/* Subroutines for insn-output.c for HPPA. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-attr.h" #include "flags.h" #include "tree.h" #include "output.h" #include "except.h" #include "expr.h" #include "optabs.h" #include "reload.h" #include "integrate.h" #include "function.h" #include "toplev.h" #include "ggc.h" #include "recog.h" #include "predict.h" #include "tm_p.h" #include "target.h" #include "target-def.h" static int hppa_use_dfa_pipeline_interface (void); #undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE #define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE hppa_use_dfa_pipeline_interface static int hppa_use_dfa_pipeline_interface (void) { return 1; } /* Return nonzero if there is a bypass for the output of OUT_INSN and the fp store IN_INSN. */ int hppa_fpstore_bypass_p (rtx out_insn, rtx in_insn) { enum machine_mode store_mode; enum machine_mode other_mode; rtx set; if (recog_memoized (in_insn) < 0 || get_attr_type (in_insn) != TYPE_FPSTORE || recog_memoized (out_insn) < 0) return 0; store_mode = GET_MODE (SET_SRC (PATTERN (in_insn))); set = single_set (out_insn); if (!set) return 0; other_mode = GET_MODE (SET_SRC (set)); return (GET_MODE_SIZE (store_mode) == GET_MODE_SIZE (other_mode)); } #ifndef DO_FRAME_NOTES #ifdef INCOMING_RETURN_ADDR_RTX #define DO_FRAME_NOTES 1 #else #define DO_FRAME_NOTES 0 #endif #endif static void copy_reg_pointer (rtx, rtx); static int hppa_address_cost (rtx); static bool hppa_rtx_costs (rtx, int, int, int *); static inline rtx force_mode (enum machine_mode, rtx); static void pa_reorg (void); static void pa_combine_instructions (void); static int pa_can_combine_p (rtx, rtx, rtx, int, rtx, rtx, rtx); static int forward_branch_p (rtx); static int shadd_constant_p (int); static void compute_zdepwi_operands (unsigned HOST_WIDE_INT, unsigned *); static int compute_movstr_length (rtx); static int compute_clrstr_length (rtx); static bool pa_assemble_integer (rtx, unsigned int, int); static void remove_useless_addtr_insns (int); static void store_reg (int, HOST_WIDE_INT, int); static void store_reg_modify (int, int, HOST_WIDE_INT); static void load_reg (int, HOST_WIDE_INT, int); static void set_reg_plus_d (int, int, HOST_WIDE_INT, int); static void pa_output_function_prologue (FILE *, HOST_WIDE_INT); static void update_total_code_bytes (int); static void pa_output_function_epilogue (FILE *, HOST_WIDE_INT); static int pa_adjust_cost (rtx, rtx, rtx, int); static int pa_adjust_priority (rtx, int); static int pa_issue_rate (void); static void pa_select_section (tree, int, unsigned HOST_WIDE_INT) ATTRIBUTE_UNUSED; static void pa_encode_section_info (tree, rtx, int); static const char *pa_strip_name_encoding (const char *); static bool pa_function_ok_for_sibcall (tree, tree); static void pa_globalize_label (FILE *, const char *) ATTRIBUTE_UNUSED; static void pa_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); #if !defined(USE_COLLECT2) static void pa_asm_out_constructor (rtx, int); static void pa_asm_out_destructor (rtx, int); #endif static void pa_init_builtins (void); static rtx hppa_builtin_saveregs (void); static void copy_fp_args (rtx) ATTRIBUTE_UNUSED; static int length_fp_args (rtx) ATTRIBUTE_UNUSED; static struct deferred_plabel *get_plabel (const char *) ATTRIBUTE_UNUSED; static inline void pa_file_start_level (void) ATTRIBUTE_UNUSED; static inline void pa_file_start_space (int) ATTRIBUTE_UNUSED; static inline void pa_file_start_file (int) ATTRIBUTE_UNUSED; static inline void pa_file_start_mcount (const char*) ATTRIBUTE_UNUSED; static void pa_elf_file_start (void) ATTRIBUTE_UNUSED; static void pa_som_file_start (void) ATTRIBUTE_UNUSED; static void pa_linux_file_start (void) ATTRIBUTE_UNUSED; static void pa_hpux64_gas_file_start (void) ATTRIBUTE_UNUSED; static void pa_hpux64_hpas_file_start (void) ATTRIBUTE_UNUSED; static void output_deferred_plabels (void); #ifdef HPUX_LONG_DOUBLE_LIBRARY static void pa_hpux_init_libfuncs (void); #endif static rtx pa_struct_value_rtx (tree, int); /* Save the operands last given to a compare for use when we generate a scc or bcc insn. */ rtx hppa_compare_op0, hppa_compare_op1; enum cmp_type hppa_branch_type; /* Which cpu we are scheduling for. */ enum processor_type pa_cpu; /* String to hold which cpu we are scheduling for. */ const char *pa_cpu_string; /* Which architecture we are generating code for. */ enum architecture_type pa_arch; /* String to hold which architecture we are generating code for. */ const char *pa_arch_string; /* Counts for the number of callee-saved general and floating point registers which were saved by the current function's prologue. */ static int gr_saved, fr_saved; static rtx find_addr_reg (rtx); /* Keep track of the number of bytes we have output in the CODE subspace during this compilation so we'll know when to emit inline long-calls. */ unsigned long total_code_bytes; /* The last address of the previous function plus the number of bytes in associated thunks that have been output. This is used to determine if a thunk can use an IA-relative branch to reach its target function. */ static int last_address; /* Variables to handle plabels that we discover are necessary at assembly output time. They are output after the current function. */ struct deferred_plabel GTY(()) { rtx internal_label; const char *name; }; static GTY((length ("n_deferred_plabels"))) struct deferred_plabel * deferred_plabels; static size_t n_deferred_plabels = 0; /* Initialize the GCC target structure. