith_operand" "rI"))))] "" "subx\t%%g0, %1, %0" [(set_attr "type" "ialuX")]) (define_insn "*sgeu_insn" [(set (match_operand:SI 0 "register_operand" "=r") (geu:SI (reg:CC 100) (const_int 0)))] "" "subx\t%%g0, -1, %0" [(set_attr "type" "ialuX")]) (define_insn "*neg_sgeu_insn" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (geu:SI (reg:CC 100) (const_int 0))))] "" "addx\t%%g0, -1, %0" [(set_attr "type" "ialuX")]) ;; We can also do (x + ((unsigned) i >= 0)) and related, so put them in. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9. (define_insn "*sltu_plus_x" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 "arith_operand" "rI")))] "" "addx\t%%g0, %1, %0" [(set_attr "type" "ialuX")]) (define_insn "*sltu_plus_x_plus_y" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI"))))] "" "addx\t%1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn "*x_minus_sltu" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (ltu:SI (reg:CC 100) (const_int 0))))] "" "subx\t%1, 0, %0" [(set_attr "type" "ialuX")]) ;; ??? Combine should canonicalize these next two to the same pattern. (define_insn "*x_minus_y_minus_sltu" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC 100) (const_int 0))))] "" "subx\t%r1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn "*x_minus_sltu_plus_y" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 2 "arith_operand" "rI"))))] "" "subx\t%r1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn "*sgeu_plus_x" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (geu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 "register_operand" "r")))] "" "subx\t%1, -1, %0" [(set_attr "type" "ialuX")]) (define_insn "*x_minus_sgeu" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (geu:SI (reg:CC 100) (const_int 0))))] "" "addx\t%1, -1, %0" [(set_attr "type" "ialuX")]) (define_split [(set (match_operand:SI 0 "register_operand" "") (match_operator:SI 2 "noov_compare_operator" [(match_operand 1 "icc_or_fcc_register_operand" "") (const_int 0)]))] "TARGET_V9 && REGNO (operands[1]) == SPARC_ICC_REG && (GET_MODE (operands[1]) == CCXmode /* 32 bit LTU/GEU are better implemented using addx/subx. */ || (GET_CODE (operands[2]) != LTU && GET_CODE (operands[2]) != GEU))" [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (match_op_dup:SI 2 [(match_dup 1) (const_int 0)]) (const_int 1) (match_dup 0)))] "") ;; These control RTL generation for conditional jump insns ;; The quad-word fp compare library routines all return nonzero to indicate ;; true, which is different from the equivalent libgcc routines, so we must ;; handle them specially here. (define_expand "beq" [(set (pc) (if_then_else (eq (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (EQ, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (EQ, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bne" [(set (pc) (if_then_else (ne (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (NE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (NE, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bgt" [(set (pc) (if_then_else (gt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (GT, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (GT, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bgtu" [(set (pc) (if_then_else (gtu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { operands[1] = gen_compare_reg (GTU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "blt" [(set (pc) (if_then_else (lt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (LT, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LT, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bltu" [(set (pc) (if_then_else (ltu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bge" [(set (pc) (if_then_else (ge (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (GE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (GE, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bgeu" [(set (pc) (if_then_else (geu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "ble" [(set (pc) (if_then_else (le (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (LE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LE, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bleu" [(set (pc) (if_then_else (leu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { operands[1] = gen_compare_reg (LEU, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bunordered" [(set (pc) (if_then_else (unordered (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNORDERED); emit_jump_insn (gen_beq (operands[0])); DONE; } operands[1] = gen_compare_reg (UNORDERED, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bordered" [(set (pc) (if_then_else (ordered (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, ORDERED); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (ORDERED, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bungt" [(set (pc) (if_then_else (ungt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGT); emit_jump_insn (gen_bgt (operands[0])); DONE; } operands[1] = gen_compare_reg (UNGT, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bunlt" [(set (pc) (if_then_else (unlt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNLT, sparc_compare_op0, sparc_compare_op1); }) (define_expand "buneq" [(set (pc) (if_then_else (uneq (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNEQ); emit_jump_insn (gen_beq (operands[0])); DONE; } operands[1] = gen_compare_reg (UNEQ, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bunge" [(set (pc) (if_then_else (unge (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNGE, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bunle" [(set (pc) (if_then_else (unle (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNLE, sparc_compare_op0, sparc_compare_op1); }) (define_expand "bltgt" [(set (pc) (if_then_else (ltgt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LTGT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LTGT, sparc_compare_op0, sparc_compare_op1); }) ;; Now match both normal and inverted jump. ;; XXX fpcmp nop braindamage (define_insn "*normal_branch" [(set (pc) (if_then_else (match_operator 0 "noov_compare_operator" [(reg 100) (const_int 0)]) (label_ref (match_operand 1 "" "")) (pc)))] "" { return output_cbranch (operands[0], operands[1], 1, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "icc")]) ;; XXX fpcmp nop braindamage (define_insn "*inverted_branch" [(set (pc) (if_then_else (match_operator 0 "noov_compare_operator" [(reg 100) (const_int 0)]) (pc) (label_ref (match_operand 1 "" ""))))] "" { return output_cbranch (operands[0], operands[1], 1, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "icc")]) ;; XXX fpcmp nop braindamage (define_insn "*normal_fp_branch" [(set (pc) (if_then_else (match_operator 1 "comparison_operator" [(match_operand:CCFP 0 "fcc_register_operand" "c") (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" { return output_cbranch (operands[1], operands[2], 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "fcc")]) ;; XXX fpcmp nop braindamage (define_insn "*inverted_fp_branch" [(set (pc) (if_then_else (match_operator 1 "comparison_operator" [(match_operand:CCFP 0 "fcc_register_operand" "c") (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" { return output_cbranch (operands[1], operands[2], 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "fcc")]) ;; XXX fpcmp nop braindamage (define_insn "*normal_fpe_branch" [(set (pc) (if_then_else (match_operator 1 "comparison_operator" [(match_operand:CCFPE 0 "fcc_register_operand" "c") (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" { return output_cbranch (operands[1], operands[2], 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "fcc")]) ;; XXX fpcmp nop braindamage (define_insn "*inverted_fpe_branch" [(set (pc) (if_then_else (match_operator 1 "comparison_operator" [(match_operand:CCFPE 0 "fcc_register_operand" "c") (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" { return output_cbranch (operands[1], operands[2], 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "fcc")]) ;; SPARC V9-specific jump insns. None of these are guaranteed to be ;; in the architecture. ;; There are no 32 bit brreg insns. ;; XXX (define_insn "*normal_int_branch_sp64" [(set (pc) (if_then_else (match_operator 0 "v9_register_compare_operator" [(match_operand:DI 1 "register_operand" "r") (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "TARGET_ARCH64" { return output_v9branch (operands[0], operands[2], 1, 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "reg")]) ;; XXX (define_insn "*inverted_int_branch_sp64" [(set (pc) (if_then_else (match_operator 0 "v9_register_compare_operator" [(match_operand:DI 1 "register_operand" "r") (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "TARGET_ARCH64" { return output_v9branch (operands[0], operands[2], 1, 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), insn); } [(set_attr "type" "branch") (set_attr "branch_type" "reg")]) (define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ;; Load in operand 0 the (absolute) address of operand 1, which is a symbolic ;; value subject to a PC-relative relocation. Operand 2 is a helper function ;; that adds the PC value at the call point to operand 0. (define_insn "load_pcrel_sym" [(set (match_operand:P 0 "register_operand" "=r") (unspec:P [(match_operand:P 1 "symbolic_operand" "") (match_operand:P 2 "call_address_operand" "")] UNSPEC_LOAD_PCREL_SYM)) (clobber (reg:P 15))] "" { if (flag_delayed_branch) return "sethi\t%%hi(%a1-4), %0\n\tcall\t%a2\n\t add\t%0, %%lo(%a1+4), %0"; else return "sethi\t%%hi(%a1-8), %0\n\tadd\t%0, %%lo(%a1-4), %0\n\tcall\t%a2\n\t nop"; } [(set (attr "type") (const_string "multi")) (set (attr "length") (if_then_else (eq_attr "delayed_branch" "true") (const_int 3) (const_int 4)))]) ;; Integer move instructions (define_expand "movqi" [(set (match_operand:QI 0 "nonimmediate_operand" "") (match_operand:QI 1 "general_operand" ""))] "" { if (sparc_expand_move (QImode, operands)) DONE; }) (define_insn "*movqi_insn" [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m") (match_operand:QI 1 "input_operand" "rI,m,rJ"))] "(register_operand (operands[0], QImode) || register_or_zero_operand (operands[1], QImode))" "@ mov\t%1, %0 ldub\t%1, %0 stb\t%r1, %0" [(set_attr "type" "*,load,store") (set_attr "us3load_type" "*,3cycle,*")]) (define_expand "movhi" [(set (match_operand:HI 0 "nonimmediate_operand" "") (match_operand:HI 1 "general_operand" ""))] "" { if (sparc_expand_move (HImode, operands)) DONE; }) (define_insn "*movhi_insn" [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m") (match_operand:HI 1 "input_operand" "rI,K,m,rJ"))] "(register_operand (operands[0], HImode) || register_or_zero_operand (operands[1], HImode))" "@ mov\t%1, %0 sethi\t%%hi(%a1), %0 lduh\t%1, %0 sth\t%r1, %0" [(set_attr "type" "*,*,load,store") (set_attr "us3load_type" "*,*,3cycle,*")]) ;; We always work with constants here. (define_insn "*movhi_lo_sum" [(set (match_operand:HI 0 "register_operand" "=r") (ior:HI (match_operand:HI 1 "register_operand" "%r") (match_operand:HI 2 "small_int_operand" "I")))] "" "or\t%1, %2, %0") (define_expand "movsi" [(set (match_operand:SI 0 "nonimmediate_operand" "") (match_operand:SI 1 "general_operand" ""))] "" { if (sparc_expand_move (SImode, operands)) DONE; }) (define_insn "*movsi_insn" [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,m,!f,!f,!m,d") (match_operand:SI 1 "input_operand" "rI,K,m,rJ,f,m,f,J"))] "(register_operand (operands[0], SImode) || register_or_zero_operand (operands[1], SImode))" "@ mov\t%1, %0 sethi\t%%hi(%a1), %0 ld\t%1, %0 st\t%r1, %0 fmovs\t%1, %0 ld\t%1, %0 st\t%1, %0 fzeros\t%0" [(set_attr "type" "*,*,load,store,fpmove,fpload,fpstore,fga")]) (define_insn "*movsi_lo_sum" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "immediate_operand" "in")))] "" "or\t%1, %%lo(%a2), %0") (define_insn "*movsi_high" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (match_operand:SI 1 "immediate_operand" "in")))] "" "sethi\t%%hi(%a1), %0") ;; The next two patterns must wrap the SYMBOL_REF in an UNSPEC ;; so that CSE won't optimize the address computation away. (define_insn "movsi_lo_sum_pic" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "immediate_operand" "in")] UNSPEC_MOVE_PIC)))] "flag_pic" "or\t%1, %%lo(%a2), %0") (define_insn "movsi_high_pic" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] "flag_pic && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_expand "movsi_pic_label_ref" [(set (match_dup 3) (high:SI (unspec:SI [(match_operand:SI 1 "label_ref_operand" "") (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) (set (match_dup 4) (lo_sum:SI (match_dup 3) (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) (set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_dup 5) (match_dup 4)))] "flag_pic" { current_function_uses_pic_offset_table = 1; operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); if (no_new_pseudos) { operands[3] = operands[0]; operands[4] = operands[0]; } else { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); } operands[5] = pic_offset_table_rtx; }) (define_insn "*movsi_high_pic_label_ref" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand:SI 1 "label_ref_operand" "") (match_operand:SI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] "flag_pic" "sethi\t%%hi(%a2-(%a1-.)), %0") (define_insn "*movsi_lo_sum_pic_label_ref" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "label_ref_operand" "") (match_operand:SI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] "flag_pic" "or\t%1, %%lo(%a3-(%a2-.)), %0") (define_expand "movdi" [(set (match_operand:DI 0 "nonimmediate_operand" "") (match_operand:DI 1 "general_operand" ""))] "" { if (sparc_expand_move (DImode, operands)) DONE; }) ;; Be careful, fmovd does not exist when !v9. ;; We match MEM moves directly when we have correct even ;; numbered registers, but fall into splits otherwise. ;; The constraint ordering here is really important to ;; avoid insane problems in reload, especially for patterns ;; of the form: ;; ;; (set (mem:DI (plus:SI (reg:SI 30 %fp) ;; (const_int -5016))) ;; (reg:DI 2 %g2)) ;; (define_insn "*movdi_insn_sp32" [(set (match_operand:DI 0 "nonimmediate_operand" "=o,T,U,o,r,r,r,?T,?f,?f,?o,?f") (match_operand:DI 1 "input_operand" " J,U,T,r,o,i,r, f, T, o, f, f"))] "! TARGET_V9 && (register_operand (operands[0], DImode) || register_or_zero_operand (operands[1], DImode))" "@ # std\t%1, %0 ldd\t%1, %0 # # # # std\t%1, %0 ldd\t%1, %0 # # #" [(set_attr "type" "store,store,load,*,*,*,*,fpstore,fpload,*,*,*") (set_attr "length" "2,*,*,2,2,2,2,*,*,2,2,2")]) (define_insn "*movdi_insn_sp32_v9" [(set (match_operand:DI 0 "nonimmediate_operand" "=T,o,T,U,o,r,r,r,?T,?f,?f,?o,?e,?e,?W") (match_operand:DI 1 "input_operand" " J,J,U,T,r,o,i,r, f, T, o, f, e, W, e"))] "! TARGET_ARCH64 && TARGET_V9 && (register_operand (operands[0], DImode) || register_or_zero_operand (operands[1], DImode))" "@ stx\t%%g0, %0 # std\t%1, %0 ldd\t%1, %0 # # # # std\t%1, %0 ldd\t%1, %0 # # fmovd\\t%1, %0 ldd\\t%1, %0 std\\t%1, %0" [(set_attr "type" "store,store,store,load,*,*,*,*,fpstore,fpload,*,*,fpmove,fpload,fpstore") (set_attr "length" "*,2,*,*,2,2,2,2,*,*,2,2,*,*,*") (set_attr "fptype" "*,*,*,*,*,*,*,*,*,*,*,*,double,*,*")]) (define_insn "*movdi_insn_sp64" [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r,m,?e,?e,?W,b") (match_operand:DI 1 "input_operand" "rI,N,m,rJ,e,W,e,J"))] "TARGET_ARCH64 && (register_operand (operands[0], DImode) || register_or_zero_operand (operands[1], DImode))" "@ mov\t%1, %0 sethi\t%%hi(%a1), %0 ldx\t%1, %0 stx\t%r1, %0 fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0 fzero\t%0" [(set_attr "type" "*,*,load,store,fpmove,fpload,fpstore,fga") (set_attr "fptype" "*,*,*,*,double,*,*,double")]) (define_expand "movdi_pic_label_ref" [(set (match_dup 3) (high:DI (unspec:DI [(match_operand:DI 1 "label_ref_operand" "") (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) (set (match_dup 4) (lo_sum:DI (match_dup 3) (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) (set (match_operand:DI 0 "register_operand" "=r") (minus:DI (match_dup 5) (match_dup 4)))] "TARGET_ARCH64 && flag_pic" { current_function_uses_pic_offset_table = 1; operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); if (no_new_pseudos) { operands[3] = operands[0]; operands[4] = operands[0]; } else { operands[3] = gen_reg_rtx (DImode); operands[4] = gen_reg_rtx (DImode); } operands[5] = pic_offset_table_rtx; }) (define_insn "*movdi_high_pic_label_ref" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "label_ref_operand" "") (match_operand:DI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] "TARGET_ARCH64 && flag_pic" "sethi\t%%hi(%a2-(%a1-.)), %0") (define_insn "*movdi_lo_sum_pic_label_ref" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "label_ref_operand" "") (match_operand:DI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] "TARGET_ARCH64 && flag_pic" "or\t%1, %%lo(%a3-(%a2-.)), %0") ;; SPARC-v9 code model support insns. See sparc_emit_set_symbolic_const64 ;; in sparc.c to see what is going on here... PIC stuff comes first. (define_insn "movdi_lo_sum_pic" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "immediate_operand" "in")] UNSPEC_MOVE_PIC)))] "TARGET_ARCH64 && flag_pic" "or\t%1, %%lo(%a2), %0") (define_insn "movdi_high_pic" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] "TARGET_ARCH64 && flag_pic && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_insn "*sethi_di_medlow_embmedany_pic" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (match_operand:DI 1 "medium_pic_operand" "")))] "(TARGET_CM_MEDLOW || TARGET_CM_EMBMEDANY) && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_insn "*sethi_di_medlow" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (match_operand:DI 1 "symbolic_operand" "")))] "TARGET_CM_MEDLOW && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_insn "*losum_di_medlow" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "symbolic_operand" "")))] "TARGET_CM_MEDLOW" "or\t%1, %%lo(%a2), %0") (define_insn "seth44" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETH44)))] "TARGET_CM_MEDMID" "sethi\t%%h44(%a1), %0") (define_insn "setm44" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] UNSPEC_SETM44)))] "TARGET_CM_MEDMID" "or\t%1, %%m44(%a2), %0") (define_insn "setl44" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "symbolic_operand" "")))] "TARGET_CM_MEDMID" "or\t%1, %%l44(%a2), %0") (define_insn "sethh" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETHH)))] "TARGET_CM_MEDANY" "sethi\t%%hh(%a1), %0") (define_insn "setlm" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] UNSPEC_SETLM)))] "TARGET_CM_MEDANY" "sethi\t%%lm(%a1), %0") (define_insn "sethm" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] UNSPEC_EMB_SETHM)))] "TARGET_CM_MEDANY" "or\t%1, %%hm(%a2), %0") (define_insn "setlo" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "symbolic_operand" "")))] "TARGET_CM_MEDANY" "or\t%1, %%lo(%a2), %0") (define_insn "embmedany_sethi" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "data_segment_operand" "")] UNSPEC_EMB_HISUM)))] "TARGET_CM_EMBMEDANY && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_insn "embmedany_losum" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "data_segment_operand" "")))] "TARGET_CM_EMBMEDANY" "add\t%1, %%lo(%a2), %0") (define_insn "embmedany_brsum" [(set (match_operand:DI 0 "register_operand" "=r") (unspec:DI [(match_operand:DI 1 "register_operand" "r")] UNSPEC_EMB_HISUM))] "TARGET_CM_EMBMEDANY" "add\t%1, %_, %0") (define_insn "embmedany_textuhi" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] UNSPEC_EMB_TEXTUHI)))] "TARGET_CM_EMBMEDANY && check_pic (1)" "sethi\t%%uhi(%a1), %0") (define_insn "embmedany_texthi" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] UNSPEC_EMB_TEXTHI)))] "TARGET_CM_EMBMEDANY && check_pic (1)" "sethi\t%%hi(%a1), %0") (define_insn "embmedany_textulo" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "text_segment_operand" "")] UNSPEC_EMB_TEXTULO)))] "TARGET_CM_EMBMEDANY" "or\t%1, %%ulo(%a2), %0") (define_insn "embmedany_textlo" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "text_segment_operand" "")))] "TARGET_CM_EMBMEDANY" "or\t%1, %%lo(%a2), %0") ;; Now some patterns to help reload out a bit. (define_expand "reload_indi" [(parallel [(match_operand:DI 0 "register_operand" "=r") (match_operand:DI 1 "immediate_operand" "") (match_operand:TI 2 "register_operand" "=&r")])] "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && ! flag_pic" { sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); DONE; }) (define_expand "reload_outdi" [(parallel [(match_operand:DI 0 "register_operand" "=r") (match_operand:DI 1 "immediate_operand" "") (match_operand:TI 2 "register_operand" "=&r")])] "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && ! flag_pic" { sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); DONE; }) ;; Split up putting CONSTs and REGs into DI regs when !arch64 (define_split [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "const_int_operand" ""))] "! TARGET_ARCH64 && reload_completed" [(clobber (const_int 0))] { #if HOST_BITS_PER_WIDE_INT == 32 emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), (INTVAL (operands[1]) < 0) ? constm1_rtx : const0_rtx)); emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), operands[1])); #else unsigned int low, high; low = trunc_int_for_mode (INTVAL (operands[1]), SImode); high = trunc_int_for_mode (INTVAL (operands[1]) >> 32, SImode); emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (high))); /* Slick... but this trick loses if this subreg constant part can be done in one insn. */ if (low == high && ! SPARC_SETHI32_P (high) && ! SPARC_SIMM13_P (high)) emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_highpart (SImode, operands[0]))); else emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), GEN_INT (low))); #endif DONE; }) (define_split [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "const_double_operand" ""))] "reload_completed && (! TARGET_V9 || (! