/* Definitions of target machine for GNU compiler, for the pdp-11 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2010 Free Software Foundation, Inc. Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at). This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define CONSTANT_POOL_BEFORE_FUNCTION 0 /* check whether load_fpu_reg or not */ #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11) #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13) #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x)) #define CPU_REG_P(x) ((x)<8) /* Names to predefine in the preprocessor for this target machine. */ #define TARGET_CPU_CPP_BUILTINS() \ do \ { \ builtin_define_std ("pdp11"); \ } \ while (0) /* Print subsidiary information on the compiler version in use. */ #define TARGET_VERSION fprintf (stderr, " (pdp11)"); /* Generate DBX debugging information. */ /* #define DBX_DEBUGGING_INFO */ #define TARGET_40_PLUS (TARGET_40 || TARGET_45) #define TARGET_10 (! TARGET_40_PLUS) #define TARGET_UNIX_ASM_DEFAULT 0 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0) /* TYPE SIZES */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32) #define LONG_TYPE_SIZE 32 #define LONG_LONG_TYPE_SIZE 64 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit of saving core for huge arrays - the definitions are already in md - but floats can never reside in an FPU register - we keep the FPU in double float mode all the time !! */ #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64) #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE 64 /* machine types from ansi */ #define SIZE_TYPE "unsigned int" /* definition of size_t */ #define WCHAR_TYPE "int" /* or long int???? */ #define WCHAR_TYPE_SIZE 16 #define PTRDIFF_TYPE "int" /* target machine storage layout */ /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ #define BITS_BIG_ENDIAN 0 /* Define this if most significant byte of a word is the lowest numbered. */ #define BYTES_BIG_ENDIAN 0 /* Define this if most significant word of a multiword number is first. */ #define WORDS_BIG_ENDIAN 1 /* Define that floats are in VAX order, not high word first as for ints. */ #define FLOAT_WORDS_BIG_ENDIAN 0 /* Width of a word, in units (bytes). UNITS OR BYTES - seems like units */ #define UNITS_PER_WORD 2 /* This machine doesn't use IEEE floats. */ /* Because the pdp11 (at least Unix) convention for 32-bit ints is big endian, opposite for what you need for float, the vax float conversion routines aren't actually used directly. But the underlying format is indeed the vax/pdp11 float format. */ extern const struct real_format pdp11_f_format; extern const struct real_format pdp11_d_format; /* Maximum sized of reasonable data type DImode or Dfmode ...*/ #define MAX_FIXED_MODE_SIZE 64 /* Allocation boundary (in *bits*) for storing pointers in memory. */ #define POINTER_BOUNDARY 16 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY 16 /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY 16 /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 16 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 16 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 16 /* Define this if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. we have 8 integer registers, plus 6 float (don't use scratch float !) */ #define FIRST_PSEUDO_REGISTER 14 /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On the pdp, these are: Reg 7 = pc; reg 6 = sp; reg 5 = fp; not necessarily! */ /* don't let them touch fp regs for the time being !*/ #define FIXED_REGISTERS \ {0, 0, 0, 0, 0, 0, 1, 1, \ 0, 0, 0, 0, 0, 0 } /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ /* don't know about fp */ #define CALL_USED_REGISTERS \ {1, 1, 0, 0, 0, 0, 1, 1, \ 0, 0, 0, 0, 0, 0 } /* Make sure everything's fine if we *don't* have an FPU. This assumes that putting a register in fixed_regs will keep the compiler's mitts completely off it. We don't bother to zero it out of register classes. Also fix incompatible register naming with the UNIX assembler. */ #define CONDITIONAL_REGISTER_USAGE \ { \ int i; \ HARD_REG_SET x; \ if (!TARGET_FPU) \ { \ COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \ if (TEST_HARD_REG_BIT (x, i)) \ fixed_regs[i] = call_used_regs[i] = 1; \ } \ \ if (TARGET_AC0) \ call_used_regs[8] = 1; \ if (TARGET_UNIX_ASM) \ { \ /* Change names of FPU registers for the UNIX assembler. */ \ reg_names[8] = "fr0"; \ reg_names[9] = "fr1"; \ reg_names[10] = "fr2"; \ reg_names[11] = "fr3"; \ reg_names[12] = "fr4"; \ reg_names[13] = "fr5"; \ } \ } /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ ((REGNO < 8)? \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \ :1) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. On the pdp, the cpu registers can hold any mode - check alignment FPU can only hold DF - simplifies life! */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ (((REGNO) < 8)? \ ((GET_MODE_BITSIZE(MODE) <= 16) \ || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \ :(MODE) == DFmode) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) 0 /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* the pdp11 pc overloaded on a register that the compiler knows about. */ #define PC_REGNUM 7 /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 6 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 5 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 5 /* Register in which static-chain is passed to a function. */ /* ??? - i don't want to give up a reg for this! */ #define STATIC_CHAIN_REGNUM 4 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The pdp has a couple of classes: MUL_REGS are used for odd numbered regs, to use in 16-bit multiplication (even numbered do 32-bit multiply) LMUL_REGS long multiply registers (even numbered regs ) (don't need them, all 32-bit regs are even numbered!) GENERAL_REGS is all cpu LOAD_FPU_REGS is the first four cpu regs, they are easier to load NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them FPU_REGS is all fpu regs */ enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* have to allow this till cmpsi/tstsi are fixed in a better way !! */ #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true /* Since GENERAL_REGS is the same class as ALL_REGS, don't give it a different class number; just make it an alias. */ /* #define GENERAL_REGS ALL_REGS */ /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}} /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) \ ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS)) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS GENERAL_REGS /* Get reg_class from a letter such as appears in the machine description. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'f' ? FPU_REGS : \ ((C) == 'd' ? MUL_REGS : \ ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS))) /* The letters I, J, K, L and M in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. I bits 31-16 0000 J bits 15-00 0000 K completely random 32 bit L,M,N -1,1,0 respectively O where doing shifts in sequence is faster than one big shift */ #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \ : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \ : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \ && ((VALUE) & 0x0000ffff) != 0) \ : (C) == 'L' ? ((VALUE) == 1) \ : (C) == 'M' ? ((VALUE) == -1) \ : (C) == 'N' ? ((VALUE) == 0) \ : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \ : 0) /* Similar, but for floating constants, and defining letters G and H. Here VALUE is the CONST_DOUBLE rtx itself. */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0) /* Letters in the range `Q' through `U' may be defined in a machine-dependent fashion to stand for arbitrary operand types. The machine description macro `EXTRA_CONSTRAINT' is passed the operand as its first argument and the constraint letter as its second operand. `Q' is for memory references that require an extra word after the opcode. `R' is for memory references which are encoded within the opcode. */ #define EXTRA_CONSTRAINT(OP,CODE) \ ((GET_CODE (OP) != MEM) ? 0 \ : !memory_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \ : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \ : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \ : 0) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. loading is easier into LOAD_FPU_REGS than FPU_REGS! */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS) #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \ (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \ 1 \ ) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this to nonzero if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD 1 /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET 0 /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On the pdp11, the stack is on an even boundary */ #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1) /* current_first_parm_offset stores the # of registers pushed on the stack */ extern int current_first_parm_offset; /* Offset of first parameter from the argument pointer register value. For the pdp11, this is nonzero to account for the return address. 1 - return address 2 - frame pointer (always saved, even when not used!!!!) -- change some day !!!:q! */ #define FIRST_PARM_OFFSET(FNDECL) 4 /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ #define BASE_RETURN_VALUE_REG(MODE) \ ((MODE) == DFmode ? 8 : 0) /* 1 if N is a possible register number for function argument passing. - not used on pdp */ #define FUNCTION_ARG_REGNO_P(N) 0 /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. */ #define CUMULATIVE_ARGS int /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. ...., the offset normally starts at 0, but starts at 1 word when the function gets a structure-value-address as an invisible first argument. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ ((CUM) = 0) /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ((CUM) += ((MODE) != BLKmode \ ? (GET_MODE_SIZE (MODE)) \ : (int_size_in_bytes (TYPE)))) /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 /* Define where a function finds its arguments. This would be different from FUNCTION_ARG if we had register windows. */ /* #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ FUNCTION_ARG (CUM, MODE, TYPE, NAMED) */ /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ gcc_unreachable (); /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ extern int may_call_alloca; #define EXIT_IGNORE_STACK 1 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \ { \ int offset, regno; \ offset = get_frame_size(); \ for (regno = 0; regno < 8; regno++) \ if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \ offset += 2; \ for (regno = 8; regno < 14; regno++) \ if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \ offset += 8; \ /* offset -= 2; no fp on stack frame */ \ (DEPTH_VAR) = offset; \ } /* Addressing modes, and classification of registers for them. */ #define HAVE_POST_INCREMENT 1 #define HAVE_PRE_DECREMENT 1 /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) #define REGNO_OK_FOR_BASE_P(REGNO) \ ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) /* Now macros that check whether X is a register and also, strictly, whether it is in a specified class. */ /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 /* Nonzero if the constant value X is a legitimate general operand. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ #define LEGITIMATE_CONSTANT_P(X) \ (GET_CODE (X) != CONST_DOUBLE || legitimate_const_double_p (X)) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ #ifndef REG_OK_STRICT /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) (1) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) (1) #else /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #endif /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. */ #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \ { \ rtx xfoob; \ \ /* accept (R0) */ \ if (GET_CODE (operand) == REG \ && REG_OK_FOR_BASE_P(operand)) \ goto ADDR; \ \ /* accept @#address */ \ if (CONSTANT_ADDRESS_P (operand)) \ goto ADDR; \ \ /* accept X(R0) */ \ if (GET_CODE (operand) == PLUS \ && GET_CODE (XEXP (operand, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \ && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \ goto ADDR; \ \ /* accept -(R0) */ \ if (GET_CODE (operand) == PRE_DEC \ && GET_CODE (XEXP (operand, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \ goto ADDR; \ \ /* accept (R0)+ */ \ if (GET_CODE (operand) == POST_INC \ && GET_CODE (XEXP (operand, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \ goto ADDR; \ \ /* accept -(SP) -- which uses PRE_MODIFY for byte mode */ \ if (GET_CODE (operand) == PRE_MODIFY \ && GET_CODE (XEXP (operand, 0)) == REG \ && REGNO (XEXP (operand, 0)) == 6 \ && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \ && GET_CODE (XEXP (xfoob, 0)) == REG \ && REGNO (XEXP (xfoob, 0)) == 6 \ && CONSTANT_P (XEXP (xfoob, 1)) \ && INTVAL (XEXP (xfoob,1)) == -2) \ goto ADDR; \ \ /* accept (SP)+ -- which uses POST_MODIFY for byte mode */ \ if (GET_CODE (operand) == POST_MODIFY \ && GET_CODE (XEXP (operand, 0)) == REG \ && REGNO (XEXP (operand, 0)) == 6 \ && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \ && GET_CODE (XEXP (xfoob, 0)) == REG \ && REGNO (XEXP (xfoob, 0)) == 6 \ && CONSTANT_P (XEXP (xfoob, 1)) \ && INTVAL (XEXP (xfoob,1)) == 2) \ goto ADDR; \ \ \ /* handle another level of indirection ! */ \ if (GET_CODE(operand) != MEM) \ goto fail; \ \ xfoob = XEXP (operand, 0); \ \ /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \ /* also forbidden for float, because we have to handle this */ \ /* in output_move_double and/or output_move_quad() - we could */ \ /* do it, but currently it's not worth it!!! */ \ /* now that DFmode cannot go into CPU register file, */ \ /* maybe I should allow float ... */ \ /* but then I have to handle memory-to-memory moves in movdf ?? */ \ \ if (GET_MODE_BITSIZE(mode) > 16) \ goto fail; \ \ /* accept @(R0) - which is @0(R0) */ \ if (GET_CODE (xfoob) == REG \ && REG_OK_FOR_BASE_P(xfoob)) \ goto ADDR; \ \ /* accept @address */ \ if (CONSTANT_ADDRESS_P (xfoob)) \ goto ADDR; \ \ /* accept @X(R0) */ \ if (GET_CODE (xfoob) == PLUS \ && GET_CODE (XEXP (xfoob, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \ && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \ goto ADDR; \ \ /* accept @-(R0) */ \ if (GET_CODE (xfoob) == PRE_DEC \ && GET_CODE (XEXP (xfoob, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \ goto ADDR; \ \ /* accept @(R0)+ */ \ if (GET_CODE (xfoob) == POST_INC \ && GET_CODE (XEXP (xfoob, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \ goto ADDR; \ \ /* anything else is invalid */ \ fail: ; \ } /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE HImode /* Define this if a raw index is all that is needed for a `tablejump' insn. */ #define CASE_TAKES_INDEX_RAW /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 2 /* Nonzero if access to memory by byte is slow and undesirable. - */ #define SLOW_BYTE_ACCESS 0 /* Do not break .stabs pseudos into continuations. */ #define DBX_CONTIN_LENGTH 0 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFPmode should be used. */ #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode HImode /* A function address in a call instruction is a word address (for indexing purposes) so give the MEM rtx a word's mode. */ #define FUNCTION_MODE HImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ /* #define NO_FUNCTION_CSE */ /* cost of moving one register class to another */ #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ pdp11_register_move_cost (CLASS1, CLASS2) /* Tell emit-rtl.c how to initialize special values on a per-function base. */ extern struct rtx_def *cc0_reg_rtx; #define CC_STATUS_MDEP rtx #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0) /* Tell final.c how to eliminate redundant test instructions. */ /* Here we define machine-dependent flags and fields in cc_status (see `conditions.h'). */ #define CC_IN_FPU 04000 /* Do UPDATE_CC if EXP is a set, used in NOTICE_UPDATE_CC floats only do compare correctly, else nullify ... get cc0 out soon ... */ /* Store in cc_status the expressions that the condition codes will describe after execution of an instruction whose pattern is EXP. Do not alter them if the instruction would not alter the cc's. */ #define NOTICE_UPDATE_CC(EXP, INSN) \ { if (GET_CODE (EXP) == SET) \ { \ notice_update_cc_on_set(EXP, INSN); \ } \ else if (GET_CODE (EXP) == PARALLEL \ && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ { \ notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \ } \ else if (GET_CODE (EXP) == CALL) \ { /* all bets are off */ CC_STATUS_INIT; } \ if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ && cc_status.value2 \ && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ { \ printf ("here!\n"); \ cc_status.value2 = 0; \ } \ } /* Control the assembler format that we output. */ /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" /* Output before read-only data. */ #define TEXT_SECTION_ASM_OP "\t.text\n" /* Output before writable data. */ #define DATA_SECTION_ASM_OP "\t.data\n" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \ "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" } /* Globalizing directive for a label. */ #define GLOBAL_ASM_OP "\t.globl " /* The prefix to add to user-visible assembler symbols. */ #define USER_LABEL_PREFIX "_" /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*%s_%lu", PREFIX, (unsigned long)(NUM)) #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ output_ascii (FILE, P, SIZE) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE) /* This is how to output an element of a case-vector that is relative. Don't define this if it is not supported. */ /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */ /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. who needs this???? */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ switch (LOG) \ { \ case 0: \ break; \ case 1: \ fprintf (FILE, "\t.even\n"); \ break; \ default: \ gcc_unreachable (); \ } #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t.=.+ %#ho\n", (unsigned short)(SIZE)) /* This says how to output an assembler line to define a global common symbol. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fprintf ((FILE), ".globl "), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), "\n"), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ": .=.+ %#ho\n", (unsigned short)(ROUNDED)) \ ) /* This says how to output an assembler line to define a local common symbol. */ #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ( assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ":\t.=.+ %#ho\n", (unsigned short)(ROUNDED))) /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) \ { if (CODE == '#') fprintf (FILE, "#"); \ else if (GET_CODE (X) == REG) \ fprintf (FILE, "%s", reg_names[REGNO (X)]); \ else if (GET_CODE (X) == MEM) \ output_address (XEXP (X, 0)); \ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \ { REAL_VALUE_TYPE r; \ long sval[2]; \ REAL_VALUE_FROM_CONST_DOUBLE (r, X); \ REAL_VALUE_TO_TARGET_DOUBLE (r, sval); \ fprintf (FILE, "$%#lo", sval[0] >> 16); } \ else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }} /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ print_operand_address (FILE, ADDR) #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ ( \ fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \ ) #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ ( \ fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \ ) #define TRAMPOLINE_SIZE 8 #define TRAMPOLINE_ALIGNMENT 16 /* there is no point in avoiding branches on a pdp, since branches are really cheap - I just want to find out how much difference the BRANCH_COST macro makes in code */ #define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_CHEAP ? 0 : 1) #define COMPARE_FLAG_MODE HImode