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t" #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER pa_assemble_integer #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST pa_adjust_cost #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY pa_adjust_priority #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE pa_issue_rate #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO pa_encode_section_info #undef TARGET_STRIP_NAME_ENCODING #define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK pa_asm_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall #undef TARGET_ASM_FILE_END #define TARGET_ASM_FILE_END output_deferred_plabels #if !defined(USE_COLLECT2) #undef TARGET_ASM_CONSTRUCTOR #define TARGET_ASM_CONSTRUCTOR pa_asm_out_constructor #undef TARGET_ASM_DESTRUCTOR #define TARGET_ASM_DESTRUCTOR pa_asm_out_destructor #endif #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS pa_init_builtins #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS hppa_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST hppa_address_cost #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG pa_reorg #ifdef HPUX_LONG_DOUBLE_LIBRARY #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS pa_hpux_init_libfuncs #endif #undef TARGET_PROMOTE_FUNCTION_RETURN #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX pa_struct_value_rtx #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY pa_return_in_memory #undef TARGET_EXPAND_BUILTIN_SAVEREGS #define TARGET_EXPAND_BUILTIN_SAVEREGS hppa_builtin_saveregs struct gcc_target targetm = TARGET_INITIALIZER; void override_options (void) { if (pa_cpu_string == NULL) pa_cpu_string = TARGET_SCHED_DEFAULT; if (! strcmp (pa_cpu_string, "8000")) { pa_cpu_string = "8000"; pa_cpu = PROCESSOR_8000; } else if (! strcmp (pa_cpu_string, "7100")) { pa_cpu_string = "7100"; pa_cpu = PROCESSOR_7100; } else if (! strcmp (pa_cpu_string, "700")) { pa_cpu_string = "700"; pa_cpu = PROCESSOR_700; } else if (! strcmp (pa_cpu_string, "7100LC")) { pa_cpu_string = "7100LC"; pa_cpu = PROCESSOR_7100LC; } else if (! strcmp (pa_cpu_string, "7200")) { pa_cpu_string = "7200"; pa_cpu = PROCESSOR_7200; } else if (! strcmp (pa_cpu_string, "7300")) { pa_cpu_string = "7300"; pa_cpu = PROCESSOR_7300; } else { warning ("unknown -mschedule= option (%s).\nValid options are 700, 7100, 7100LC, 7200, 7300, and 8000\n", pa_cpu_string); } /* Set the instruction set architecture. */ if (pa_arch_string && ! strcmp (pa_arch_string, "1.0")) { pa_arch_string = "1.0"; pa_arch = ARCHITECTURE_10; target_flags &= ~(MASK_PA_11 | MASK_PA_20); } else if (pa_arch_string && ! strcmp (pa_arch_string, "1.1")) { pa_arch_string = "1.1"; pa_arch = ARCHITECTURE_11; target_flags &= ~MASK_PA_20; target_flags |= MASK_PA_11; } else if (pa_arch_string && ! strcmp (pa_arch_string, "2.0")) { pa_arch_string = "2.0"; pa_arch = ARCHITECTURE_20; target_flags |= MASK_PA_11 | MASK_PA_20; } else if (pa_arch_string) { warning ("unknown -march= option (%s).\nValid options are 1.0, 1.1, and 2.0\n", pa_arch_string); } /* Unconditional branches in the delay slot are not compatible with dwarf2 call frame information. There is no benefit in using this optimization on PA8000 and later processors. */ if (pa_cpu >= PROCESSOR_8000 || (! USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables) target_flags &= ~MASK_JUMP_IN_DELAY; if (flag_pic && TARGET_PORTABLE_RUNTIME) { warning ("PIC code generation is not supported in the portable runtime model\n"); } if (flag_pic && TARGET_FAST_INDIRECT_CALLS) { warning ("PIC code generation is not compatible with fast indirect calls\n"); } if (! TARGET_GAS && write_symbols != NO_DEBUG) { warning ("-g is only supported when using GAS on this processor,"); warning ("-g option disabled"); write_symbols = NO_DEBUG; } /* We only support the "big PIC" model now. And we always generate PIC code when in 64bit mode. */ if (flag_pic == 1 || TARGET_64BIT) flag_pic = 2; /* We can't guarantee that .dword is available for 32-bit targets. */ if (UNITS_PER_WORD == 4) targetm.asm_out.aligned_op.di = NULL; /* The unaligned ops are only available when using GAS. */ if (!TARGET_GAS) { targetm.asm_out.unaligned_op.hi = NULL; targetm.asm_out.unaligned_op.si = NULL; targetm.asm_out.unaligned_op.di = NULL; } } static void pa_init_builtins (void) { #ifdef DONT_HAVE_FPUTC_UNLOCKED built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED] = NULL_TREE; implicit_built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED] = NULL_TREE; #endif } /* If FROM is a probable pointer register, mark TO as a probable pointer register with the same pointer alignment as FROM. */ static void copy_reg_pointer (rtx to, rtx from) { if (REG_POINTER (from)) mark_reg_pointer (to, REGNO_POINTER_ALIGN (REGNO (from))); } /* Return nonzero only if OP is a register of mode MODE, or CONST0_RTX. */ int reg_or_0_operand (rtx op, enum machine_mode mode) { return (op == CONST0_RTX (mode) || register_operand (op, mode)); } /* Return nonzero if OP is suitable for use in a call to a named function. For 2.5 try to eliminate either call_operand_address or function_label_operand, they perform very similar functions. */ int call_operand_address (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_MODE (op) == word_mode && CONSTANT_P (op) && ! TARGET_PORTABLE_RUNTIME); } /* Return 1 if X contains a symbolic expression. We know these expressions will have one of a few well defined forms, so we need only check those forms. */ int symbolic_expression_p (rtx x) { /* Strip off any HIGH. */ if (GET_CODE (x) == HIGH) x = XEXP (x, 0); return (symbolic_operand (x, VOIDmode)); } int symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } /* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */ int symbolic_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF); } /* Return 1 if the operand is either a register, zero, or a memory operand that is not symbolic. */ int reg_or_0_or_nonsymb_mem_operand (rtx op, enum machine_mode mode) { if (register_operand (op, mode)) return 1; if (op == CONST0_RTX (mode)) return 1; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; /* Until problems with management of the REG_POINTER flag are resolved, we need to delay creating move insns with unscaled indexed addresses until CSE is not expected. */ if (!TARGET_NO_SPACE_REGS && !cse_not_expected && GET_CODE (XEXP (op, 0)) == PLUS && REG_P (XEXP (XEXP (op, 0), 0)) && REG_P (XEXP (XEXP (op, 0), 1))) return 0; return (!symbolic_memory_operand (op, mode) && memory_address_p (mode, XEXP (op, 0))); } /* Return 1 if the operand is a register operand or a non-symbolic memory operand after reload. This predicate is used for branch patterns that internally handle register reloading. We need to accept non-symbolic memory operands after reload to ensure that the pattern is still valid if reload didn't find a hard register for the operand. */ int reg_before_reload_operand (rtx op, enum machine_mode mode) { /* Don't accept a SUBREG since it will need a reload. */ if (GET_CODE (op) == SUBREG) return 0; if (register_operand (op, mode)) return 1; if (reload_completed && memory_operand (op, mode) && !symbolic_memory_operand (op, mode)) return 1; return 0; } /* Accept any constant that can be moved in one instruction into a general register. */ int cint_ok_for_move (HOST_WIDE_INT intval) { /* OK if ldo, ldil, or zdepi, can be used. */ return (CONST_OK_FOR_LETTER_P (intval, 'J') || CONST_OK_FOR_LETTER_P (intval, 'N') || CONST_OK_FOR_LETTER_P (intval, 'K')); } /* Return 1 iff OP is an indexed memory operand. */ int indexed_memory_operand (rtx op, enum machine_mode mode) { if (GET_MODE (op) != mode) return 0; /* Before reload, a (SUBREG (MEM...)) forces reloading into a register. */ if (reload_completed && GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM || symbolic_memory_operand (op, mode)) return 0; op = XEXP (op, 0); return (memory_address_p (mode, op) && IS_INDEX_ADDR_P (op)); } /* Accept anything that can be used as a destination operand for a move instruction. We don't accept indexed memory operands since they are supported only for floating point stores. */ int move_dest_operand (rtx op, enum machine_mode mode) { if (register_operand (op, mode)) return 1; if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM || symbolic_memory_operand (op, mode)) return 0; op = XEXP (op, 0); return (memory_address_p (mode, op) && !IS_INDEX_ADDR_P (op) && !IS_LO_SUM_DLT_ADDR_P (op)); } /* Accept anything that can be used as a source operand for a move instruction. */ int move_src_operand (rtx op, enum machine_mode mode) { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return cint_ok_for_move (INTVAL (op)); if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; /* Until problems with management of the REG_POINTER flag are resolved, we need to delay creating