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))))" [(clobber (const_int 0))] { emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (CONST_DOUBLE_HIGH (operands[1])))); /* Slick... but this trick loses if this subreg constant part can be done in one insn. */ if (CONST_DOUBLE_LOW (operands[1]) == CONST_DOUBLE_HIGH (operands[1]) && ! SPARC_SETHI32_P (CONST_DOUBLE_HIGH (operands[1])) && ! SPARC_SIMM13_P (CONST_DOUBLE_HIGH (operands[1]))) { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_highpart (SImode, operands[0]))); } else { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), GEN_INT (CONST_DOUBLE_LOW (operands[1])))); } DONE; }) (define_split [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "register_operand" ""))] "reload_completed && (! TARGET_V9 || (! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))))" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2; dest1 = gen_highpart (SImode, set_dest); dest2 = gen_lowpart (SImode, set_dest); src1 = gen_highpart (SImode, set_src); src2 = gen_lowpart (SImode, set_src); /* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_insn (gen_movsi (dest2, src2)); emit_insn (gen_movsi (dest1, src1)); } else { emit_insn (gen_movsi (dest1, src1)); emit_insn (gen_movsi (dest2, src2)); } DONE; }) ;; Now handle the cases of memory moves from/to non-even ;; DI mode register pairs. (define_split [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "memory_operand" ""))] "(! TARGET_ARCH64 && reload_completed && sparc_splitdi_legitimate (operands[0], operands[1]))" [(clobber (const_int 0))] { rtx word0 = adjust_address (operands[1], SImode, 0); rtx word1 = adjust_address (operands[1], SImode, 4); rtx high_part = gen_highpart (SImode, operands[0]); rtx low_part = gen_lowpart (SImode, operands[0]); if (reg_overlap_mentioned_p (high_part, word1)) { emit_insn (gen_movsi (low_part, word1)); emit_insn (gen_movsi (high_part, word0)); } else { emit_insn (gen_movsi (high_part, word0)); emit_insn (gen_movsi (low_part, word1)); } DONE; }) (define_split [(set (match_operand:DI 0 "memory_operand" "") (match_operand:DI 1 "register_operand" ""))] "(! TARGET_ARCH64 && reload_completed && sparc_splitdi_legitimate (operands[1], operands[0]))" [(clobber (const_int 0))] { emit_insn (gen_movsi (adjust_address (operands[0], SImode, 0), gen_highpart (SImode, operands[1]))); emit_insn (gen_movsi (adjust_address (operands[0], SImode, 4), gen_lowpart (SImode, operands[1]))); DONE; }) (define_split [(set (match_operand:DI 0 "memory_operand" "") (match_operand:DI 1 "const_zero_operand" ""))] "reload_completed && (! TARGET_V9 || (! TARGET_ARCH64 && ! mem_min_alignment (operands[0], 8))) && offsettable_memref_p (operands[0])" [(clobber (const_int 0))] { emit_insn (gen_movsi (adjust_address (operands[0], SImode, 0), const0_rtx)); emit_insn (gen_movsi (adjust_address (operands[0], SImode, 4), const0_rtx)); DONE; }) ;; Floating point and vector move instructions ;; We don't define V1SI because SI should work just fine. (define_mode_macro V32 [SF V2HI V4QI]) ;; Yes, you guessed it right, the former movsf expander. (define_expand "mov" [(set (match_operand:V32 0 "nonimmediate_operand" "") (match_operand:V32 1 "general_operand" ""))] "mode == SFmode || TARGET_VIS" { if (sparc_expand_move (mode, operands)) DONE; }) (define_insn "*movsf_insn" [(set (match_operand:V32 0 "nonimmediate_operand" "=d,f,*r,*r,*r,f,*r,m,m") (match_operand:V32 1 "input_operand" "GY,f,*rRY,Q,S,m,m,f,*rGY"))] "TARGET_FPU && (register_operand (operands[0], mode) || register_or_zero_operand (operands[1], mode))" { if (GET_CODE (operands[1]) == CONST_DOUBLE && (which_alternative == 2 || which_alternative == 3 || which_alternative == 4)) { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[1] = GEN_INT (i); } switch (which_alternative) { case 0: return "fzeros\t%0"; case 1: return "fmovs\t%1, %0"; case 2: return "mov\t%1, %0"; case 3: return "sethi\t%%hi(%a1), %0"; case 4: return "#"; case 5: case 6: return "ld\t%1, %0"; case 7: case 8: return "st\t%r1, %0"; default: gcc_unreachable (); } } [(set_attr "type" "fga,fpmove,*,*,*,fpload,load,fpstore,store")]) ;; Exactly the same as above, except that all `f' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a `f' reg ;; when -mno-fpu. (define_insn "*movsf_insn_no_fpu" [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m") (match_operand:SF 1 "input_operand" "rR,Q,S,m,rG"))] "! TARGET_FPU && (register_operand (operands[0], SFmode) || register_or_zero_operand (operands[1], SFmode))" { if (GET_CODE (operands[1]) == CONST_DOUBLE && (which_alternative == 0 || which_alternative == 1 || which_alternative == 2)) { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[1] = GEN_INT (i); } switch (which_alternative) { case 0: return "mov\t%1, %0"; case 1: return "sethi\t%%hi(%a1), %0"; case 2: return "#"; case 3: return "ld\t%1, %0"; case 4: return "st\t%r1, %0"; default: gcc_unreachable (); } } [(set_attr "type" "*,*,*,load,store")]) ;; The following 3 patterns build SFmode constants in integer registers. (define_insn "*movsf_lo_sum" [(set (match_operand:SF 0 "register_operand" "=r") (lo_sum:SF (match_operand:SF 1 "register_operand" "r") (match_operand:SF 2 "fp_const_high_losum_operand" "S")))] "" { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, operands[2]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[2] = GEN_INT (i); return "or\t%1, %%lo(%a2), %0"; }) (define_insn "*movsf_high" [(set (match_operand:SF 0 "register_operand" "=r") (high:SF (match_operand:SF 1 "fp_const_high_losum_operand" "S")))] "" { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[1] = GEN_INT (i); return "sethi\t%%hi(%1), %0"; }) (define_split [(set (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "fp_const_high_losum_operand" ""))] "REG_P (operands[0]) && REGNO (operands[0]) < 32" [(set (match_dup 0) (high:SF (match_dup 1))) (set (match_dup 0) (lo_sum:SF (match_dup 0) (match_dup 1)))]) (define_mode_macro V64 [DF V2SI V4HI V8QI]) ;; Yes, you again guessed it right, the former movdf expander. (define_expand "mov" [(set (match_operand:V64 0 "nonimmediate_operand" "") (match_operand:V64 1 "general_operand" ""))] "mode == DFmode || TARGET_VIS" { if (sparc_expand_move (mode, operands)) DONE; }) ;; Be careful, fmovd does not exist when !v9. (define_insn "*movdf_insn_sp32" [(set (match_operand:DF 0 "nonimmediate_operand" "=e,W,U,T,o,e,*r,o,e,o") (match_operand:DF 1 "input_operand" "W#F,e,T,U,G,e,*rFo,*r,o#F,e"))] "TARGET_FPU && ! TARGET_V9 && (register_operand (operands[0], DFmode) || register_or_zero_operand (operands[1], DFmode))" "@ ldd\t%1, %0 std\t%1, %0 ldd\t%1, %0 std\t%1, %0 # # # # # #" [(set_attr "type" "fpload,fpstore,load,store,*,*,*,*,*,*") (set_attr "length" "*,*,*,*,2,2,2,2,2,2")]) (define_insn "*movdf_insn_sp32_no_fpu" [(set (match_operand:DF 0 "nonimmediate_operand" "=U,T,o,r,o") (match_operand:DF 1 "input_operand" "T,U,G,ro,r"))] "! TARGET_FPU && ! TARGET_V9 && (register_operand (operands[0], DFmode) || register_or_zero_operand (operands[1], DFmode))" "@ ldd\t%1, %0 std\t%1, %0 # # #" [(set_attr "type" "load,store,*,*,*") (set_attr "length" "*,*,2,2,2")]) ;; We have available v9 double floats but not 64-bit integer registers. (define_insn "*movdf_insn_sp32_v9" [(set (match_operand:V64 0 "nonimmediate_operand" "=b,e,e,T,W,U,T,f,*r,o") (match_operand:V64 1 "input_operand" "GY,e,W#F,GY,e,T,U,o#F,*roGYF,*rGYf"))] "TARGET_FPU && TARGET_V9 && ! TARGET_ARCH64 && (register_operand (operands[0], mode) || register_or_zero_operand (operands[1], mode))" "@ fzero\t%0 fmovd\t%1, %0 ldd\t%1, %0 stx\t%r1, %0 std\t%1, %0 ldd\t%1, %0 std\t%1, %0 # # #" [(set_attr "type" "fga,fpmove,load,store,store,load,store,*,*,*") (set_attr "length" "*,*,*,*,*,*,*,2,2,2") (set_attr "fptype" "double,double,*,*,*,*,*,*,*,*")]) (define_insn "*movdf_insn_sp32_v9_no_fpu" [(set (match_operand:DF 0 "nonimmediate_operand" "=U,T,T,r,o") (match_operand:DF 1 "input_operand" "T,U,G,ro,rG"))] "! TARGET_FPU && TARGET_V9 && ! TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_or_zero_operand (operands[1], DFmode))" "@ ldd\t%1, %0 std\t%1, %0 stx\t%r1, %0 # #" [(set_attr "type" "load,store,store,*,*") (set_attr "length" "*,*,*,2,2")]) ;; We have available both v9 double floats and 64-bit integer registers. (define_insn "*movdf_insn_sp64" [(set (match_operand:V64 0 "nonimmediate_operand" "=b,e,e,W,*r,*r,m,*r") (match_operand:V64 1 "input_operand" "GY,e,W#F,e,*rGY,m,*rGY,F"))] "TARGET_FPU && TARGET_ARCH64 && (register_operand (operands[0], mode) || register_or_zero_operand (operands[1], mode))" "@ fzero\t%0 fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0 mov\t%r1, %0 ldx\t%1, %0 stx\t%r1, %0 #" [(set_attr "type" "fga,fpmove,load,store,*,load,store,*") (set_attr "length" "*,*,*,*,*,*,*,2") (set_attr "fptype" "double,double,*,*,*,*,*,*")]) (define_insn "*movdf_insn_sp64_no_fpu" [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,m") (match_operand:DF 1 "input_operand" "r,m,rG"))] "! TARGET_FPU && TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_or_zero_operand (operands[1], DFmode))" "@ mov\t%1, %0 ldx\t%1, %0 stx\t%r1, %0" [(set_attr "type" "*,load,store")]) ;; This pattern build DFmode constants in integer registers. (define_split [(set (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "const_double_operand" ""))] "TARGET_FPU && (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) && ! const_zero_operand(operands[1], DFmode) && reload_completed" [(clobber (const_int 0))] { REAL_VALUE_TYPE r; long l[2]; REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_DOUBLE (r, l); operands[0] = gen_rtx_raw_REG (DImode, REGNO (operands[0])); if (TARGET_ARCH64) { #if HOST_BITS_PER_WIDE_INT == 32 gcc_unreachable (); #else HOST_WIDE_INT val; val = ((HOST_WIDE_INT)(unsigned long)l[1] | ((HOST_WIDE_INT)(unsigned long)l[0] << 32)); emit_insn (gen_movdi (operands[0], gen_int_mode (val, DImode))); #endif } else { emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), gen_int_mode (l[0], SImode))); /* Slick... but this trick loses if this subreg constant part can be done in one insn. */ if (l[1] == l[0] && ! SPARC_SETHI32_P (l[0]) && ! SPARC_SIMM13_P (l[0])) { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_highpart (SImode, operands[0]))); } else { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_int_mode (l[1], SImode))); } } DONE; }) ;; Ok, now the splits to handle all the multi insn and ;; mis-aligned memory address cases. ;; In these splits please take note that we must be ;; careful when V9 but not ARCH64 because the integer ;; register DFmode cases must be handled. (define_split [(set (match_operand:V64 0 "register_operand" "") (match_operand:V64 1 "register_operand" ""))] "(! TARGET_V9 || (! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32)))) && reload_completed" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2; enum machine_mode half_mode; /* We can be expanded for DFmode or integral vector modes. */ if (mode == DFmode) half_mode = SFmode; else half_mode = SImode; dest1 = gen_highpart (half_mode, set_dest); dest2 = gen_lowpart (half_mode, set_dest); src1 = gen_highpart (half_mode, set_src); src2 = gen_lowpart (half_mode, set_src); /* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_move_insn_1 (dest2, src2); emit_move_insn_1 (dest1, src1); } else { emit_move_insn_1 (dest1, src1); emit_move_insn_1 (dest2, src2); } DONE; }) (define_split [(set (match_operand:V64 0 "register_operand" "") (match_operand:V64 1 "memory_operand" ""))] "reload_completed && ! TARGET_ARCH64 && (((REGNO (operands[0]) % 2) != 0) || ! mem_min_alignment (operands[1], 8)) && offsettable_memref_p (operands[1])" [(clobber (const_int 0))] { enum machine_mode half_mode; rtx word0, word1; /* We can be expanded for DFmode or integral vector modes. */ if (mode == DFmode) half_mode = SFmode; else half_mode = SImode; word0 = adjust_address (operands[1], half_mode, 0); word1 = adjust_address (operands[1], half_mode, 4); if (reg_overlap_mentioned_p (gen_highpart (half_mode, operands[0]), word1)) { emit_move_insn_1 (gen_lowpart (half_mode, operands[0]), word1); emit_move_insn_1 (gen_highpart (half_mode, operands[0]), word0); } else { emit_move_insn_1 (gen_highpart (half_mode, operands[0]), word0); emit_move_insn_1 (gen_lowpart (half_mode, operands[0]), word1); } DONE; }) (define_split [(set (match_operand:V64 0 "memory_operand" "") (match_operand:V64 1 "register_operand" ""))] "reload_completed && ! TARGET_ARCH64 && (((REGNO (operands[1]) % 2) != 0) || ! mem_min_alignment (operands[0], 8)) && offsettable_memref_p (operands[0])" [(clobber (const_int 0))] { enum machine_mode half_mode; rtx word0, word1; /* We can be expanded for DFmode or integral vector modes. */ if (mode == DFmode) half_mode = SFmode; else half_mode = SImode; word0 = adjust_address (operands[0], half_mode, 0); word1 = adjust_address (operands[0], half_mode, 4); emit_move_insn_1 (word0, gen_highpart (half_mode, operands[1])); emit_move_insn_1 (word1, gen_lowpart (half_mode, operands[1])); DONE; }) (define_split [(set (match_operand:V64 0 "memory_operand" "") (match_operand:V64 1 "const_zero_operand" ""))] "reload_completed && (! TARGET_V9 || (! TARGET_ARCH64 && ! mem_min_alignment (operands[0], 8))) && offsettable_memref_p (operands[0])" [(clobber (const_int 0))] { enum machine_mode half_mode; rtx dest1, dest2; /* We can be expanded for DFmode or integral vector modes. */ if (mode == DFmode) half_mode = SFmode; else half_mode = SImode; dest1 = adjust_address (operands[0], half_mode, 0); dest2 = adjust_address (operands[0], half_mode, 4); emit_move_insn_1 (dest1, CONST0_RTX (half_mode)); emit_move_insn_1 (dest2, CONST0_RTX (half_mode)); DONE; }) (define_split [(set (match_operand:V64 0 "register_operand" "") (match_operand:V64 1 "const_zero_operand" ""))] "reload_completed && ! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(clobber (const_int 0))] { enum machine_mode half_mode; rtx set_dest = operands[0]; rtx dest1, dest2; /* We can be expanded for DFmode or integral vector modes. */ if (mode == DFmode) half_mode = SFmode; else half_mode = SImode; dest1 = gen_highpart (half_mode, set_dest); dest2 = gen_lowpart (half_mode, set_dest); emit_move_insn_1 (dest1, CONST0_RTX (half_mode)); emit_move_insn_1 (dest2, CONST0_RTX (half_mode)); DONE; }) (define_expand "movtf" [(set (match_operand:TF 0 "nonimmediate_operand" "") (match_operand:TF 1 "general_operand" ""))] "" { if (sparc_expand_move (TFmode, operands)) DONE; }) (define_insn "*movtf_insn_sp32" [(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,o,U,r") (match_operand:TF 1 "input_operand" "G,oe,GeUr,o,roG"))] "TARGET_FPU && ! TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_or_zero_operand (operands[1], TFmode))" "#" [(set_attr "length" "4")]) ;; Exactly the same as above, except that all `e' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a `e' reg ;; when -mno-fpu. (define_insn "*movtf_insn_sp32_no_fpu" [(set (match_operand:TF 0 "nonimmediate_operand" "=o,U,o,r,o") (match_operand:TF 1 "input_operand" "G,o,U,roG,r"))] "! TARGET_FPU && ! TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_or_zero_operand (operands[1], TFmode))" "#" [(set_attr "length" "4")]) (define_insn "*movtf_insn_sp64" [(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,o,r") (match_operand:TF 1 "input_operand" "G,oe,Ger,roG"))] "TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_or_zero_operand (operands[1], TFmode))" "#" [(set_attr "length" "2")]) (define_insn "*movtf_insn_sp64_hq" [(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,e,m,o,r") (match_operand:TF 1 "input_operand" "G,e,m,e,rG,roG"))] "TARGET_FPU && TARGET_ARCH64 && TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_or_zero_operand (operands[1], TFmode))" "@ # fmovq\t%1, %0 ldq\t%1, %0 stq\t%1, %0 # #" [(set_attr "type" "*,fpmove,fpload,fpstore,*,*") (set_attr "length" "2,*,*,*,2,2")]) (define_insn "*movtf_insn_sp64_no_fpu" [(set (match_operand:TF 0 "nonimmediate_operand" "=r,o") (match_operand:TF 1 "input_operand" "orG,rG"))] "! TARGET_FPU && TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_or_zero_operand (operands[1], TFmode))" "#" [(set_attr "length" "2")]) ;; Now all the splits to handle multi-insn TF mode moves. (define_split [(set (match_operand:TF 0 "register_operand" "") (match_operand:TF 1 "register_operand" ""))] "reload_completed && (! TARGET_ARCH64 || (TARGET_FPU && ! TARGET_HARD_QUAD) || ! fp_register_operand (operands[0], TFmode))" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2; dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); src1 = gen_df_reg (set_src, 0); src2 = gen_df_reg (set_src, 1); /* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_insn (gen_movdf (dest2, src2)); emit_insn (gen_movdf (dest1, src1)); } else { emit_insn (gen_movdf (dest1, src1)); emit_insn (gen_movdf (dest2, src2)); } DONE; }) (define_split [(set (match_operand:TF 0 "nonimmediate_operand" "") (match_operand:TF 1 "const_zero_operand" ""))] "reload_completed" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx dest1, dest2; switch (GET_CODE (set_dest)) { case REG: dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); break; case MEM: dest1 = adjust_address (set_dest, DFmode, 0); dest2 = adjust_address (set_dest, DFmode, 8); break; default: gcc_unreachable (); } emit_insn (gen_movdf (dest1, CONST0_RTX (DFmode))); emit_insn (gen_movdf (dest2, CONST0_RTX (DFmode))); DONE; }) (define_split [(set (match_operand:TF 0 "register_operand" "") (match_operand:TF 1 "memory_operand" ""))] "(reload_completed && offsettable_memref_p (operands[1]) && (! TARGET_ARCH64 || ! TARGET_HARD_QUAD || ! fp_register_operand (operands[0], TFmode)))" [(clobber (const_int 0))] { rtx word0 = adjust_address (operands[1], DFmode, 0); rtx word1 = adjust_address (operands[1], DFmode, 8); rtx set_dest, dest1, dest2; set_dest = operands[0]; dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); /* Now output, ordering such that we don't clobber any registers mentioned in the address. */ if (reg_overlap_mentioned_p (dest1, word1)) { emit_insn (gen_movdf (dest2, word1)); emit_insn (gen_movdf (dest1, word0)); } else { emit_insn (gen_movdf (dest1, word0)); emit_insn (gen_movdf (dest2, word1)); } DONE; }) (define_split [(set (match_operand:TF 0 "memory_operand" "") (match_operand:TF 1 "register_operand" ""))] "(reload_completed && offsettable_memref_p (operands[0]) && (! TARGET_ARCH64 || ! TARGET_HARD_QUAD || ! fp_register_operand (operands[1], TFmode)))" [(clobber (const_int 0))] { rtx set_src = operands[1]; emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 0), gen_df_reg (set_src, 0))); emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 8), gen_df_reg (set_src, 1))); DONE; }) ;; SPARC-V9 conditional move instructions. ;; We can handle larger constants here for some flavors, but for now we keep ;; it simple and only allow those constants supported by all flavors. ;; Note that emit_conditional_move canonicalizes operands 2,3 so that operand ;; 3 contains the constant if one is present, but we handle either for ;; generality (sparc.c puts a constant in operand 2). (define_expand "movqicc" [(set (match_operand:QI 0 "register_operand" "") (if_then_else:QI (match_operand 1 "comparison_operator" "") (match_operand:QI 2 "arith10_operand" "") (match_operand:QI 3 "arith10_operand" "")))] "TARGET_V9" { enum rtx_code code = GET_CODE (operands[1]); if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL; if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movhicc" [(set (match_operand:HI 0 "register_operand" "") (if_then_else:HI (match_operand 1 "comparison_operator" "") (match_operand:HI 2 "arith10_operand" "") (match_operand:HI 3 "arith10_operand" "")))] "TARGET_V9" { enum rtx_code code = GET_CODE (operands[1]); if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL; if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movsicc" [(set (match_operand:SI 0 "register_operand" "") (if_then_else:SI (match_operand 1 "comparison_operator" "") (match_operand:SI 2 "arith10_operand" "") (match_operand:SI 3 "arith10_operand" "")))] "TARGET_V9" { enum rtx_code code = GET_CODE (operands[1]); enum machine_mode op0_mode = GET_MODE (sparc_compare_op0); if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && (TARGET_ARCH64 && op0_mode == DImode && v9_regcmp_p (code))) { operands[1] = gen_rtx_fmt_ee (code, op0_mode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movdicc" [(set (match_operand:DI 0 "register_operand" "") (if_then_else:DI (match_operand 1 "comparison_operator" "") (match_operand:DI 2 "arith10_operand" "") (match_operand:DI 3 "arith10_operand" "")))] "TARGET_ARCH64" { enum rtx_code code = GET_CODE (operands[1]); if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movsfcc" [(set (match_operand:SF 0 "register_operand" "") (if_then_else:SF (match_operand 1 "comparison_operator" "") (match_operand:SF 2 "register_operand" "") (match_operand:SF 3 "register_operand" "")))] "TARGET_V9 && TARGET_FPU" { enum rtx_code code = GET_CODE (operands[1]); if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL; if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movdfcc" [(set (match_operand:DF 0 "register_operand" "") (if_then_else:DF (match_operand 1 "comparison_operator" "") (match_operand:DF 2 "register_operand" "") (match_operand:DF 3 "register_operand" "")))] "TARGET_V9 && TARGET_FPU" { enum rtx_code code = GET_CODE (operands[1]); if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL; if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) (define_expand "movtfcc" [(set (match_operand:TF 0 "register_operand" "") (if_then_else:TF (match_operand 1 "comparison_operator" "") (match_operand:TF 2 "register_operand" "") (match_operand:TF 3 "register_operand" "")))] "TARGET_V9 && TARGET_FPU" { enum rtx_code code = GET_CODE (operands[1]); if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL; if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }) ;; Conditional move define_insns. (define_insn "*movqi_cc_sp64" [(set (match_operand:QI 0 "register_operand" "=r,r") (if_then_else:QI (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:QI 3 "arith11_operand" "rL,0") (match_operand:QI 4 "arith11_operand" "0,rL")))] "TARGET_V9" "@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0" [(set_attr "type" "cmove")]) (define_insn "*movhi_cc_sp64" [(set (match_operand:HI 0 "register_operand" "=r,r") (if_then_else:HI (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:HI 3 "arith11_operand" "rL,0") (match_operand:HI 4 "arith11_operand" "0,rL")))] "TARGET_V9" "@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0" [(set_attr "type" "cmove")]) (define_insn "*movsi_cc_sp64" [(set (match_operand:SI 0 "register_operand" "=r,r") (if_then_else:SI (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:SI 3 "arith11_operand" "rL,0") (match_operand:SI 4 "arith11_operand" "0,rL")))] "TARGET_V9" "@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0" [(set_attr "type" "cmove")]) (define_insn "*movdi_cc_sp64" [(set (match_operand:DI 0 "register_operand" "=r,r") (if_then_else:DI (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:DI 3 "arith11_operand" "rL,0") (match_operand:DI 4 "arith11_operand" "0,rL")))] "TARGET_ARCH64" "@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0" [(set_attr "type" "cmove")]) (define_insn "*movdi_cc_sp64_trunc" [(set (match_operand:SI 0 "register_operand" "=r,r") (if_then_else:SI (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:SI 3 "arith11_operand" "rL,0") (match_operand:SI 4 "arith11_operand" "0,rL")))] "TARGET_ARCH64" "@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0" [(set_attr "type" "cmove")]) (define_insn "*movsf_cc_sp64" [(set (match_operand:SF 0 "register_operand" "=f,f") (if_then_else:SF (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:SF 3 "register_operand" "f,0") (match_operand:SF 4 "register_operand" "0,f")))] "TARGET_V9 && TARGET_FPU" "@ fmovs%C1\t%x2, %3, %0 fmovs%c1\t%x2, %4, %0" [(set_attr "type" "fpcmove")]) (define_insn "movdf_cc_sp64" [(set (match_operand:DF 0 "register_operand" "=e,e") (if_then_else:DF (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:DF 3 "register_operand" "e,0") (match_operand:DF 4 "register_operand" "0,e")))] "TARGET_V9 && TARGET_FPU" "@ fmovd%C1\t%x2, %3, %0 fmovd%c1\t%x2, %4, %0" [(set_attr "type" "fpcmove") (set_attr "fptype" "double")]) (define_insn "*movtf_cc_hq_sp64" [(set (match_operand:TF 0 "register_operand" "=e,e") (if_then_else:TF (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:TF 3 "register_operand" "e,0") (match_operand:TF 4 "register_operand" "0,e")))] "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" "@ fmovq%C1\t%x2, %3, %0 fmovq%c1\t%x2, %4, %0" [(set_attr "type" "fpcmove")]) (define_insn_and_split "*movtf_cc_sp64" [(set (match_operand:TF 0 "register_operand" "=e,e") (if_then_else:TF (match_operator 1 "comparison_operator" [(match_operand 2 "icc_or_fcc_register_operand" "X,X") (const_int 0)]) (match_operand:TF 3 "register_operand" "e,0") (match_operand:TF 4 "register_operand" "0,e")))] "TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD" "#" "&& reload_completed" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx set_srca = operands[3]; rtx set_srcb = operands[4]; int third = rtx_equal_p (set_dest, set_srca); rtx dest1, dest2; rtx srca1, srca2, srcb1, srcb2; dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); srca1 = gen_df_reg (set_srca, 0); srca2 = gen_df_reg (set_srca, 1); srcb1 = gen_df_reg (set_srcb, 0); srcb2 = gen_df_reg (set_srcb, 1); /* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if ((third && reg_overlap_mentioned_p (dest1, srcb2)) || (!third && reg_overlap_mentioned_p (dest1, srca2))) { emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); } else { emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); } DONE; } [(set_attr "length" "2")]) (define_insn "*movqi_cc_reg_sp64" [(set (match_operand:QI 0 "register_operand" "=r,r") (if_then_else:QI (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:QI 3 "arith10_operand" "rM,0") (match_operand:QI 4 "arith10_operand" "0,rM")))] "TARGET_ARCH64" "@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0" [(set_attr "type" "cmove")]) (define_insn "*movhi_cc_reg_sp64" [(set (match_operand:HI 0 "register_operand" "=r,r") (if_then_else:HI (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:HI 3 "arith10_operand" "rM,0") (match_operand:HI 4 "arith10_operand" "0,rM")))] "TARGET_ARCH64" "@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0" [(set_attr "type" "cmove")]) (define_insn "*movsi_cc_reg_sp64" [(set (match_operand:SI 0 "register_operand" "=r,r") (if_then_else:SI (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:SI 3 "arith10_operand" "rM,0") (match_operand:SI 4 "arith10_operand" "0,rM")))] "TARGET_ARCH64" "@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0" [(set_attr "type" "cmove")]) (define_insn "*movdi_cc_reg_sp64" [(set (match_operand:DI 0 "register_operand" "=r,r") (if_then_else:DI (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:DI 3 "arith10_operand" "rM,0") (match_operand:DI 4 "arith10_operand" "0,rM")))] "TARGET_ARCH64" "@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0" [(set_attr "type" "cmove")]) (define_insn "*movsf_cc_reg_sp64" [(set (match_operand:SF 0 "register_operand" "=f,f") (if_then_else:SF (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:SF 3 "register_operand" "f,0") (match_operand:SF 4 "register_operand" "0,f")))] "TARGET_ARCH64 && TARGET_FPU" "@ fmovrs%D1\t%2, %3, %0 fmovrs%d1\t%2, %4, %0" [(set_attr "type" "fpcrmove")]) (define_insn "movdf_cc_reg_sp64" [(set (match_operand:DF 0 "register_operand" "=e,e") (if_then_else:DF (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:DF 3 "register_operand" "e,0") (match_operand:DF 4 "register_operand" "0,e")))] "TARGET_ARCH64 && TARGET_FPU" "@ fmovrd%D1\t%2, %3, %0 fmovrd%d1\t%2, %4, %0" [(set_attr "type" "fpcrmove") (set_attr "fptype" "double")]) (define_insn "*movtf_cc_reg_hq_sp64" [(set (match_operand:TF 0 "register_operand" "=e,e") (if_then_else:TF (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:TF 3 "register_operand" "e,0") (match_operand:TF 4 "register_operand" "0,e")))] "TARGET_ARCH64 && TARGET_FPU && TARGET_HARD_QUAD" "@ fmovrq%D1\t%2, %3, %0 fmovrq%d1\t%2, %4, %0" [(set_attr "type" "fpcrmove")]) (define_insn_and_split "*movtf_cc_reg_sp64" [(set (match_operand:TF 0 "register_operand" "=e,e") (if_then_else:TF (match_operator 1 "v9_register_compare_operator" [(match_operand:DI 2 "register_operand" "r,r") (const_int 0)]) (match_operand:TF 3 "register_operand" "e,0") (match_operand:TF 4 "register_operand" "0,e")))] "TARGET_ARCH64 && TARGET_FPU && ! TARGET_HARD_QUAD" "#" "&& reload_completed" [(clobber (const_int 0))] { rtx set_dest = operands[0]; rtx set_srca = operands[3]; rtx set_srcb = operands[4]; int third = rtx_equal_p (set_dest, set_srca); rtx dest1, dest2; rtx srca1, srca2, srcb1, srcb2; dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); srca1 = gen_df_reg (set_srca, 0); srca2 = gen_df_reg (set_srca, 1); srcb1 = gen_df_reg (set_srcb, 0); srcb2 = gen_df_reg (set_srcb, 1); /* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if ((third && reg_overlap_mentioned_p (dest1, srcb2)) || (!third && reg_overlap_mentioned_p (dest1, srca2))) { emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); } else { emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); } DONE; } [(set_attr "length" "2")]) ;; Zero-extension instructions ;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the ldu[hb] insns. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] "" { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = GEN_INT (16); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_16)); emit_insn (gen_lshrsi3 (operand0, temp, shift_16)); DONE; }) (define_insn "*zero_extendhisi2_insn" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))] "" "lduh\t%1, %0" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] "" "") (define_insn "*zero_extendqihi2_insn" [(set (match_operand:HI 0 "register_operand" "=r,r") (zero_extend:HI (match_operand:QI 1 "input_operand" "r,m")))] "GET_CODE (operands[1]) != CONST_INT" "@ and\t%1, 0xff, %0 ldub\t%1, %0" [(set_attr "type" "*,load") (set_attr "us3load_type" "*,3cycle")]) (define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] "" "") (define_insn "*zero_extendqisi2_insn" [(set (match_operand:SI 0 "register_operand" "=r,r") (zero_extend:SI (match_operand:QI 1 "input_operand" "r,m")))] "GET_CODE (operands[1]) != CONST_INT" "@ and\t%1, 0xff, %0 ldub\t%1, %0" [(set_attr "type" "*,load") (set_attr "us3load_type" "*,3cycle")]) (define_expand "zero_extendqidi2" [(set (match_operand:DI 0 "register_operand" "") (zero_extend:DI (match_operand:QI 1 "register_operand" "")))] "TARGET_ARCH64" "") (define_insn "*zero_extendqidi2_insn" [(set (match_operand:DI 0 "register_operand" "=r,r") (zero_extend:DI (match_operand:QI 1 "input_operand" "r,m")))] "TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT" "@ and\t%1, 0xff, %0 ldub\t%1, %0" [(set_attr "type" "*,load") (set_attr "us3load_type" "*,3cycle")]) (define_expand "zero_extendhidi2" [(set (match_operand:DI 0 "register_operand" "") (zero_extend:DI (match_operand:HI 1 "register_operand" "")))] "TARGET_ARCH64" { rtx temp = gen_reg_rtx (DImode); rtx shift_48 = GEN_INT (48); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_48)); emit_insn (gen_lshrdi3 (operand0, temp, shift_48)); DONE; }) (define_insn "*zero_extendhidi2_insn" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (match_operand:HI 1 "memory_operand" "m")))] "TARGET_ARCH64" "lduh\t%1, %0" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) ;; ??? Write truncdisi pattern using sra? (define_expand "zero_extendsidi2" [(set (match_operand:DI 0 "register_operand" "") (zero_extend:DI (match_operand:SI 1 "register_operand" "")))] "" "") (define_insn "*zero_extendsidi2_insn_sp64" [(set (match_operand:DI 0 "register_operand" "=r,r") (zero_extend:DI (match_operand:SI 1 "input_operand" "r,m")))] "TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT" "@ srl\t%1, 0, %0 lduw\t%1, %0" [(set_attr "type" "shift,load")]) (define_insn_and_split "*zero_extendsidi2_insn_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (match_operand:SI 1 "register_operand" "r")))] "! TARGET_ARCH64" "#" "&& reload_completed" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] { rtx dest1, dest2; dest1 = gen_highpart (SImode, operands[0]); dest2 = gen_lowpart (SImode, operands[0]); /* Swap the order in case of overlap. */ if (REGNO (dest1) == REGNO (operands[1])) { operands[2] = dest2; operands[3] = operands[1]; operands[4] = dest1; operands[5] = const0_rtx; } else { operands[2] = dest1; operands[3] = const0_rtx; operands[4] = dest2; operands[5] = operands[1]; } } [(set_attr "length" "2")]) ;; Simplify comparisons of extended values. (define_insn "*cmp_zero_extendqisi2" [(set (reg:CC 100) (compare:CC (zero_extend:SI (match_operand:QI 0 "register_operand" "r")) (const_int 0)))] "" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_qi" [(set (reg:CC 100) (compare:CC (match_operand:QI 0 "register_operand" "r") (const_int 0)))] "" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extendqisi2_set" [(set (reg:CC 100) (compare:CC (zero_extend:SI (match_operand:QI 1 "register_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extendqisi2_andcc_set" [(set (reg:CC 100) (compare:CC (and:SI (match_operand:SI 1 "register_operand" "r") (const_int 255)) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (subreg:QI (match_dup 1) 0)))] "" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extendqidi2" [(set (reg:CCX 100) (compare:CCX (zero_extend:DI (match_operand:QI 0 "register_operand" "r")) (const_int 0)))] "TARGET_ARCH64" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_qi_sp64" [(set (reg:CCX 100) (compare:CCX (match_operand:QI 0 "register_operand" "r") (const_int 0)))] "TARGET_ARCH64" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extendqidi2_set" [(set (reg:CCX 100) (compare:CCX (zero_extend:DI (match_operand:QI 1 "register_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_ARCH64" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extendqidi2_andcc_set" [(set (reg:CCX 100) (compare:CCX (and:DI (match_operand:DI 1 "register_operand" "r") (const_int 255)) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (subreg:QI (match_dup 1) 0)))] "TARGET_ARCH64" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) ;; Similarly, handle {SI,DI}->QI mode truncation followed by a compare. (define_insn "*cmp_siqi_trunc" [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:SI 0 "register_operand" "r") 3) (const_int 0)))] "" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_siqi_trunc_set" [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:SI 1 "register_operand" "r") 3) (const_int 0))) (set (match_operand:QI 0 "register_operand" "=r") (subreg:QI (match_dup 1) 3))] "" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_diqi_trunc" [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:DI 0 "register_operand" "r") 7) (const_int 0)))] "TARGET_ARCH64" "andcc\t%0, 0xff, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_diqi_trunc_set" [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:DI 1 "register_operand" "r") 7) (const_int 0))) (set (match_operand:QI 0 "register_operand" "=r") (subreg:QI (match_dup 1) 7))] "TARGET_ARCH64" "andcc\t%1, 0xff, %0" [(set_attr "type" "compare")]) ;; Sign-extension instructions ;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lds[hb] insns. (define_expand "extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] "" { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = GEN_INT (16); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_16)); emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); DONE; }) (define_insn "*sign_extendhisi2_insn" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))] "" "ldsh\t%1, %0" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_expand "extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (sign_extend:HI (match_operand:QI 1 "register_operand" "")))] "" { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subbyte = 0; int op0_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); } if (GET_CODE (operand0) == SUBREG) { op0_subbyte = SUBREG_BYTE (operand0); op0_subbyte /= GET_MODE_SIZE (SImode); op0_subbyte *= GET_MODE_SIZE (SImode); operand0 = XEXP (operand0, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_24)); if (GET_MODE (operand0) != SImode) operand0 = gen_rtx_SUBREG (SImode, operand0, op0_subbyte); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }) (define_insn "*sign_extendqihi2_insn" [(set (match_operand:HI 0 "register_operand" "=r") (sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))] "" "ldsb\t%1, %0" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_expand "extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:QI 1 "register_operand" "")))] "" { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_24)); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }) (define_insn "*sign_extendqisi2_insn" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))] "" "ldsb\t%1, %0" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_expand "extendqidi2" [(set (match_operand:DI 0 "register_operand" "") (sign_extend:DI (match_operand:QI 1 "register_operand" "")))] "TARGET_ARCH64" { rtx temp = gen_reg_rtx (DImode); rtx shift_56 = GEN_INT (56); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_56)); emit_insn (gen_ashrdi3 (operand0, temp, shift_56)); DONE; }) (define_insn "*sign_extendqidi2_insn" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (match_operand:QI 1 "memory_operand" "m")))] "TARGET_ARCH64" "ldsb\t%1, %0" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_expand "extendhidi2" [(set (match_operand:DI 0 "register_operand" "") (sign_extend:DI (match_operand:HI 1 "register_operand" "")))] "TARGET_ARCH64" { rtx temp = gen_reg_rtx (DImode); rtx shift_48 = GEN_INT (48); int op1_subbyte = 0; if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_48)); emit_insn (gen_ashrdi3 (operand0, temp, shift_48)); DONE; }) (define_insn "*sign_extendhidi2_insn" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (match_operand:HI 1 "memory_operand" "m")))] "TARGET_ARCH64" "ldsh\t%1, %0" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_expand "extendsidi2" [(set (match_operand:DI 0 "register_operand" "") (sign_extend:DI (match_operand:SI 1 "register_operand" "")))] "TARGET_ARCH64" "") (define_insn "*sign_extendsidi2_insn" [(set (match_operand:DI 0 "register_operand" "=r,r") (sign_extend:DI (match_operand:SI 1 "input_operand" "r,m")))] "TARGET_ARCH64" "@ sra\t%1, 0, %0 ldsw\t%1, %0" [(set_attr "type" "shift,sload") (set_attr "us3load_type" "*,3cycle")]) ;; Special pattern for optimizing bit-field compares. This is needed ;; because combine uses this as a canonical form. (define_insn "*cmp_zero_extract" [(set (reg:CC 100) (compare:CC (zero_extract:SI (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "small_int_operand" "I") (match_operand:SI 2 "small_int_operand" "I")) (const_int 0)))] "INTVAL (operands[2]) > 19" { int len = INTVAL (operands[1]); int pos = 32 - INTVAL (operands[2]) - len; HOST_WIDE_INT mask = ((1 << len) - 1) << pos; operands[1] = GEN_INT (mask); return "andcc\t%0, %1, %%g0"; } [(set_attr "type" "compare")]) (define_insn "*cmp_zero_extract_sp64" [(set (reg:CCX 100) (compare:CCX (zero_extract:DI (match_operand:DI 0 "register_operand" "r") (match_operand:SI 1 "small_int_operand" "I") (match_operand:SI 2 "small_int_operand" "I")) (const_int 0)))] "TARGET_ARCH64 && INTVAL (operands[2]) > 51" { int len = INTVAL (operands[1]); int pos = 64 - INTVAL (operands[2]) - len; HOST_WIDE_INT mask = (((unsigned HOST_WIDE_INT) 1 << len) - 1) << pos; operands[1] = GEN_INT (mask); return "andcc\t%0, %1, %%g0"; } [(set_attr "type" "compare")]) ;; Conversions between float, double and long double. (define_insn "extendsfdf2" [(set (match_operand:DF 0 "register_operand" "=e") (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fstod\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "extendsftf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (float_extend:TF (match_operand:SF 1 "register_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") (define_insn "*extendsftf2_hq" [(set (match_operand:TF 0 "register_operand" "=e") (float_extend:TF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU && TARGET_HARD_QUAD" "fstoq\t%1, %0" [(set_attr "type" "fp")]) (define_expand "extenddftf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (float_extend:TF (match_operand:DF 1 "register_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") (define_insn "*extenddftf2_hq" [(set (match_operand:TF 0 "register_operand" "=e") (float_extend:TF (match_operand:DF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fdtoq\t%1, %0" [(set_attr "type" "fp")]) (define_insn "truncdfsf2" [(set (match_operand:SF 0 "register_operand" "=f") (float_truncate:SF (match_operand:DF 1 "register_operand" "e")))] "TARGET_FPU" "fdtos\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "trunctfsf2" [(set (match_operand:SF 0 "register_operand" "") (float_truncate:SF (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") (define_insn "*trunctfsf2_hq" [(set (match_operand:SF 0 "register_operand" "=f") (float_truncate:SF (match_operand:TF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fqtos\t%1, %0" [(set_attr "type" "fp")]) (define_expand "trunctfdf2" [(set (match_operand:DF 0 "register_operand" "") (float_truncate:DF (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") (define_insn "*trunctfdf2_hq" [(set (match_operand:DF 0 "register_operand" "=e") (float_truncate:DF (match_operand:TF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fqtod\t%1, %0" [(set_attr "type" "fp")]) ;; Conversion between fixed point and floating point. (define_insn "floatsisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU" "fitos\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_insn "floatsidf2" [(set (match_operand:DF 0 "register_operand" "=e") (float:DF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU" "fitod\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "floatsitf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (float:TF (match_operand:SI 1 "register_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT, operands); DONE;") (define_insn "*floatsitf2_hq" [(set (match_operand:TF 0 "register_operand" "=e") (float:TF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU && TARGET_HARD_QUAD" "fitoq\t%1, %0" [(set_attr "type" "fp")]) (define_expand "floatunssitf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (unsigned_float:TF (match_operand:SI 1 "register_operand" "")))] "TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD" "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") ;; Now the same for 64 bit sources. (define_insn "floatdisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:DI 1 "register_operand" "e")))] "TARGET_V9 && TARGET_FPU" "fxtos\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "floatunsdisf2" [(use (match_operand:SF 0 "register_operand" "")) (use (match_operand:DI 1 "general_operand" ""))] "TARGET_ARCH64 && TARGET_FPU" "sparc_emit_floatunsdi (operands, SFmode); DONE;") (define_insn "floatdidf2" [(set (match_operand:DF 0 "register_operand" "=e") (float:DF (match_operand:DI 1 "register_operand" "e")))] "TARGET_V9 && TARGET_FPU" "fxtod\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "floatunsdidf2" [(use (match_operand:DF 0 "register_operand" "")) (use (match_operand:DI 1 "general_operand" ""))] "TARGET_ARCH64 && TARGET_FPU" "sparc_emit_floatunsdi (operands, DFmode); DONE;") (define_expand "floatditf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (float:TF (match_operand:DI 1 "register_operand" "")))] "TARGET_FPU && TARGET_V9 && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FLOAT, operands); DONE;") (define_insn "*floatditf2_hq" [(set (match_operand:TF 0 "register_operand" "=e") (float:TF (match_operand:DI 1 "register_operand" "e")))] "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" "fxtoq\t%1, %0" [(set_attr "type" "fp")]) (define_expand "floatunsditf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (unsigned_float:TF (match_operand:DI 1 "register_operand" "")))] "TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD" "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") ;; Convert a float to an actual integer. ;; Truncation is performed as part of the conversion. (define_insn "fix_truncsfsi2" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_FPU" "fstoi\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_insn "fix_truncdfsi2" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] "TARGET_FPU" "fdtoi\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "fix_trunctfsi2" [(set (match_operand:SI 0 "register_operand" "") (fix:SI (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FIX, operands); DONE;") (define_insn "*fix_trunctfsi2_hq" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (match_operand:TF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fqtoi\t%1, %0" [(set_attr "type" "fp")]) (define_expand "fixuns_trunctfsi2" [(set (match_operand:SI 0 "register_operand" "") (unsigned_fix:SI (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD" "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") ;; Now the same, for V9 targets (define_insn "fix_truncsfdi2" [(set (match_operand:DI 0 "register_operand" "=e") (fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_V9 && TARGET_FPU" "fstox\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "fixuns_truncsfdi2" [(use (match_operand:DI 0 "register_operand" "")) (use (match_operand:SF 1 "general_operand" ""))] "TARGET_ARCH64 && TARGET_FPU" "sparc_emit_fixunsdi (operands, SFmode); DONE;") (define_insn "fix_truncdfdi2" [(set (match_operand:DI 0 "register_operand" "=e") (fix:DI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] "TARGET_V9 && TARGET_FPU" "fdtox\t%1, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_expand "fixuns_truncdfdi2" [(use (match_operand:DI 0 "register_operand" "")) (use (match_operand:DF 1 "general_operand" ""))] "TARGET_ARCH64 && TARGET_FPU" "sparc_emit_fixunsdi (operands, DFmode); DONE;") (define_expand "fix_trunctfdi2" [(set (match_operand:DI 0 "register_operand" "") (fix:DI (match_operand:TF 1 "general_operand" "")))] "TARGET_V9 && TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_cvt (FIX, operands); DONE;") (define_insn "*fix_trunctfdi2_hq" [(set (match_operand:DI 0 "register_operand" "=e") (fix:DI (match_operand:TF 1 "register_operand" "e")))] "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" "fqtox\t%1, %0" [(set_attr "type" "fp")]) (define_expand "fixuns_trunctfdi2" [(set (match_operand:DI 0 "register_operand" "") (unsigned_fix:DI (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD" "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") ;; Integer addition/subtraction instructions. (define_expand "adddi3" [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "arith_double_add_operand" "")))] "" { if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_PLUS (DImode, operands[1], operands[2])), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } }) (define_insn_and_split "adddi3_insn_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "arith_double_operand" "%r") (match_operand:DI 2 "arith_double_operand" "rHI"))) (clobber (reg:CC 100))] "! TARGET_ARCH64" "#" "&& reload_completed" [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_dup 4) (match_dup 5)) (const_int 0))) (set (match_dup 3) (plus:SI (match_dup 4) (match_dup 5)))]) (set (match_dup 6) (plus:SI (plus:SI (match_dup 7) (match_dup 8)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] { operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_lowpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[2]); operands[6] = gen_highpart (SImode, operands[0]); operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); } [(set_attr "length" "2")]) ;; LTU here means "carry set" (define_insn "addx" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "" "addx\t%1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn_and_split "*addx_extend_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "! TARGET_ARCH64" "#" "&& reload_completed" [(set (match_dup 3) (plus:SI (plus:SI (match_dup 1) (match_dup 2)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))) (set (match_dup 4) (const_int 0))] "operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_highpart_mode (SImode, DImode, operands[1]);" [(set_attr "length" "2")]) (define_insn "*addx_extend_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "TARGET_ARCH64" "addx\t%r1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn_and_split "" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "register_operand" "r"))) (clobber (reg:CC 100))] "! TARGET_ARCH64" "#" "&& reload_completed" [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_dup 3) (match_dup 1)) (const_int 0))) (set (match_dup 5) (plus:SI (match_dup 3) (match_dup 1)))]) (set (match_dup 6) (plus:SI (plus:SI (match_dup 4) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "operands[3] = gen_lowpart (SImode, operands[2]); operands[4] = gen_highpart (SImode, operands[2]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[0]);" [(set_attr "length" "2")]) (define_insn "*adddi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r,r") (plus:DI (match_operand:DI 1 "register_operand" "%r,r") (match_operand:DI 2 "arith_add_operand" "rI,O")))] "TARGET_ARCH64" "@ add\t%1, %2, %0 sub\t%1, -%2, %0") (define_insn "addsi3" [(set (match_operand:SI 0 "register_operand" "=r,r,d") (plus:SI (match_operand:SI 1 "register_operand" "%r,r,d") (match_operand:SI 2 "arith_add_operand" "rI,O,d")))] "" "@ add\t%1, %2, %0 sub\t%1, -%2, %0 fpadd32s\t%1, %2, %0" [(set_attr "type" "*,*,fga") (set_attr "fptype" "*,*,single")]) (define_insn "*cmp_cc_plus" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_operand:SI 0 "arith_operand" "%r") (match_operand:SI 1 "arith_operand" "rI")) (const_int 0)))] "" "addcc\t%0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_plus" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (plus:DI (match_operand:DI 0 "arith_operand" "%r") (match_operand:DI 1 "arith_operand" "rI")) (const_int 0)))] "TARGET_ARCH64" "addcc\t%0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_plus_set" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_dup 1) (match_dup 2)))] "" "addcc\t%1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_plus_set" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (plus:DI (match_operand:DI 1 "arith_operand" "%r") (match_operand:DI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_ARCH64" "addcc\t%1, %2, %0" [(set_attr "type" "compare")]) (define_expand "subdi3" [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "arith_double_add_operand" "")))] "" { if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_MINUS (DImode, operands[1], operands[2])), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } }) (define_insn_and_split "subdi3_insn_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (minus:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith_double_operand" "rHI"))) (clobber (reg:CC 100))] "! TARGET_ARCH64" "#" "&& reload_completed" [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_dup 4) (match_dup 5)) (const_int 0))) (set (match_dup 3) (minus:SI (match_dup 4) (match_dup 5)))]) (set (match_dup 6) (minus:SI (minus:SI (match_dup 7) (match_dup 8)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] { operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_lowpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[2]); operands[6] = gen_highpart (SImode, operands[0]); operands[7] = gen_highpart (SImode, operands[1]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); } [(set_attr "length" "2")]) ;; LTU here means "carry set" (define_insn "subx" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "" "subx\t%r1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn "*subx_extend_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "TARGET_ARCH64" "subx\t%r1, %2, %0" [(set_attr "type" "ialuX")]) (define_insn_and_split "*subx_extend" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "! TARGET_ARCH64" "#" "&& reload_completed" [(set (match_dup 3) (minus:SI (minus:SI (match_dup 1) (match_dup 2)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))) (set (match_dup 4) (const_int 0))] "operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[0]);" [(set_attr "length" "2")]) (define_insn_and_split "" [(set (match_operand:DI 0 "register_operand" "=r") (minus:DI (match_operand:DI 1 "register_operand" "r") (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))) (clobber (reg:CC 100))] "! TARGET_ARCH64" "#" "&& reload_completed" [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_dup 3) (match_dup 2)) (const_int 0))) (set (match_dup 5) (minus:SI (match_dup 3) (match_dup 2)))]) (set (match_dup 6) (minus:SI (minus:SI (match_dup 4) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "operands[3] = gen_lowpart (SImode, operands[1]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[0]);" [(set_attr "length" "2")]) (define_insn "*subdi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r,r") (minus:DI (match_operand:DI 1 "register_operand" "r,r") (match_operand:DI 2 "arith_add_operand" "rI,O")))] "TARGET_ARCH64" "@ sub\t%1, %2, %0 add\t%1, -%2, %0") (define_insn "subsi3" [(set (match_operand:SI 0 "register_operand" "=r,r,d") (minus:SI (match_operand:SI 1 "register_operand" "r,r,d") (match_operand:SI 2 "arith_add_operand" "rI,O,d")))] "" "@ sub\t%1, %2, %0 add\t%1, -%2, %0 fpsub32s\t%1, %2, %0" [(set_attr "type" "*,*,fga") (set_attr "fptype" "*,*,single")]) (define_insn "*cmp_minus_cc" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ") (match_operand:SI 1 "arith_operand" "rI")) (const_int 0)))] "" "subcc\t%r0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_minus_ccx" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (minus:DI (match_operand:DI 0 "register_operand" "r") (match_operand:DI 1 "arith_operand" "rI")) (const_int 0)))] "TARGET_ARCH64" "subcc\t%0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "cmp_minus_cc_set" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "" "subcc\t%r1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_minus_ccx_set" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (minus:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (minus:DI (match_dup 1) (match_dup 2)))] "TARGET_ARCH64" "subcc\t%1, %2, %0" [(set_attr "type" "compare")]) ;; Integer multiply/divide instructions. ;; The 32 bit multiply/divide instructions are deprecated on v9, but at ;; least in UltraSPARC I, II and IIi it is a win tick-wise. (define_insn "mulsi3" [(set (match_operand:SI 0 "register_operand" "=r") (mult:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_HARD_MUL" "smul\t%1, %2, %0" [(set_attr "type" "imul")]) (define_expand "muldi3" [(set (match_operand:DI 0 "register_operand" "") (mult:DI (match_operand:DI 1 "arith_operand" "") (match_operand:DI 2 "arith_operand" "")))] "TARGET_ARCH64 || TARGET_V8PLUS" { if (TARGET_V8PLUS) { emit_insn (gen_muldi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) (define_insn "*muldi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (match_operand:DI 1 "arith_operand" "%r") (match_operand:DI 2 "arith_operand" "rI")))] "TARGET_ARCH64" "mulx\t%1, %2, %0" [(set_attr "type" "imul")]) ;; V8plus wide multiply. ;; XXX (define_insn "muldi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=r,h") (mult:DI (match_operand:DI 1 "arith_operand" "%r,0") (match_operand:DI 2 "arith_operand" "rI,rI"))) (clobber (match_scratch:SI 3 "=&h,X")) (clobber (match_scratch:SI 4 "=&h,X"))] "TARGET_V8PLUS" { if (sparc_check_64 (operands[1], insn) <= 0) output_asm_insn ("srl\t%L1, 0, %L1", operands); if (which_alternative == 1) output_asm_insn ("sllx\t%H1, 32, %H1", operands); if (GET_CODE (operands[2]) == CONST_INT) { if (which_alternative == 1) return "or\t%L1, %H1, %H1\n\tmulx\t%H1, %2, %L0\;srlx\t%L0, 32, %H0"; else return "sllx\t%H1, 32, %3\n\tor\t%L1, %3, %3\n\tmulx\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"; } else if (rtx_equal_p (operands[1], operands[2])) { if (which_alternative == 1) return "or\t%L1, %H1, %H1\n\tmulx\t%H1, %H1, %L0\;srlx\t%L0, 32, %H0"; else return "sllx\t%H1, 32, %3\n\tor\t%L1, %3, %3\n\tmulx\t%3, %3, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"; } if (sparc_check_64 (operands[2], insn) <= 0) output_asm_insn ("srl\t%L2, 0, %L2", operands); if (which_alternative == 1) return "or\t%L1, %H1, %H1\n\tsllx\t%H2, 32, %L1\n\tor\t%L2, %L1, %L1\n\tmulx\t%H1, %L1, %L0\;srlx\t%L0, 32, %H0"; else return "sllx\t%H1, 32, %3\n\tsllx\t%H2, 32, %4\n\tor\t%L1, %3, %3\n\tor\t%L2, %4, %4\n\tmulx\t%3, %4, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"; } [(set_attr "type" "multi") (set_attr "length" "9,8")]) (define_insn "*cmp_mul_set" [(set (reg:CC 100) (compare:CC (mult:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (mult:SI (match_dup 1) (match_dup 2)))] "TARGET_V8 || TARGET_SPARCLITE || TARGET_DEPRECATED_V8_INSNS" "smulcc\t%1, %2, %0" [(set_attr "type" "imul")]) (define_expand "mulsidi3" [(set (match_operand:DI 0 "register_operand" "") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))))] "TARGET_HARD_MUL" { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) emit_insn (gen_const_mulsidi3_v8plus (operands[0], operands[1], operands[2])); else if (TARGET_ARCH32) emit_insn (gen_const_mulsidi3_sp32 (operands[0], operands[1], operands[2])); else emit_insn (gen_const_mulsidi3_sp64 (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_mulsidi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) ;; V9 puts the 64 bit product in a 64 bit register. Only out or global ;; registers can hold 64 bit values in the V8plus environment. ;; XXX (define_insn "mulsidi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=h,r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) (clobber (match_scratch:SI 3 "=X,&h"))] "TARGET_V8PLUS" "@ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" [(set_attr "type" "multi") (set_attr "length" "2,3")]) ;; XXX (define_insn "const_mulsidi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=h,r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (match_operand:DI 2 "small_int_operand" "I,I"))) (clobber (match_scratch:SI 3 "=X,&h"))] "TARGET_V8PLUS" "@ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" [(set_attr "type" "multi") (set_attr "length" "2,3")]) ;; XXX (define_insn "*mulsidi3_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_HARD_MUL32" { return TARGET_SPARCLET ? "smuld\t%1, %2, %L0" : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; } [(set (attr "type") (if_then_else (eq_attr "isa" "sparclet") (const_string "imul") (const_string "multi"))) (set (attr "length") (if_then_else (eq_attr "isa" "sparclet") (const_int 1) (const_int 2)))]) (define_insn "*mulsidi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "smul\t%1, %2, %0" [(set_attr "type" "imul")]) ;; Extra pattern, because sign_extend of a constant isn't valid. ;; XXX (define_insn "const_mulsidi3_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "small_int_operand" "I")))] "TARGET_HARD_MUL32" { return TARGET_SPARCLET ? "smuld\t%1, %2, %L0" : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; } [(set (attr "type") (if_then_else (eq_attr "isa" "sparclet") (const_string "imul") (const_string "multi"))) (set (attr "length") (if_then_else (eq_attr "isa" "sparclet") (const_int 1) (const_int 2)))]) (define_insn "const_mulsidi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "small_int_operand" "I")))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "smul\t%1, %2, %0" [(set_attr "type" "imul")]) (define_expand "smulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))) (const_int 32))))] "TARGET_HARD_MUL && TARGET_ARCH32" { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) { emit_insn (gen_const_smulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } emit_insn (gen_const_smulsi3_highpart (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_smulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } }) ;; XXX (define_insn "smulsi3_highpart_v8plus" [(set (match_operand:SI 0 "register_operand" "=h,r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) (match_operand:SI 3 "small_int_operand" "I,I")))) (clobber (match_scratch:SI 4 "=X,&h"))] "TARGET_V8PLUS" "@ smul\t%1, %2, %0\;srlx\t%0, %3, %0 smul\t%1, %2, %4\;srlx\t%4, %3, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; The combiner changes TRUNCATE in the previous pattern to SUBREG. ;; XXX (define_insn "" [(set (match_operand:SI 0 "register_operand" "=h,r") (subreg:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) (match_operand:SI 3 "small_int_operand" "I,I")) 4)) (clobber (match_scratch:SI 4 "=X,&h"))] "TARGET_V8PLUS" "@ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "const_smulsi3_highpart_v8plus" [(set (match_operand:SI 0 "register_operand" "=h,r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (match_operand:DI 2 "small_int_operand" "I,I")) (match_operand:SI 3 "small_int_operand" "I,I")))) (clobber (match_scratch:SI 4 "=X,&h"))] "TARGET_V8PLUS" "@ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "*smulsi3_highpart_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) (const_int 32))))] "TARGET_HARD_MUL32" "smul\t%1, %2, %%g0\n\trd\t%%y, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "const_smulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "small_int_operand" "i")) (const_int 32))))] "TARGET_HARD_MUL32" "smul\t%1, %2, %%g0\n\trd\t%%y, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) (define_expand "umulsidi3" [(set (match_operand:DI 0 "register_operand" "") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))))] "TARGET_HARD_MUL" { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) emit_insn (gen_const_umulsidi3_v8plus (operands[0], operands[1], operands[2])); else if (TARGET_ARCH32) emit_insn (gen_const_umulsidi3_sp32 (operands[0], operands[1], operands[2])); else emit_insn (gen_const_umulsidi3_sp64 (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_umulsidi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) ;; XXX (define_insn "umulsidi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=h,r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) (clobber (match_scratch:SI 3 "=X,&h"))] "TARGET_V8PLUS" "@ umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" [(set_attr "type" "multi") (set_attr "length" "2,3")]) ;; XXX (define_insn "*umulsidi3_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_HARD_MUL32" { return TARGET_SPARCLET ? "umuld\t%1, %2, %L0" : "umul\t%1, %2, %L0\n\trd\t%%y, %H0"; } [(set (attr "type") (if_then_else (eq_attr "isa" "sparclet") (const_string "imul") (const_string "multi"))) (set (attr "length") (if_then_else (eq_attr "isa" "sparclet") (const_int 1) (const_int 2)))]) (define_insn "*umulsidi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "umul\t%1, %2, %0" [(set_attr "type" "imul")]) ;; Extra pattern, because sign_extend of a constant isn't valid. ;; XXX (define_insn "const_umulsidi3_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "uns_small_int_operand" "")))] "TARGET_HARD_MUL32" { return TARGET_SPARCLET ? "umuld\t%1, %s2, %L0" : "umul\t%1, %s2, %L0\n\trd\t%%y, %H0"; } [(set (attr "type") (if_then_else (eq_attr "isa" "sparclet") (const_string "imul") (const_string "multi"))) (set (attr "length") (if_then_else (eq_attr "isa" "sparclet") (const_int 1) (const_int 2)))]) (define_insn "const_umulsidi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "uns_small_int_operand" "")))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "umul\t%1, %s2, %0" [(set_attr "type" "imul")]) ;; XXX (define_insn "const_umulsidi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=h,r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (match_operand:DI 2 "uns_small_int_operand" ""))) (clobber (match_scratch:SI 3 "=X,h"))] "TARGET_V8PLUS" "@ umul\t%1, %s2, %L0\n\tsrlx\t%L0, 32, %H0 umul\t%1, %s2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" [(set_attr "type" "multi") (set_attr "length" "2,3")]) (define_expand "umulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))) (const_int 32))))] "TARGET_HARD_MUL && TARGET_ARCH32" { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) { emit_insn (gen_const_umulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } emit_insn (gen_const_umulsi3_highpart (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_umulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } }) ;; XXX (define_insn "umulsi3_highpart_v8plus" [(set (match_operand:SI 0 "register_operand" "=h,r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) (match_operand:SI 3 "small_int_operand" "I,I")))) (clobber (match_scratch:SI 4 "=X,h"))] "TARGET_V8PLUS" "@ umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "const_umulsi3_highpart_v8plus" [(set (match_operand:SI 0 "register_operand" "=h,r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) (match_operand:DI 2 "uns_small_int_operand" "")) (match_operand:SI 3 "small_int_operand" "I,I")))) (clobber (match_scratch:SI 4 "=X,h"))] "TARGET_V8PLUS" "@ umul\t%1, %s2, %0\n\tsrlx\t%0, %3, %0 umul\t%1, %s2, %4\n\tsrlx\t%4, %3, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "*umulsi3_highpart_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) (const_int 32))))] "TARGET_HARD_MUL32" "umul\t%1, %2, %%g0\n\trd\t%%y, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; XXX (define_insn "const_umulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:DI 2 "uns_small_int_operand" "")) (const_int 32))))] "TARGET_HARD_MUL32" "umul\t%1, %s2, %%g0\n\trd\t%%y, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) ;; The V8 architecture specifies that there must be 3 instructions between ;; a Y register write and a use of it for correct results. (define_expand "divsi3" [(parallel [(set (match_operand:SI 0 "register_operand" "=r,r") (div:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "input_operand" "rI,m"))) (clobber (match_scratch:SI 3 "=&r,&r"))])] "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" { if (TARGET_ARCH64) { operands[3] = gen_reg_rtx(SImode); emit_insn (gen_ashrsi3 (operands[3], operands[1], GEN_INT (31))); emit_insn (gen_divsi3_sp64 (operands[0], operands[1], operands[2], operands[3])); DONE; } }) (define_insn "divsi3_sp32" [(set (match_operand:SI 0 "register_operand" "=r,r") (div:SI (match_operand:SI 1 "register_operand" "r,r") (match_operand:SI 2 "input_operand" "rI,m"))) (clobber (match_scratch:SI 3 "=&r,&r"))] "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" { if (which_alternative == 0) if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdiv\t%1, %2, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdiv\t%1, %2, %0"; else if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tsdiv\t%1, %3, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; } [(set_attr "type" "multi") (set (attr "length") (if_then_else (eq_attr "isa" "v9") (const_int 4) (const_int 6)))]) (define_insn "divsi3_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "input_operand" "rI"))) (use (match_operand:SI 3 "register_operand" "r"))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "wr\t%%g0, %3, %%y\n\tsdiv\t%1, %2, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) (define_insn "divdi3" [(set (match_operand:DI 0 "register_operand" "=r") (div:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith_operand" "rI")))] "TARGET_ARCH64" "sdivx\t%1, %2, %0" [(set_attr "type" "idiv")]) (define_insn "*cmp_sdiv_cc_set" [(set (reg:CC 100) (compare:CC (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (div:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" { if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdivcc\t%1, %2, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdivcc\t%1, %2, %0"; } [(set_attr "type" "multi") (set (attr "length") (if_then_else (eq_attr "isa" "v9") (const_int 3) (const_int 6)))]) ;; XXX (define_expand "udivsi3" [(set (match_operand:SI 0 "register_operand" "") (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "") (match_operand:SI 2 "input_operand" "")))] "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" "") ;; The V8 architecture specifies that there must be 3 instructions between ;; a Y register write and a use of it for correct results. (define_insn "udivsi3_sp32" [(set (match_operand:SI 0 "register_operand" "=r,&r,&r") (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r,r,m") (match_operand:SI 2 "input_operand" "rI,m,r")))] "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" { output_asm_insn ("wr\t%%g0, %%g0, %%y", operands); switch (which_alternative) { default: return "nop\n\tnop\n\tnop\n\tudiv\t%1, %2, %0"; case 1: return "ld\t%2, %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; case 2: return "ld\t%1, %0\n\tnop\n\tnop\n\tudiv\t%0, %2, %0"; } } [(set_attr "type" "multi") (set_attr "length" "5")]) (define_insn "udivsi3_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r") (match_operand:SI 2 "input_operand" "rI")))] "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" "wr\t%%g0, 0, %%y\n\tudiv\t%1, %2, %0" [(set_attr "type" "multi") (set_attr "length" "2")]) (define_insn "udivdi3" [(set (match_operand:DI 0 "register_operand" "=r") (udiv:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith_operand" "rI")))] "TARGET_ARCH64" "udivx\t%1, %2, %0" [(set_attr "type" "idiv")]) (define_insn "*cmp_udiv_cc_set" [(set (reg:CC 100) (compare:CC (udiv:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (udiv:SI (match_dup 1) (match_dup 2)))] "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" { if (TARGET_V9) return "wr\t%%g0, %%g0, %%y\n\tudivcc\t%1, %2, %0"; else return "wr\t%%g0, %%g0, %%y\n\tnop\n\tnop\n\tnop\n\tudivcc\t%1, %2, %0"; } [(set_attr "type" "multi") (set (attr "length") (if_then_else (eq_attr "isa" "v9") (const_int 2) (const_int 5)))]) ; sparclet multiply/accumulate insns (define_insn "*smacsi" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")) (match_operand:SI 3 "register_operand" "0")))] "TARGET_SPARCLET" "smac\t%1, %2, %0" [(set_attr "type" "imul")]) (define_insn "*smacdi" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) (match_operand:DI 3 "register_operand" "0")))] "TARGET_SPARCLET" "smacd\t%1, %2, %L0" [(set_attr "type" "imul")]) (define_insn "*umacdi" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) (match_operand:DI 3 "register_operand" "0")))] "TARGET_SPARCLET" "umacd\t%1, %2, %L0" [(set_attr "type" "imul")]) ;; Boolean instructions. ;; We define DImode `and' so with DImode `not' we can get ;; DImode `andn'. Other combinations are possible. (define_mode_macro V64I [DI V2SI V4HI V8QI]) (define_mode_macro V32I [SI V2HI V4QI]) (define_expand "and3" [(set (match_operand:V64I 0 "register_operand" "") (and:V64I (match_operand:V64I 1 "arith_double_operand" "") (match_operand:V64I 2 "arith_double_operand" "")))] "" "") (define_insn "*and3_sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (and:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b") (match_operand:V64I 2 "arith_double_operand" "rHI,b")))] "! TARGET_ARCH64" "@ # fand\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*and3_sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (and:V64I (match_operand:V64I 1 "arith_operand" "%r,b") (match_operand:V64I 2 "arith_operand" "rI,b")))] "TARGET_ARCH64" "@ and\t%1, %2, %0 fand\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "and3" [(set (match_operand:V32I 0 "register_operand" "=r,d") (and:V32I (match_operand:V32I 1 "arith_operand" "%r,d") (match_operand:V32I 2 "arith_operand" "rI,d")))] "" "@ and\t%1, %2, %0 fands\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_split [(set (match_operand:SI 0 "register_operand" "") (and:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_compl_high_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))] { operands[4] = GEN_INT (~INTVAL (operands[2])); }) (define_insn_and_split "*and_not__sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (and:V64I (not:V64I (match_operand:V64I 1 "register_operand" "%r,b")) (match_operand:V64I 2 "register_operand" "r,b")))] "! TARGET_ARCH64" "@ # fandnot1\t%1, %2, %0" "&& reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(set (match_dup 3) (and:SI (not:SI (match_dup 4)) (match_dup 5))) (set (match_dup 6) (and:SI (not:SI (match_dup 7)) (match_dup 8)))] "operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*and_not__sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (and:V64I (not:V64I (match_operand:V64I 1 "register_operand" "%r,b")) (match_operand:V64I 2 "register_operand" "r,b")))] "TARGET_ARCH64" "@ andn\t%2, %1, %0 fandnot1\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "*and_not_" [(set (match_operand:V32I 0 "register_operand" "=r,d") (and:V32I (not:V32I (match_operand:V32I 1 "register_operand" "%r,d")) (match_operand:V32I 2 "register_operand" "r,d")))] "" "@ andn\t%2, %1, %0 fandnot1s\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_expand "ior3" [(set (match_operand:V64I 0 "register_operand" "") (ior:V64I (match_operand:V64I 1 "arith_double_operand" "") (match_operand:V64I 2 "arith_double_operand" "")))] "" "") (define_insn "*ior3_sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (ior:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b") (match_operand:V64I 2 "arith_double_operand" "rHI,b")))] "! TARGET_ARCH64" "@ # for\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*ior3_sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (ior:V64I (match_operand:V64I 1 "arith_operand" "%r,b") (match_operand:V64I 2 "arith_operand" "rI,b")))] "TARGET_ARCH64" "@ or\t%1, %2, %0 for\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "ior3" [(set (match_operand:V32I 0 "register_operand" "=r,d") (ior:V32I (match_operand:V32I 1 "arith_operand" "%r,d") (match_operand:V32I 2 "arith_operand" "rI,d")))] "" "@ or\t%1, %2, %0 fors\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_split [(set (match_operand:SI 0 "register_operand" "") (ior:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_compl_high_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))] { operands[4] = GEN_INT (~INTVAL (operands[2])); }) (define_insn_and_split "*or_not__sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (ior:V64I (not:V64I (match_operand:V64I 1 "register_operand" "r,b")) (match_operand:V64I 2 "register_operand" "r,b")))] "! TARGET_ARCH64" "@ # fornot1\t%1, %2, %0" "&& reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(set (match_dup 3) (ior:SI (not:SI (match_dup 4)) (match_dup 5))) (set (match_dup 6) (ior:SI (not:SI (match_dup 7)) (match_dup 8)))] "operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*or_not__sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (ior:V64I (not:V64I (match_operand:V64I 1 "register_operand" "r,b")) (match_operand:V64I 2 "register_operand" "r,b")))] "TARGET_ARCH64" "@ orn\t%2, %1, %0 fornot1\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "*or_not_" [(set (match_operand:V32I 0 "register_operand" "=r,d") (ior:V32I (not:V32I (match_operand:V32I 1 "register_operand" "r,d")) (match_operand:V32I 2 "register_operand" "r,d")))] "" "@ orn\t%2, %1, %0 fornot1s\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_expand "xor3" [(set (match_operand:V64I 0 "register_operand" "") (xor:V64I (match_operand:V64I 1 "arith_double_operand" "") (match_operand:V64I 2 "arith_double_operand" "")))] "" "") (define_insn "*xor3_sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (xor:V64I (match_operand:V64I 1 "arith_double_operand" "%r,b") (match_operand:V64I 2 "arith_double_operand" "rHI,b")))] "! TARGET_ARCH64" "@ # fxor\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*xor3_sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (xor:V64I (match_operand:V64I 1 "arith_operand" "%rJ,b") (match_operand:V64I 2 "arith_operand" "rI,b")))] "TARGET_ARCH64" "@ xor\t%r1, %2, %0 fxor\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "xor3" [(set (match_operand:V32I 0 "register_operand" "=r,d") (xor:V32I (match_operand:V32I 1 "arith_operand" "%rJ,d") (match_operand:V32I 2 "arith_operand" "rI,d")))] "" "@ xor\t%r1, %2, %0 fxors\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_split [(set (match_operand:SI 0 "register_operand" "") (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_compl_high_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))] { operands[4] = GEN_INT (~INTVAL (operands[2])); }) (define_split [(set (match_operand:SI 0 "register_operand" "") (not:SI (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "const_compl_high_operand" "")))) (clobber (match_operand:SI 3 "register_operand" ""))] "" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))] { operands[4] = GEN_INT (~INTVAL (operands[2])); }) ;; Split DImode logical operations requiring two instructions. (define_split [(set (match_operand:V64I 0 "register_operand" "") (match_operator:V64I 1 "cc_arith_operator" ; AND, IOR, XOR [(match_operand:V64I 2 "register_operand" "") (match_operand:V64I 3 "arith_double_operand" "")]))] "! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(set (match_dup 4) (match_op_dup:SI 1 [(match_dup 6) (match_dup 8)])) (set (match_dup 5) (match_op_dup:SI 1 [(match_dup 7) (match_dup 9)]))] { operands[4] = gen_highpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[2]); operands[7] = gen_lowpart (SImode, operands[2]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[3]) == CONST_INT && mode == DImode) { if (INTVAL (operands[3]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, mode, operands[3]); operands[9] = gen_lowpart (SImode, operands[3]); }) ;; xnor patterns. Note that (a ^ ~b) == (~a ^ b) == ~(a ^ b). ;; Combine now canonicalizes to the rightmost expression. (define_insn_and_split "*xor_not__sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (not:V64I (xor:V64I (match_operand:V64I 1 "register_operand" "r,b") (match_operand:V64I 2 "register_operand" "r,b"))))] "! TARGET_ARCH64" "@ # fxnor\t%1, %2, %0" "&& reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(set (match_dup 3) (not:SI (xor:SI (match_dup 4) (match_dup 5)))) (set (match_dup 6) (not:SI (xor:SI (match_dup 7) (match_dup 8))))] "operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*xor_not__sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (not:V64I (xor:V64I (match_operand:V64I 1 "register_or_zero_operand" "rJ,b") (match_operand:V64I 2 "arith_operand" "rI,b"))))] "TARGET_ARCH64" "@ xnor\t%r1, %2, %0 fxnor\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "*xor_not_" [(set (match_operand:V32I 0 "register_operand" "=r,d") (not:V32I (xor:V32I (match_operand:V32I 1 "register_or_zero_operand" "rJ,d") (match_operand:V32I 2 "arith_operand" "rI,d"))))] "" "@ xnor\t%r1, %2, %0 fxnors\t%1, %2, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) ;; These correspond to the above in the case where we also (or only) ;; want to set the condition code. (define_insn "*cmp_cc_arith_op" [(set (reg:CC 100) (compare:CC (match_operator:SI 2 "cc_arith_operator" [(match_operand:SI 0 "arith_operand" "%r") (match_operand:SI 1 "arith_operand" "rI")]) (const_int 0)))] "" "%A2cc\t%0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_arith_op" [(set (reg:CCX 100) (compare:CCX (match_operator:DI 2 "cc_arith_operator" [(match_operand:DI 0 "arith_operand" "%r") (match_operand:DI 1 "arith_operand" "rI")]) (const_int 0)))] "TARGET_ARCH64" "%A2cc\t%0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_arith_op_set" [(set (reg:CC 100) (compare:CC (match_operator:SI 3 "cc_arith_operator" [(match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")]) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (match_operator:SI 4 "cc_arith_operator" [(match_dup 1) (match_dup 2)]))] "GET_CODE (operands[3]) == GET_CODE (operands[4])" "%A3cc\t%1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_arith_op_set" [(set (reg:CCX 100) (compare:CCX (match_operator:DI 3 "cc_arith_operator" [(match_operand:DI 1 "arith_operand" "%r") (match_operand:DI 2 "arith_operand" "rI")]) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (match_operator:DI 4 "cc_arith_operator" [(match_dup 1) (match_dup 2)]))] "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" "%A3cc\t%1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_xor_not" [(set (reg:CC 100) (compare:CC (not:SI (xor:SI (match_operand:SI 0 "register_or_zero_operand" "%rJ") (match_operand:SI 1 "arith_operand" "rI"))) (const_int 0)))] "" "xnorcc\t%r0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_xor_not" [(set (reg:CCX 100) (compare:CCX (not:DI (xor:DI (match_operand:DI 0 "register_or_zero_operand" "%rJ") (match_operand:DI 1 "arith_operand" "rI"))) (const_int 0)))] "TARGET_ARCH64" "xnorcc\t%r0, %1, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_xor_not_set" [(set (reg:CC 100) (compare:CC (not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ") (match_operand:SI 2 "arith_operand" "rI"))) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (not:SI (xor:SI (match_dup 1) (match_dup 2))))] "" "xnorcc\t%r1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_xor_not_set" [(set (reg:CCX 100) (compare:CCX (not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "%rJ") (match_operand:DI 2 "arith_operand" "rI"))) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (not:DI (xor:DI (match_dup 1) (match_dup 2))))] "TARGET_ARCH64" "xnorcc\t%r1, %2, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_arith_op_not" [(set (reg:CC 100) (compare:CC (match_operator:SI 2 "cc_arith_not_operator" [(not:SI (match_operand:SI 0 "arith_operand" "rI")) (match_operand:SI 1 "register_or_zero_operand" "rJ")]) (const_int 0)))] "" "%B2cc\t%r1, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_arith_op_not" [(set (reg:CCX 100) (compare:CCX (match_operator:DI 2 "cc_arith_not_operator" [(not:DI (match_operand:DI 0 "arith_operand" "rI")) (match_operand:DI 1 "register_or_zero_operand" "rJ")]) (const_int 0)))] "TARGET_ARCH64" "%B2cc\t%r1, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_arith_op_not_set" [(set (reg:CC 100) (compare:CC (match_operator:SI 3 "cc_arith_not_operator" [(not:SI (match_operand:SI 1 "arith_operand" "rI")) (match_operand:SI 2 "register_or_zero_operand" "rJ")]) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (match_operator:SI 4 "cc_arith_not_operator" [(not:SI (match_dup 1)) (match_dup 2)]))] "GET_CODE (operands[3]) == GET_CODE (operands[4])" "%B3cc\t%r2, %1, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_arith_op_not_set" [(set (reg:CCX 100) (compare:CCX (match_operator:DI 3 "cc_arith_not_operator" [(not:DI (match_operand:DI 1 "arith_operand" "rI")) (match_operand:DI 2 "register_or_zero_operand" "rJ")]) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (match_operator:DI 4 "cc_arith_not_operator" [(not:DI (match_dup 1)) (match_dup 2)]))] "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" "%B3cc\t%r2, %1, %0" [(set_attr "type" "compare")]) ;; We cannot use the "neg" pseudo insn because the Sun assembler ;; does not know how to make it work for constants. (define_expand "negdi2" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operand:DI 1 "register_operand" "r")))] "" { if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operand0, gen_rtx_NEG (DImode, operand1)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } }) (define_insn_and_split "*negdi2_sp32" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operand:DI 1 "register_operand" "r"))) (clobber (reg:CC 100))] "TARGET_ARCH32" "#" "&& reload_completed" [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 5)) (const_int 0))) (set (match_dup 4) (minus:SI (const_int 0) (match_dup 5)))]) (set (match_dup 2) (minus:SI (minus:SI (const_int 0) (match_dup 3)) (ltu:SI (reg:CC 100) (const_int 0))))] "operands[2] = gen_highpart (SImode, operands[0]); operands[3] = gen_highpart (SImode, operands[1]); operands[4] = gen_lowpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[1]);" [(set_attr "length" "2")]) (define_insn "*negdi2_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operand:DI 1 "register_operand" "r")))] "TARGET_ARCH64" "sub\t%%g0, %1, %0") (define_insn "negsi2" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (match_operand:SI 1 "arith_operand" "rI")))] "" "sub\t%%g0, %1, %0") (define_insn "*cmp_cc_neg" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_operand:SI 0 "arith_operand" "rI")) (const_int 0)))] "" "subcc\t%%g0, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_neg" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (neg:DI (match_operand:DI 0 "arith_operand" "rI")) (const_int 0)))] "TARGET_ARCH64" "subcc\t%%g0, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_set_neg" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_operand:SI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (neg:SI (match_dup 1)))] "" "subcc\t%%g0, %1, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_set_neg" [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (neg:DI (match_operand:DI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_dup 1)))] "TARGET_ARCH64" "subcc\t%%g0, %1, %0" [(set_attr "type" "compare")]) ;; We cannot use the "not" pseudo insn because the Sun assembler ;; does not know how to make it work for constants. (define_expand "one_cmpl2" [(set (match_operand:V64I 0 "register_operand" "") (not:V64I (match_operand:V64I 1 "register_operand" "")))] "" "") (define_insn_and_split "*one_cmpl2_sp32" [(set (match_operand:V64I 0 "register_operand" "=r,b") (not:V64I (match_operand:V64I 1 "register_operand" "r,b")))] "! TARGET_ARCH64" "@ # fnot1\t%1, %0" "&& reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))" [(set (match_dup 2) (not:SI (xor:SI (match_dup 3) (const_int 0)))) (set (match_dup 4) (not:SI (xor:SI (match_dup 5) (const_int 0))))] "operands[2] = gen_highpart (SImode, operands[0]); operands[3] = gen_highpart (SImode, operands[1]); operands[4] = gen_lowpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[1]);" [(set_attr "type" "*,fga") (set_attr "length" "2,*") (set_attr "fptype" "*,double")]) (define_insn "*one_cmpl2_sp64" [(set (match_operand:V64I 0 "register_operand" "=r,b") (not:V64I (match_operand:V64I 1 "arith_operand" "rI,b")))] "TARGET_ARCH64" "@ xnor\t%%g0, %1, %0 fnot1\t%1, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,double")]) (define_insn "one_cmpl2" [(set (match_operand:V32I 0 "register_operand" "=r,d") (not:V32I (match_operand:V32I 1 "arith_operand" "rI,d")))] "" "@ xnor\t%%g0, %1, %0 fnot1s\t%1, %0" [(set_attr "type" "*,fga") (set_attr "fptype" "*,single")]) (define_insn "*cmp_cc_not" [(set (reg:CC 100) (compare:CC (not:SI (match_operand:SI 0 "arith_operand" "rI")) (const_int 0)))] "" "xnorcc\t%%g0, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_not" [(set (reg:CCX 100) (compare:CCX (not:DI (match_operand:DI 0 "arith_operand" "rI")) (const_int 0)))] "TARGET_ARCH64" "xnorcc\t%%g0, %0, %%g0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_set_not" [(set (reg:CC 100) (compare:CC (not:SI (match_operand:SI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (not:SI (match_dup 1)))] "" "xnorcc\t%%g0, %1, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_set_not" [(set (reg:CCX 100) (compare:CCX (not:DI (match_operand:DI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:DI 0 "register_operand" "=r") (not:DI (match_dup 1)))] "TARGET_ARCH64" "xnorcc\t%%g0, %1, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_cc_set" [(set (match_operand:SI 0 "register_operand" "=r") (match_operand:SI 1 "register_operand" "r")) (set (reg:CC 100) (compare:CC (match_dup 1) (const_int 0)))] "" "orcc\t%1, 0, %0" [(set_attr "type" "compare")]) (define_insn "*cmp_ccx_set64" [(set (match_operand:DI 0 "register_operand" "=r") (match_operand:DI 1 "register_operand" "r")) (set (reg:CCX 100) (compare:CCX (match_dup 1) (const_int 0)))] "TARGET_ARCH64" "orcc\t%1, 0, %0" [(set_attr "type" "compare")]) ;; Floating point arithmetic instructions. (define_expand "addtf3" [(set (match_operand:TF 0 "nonimmediate_operand" "") (plus:TF (match_operand:TF 1 "general_operand" "") (match_operand:TF 2 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_binop (PLUS, operands); DONE;") (define_insn "*addtf3_hq" [(set (match_operand:TF 0 "register_operand" "=e") (plus:TF (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "faddq\t%1, %2, %0" [(set_attr "type" "fp")]) (define_insn "adddf3" [(set (match_operand:DF 0 "register_operand" "=e") (plus:DF (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" "faddd\t%1, %2, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fadds\t%1, %2, %0" [(set_attr "type" "fp")]) (define_expand "subtf3" [(set (match_operand:TF 0 "nonimmediate_operand" "") (minus:TF (match_operand:TF 1 "general_operand" "") (match_operand:TF 2 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_binop (MINUS, operands); DONE;") (define_insn "*subtf3_hq" [(set (match_operand:TF 0 "register_operand" "=e") (minus:TF (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fsubq\t%1, %2, %0" [(set_attr "type" "fp")]) (define_insn "subdf3" [(set (match_operand:DF 0 "register_operand" "=e") (minus:DF (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" "fsubd\t%1, %2, %0" [(set_attr "type" "fp") (set_attr "fptype" "double")]) (define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fsubs\t%1, %2, %0" [(set_attr "type" "fp")]) (define_expand "multf3" [(set (match_operand:TF 0 "nonimmediate_operand" "") (mult:TF (match_operand:TF 1 "general_operand" "") (match_operand:TF 2 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_binop (MULT, operands); DONE;") (define_insn "*multf3_hq" [(set (match_operand:TF 0 "register_operand" "=e") (mult:TF (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fmulq\t%1, %2, %0" [(set_attr "type" "fpmul")]) (define_insn "muldf3" [(set (match_operand:DF 0 "register_operand" "=e") (mult:DF (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" "fmuld\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) (define_insn "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fmuls\t%1, %2, %0" [(set_attr "type" "fpmul")]) (define_insn "*muldf3_extend" [(set (match_operand:DF 0 "register_operand" "=e") (mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "f")) (float_extend:DF (match_operand:SF 2 "register_operand" "f"))))] "(TARGET_V8 || TARGET_V9) && TARGET_FPU" "fsmuld\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) (define_insn "*multf3_extend" [(set (match_operand:TF 0 "register_operand" "=e") (mult:TF (float_extend:TF (match_operand:DF 1 "register_operand" "e")) (float_extend:TF (match_operand:DF 2 "register_operand" "e"))))] "(TARGET_V8 || TARGET_V9) && TARGET_FPU && TARGET_HARD_QUAD" "fdmulq\t%1, %2, %0" [(set_attr "type" "fpmul")]) (define_expand "divtf3" [(set (match_operand:TF 0 "nonimmediate_operand" "") (div:TF (match_operand:TF 1 "general_operand" "") (match_operand:TF 2 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_binop (DIV, operands); DONE;") ;; don't have timing for quad-prec. divide. (define_insn "*divtf3_hq" [(set (match_operand:TF 0 "register_operand" "=e") (div:TF (match_operand:TF 1 "register_operand" "e") (match_operand:TF 2 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fdivq\t%1, %2, %0" [(set_attr "type" "fpdivd")]) (define_insn "divdf3" [(set (match_operand:DF 0 "register_operand" "=e") (div:DF (match_operand:DF 1 "register_operand" "e") (match_operand:DF 2 "register_operand" "e")))] "TARGET_FPU" "fdivd\t%1, %2, %0" [(set_attr "type" "fpdivd") (set_attr "fptype" "double")]) (define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fdivs\t%1, %2, %0" [(set_attr "type" "fpdivs")]) (define_expand "negtf2" [(set (match_operand:TF 0 "register_operand" "=e,e") (neg:TF (match_operand:TF 1 "register_operand" "0,e")))] "TARGET_FPU" "") (define_insn_and_split "*negtf2_notv9" [(set (match_operand:TF 0 "register_operand" "=e,e") (neg:TF (match_operand:TF 1 "register_operand" "0,e")))] ; We don't use quad float insns here so we don't need TARGET_HARD_QUAD. "TARGET_FPU && ! TARGET_V9" "@ fnegs\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (neg:SF (match_dup 3))) (set (match_dup 4) (match_dup 5)) (set (match_dup 6) (match_dup 7))] "operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1); operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2")]) (define_insn_and_split "*negtf2_v9" [(set (match_operand:TF 0 "register_operand" "=e,e") (neg:TF (match_operand:TF 1 "register_operand" "0,e")))] ; We don't use quad float insns here so we don't need TARGET_HARD_QUAD. "TARGET_FPU && TARGET_V9" "@ fnegd\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (neg:DF (match_dup 3))) (set (match_dup 4) (match_dup 5))] "operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2") (set_attr "fptype" "double")]) (define_expand "negdf2" [(set (match_operand:DF 0 "register_operand" "") (neg:DF (match_operand:DF 1 "register_operand" "")))] "TARGET_FPU" "") (define_insn_and_split "*negdf2_notv9" [(set (match_operand:DF 0 "register_operand" "=e,e") (neg:DF (match_operand:DF 1 "register_operand" "0,e")))] "TARGET_FPU && ! TARGET_V9" "@ fnegs\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (neg:SF (match_dup 3))) (set (match_dup 4) (match_dup 5))] "operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2")]) (define_insn "*negdf2_v9" [(set (match_operand:DF 0 "register_operand" "=e") (neg:DF (match_operand:DF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_V9" "fnegd\t%1, %0" [(set_attr "type" "fpmove") (set_attr "fptype" "double")]) (define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fnegs\t%1, %0" [(set_attr "type" "fpmove")]) (define_expand "abstf2" [(set (match_operand:TF 0 "register_operand" "") (abs:TF (match_operand:TF 1 "register_operand" "")))] "TARGET_FPU" "") (define_insn_and_split "*abstf2_notv9" [(set (match_operand:TF 0 "register_operand" "=e,e") (abs:TF (match_operand:TF 1 "register_operand" "0,e")))] ; We don't use quad float insns here so we don't need TARGET_HARD_QUAD. "TARGET_FPU && ! TARGET_V9" "@ fabss\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (abs:SF (match_dup 3))) (set (match_dup 4) (match_dup 5)) (set (match_dup 6) (match_dup 7))] "operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1); operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2")]) (define_insn "*abstf2_hq_v9" [(set (match_operand:TF 0 "register_operand" "=e,e") (abs:TF (match_operand:TF 1 "register_operand" "0,e")))] "TARGET_FPU && TARGET_V9 && TARGET_HARD_QUAD" "@ fabsd\t%0, %0 fabsq\t%1, %0" [(set_attr "type" "fpmove") (set_attr "fptype" "double,*")]) (define_insn_and_split "*abstf2_v9" [(set (match_operand:TF 0 "register_operand" "=e,e") (abs:TF (match_operand:TF 1 "register_operand" "0,e")))] "TARGET_FPU && TARGET_V9 && !TARGET_HARD_QUAD" "@ fabsd\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (abs:DF (match_dup 3))) (set (match_dup 4) (match_dup 5))] "operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2") (set_attr "fptype" "double,*")]) (define_expand "absdf2" [(set (match_operand:DF 0 "register_operand" "") (abs:DF (match_operand:DF 1 "register_operand" "")))] "TARGET_FPU" "") (define_insn_and_split "*absdf2_notv9" [(set (match_operand:DF 0 "register_operand" "=e,e") (abs:DF (match_operand:DF 1 "register_operand" "0,e")))] "TARGET_FPU && ! TARGET_V9" "@ fabss\t%0, %0 #" "&& reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])" [(set (match_dup 2) (abs:SF (match_dup 3))) (set (match_dup 4) (match_dup 5))] "operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);" [(set_attr "type" "fpmove,*") (set_attr "length" "*,2")]) (define_insn "*absdf2_v9" [(set (match_operand:DF 0 "register_operand" "=e") (abs:DF (match_operand:DF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_V9" "fabsd\t%1, %0" [(set_attr "type" "fpmove") (set_attr "fptype" "double")]) (define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fabss\t%1, %0" [(set_attr "type" "fpmove")]) (define_expand "sqrttf2" [(set (match_operand:TF 0 "nonimmediate_operand" "") (sqrt:TF (match_operand:TF 1 "general_operand" "")))] "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" "emit_tfmode_unop (SQRT, operands); DONE;") (define_insn "*sqrttf2_hq" [(set (match_operand:TF 0 "register_operand" "=e") (sqrt:TF (match_operand:TF 1 "register_operand" "e")))] "TARGET_FPU && TARGET_HARD_QUAD" "fsqrtq\t%1, %0" [(set_attr "type" "fpsqrtd")]) (define_insn "sqrtdf2" [(set (match_operand:DF 0 "register_operand" "=e") (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] "TARGET_FPU" "fsqrtd\t%1, %0" [(set_attr "type" "fpsqrtd") (set_attr "fptype" "double")]) (define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fsqrts\t%1, %0" [(set_attr "type" "fpsqrts")]) ;; Arithmetic shift instructions. (define_insn "ashlsi3" [(set (match_operand:SI 0 "register_operand" "=r") (ashift:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "" { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); return "sll\t%1, %2, %0"; } [(set (attr "type") (if_then_else (match_operand 2 "const_one_operand" "") (const_string "ialu") (const_string "shift")))]) (define_expand "ashldi3" [(set (match_operand:DI 0 "register_operand" "=r") (ashift:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64 || TARGET_V8PLUS" { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; emit_insn (gen_ashldi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) (define_insn "*ashldi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (ashift:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64" { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); return "sllx\t%1, %2, %0"; } [(set (attr "type") (if_then_else (match_operand 2 "const_one_operand" "") (const_string "ialu") (const_string "shift")))]) ;; XXX UGH! (define_insn "ashldi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") (ashift:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) (clobber (match_scratch:SI 3 "=X,X,&h"))] "TARGET_V8PLUS" "* return output_v8plus_shift (operands, insn, \"sllx\");" [(set_attr "type" "multi") (set_attr "length" "5,5,6")]) ;; Optimize (1LL<= 32 && INTVAL (operands[2]) < 64" { operands[2] = GEN_INT (INTVAL (operands[2]) - 32); return "sra\t%1, %2, %0"; } [(set_attr "type" "shift")]) (define_expand "ashrdi3" [(set (match_operand:DI 0 "register_operand" "=r") (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64 || TARGET_V8PLUS" { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; /* prefer generic code in this case */ emit_insn (gen_ashrdi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) (define_insn "*ashrdi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64" { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); return "srax\t%1, %2, %0"; } [(set_attr "type" "shift")]) ;; XXX (define_insn "ashrdi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") (ashiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) (clobber (match_scratch:SI 3 "=X,X,&h"))] "TARGET_V8PLUS" "* return output_v8plus_shift (operands, insn, \"srax\");" [(set_attr "type" "multi") (set_attr "length" "5,5,6")]) (define_insn "lshrsi3" [(set (match_operand:SI 0 "register_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "" { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); return "srl\t%1, %2, %0"; } [(set_attr "type" "shift")]) ;; This handles the case where ;; (zero_extend:DI (lshiftrt:SI (match_operand:SI) (match_operand:SI))), ;; but combiner "simplifies" it for us. (define_insn "*lshrsi3_extend" [(set (match_operand:DI 0 "register_operand" "=r") (and:DI (subreg:DI (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "r")) 0) (match_operand 3 "const_int_operand" "")))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) == 0xffffffff" "srl\t%1, %2, %0" [(set_attr "type" "shift")]) ;; This handles the case where ;; (lshiftrt:DI (zero_extend:DI (match_operand:SI)) (const_int >=0 < 32)) ;; but combiner "simplifies" it for us. (define_insn "*lshrsi3_extend2" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) (match_operand 2 "small_int_operand" "I") (const_int 32)))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" { operands[2] = GEN_INT (32 - INTVAL (operands[2])); return "srl\t%1, %2, %0"; } [(set_attr "type" "shift")]) (define_expand "lshrdi3" [(set (match_operand:DI 0 "register_operand" "=r") (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64 || TARGET_V8PLUS" { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; emit_insn (gen_lshrdi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }) (define_insn "*lshrdi3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_ARCH64" { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); return "srlx\t%1, %2, %0"; } [(set_attr "type" "shift")]) ;; XXX (define_insn "lshrdi3_v8plus" [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") (lshiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) (clobber (match_scratch:SI 3 "=X,X,&h"))] "TARGET_V8PLUS" "* return output_v8plus_shift (operands, insn, \"srlx\");" [(set_attr "type" "multi") (set_attr "length" "5,5,6")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (ashiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") (const_int 32)) 4) (match_operand:SI 2 "small_int_operand" "I")))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" { operands[2] = GEN_INT (INTVAL (operands[2]) + 32); return "srax\t%1, %2, %0"; } [(set_attr "type" "shift")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (lshiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") (const_int 32)) 4) (match_operand:SI 2 "small_int_operand" "I")))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" { operands[2] = GEN_INT (INTVAL (operands[2]) + 32); return "srlx\t%1, %2, %0"; } [(set_attr "type" "shift")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (ashiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "small_int_operand" "I")) 4) (match_operand:SI 3 "small_int_operand" "I")))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" { operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); return "srax\t%1, %2, %0"; } [(set_attr "type" "shift")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (lshiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "small_int_operand" "I")) 4) (match_operand:SI 3 "small_int_operand" "I")))] "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" { operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); return "srlx\t%1, %2, %0"; } [(set_attr "type" "shift")]) ;; Unconditional and other jump instructions. (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "* return output_ubranch (operands[0], 0, insn);" [(set_attr "type" "uncond_branch")]) (define_expand "tablejump" [(parallel [(set (pc) (match_operand 0 "register_operand" "r")) (use (label_ref (match_operand 1 "" "")))])] "" { gcc_assert (GET_MODE (operands[0]) == CASE_VECTOR_MODE); /* In pic mode, our address differences are against the base of the table. Add that base value back in; CSE ought to be able to combine the two address loads. */ if (flag_pic) { rtx tmp, tmp2; tmp = gen_rtx_LABEL_REF (Pmode, operands[1]); tmp2 = operands[0]; if (CASE_VECTOR_MODE != Pmode) tmp2 = gen_rtx_SIGN_EXTEND (Pmode, tmp2); tmp = gen_rtx_PLUS (Pmode, tmp2, tmp); operands[0] = memory_address (Pmode, tmp); } }) (define_insn "*tablejump_sp32" [(set (pc) (match_operand:SI 0 "address_operand" "p")) (use (label_ref (match_operand 1 "" "")))] "! TARGET_ARCH64" "jmp\t%a0%#" [(set_attr "type" "uncond_branch")]) (define_insn "*tablejump_sp64" [(set (pc) (match_operand:DI 0 "address_operand" "p")) (use (label_ref (match_operand 1 "" "")))] "TARGET_ARCH64" "jmp\t%a0%#" [(set_attr "type" "uncond_branch")]) ;; Jump to subroutine instructions. (define_expand "call" ;; Note that this expression is not used for generating RTL. ;; All the RTL is generated explicitly below. [(call (match_operand 0 "call_operand" "") (match_operand 3 "" "i"))] ;; operands[2] is next_arg_register ;; operands[3] is struct_value_size_rtx. "" { rtx fn_rtx; gcc_assert (GET_MODE (operands[0]) == FUNCTION_MODE); gcc_assert (GET_CODE (operands[3]) == CONST_INT); if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF) { /* This is really a PIC sequence. We want to represent it as a funny jump so its delay slots can be filled. ??? But if this really *is* a CALL, will not it clobber the call-clobbered registers? We lose this if it is a JUMP_INSN. Why cannot we have delay slots filled if it were a CALL? */ /* We accept negative sizes for untyped calls. */ if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0) emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (3, gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)), operands[3], gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); else emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); goto finish_call; } fn_rtx = operands[0]; /* We accept negative sizes for untyped calls. */ if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0) emit_call_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (3, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), operands[3], gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); else emit_call_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); finish_call: DONE; }) ;; We can't use the same pattern for these two insns, because then registers ;; in the address may not be properly reloaded. (define_insn "*call_address_sp32" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64" "call\t%a0, %1%#" [(set_attr "type" "call")]) (define_insn "*call_symbolic_sp32" [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64" "call\t%a0, %1%#" [(set_attr "type" "call")]) (define_insn "*call_address_sp64" [(call (mem:DI (match_operand:DI 0 "address_operand" "p")) (match_operand 1 "" "")) (clobber (reg:DI 15))] ;;- Do not use operand 1 for most machines. "TARGET_ARCH64" "call\t%a0, %1%#" [(set_attr "type" "call")]) (define_insn "*call_symbolic_sp64" [(call (mem:DI (match_operand:DI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (clobber (reg:DI 15))] ;;- Do not use operand 1 for most machines. "TARGET_ARCH64" "call\t%a0, %1%#" [(set_attr "type" "call")]) ;; This is a call that wants a structure value. ;; There is no such critter for v9 (??? we may need one anyway). (define_insn "*call_address_struct_value_sp32" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" { operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; } [(set_attr "type" "call_no_delay_slot") (set_attr "length" "3")]) ;; This is a call that wants a structure value. ;; There is no such critter for v9 (??? we may need one anyway). (define_insn "*call_symbolic_struct_value_sp32" [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" { operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; } [(set_attr "type" "call_no_delay_slot") (set_attr "length" "3")]) ;; This is a call that may want a structure value. This is used for ;; untyped_calls. (define_insn "*call_address_untyped_struct_value_sp32" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" "call\t%a0, %1\n\t nop\n\tnop" [(set_attr "type" "call_no_delay_slot") (set_attr "length" "3")]) ;; This is a call that may want a structure value. This is used for ;; untyped_calls. (define_insn "*call_symbolic_untyped_struct_value_sp32" [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" "call\t%a0, %1\n\t nop\n\tnop" [(set_attr "type" "call_no_delay_slot") (set_attr "length" "3")]) (define_expand "call_value" ;; Note that this expression is not used for generating RTL. ;; All the RTL is generated explicitly below. [(set (match_operand 0 "register_operand" "=rf") (call (match_operand 1 "" "") (match_operand 4 "" "")))] ;; operand 2 is stack_size_rtx ;; operand 3 is next_arg_register "" { rtx fn_rtx; rtvec vec; gcc_assert (GET_MODE (operands[1]) == FUNCTION_MODE); fn_rtx = operands[1]; vec = gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))); emit_call_insn (gen_rtx_PARALLEL (VOIDmode, vec)); DONE; }) (define_insn "*call_value_address_sp32" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "address_operand" "p")) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. "! TARGET_ARCH64" "call\t%a1, %2%#" [(set_attr "type" "call")]) (define_insn "*call_value_symbolic_sp32" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "symbolic_operand" "s")) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. "! TARGET_ARCH64" "call\t%a1, %2%#" [(set_attr "type" "call")]) (define_insn "*call_value_address_sp64" [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 "address_operand" "p")) (match_operand 2 "" ""))) (clobber (reg:DI 15))] ;;- Do not use operand 2 for most machines. "TARGET_ARCH64" "call\t%a1, %2%#" [(set_attr "type" "call")]) (define_insn "*call_value_symbolic_sp64" [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 "symbolic_operand" "s")) (match_operand 2 "" ""))) (clobber (reg:DI 15))] ;;- Do not use operand 2 for most machines. "TARGET_ARCH64" "call\t%a1, %2%#" [(set_attr "type" "call")]) (define_expand "untyped_call" [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand:BLK 1 "memory_operand" "") (match_operand 2 "" "")])] "" { rtx valreg1 = gen_rtx_REG (DImode, 8); rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); rtx result = operands[1]; /* Pass constm1 to indicate that it may expect a structure value, but we don't know what size it is. */ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, constm1_rtx)); /* Save the function value registers. */ emit_move_insn (adjust_address (result, DImode, 0), valreg1); emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8), valreg2); /* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by claiming that all hard registers are used and clobbered at this point. */ emit_insn (gen_blockage ()); DONE; }) ;; Tail call instructions. (define_expand "sibcall" [(parallel [(call (match_operand 0 "call_operand" "") (const_int 0)) (return)])] "" "") (define_insn "*sibcall_symbolic_sp32" [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (return)] "! TARGET_ARCH64" "* return output_sibcall(insn, operands[0]);" [(set_attr "type" "sibcall")]) (define_insn "*sibcall_symbolic_sp64" [(call (mem:DI (match_operand:DI 0 "symbolic_operand" "s")) (match_operand 1 "" "")) (return)] "TARGET_ARCH64" "* return output_sibcall(insn, operands[0]);" [(set_attr "type" "sibcall")]) (define_expand "sibcall_value" [(parallel [(set (match_operand 0 "register_operand" "=rf") (call (match_operand 1 "" "") (const_int 0))) (return)])] "" "") (define_insn "*sibcall_value_symbolic_sp32" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "symbolic_operand" "s")) (match_operand 2 "" ""))) (return)] "! TARGET_ARCH64" "* return output_sibcall(insn, operands[1]);" [(set_attr "type" "sibcall")]) (define_insn "*sibcall_value_symbolic_sp64" [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 "symbolic_operand" "s")) (match_operand 2 "" ""))) (return)] "TARGET_ARCH64" "* return output_sibcall(insn, operands[1]);" [(set_attr "type" "sibcall")]) ;; Special instructions. (define_expand "prologue" [(const_int 0)] "" { sparc_expand_prologue (); DONE; }) ;; The "save register window" insn is modelled as follows so that the DWARF-2 ;; backend automatically emits the required call frame debugging information ;; while it is parsing it. Therefore, the pattern should not be modified ;; without first studying the impact of the changes on the debug info. ;; [(set (%fp) (%sp)) ;; (set (%sp) (unspec_volatile [(%sp) (-frame_size)] UNSPECV_SAVEW)) ;; (set (%i7) (%o7))] (define_insn "save_register_window" [(set (reg:P 30) (reg:P 14)) (set (reg:P 14) (unspec_volatile:P [(reg:P 14) (match_operand:P 0 "arith_operand" "rI")] UNSPECV_SAVEW)) (set (reg:P 31) (reg:P 15))] "" "save\t%%sp, %0, %%sp" [(set_attr "type" "savew")]) (define_expand "epilogue" [(return)] "" { sparc_expand_epilogue (); }) (define_expand "sibcall_epilogue" [(return)] "" { sparc_expand_epilogue (); DONE; }) (define_expand "return" [(return)] "sparc_can_use_return_insn_p ()" "") (define_insn "*return_internal" [(return)] "" "* return output_return (insn);" [(set_attr "type" "return") (set (attr "length") (cond [(eq_attr "leaf_function" "true") (if_then_else (eq_attr "empty_delay_slot" "true") (const_int 2) (const_int 1)) (eq_attr "calls_eh_return" "true") (if_then_else (eq_attr "delayed_branch" "true") (if_then_else (eq_attr "isa" "v9") (const_int 2) (const_int 3)) (if_then_else (eq_attr "isa" "v9") (const_int 3) (const_int 4))) (eq_attr "empty_delay_slot" "true") (if_then_else (eq_attr "delayed_branch" "true") (const_int 2) (const_int 3)) ] (const_int 1)))]) ;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point. (define_insn "blockage" [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)] "" "" [(set_attr "length" "0")]) ;; Prepare to return any type including a structure value. (define_expand "untyped_return" [(match_operand:BLK 0 "memory_operand" "") (match_operand 1 "" "")] "" { rtx valreg1 = gen_rtx_REG (DImode, 24); rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); rtx result = operands[0]; if (! TARGET_ARCH64) { rtx rtnreg = gen_rtx_REG (SImode, (current_function_uses_only_leaf_regs ? 15 : 31)); rtx value = gen_reg_rtx (SImode); /* Fetch the instruction where we will return to and see if it's an unimp instruction (the most significant 10 bits will be zero). If so, update the return address to skip the unimp instruction. */ emit_move_insn (value, gen_rtx_MEM (SImode, plus_constant (rtnreg, 8))); emit_insn (gen_lshrsi3 (value, value, GEN_INT (22))); emit_insn (gen_update_return (rtnreg, value)); } /* Reload the function value registers. */ emit_move_insn (valreg1, adjust_address (result, DImode, 0)); emit_move_insn (valreg2, adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8)); /* Put USE insns before the return. */ emit_insn (gen_rtx_USE (VOIDmode, valreg1)); emit_insn (gen_rtx_USE (VOIDmode, valreg2)); /* Construct the return. */ expand_naked_return (); DONE; }) ;; This is a bit of a hack. We're incrementing a fixed register (%i7), ;; and parts of the compiler don't want to believe that the add is needed. (define_insn "update_return" [(unspec:SI [(match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "register_operand" "r")] UNSPEC_UPDATE_RETURN)] "! TARGET_ARCH64" { if (flag_delayed_branch) return "cmp\t%1, 0\n\tbe,a\t.+8\n\t add\t%0, 4, %0"; else return "cmp\t%1, 0\n\tbne\t.+12\n\t nop\n\tadd\t%0, 4, %0"; } [(set (attr "type") (const_string "multi")) (set (attr "length") (if_then_else (eq_attr "delayed_branch" "true") (const_int 3) (const_int 4)))]) (define_insn "nop" [(const_int 0)] "" "nop") (define_expand "indirect_jump" [(set (pc) (match_operand 0 "address_operand" "p"))] "" "") (define_insn "*branch_sp32" [(set (pc) (match_operand:SI 0 "address_operand" "p"))] "! TARGET_ARCH64" "jmp\t%a0%#" [(set_attr "type" "uncond_branch")]) (define_insn "*branch_sp64" [(set (pc) (match_operand:DI 0 "address_operand" "p"))] "TARGET_ARCH64" "jmp\t%a0%#" [(set_attr "type" "uncond_branch")]) (define_expand "nonlocal_goto" [(match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" "") (match_operand:SI 2 "general_operand" "") (match_operand:SI 3 "" "")] "" { rtx lab = operands[1]; rtx stack = operands[2]; rtx fp = operands[3]; rtx labreg; /* Trap instruction to flush all the register windows. */ emit_insn (gen_flush_register_windows ()); /* Load the fp value for the containing fn into %fp. This is needed because STACK refers to %fp. Note that virtual register instantiation fails if the virtual %fp isn't set from a register. */ if (GET_CODE (fp) != REG) fp = force_reg (Pmode, fp); emit_move_insn (virtual_stack_vars_rtx, fp); /* Find the containing function's current nonlocal goto handler, which will do any cleanups and then jump to the label. */ labreg = gen_rtx_REG (Pmode, 8); emit_move_insn (labreg, lab); /* Restore %fp from stack pointer value for containing function. The restore insn that follows will move this to %sp, and reload the appropriate value into %fp. */ emit_move_insn (hard_frame_pointer_rtx, stack); emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx)); emit_insn (gen_rtx_USE (VOIDmode, static_chain_rtx)); /* ??? The V9-specific version was disabled in rev 1.65. */ emit_jump_insn (gen_goto_handler_and_restore (labreg)); emit_barrier (); DONE; }) ;; Special trap insn to flush register windows. (define_insn "flush_register_windows" [(unspec_volatile [(const_int 0)] UNSPECV_FLUSHW)] "" { return TARGET_V9 ? "flushw" : "ta\t3"; } [(set_attr "type" "flushw")]) (define_insn "goto_handler_and_restore" [(unspec_volatile [(match_operand 0 "register_operand" "=r")] UNSPECV_GOTO)] "GET_MODE (operands[0]) == Pmode" { if (flag_delayed_branch) return "jmp\t%0\n\t restore"; else return "mov\t%0,%%g1\n\trestore\n\tjmp\t%%g1\n\t nop"; } [(set (attr "type") (const_string "multi")) (set (attr "length") (if_then_else (eq_attr "delayed_branch" "true") (const_int 2) (const_int 4)))]) ;; For __builtin_setjmp we need to flush register windows iff the function ;; calls alloca as well, because otherwise the register window might be ;; saved after %sp adjustment and thus setjmp would crash (define_expand "builtin_setjmp_setup" [(match_operand 0 "register_operand" "r")] "" { emit_insn (gen_do_builtin_setjmp_setup ()); DONE; }) (define_insn "do_builtin_setjmp_setup" [(unspec_volatile [(const_int 0)] UNSPECV_SETJMP)] "" { if (! current_function_calls_alloca) return ""; if (! TARGET_V9) return "\tta\t3\n"; fputs ("\tflushw\n", asm_out_file); if (flag_pic) fprintf (asm_out_file, "\tst%c\t%%l7, [%%sp+%d]\n", TARGET_ARCH64 ? 'x' : 'w', SPARC_STACK_BIAS + 7 * UNITS_PER_WORD); fprintf (asm_out_file, "\tst%c\t%%fp, [%%sp+%d]\n", TARGET_ARCH64 ? 'x' : 'w', SPARC_STACK_BIAS + 14 * UNITS_PER_WORD); fprintf (asm_out_file, "\tst%c\t%%i7, [%%sp+%d]\n", TARGET_ARCH64 ? 'x' : 'w', SPARC_STACK_BIAS + 15 * UNITS_PER_WORD); return ""; } [(set_attr "type" "multi") (set (attr "length") (cond [(eq_attr "calls_alloca" "false") (const_int 0) (eq_attr "isa" "!v9") (const_int 1) (eq_attr "pic" "true") (const_int 4)] (const_int 3)))]) ;; Pattern for use after a setjmp to store FP and the return register ;; into the stack area. (define_expand "setjmp" [(const_int 0)] "" { if (TARGET_ARCH64) emit_insn (gen_setjmp_64 ()); else emit_insn (gen_setjmp_32 ()); DONE; }) (define_expand "setjmp_32" [(set (mem:SI (plus:SI (reg:SI 14) (const_int 56))) (match_dup 0)) (set (mem:SI (plus:SI (reg:SI 14) (const_int 60))) (reg:SI 31))] "" { operands[0] = frame_pointer_rtx; }) (define_expand "setjmp_64" [(set (mem:DI (plus:DI (reg:DI 14) (const_int 112))) (match_dup 0)) (set (mem:DI (plus:DI (reg:DI 14) (const_int 120))) (reg:DI 31))] "" { operands[0] = frame_pointer_rtx; }) ;; Special pattern for the FLUSH instruction. ; We do SImode and DImode versions of this to quiet down genrecog's complaints ; of the define_insn otherwise missing a mode. We make "flush", aka ; gen_flush, the default one since sparc_initialize_trampoline uses ; it on SImode mem values. (define_insn "flush" [(unspec_volatile [(match_operand:SI 0 "memory_operand" "m")] UNSPECV_FLUSH)] "" { return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; } [(set_attr "type" "iflush")]) (define_insn "flushdi" [(unspec_volatile [(match_operand:DI 0 "memory_operand" "m")] UNSPECV_FLUSH)] "" { return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; } [(set_attr "type" "iflush")]) ;; Find first set instructions. ;; The scan instruction searches from the most significant bit while ffs ;; searches from the least significant bit. The bit index and treatment of ;; zero also differ. It takes at least 7 instructions to get the proper ;; result. Here is an obvious 8 instruction sequence. ;; XXX (define_insn "ffssi2" [(set (match_operand:SI 0 "register_operand" "=&r") (ffs:SI (match_operand:SI 1 "register_operand" "r"))) (clobber (match_scratch:SI 2 "=&r"))] "TARGET_SPARCLITE || TARGET_SPARCLET" { return "sub\t%%g0, %1, %0\;and\t%0, %1, %0\;scan\t%0, 0, %0\;mov\t32, %2\;sub\t%2, %0, %0\;sra\t%0, 31, %2\;and\t%2, 31, %2\;add\t%2, %0, %0"; } [(set_attr "type" "multi") (set_attr "length" "8")]) ;; ??? This should be a define expand, so that the extra instruction have ;; a chance of being optimized away. ;; Disabled because none of the UltraSPARCs implement popc. The HAL R1 ;; does, but no one uses that and we don't have a switch for it. ; ;(define_insn "ffsdi2" ; [(set (match_operand:DI 0 "register_operand" "=&r") ; (ffs:DI (match_operand:DI 1 "register_operand" "r"))) ; (clobber (match_scratch:DI 2 "=&r"))] ; "TARGET_ARCH64" ; "neg\t%1, %2\;xnor\t%1, %2, %2\;popc\t%2, %0\;movzr\t%1, 0, %0" ; [(set_attr "type" "multi") ; (set_attr "length" "4")]) ;; Peepholes go at the end. ;; Optimize consecutive loads or stores into ldd and std when possible. ;; The conditions in which we do this are very restricted and are ;; explained in the code for {registers,memory}_ok_for_ldd functions. (define_peephole2 [(set (match_operand:SI 0 "memory_operand" "") (const_int 0)) (set (match_operand:SI 1 "memory_operand" "") (const_int 0))] "TARGET_V9 && mems_ok_for_ldd_peep (operands[0], operands[1], NULL_RTX)" [(set (match_dup 0) (const_int 0))] "operands[0] = widen_memory_access (operands[0], DImode, 0);") (define_peephole2 [(set (match_operand:SI 0 "memory_operand" "") (const_int 0)) (set (match_operand:SI 1 "memory_operand" "") (const_int 0))] "TARGET_V9 && mems_ok_for_ldd_peep (operands[1], operands[0], NULL_RTX)" [(set (match_dup 1) (const_int 0))] "operands[1] = widen_memory_access (operands[1], DImode, 0);") (define_peephole2 [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (match_operand:SI 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[0], operands[2]) && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" [(set (match_dup 0) (match_dup 1))] "operands[1] = widen_memory_access (operands[1], DImode, 0); operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));") (define_peephole2 [(set (match_operand:SI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "")) (set (match_operand:SI 2 "memory_operand" "") (match_operand:SI 3 "register_operand" ""))] "registers_ok_for_ldd_peep (operands[1], operands[3]) && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" [(set (match_dup 0) (match_dup 1))] "operands[0] = widen_memory_access (operands[0], DImode, 0); operands[1] = gen_rtx_REG (DImode, REGNO (operands[1]));") (define_peephole2 [(set (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "memory_operand" "")) (set (match_operand:SF 2 "register_operand" "") (match_operand:SF 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[0], operands[2]) && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" [(set (match_dup 0) (match_dup 1))] "operands[1] = widen_memory_access (operands[1], DFmode, 0); operands[0] = gen_rtx_REG (DFmode, REGNO (operands[0]));") (define_peephole2 [(set (match_operand:SF 0 "memory_operand" "") (match_operand:SF 1 "register_operand" "")) (set (match_operand:SF 2 "memory_operand" "") (match_operand:SF 3 "register_operand" ""))] "registers_ok_for_ldd_peep (operands[1], operands[3]) && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" [(set (match_dup 0) (match_dup 1))] "operands[0] = widen_memory_access (operands[0], DFmode, 0); operands[1] = gen_rtx_REG (DFmode, REGNO (operands[1]));") (define_peephole2 [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (match_operand:SI 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[2], operands[0]) && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" [(set (match_dup 2) (match_dup 3))] "operands[3] = widen_memory_access (operands[3], DImode, 0); operands[2] = gen_rtx_REG (DImode, REGNO (operands[2]));") (define_peephole2 [(set (match_operand:SI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "")) (set (match_operand:SI 2 "memory_operand" "") (match_operand:SI 3 "register_operand" ""))] "registers_ok_for_ldd_peep (operands[3], operands[1]) && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" [(set (match_dup 2) (match_dup 3))] "operands[2] = widen_memory_access (operands[2], DImode, 0); operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); ") (define_peephole2 [(set (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "memory_operand" "")) (set (match_operand:SF 2 "register_operand" "") (match_operand:SF 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[2], operands[0]) && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" [(set (match_dup 2) (match_dup 3))] "operands[3] = widen_memory_access (operands[3], DFmode, 0); operands[2] = gen_rtx_REG (DFmode, REGNO (operands[2]));") (define_peephole2 [(set (match_operand:SF 0 "memory_operand" "") (match_operand:SF 1 "register_operand" "")) (set (match_operand:SF 2 "memory_operand" "") (match_operand:SF 3 "register_operand" ""))] "registers_ok_for_ldd_peep (operands[3], operands[1]) && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" [(set (match_dup 2) (match_dup 3))] "operands[2] = widen_memory_access (operands[2], DFmode, 0); operands[3] = gen_rtx_REG (DFmode, REGNO (operands[3]));") ;; Optimize the case of following a reg-reg move with a test ;; of reg just moved. Don't allow floating point regs for operand 0 or 1. ;; This can result from a float to fix conversion. (define_peephole2 [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "register_operand" "")) (set (reg:CC 100) (compare:CC (match_operand:SI 2 "register_operand" "") (const_int 0)))] "(rtx_equal_p (operands[2], operands[0]) || rtx_equal_p (operands[2], operands[1])) && ! SPARC_FP_REG_P (REGNO (operands[0])) && ! SPARC_FP_REG_P (REGNO (operands[1]))" [(parallel [(set (match_dup 0) (match_dup 1)) (set (reg:CC 100) (compare:CC (match_dup 1) (const_int 0)))])] "") (define_peephole2 [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "register_operand" "")) (set (reg:CCX 100) (compare:CCX (match_operand:DI 2 "register_operand" "") (const_int 0)))] "TARGET_ARCH64 && (rtx_equal_p (operands[2], operands[0]) || rtx_equal_p (operands[2], operands[1])) && ! SPARC_FP_REG_P (REGNO (operands[0])) && ! SPARC_FP_REG_P (REGNO (operands[1]))" [(parallel [(set (match_dup 0) (match_dup 1)) (set (reg:CCX 100) (compare:CCX (match_dup 1) (const_int 0)))])] "") ;; Prefetch instructions. ;; ??? UltraSPARC-III note: A memory operation loading into the floating point register ;; ??? file, if it hits the prefetch cache, has a chance to dual-issue with other memory ;; ??? operations. With DFA we might be able to model this, but it requires a lot of ;; ??? state. (define_expand "prefetch" [(match_operand 0 "address_operand" "") (match_operand 1 "const_int_operand" "") (match_operand 2 "const_int_operand" "")] "TARGET_V9" { if (TARGET_ARCH64) emit_insn (gen_prefetch_64 (operands[0], operands[1], operands[2])); else emit_insn (gen_prefetch_32 (operands[0], operands[1], operands[2])); DONE; }) (define_insn "prefetch_64" [(prefetch (match_operand:DI 0 "address_operand" "p") (match_operand:DI 1 "const_int_operand" "n") (match_operand:DI 2 "const_int_operand" "n"))] "" { static const char * const prefetch_instr[2][2] = { { "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ }, { "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ } }; int read_or_write = INTVAL (operands[1]); int locality = INTVAL (operands[2]); gcc_assert (read_or_write == 0 || read_or_write == 1); gcc_assert (locality >= 0 && locality < 4); return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; } [(set_attr "type" "load")]) (define_insn "prefetch_32" [(prefetch (match_operand:SI 0 "address_operand" "p") (match_operand:SI 1 "const_int_operand" "n") (match_operand:SI 2 "const_int_operand" "n"))] "" { static const char * const prefetch_instr[2][2] = { { "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ }, { "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ } }; int read_or_write = INTVAL (operands[1]); int locality = INTVAL (operands[2]); gcc_assert (read_or_write == 0 || read_or_write == 1); gcc_assert (locality >= 0 && locality < 4); return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; } [(set_attr "type" "load")]) ;; Trap instructions. (define_insn "trap" [(trap_if (const_int 1) (const_int 5))] "" "ta\t5" [(set_attr "type" "trap")]) (define_expand "conditional_trap" [(trap_if (match_operator 0 "noov_compare_operator" [(match_dup 2) (match_dup 3)]) (match_operand:SI 1 "arith_operand" ""))] "" "operands[2] = gen_compare_reg (GET_CODE (operands[0]), sparc_compare_op0, sparc_compare_op1); if (GET_MODE (operands[2]) != CCmode && GET_MODE (operands[2]) != CCXmode) FAIL; operands[3] = const0_rtx;") (define_insn "" [(trap_if (match_operator 0 "noov_compare_operator" [(reg:CC 100) (const_int 0)]) (match_operand:SI 1 "arith_operand" "rM"))] "" { if (TARGET_V9) return "t%C0\t%%icc, %1"; else return "t%C0\t%1"; } [(set_attr "type" "trap")]) (define_insn "" [(trap_if (match_operator 0 "noov_compare_operator" [(reg:CCX 100) (const_int 0)]) (match_operand:SI 1 "arith_operand" "rM"))] "TARGET_V9" "t%C0\t%%xcc, %1" [(set_attr "type" "trap")]) ;; TLS support instructions. (define_insn "tgd_hi22" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)))] "TARGET_TLS" "sethi\\t%%tgd_hi22(%a1), %0") (define_insn "tgd_lo10" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand 2 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)))] "TARGET_TLS" "add\\t%1, %%tgd_lo10(%a2), %0") (define_insn "tgd_add32" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)))] "TARGET_TLS && TARGET_ARCH32" "add\\t%1, %2, %0, %%tgd_add(%a3)") (define_insn "tgd_add64" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)))] "TARGET_TLS && TARGET_ARCH64" "add\\t%1, %2, %0, %%tgd_add(%a3)") (define_insn "tgd_call32" [(set (match_operand 0 "register_operand" "=r") (call (mem:SI (unspec:SI [(match_operand:SI 1 "symbolic_operand" "s") (match_operand 2 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)) (match_operand 3 "" ""))) (clobber (reg:SI 15))] "TARGET_TLS && TARGET_ARCH32" "call\t%a1, %%tgd_call(%a2)%#" [(set_attr "type" "call")]) (define_insn "tgd_call64" [(set (match_operand 0 "register_operand" "=r") (call (mem:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "s") (match_operand 2 "tgd_symbolic_operand" "")] UNSPEC_TLSGD)) (match_operand 3 "" ""))) (clobber (reg:DI 15))] "TARGET_TLS && TARGET_ARCH64" "call\t%a1, %%tgd_call(%a2)%#" [(set_attr "type" "call")]) (define_insn "tldm_hi22" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(const_int 0)] UNSPEC_TLSLDM)))] "TARGET_TLS" "sethi\\t%%tldm_hi22(%&), %0") (define_insn "tldm_lo10" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(const_int 0)] UNSPEC_TLSLDM)))] "TARGET_TLS" "add\\t%1, %%tldm_lo10(%&), %0") (define_insn "tldm_add32" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "register_operand" "r")] UNSPEC_TLSLDM)))] "TARGET_TLS && TARGET_ARCH32" "add\\t%1, %2, %0, %%tldm_add(%&)") (define_insn "tldm_add64" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:SI 2 "register_operand" "r")] UNSPEC_TLSLDM)))] "TARGET_TLS && TARGET_ARCH64" "add\\t%1, %2, %0, %%tldm_add(%&)") (define_insn "tldm_call32" [(set (match_operand 0 "register_operand" "=r") (call (mem:SI (unspec:SI [(match_operand:SI 1 "symbolic_operand" "s")] UNSPEC_TLSLDM)) (match_operand 2 "" ""))) (clobber (reg:SI 15))] "TARGET_TLS && TARGET_ARCH32" "call\t%a1, %%tldm_call(%&)%#" [(set_attr "type" "call")]) (define_insn "tldm_call64" [(set (match_operand 0 "register_operand" "=r") (call (mem:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "s")] UNSPEC_TLSLDM)) (match_operand 2 "" ""))) (clobber (reg:DI 15))] "TARGET_TLS && TARGET_ARCH64" "call\t%a1, %%tldm_call(%&)%#" [(set_attr "type" "call")]) (define_insn "tldo_hix22" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "tld_symbolic_operand" "")] UNSPEC_TLSLDO)))] "TARGET_TLS" "sethi\\t%%tldo_hix22(%a1), %0") (define_insn "tldo_lox10" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand 2 "tld_symbolic_operand" "")] UNSPEC_TLSLDO)))] "TARGET_TLS" "xor\\t%1, %%tldo_lox10(%a2), %0") (define_insn "tldo_add32" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO)))] "TARGET_TLS && TARGET_ARCH32" "add\\t%1, %2, %0, %%tldo_add(%a3)") (define_insn "tldo_add64" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO)))] "TARGET_TLS && TARGET_ARCH64" "add\\t%1, %2, %0, %%tldo_add(%a3)") (define_insn "tie_hi22" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "tie_symbolic_operand" "")] UNSPEC_TLSIE)))] "TARGET_TLS" "sethi\\t%%tie_hi22(%a1), %0") (define_insn "tie_lo10" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand 2 "tie_symbolic_operand" "")] UNSPEC_TLSIE)))] "TARGET_TLS" "add\\t%1, %%tie_lo10(%a2), %0") (define_insn "tie_ld32" [(set (match_operand:SI 0 "register_operand" "=r") (unspec:SI [(match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r") (match_operand 3 "tie_symbolic_operand" "")] UNSPEC_TLSIE))] "TARGET_TLS && TARGET_ARCH32" "ld\\t[%1 + %2], %0, %%tie_ld(%a3)" [(set_attr "type" "load")]) (define_insn "tie_ld64" [(set (match_operand:DI 0 "register_operand" "=r") (unspec:DI [(match_operand:DI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r") (match_operand 3 "tie_symbolic_operand" "")] UNSPEC_TLSIE))] "TARGET_TLS && TARGET_ARCH64" "ldx\\t[%1 + %2], %0, %%tie_ldx(%a3)" [(set_attr "type" "load")]) (define_insn "tie_add32" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tie_symbolic_operand" "")] UNSPEC_TLSIE)))] "TARGET_SUN_TLS && TARGET_ARCH32" "add\\t%1, %2, %0, %%tie_add(%a3)") (define_insn "tie_add64" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand:DI 2 "register_operand" "r") (match_operand 3 "tie_symbolic_operand" "")] UNSPEC_TLSIE)))] "TARGET_SUN_TLS && TARGET_ARCH64" "add\\t%1, %2, %0, %%tie_add(%a3)") (define_insn "tle_hix22_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "tle_symbolic_operand" "")] UNSPEC_TLSLE)))] "TARGET_TLS && TARGET_ARCH32" "sethi\\t%%tle_hix22(%a1), %0") (define_insn "tle_lox10_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand 2 "tle_symbolic_operand" "")] UNSPEC_TLSLE)))] "TARGET_TLS && TARGET_ARCH32" "xor\\t%1, %%tle_lox10(%a2), %0") (define_insn "tle_hix22_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (unspec:DI [(match_operand 1 "tle_symbolic_operand" "")] UNSPEC_TLSLE)))] "TARGET_TLS && TARGET_ARCH64" "sethi\\t%%tle_hix22(%a1), %0") (define_insn "tle_lox10_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "r") (unspec:DI [(match_operand 2 "tle_symbolic_operand" "")] UNSPEC_TLSLE)))] "TARGET_TLS && TARGET_ARCH64" "xor\\t%1, %%tle_lox10(%a2), %0") ;; Now patterns combining tldo_add{32,64} with some integer loads or stores (define_insn "*tldo_ldub_sp32" [(set (match_operand:QI 0 "register_operand" "=r") (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH32" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub1_sp32" [(set (match_operand:HI 0 "register_operand" "=r") (zero_extend:HI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub2_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsb1_sp32" [(set (match_operand:HI 0 "register_operand" "=r") (sign_extend:HI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsb2_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub_sp64" [(set (match_operand:QI 0 "register_operand" "=r") (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH64" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub1_sp64" [(set (match_operand:HI 0 "register_operand" "=r") (zero_extend:HI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub2_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldub3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldub\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsb1_sp64" [(set (match_operand:HI 0 "register_operand" "=r") (sign_extend:HI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsb2_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsb3_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduh_sp32" [(set (match_operand:HI 0 "register_operand" "=r") (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH32" "lduh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduh1_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "lduh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsh1_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH32" "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduh_sp64" [(set (match_operand:HI 0 "register_operand" "=r") (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH64" "lduh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduh1_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "lduh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduh2_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "lduh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsh1_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldsh2_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_lduw_sp32" [(set (match_operand:SI 0 "register_operand" "=r") (mem:SI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH32" "ld\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load")]) (define_insn "*tldo_lduw_sp64" [(set (match_operand:SI 0 "register_operand" "=r") (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH64" "lduw\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load")]) (define_insn "*tldo_lduw1_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "lduw\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load")]) (define_insn "*tldo_ldsw1_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r")))))] "TARGET_TLS && TARGET_ARCH64" "ldsw\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "sload") (set_attr "us3load_type" "3cycle")]) (define_insn "*tldo_ldx_sp64" [(set (match_operand:DI 0 "register_operand" "=r") (mem:DI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))))] "TARGET_TLS && TARGET_ARCH64" "ldx\t[%1 + %2], %0, %%tldo_add(%3)" [(set_attr "type" "load")]) (define_insn "*tldo_stb_sp32" [(set (mem:QI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))) (match_operand:QI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH32" "stb\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_stb_sp64" [(set (mem:QI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))) (match_operand:QI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH64" "stb\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_sth_sp32" [(set (mem:HI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))) (match_operand:HI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH32" "sth\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_sth_sp64" [(set (mem:HI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))) (match_operand:HI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH64" "sth\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_stw_sp32" [(set (mem:SI (plus:SI (unspec:SI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:SI 1 "register_operand" "r"))) (match_operand:SI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH32" "st\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_stw_sp64" [(set (mem:SI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))) (match_operand:SI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH64" "stw\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) (define_insn "*tldo_stx_sp64" [(set (mem:DI (plus:DI (unspec:DI [(match_operand:SI 2 "register_operand" "r") (match_operand 3 "tld_symbolic_operand" "")] UNSPEC_TLSLDO) (match_operand:DI 1 "register_operand" "r"))) (match_operand:DI 0 "register_operand" "=r"))] "TARGET_TLS && TARGET_ARCH64" "stx\t%0, [%1 + %2], %%tldo_add(%3)" [(set_attr "type" "store")]) ;; Vector instructions. (define_insn "addv2si3" [(set (match_operand:V2SI 0 "register_operand" "=e") (plus:V2SI (match_operand:V2SI 1 "register_operand" "e") (match_operand:V2SI 2 "register_operand" "e")))] "TARGET_VIS" "fpadd32\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "addv4hi3" [(set (match_operand:V4HI 0 "register_operand" "=e") (plus:V4HI (match_operand:V4HI 1 "register_operand" "e") (match_operand:V4HI 2 "register_operand" "e")))] "TARGET_VIS" "fpadd16\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) ;; fpadd32s is emitted by the addsi3 pattern. (define_insn "addv2hi3" [(set (match_operand:V2HI 0 "register_operand" "=f") (plus:V2HI (match_operand:V2HI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")))] "TARGET_VIS" "fpadd16s\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "single")]) (define_insn "subv2si3" [(set (match_operand:V2SI 0 "register_operand" "=e") (minus:V2SI (match_operand:V2SI 1 "register_operand" "e") (match_operand:V2SI 2 "register_operand" "e")))] "TARGET_VIS" "fpsub32\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "subv4hi3" [(set (match_operand:V4HI 0 "register_operand" "=e") (minus:V4HI (match_operand:V4HI 1 "register_operand" "e") (match_operand:V4HI 2 "register_operand" "e")))] "TARGET_VIS" "fpsub16\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) ;; fpsub32s is emitted by the subsi3 pattern. (define_insn "subv2hi3" [(set (match_operand:V2HI 0 "register_operand" "=f") (minus:V2HI (match_operand:V2HI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")))] "TARGET_VIS" "fpsub16s\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "single")]) ;; All other logical instructions have integer equivalents so they ;; are defined together. ;; (ior (not (op1)) (not (op2))) is the canonical form of NAND. (define_insn "*nand_vis" [(set (match_operand:V64 0 "register_operand" "=e") (ior:V64 (not:V64 (match_operand:V64 1 "register_operand" "e")) (not:V64 (match_operand:V64 2 "register_operand" "e"))))] "TARGET_VIS" "fnand\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "*nand_vis" [(set (match_operand:V32 0 "register_operand" "=f") (ior:V32 (not:V32 (match_operand:V32 1 "register_operand" "f")) (not:V32 (match_operand:V32 2 "register_operand" "f"))))] "TARGET_VIS" "fnands\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "single")]) ;; Hard to generate VIS instructions. We have builtins for these. (define_insn "fpack16_vis" [(set (match_operand:V4QI 0 "register_operand" "=f") (unspec:V4QI [(match_operand:V4HI 1 "register_operand" "e")] UNSPEC_FPACK16))] "TARGET_VIS" "fpack16\t%1, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "fpackfix_vis" [(set (match_operand:V2HI 0 "register_operand" "=f") (unspec:V2HI [(match_operand:V2SI 1 "register_operand" "e")] UNSPEC_FPACKFIX))] "TARGET_VIS" "fpackfix\t%1, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "fpack32_vis" [(set (match_operand:V8QI 0 "register_operand" "=e") (unspec:V8QI [(match_operand:V2SI 1 "register_operand" "e") (match_operand:V8QI 2 "register_operand" "e")] UNSPEC_FPACK32))] "TARGET_VIS" "fpack32\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "fexpand_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f")] UNSPEC_FEXPAND))] "TARGET_VIS" "fexpand\t%1, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) ;; It may be possible to describe this operation as (1 indexed): ;; (vec_select (vec_duplicate (vec_duplicate (vec_concat 1 2))) ;; 1,5,10,14,19,23,28,32) ;; Note that (vec_merge:V8QI [(V4QI) (V4QI)] (10101010 = 170) doesn't work ;; because vec_merge expects all the operands to be of the same type. (define_insn "fpmerge_vis" [(set (match_operand:V8QI 0 "register_operand" "=e") (unspec:V8QI [(match_operand:V4QI 1 "register_operand" "f") (match_operand:V4QI 2 "register_operand" "f")] UNSPEC_FPMERGE))] "TARGET_VIS" "fpmerge\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) ;; Partitioned multiply instructions (define_insn "fmul8x16_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (mult:V4HI (match_operand:V4QI 1 "register_operand" "f") (match_operand:V4HI 2 "register_operand" "e")))] "TARGET_VIS" "fmul8x16\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) ;; Only one of the following two insns can be a multiply. (define_insn "fmul8x16au_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (mult:V4HI (match_operand:V4QI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")))] "TARGET_VIS" "fmul8x16au\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) (define_insn "fmul8x16al_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")] UNSPEC_MUL16AL))] "TARGET_VIS" "fmul8x16al\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) ;; Only one of the following two insns can be a multiply. (define_insn "fmul8sux16_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (mult:V4HI (match_operand:V8QI 1 "register_operand" "e") (match_operand:V4HI 2 "register_operand" "e")))] "TARGET_VIS" "fmul8sux16\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) (define_insn "fmul8ulx16_vis" [(set (match_operand:V4HI 0 "register_operand" "=e") (unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e") (match_operand:V4HI 2 "register_operand" "e")] UNSPEC_MUL8UL))] "TARGET_VIS" "fmul8ulx16\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) ;; Only one of the following two insns can be a multiply. (define_insn "fmuld8sux16_vis" [(set (match_operand:V2SI 0 "register_operand" "=e") (mult:V2SI (match_operand:V4QI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")))] "TARGET_VIS" "fmuld8sux16\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) (define_insn "fmuld8ulx16_vis" [(set (match_operand:V2SI 0 "register_operand" "=e") (unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f") (match_operand:V2HI 2 "register_operand" "f")] UNSPEC_MULDUL))] "TARGET_VIS" "fmuld8ulx16\t%1, %2, %0" [(set_attr "type" "fpmul") (set_attr "fptype" "double")]) ;; Using faligndata only makes sense after an alignaddr since the choice of ;; bytes to take out of each operand is dependent on the results of the last ;; alignaddr. (define_insn "faligndata_vis" [(set (match_operand:V64I 0 "register_operand" "=e") (unspec:V64I [(match_operand:V64I 1 "register_operand" "e") (match_operand:V64I 2 "register_operand" "e")] UNSPEC_ALIGNDATA))] "TARGET_VIS" "faligndata\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")]) (define_insn "alignaddr_vis" [(set (match_operand:P 0 "register_operand" "=r") (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") (match_operand:P 2 "register_or_zero_operand" "rJ")] UNSPEC_ALIGNADDR))] "TARGET_VIS" "alignaddr\t%r1, %r2, %0") (define_insn "pdist_vis" [(set (match_operand:DI 0 "register_operand" "=e") (unspec:DI [(match_operand:V8QI 1 "register_operand" "e") (match_operand:V8QI 2 "register_operand" "e") (match_operand:DI 3 "register_operand" "0")] UNSPEC_PDIST))] "TARGET_VIS" "pdist\t%1, %2, %0" [(set_attr "type" "fga") (set_attr "fptype" "double")])