move insns with unscaled indexed addresses until CSE is not expected. */ if (!TARGET_NO_SPACE_REGS && !cse_not_expected && GET_CODE (XEXP (op, 0)) == PLUS && REG_P (XEXP (XEXP (op, 0), 0)) && REG_P (XEXP (XEXP (op, 0), 1))) return 0; return memory_address_p (mode, XEXP (op, 0)); } /* Accept REG and any CONST_INT that can be moved in one instruction into a general register. */ int reg_or_cint_move_operand (rtx op, enum machine_mode mode) { if (register_operand (op, mode)) return 1; return (GET_CODE (op) == CONST_INT && cint_ok_for_move (INTVAL (op))); } int pic_label_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { if (!flag_pic) return 0; switch (GET_CODE (op)) { case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return (GET_CODE (XEXP (op, 0)) == LABEL_REF && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } int fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return reg_renumber && FP_REG_P (op); } /* Return truth value of whether OP can be used as an operand in a three operand arithmetic insn that accepts registers of mode MODE or 14-bit signed integers. */ int arith_operand (rtx op, enum machine_mode mode) { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && INT_14_BITS (op))); } /* Return truth value of whether OP can be used as an operand in a three operand arithmetic insn that accepts registers of mode MODE or 11-bit signed integers. */ int arith11_operand (rtx op, enum machine_mode mode) { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && INT_11_BITS (op))); } /* Return truth value of whether OP can be used as an operand in a adddi3 insn. */ int adddi3_operand (rtx op, enum machine_mode mode) { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && (TARGET_64BIT ? INT_14_BITS (op) : INT_11_BITS (op)))); } /* A constant integer suitable for use in a PRE_MODIFY memory reference. */ int pre_cint_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && INTVAL (op) >= -0x2000 && INTVAL (op) < 0x10); } /* A constant integer suitable for use in a POST_MODIFY memory reference. */ int post_cint_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && INTVAL (op) < 0x2000 && INTVAL (op) >= -0x10); } int arith_double_operand (rtx op, enum machine_mode mode) { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == mode && VAL_14_BITS_P (CONST_DOUBLE_LOW (op)) && ((CONST_DOUBLE_HIGH (op) >= 0) == ((CONST_DOUBLE_LOW (op) & 0x1000) == 0)))); } /* Return truth value of whether OP is an integer which fits the range constraining immediate operands in three-address insns, or is an integer register. */ int ireg_or_int5_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return ((GET_CODE (op) == CONST_INT && INT_5_BITS (op)) || (GET_CODE (op) == REG && REGNO (op) > 0 && REGNO (op) < 32)); } /* Return nonzero if OP is an integer register, else return zero. */ int ireg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == REG && REGNO (op) > 0 && REGNO (op) < 32); } /* Return truth value of whether OP is an integer which fits the range constraining immediate operands in three-address insns. */ int int5_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && INT_5_BITS (op)); } int uint5_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && INT_U5_BITS (op)); } int int11_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && INT_11_BITS (op)); } int uint32_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { #if HOST_BITS_PER_WIDE_INT > 32 /* All allowed constants will fit a CONST_INT. */ return (GET_CODE (op) == CONST_INT && (INTVAL (op) >= 0 && INTVAL (op) < (HOST_WIDE_INT) 1 << 32)); #else return (GET_CODE (op) == CONST_INT || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0)); #endif } int arith5_operand (rtx op, enum machine_mode mode) { return register_operand (op, mode) || int5_operand (op, mode); } /* True iff zdepi can be used to generate this CONST_INT. zdepi first sign extends a 5 bit signed number to a given field length, then places this field anywhere in a zero. */ int zdepi_cint_p (unsigned HOST_WIDE_INT x) { unsigned HOST_WIDE_INT lsb_mask, t; /* This might not be obvious, but it's at least fast. This function is critical; we don't have the time loops would take. */ lsb_mask = x & -x; t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1); /* Return true iff t is a power of two. */ return ((t & (t - 1)) == 0); } /* True iff depi or extru can be used to compute (reg & mask). Accept bit pattern like these: 0....01....1 1....10....0 1..10..01..1 */ int and_mask_p (unsigned HOST_WIDE_INT mask) { mask = ~mask; mask += mask & -mask; return (mask & (mask - 1)) == 0; } /* True iff depi or extru can be used to compute (reg & OP). */ int and_operand (rtx op, enum machine_mode mode) { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && and_mask_p (INTVAL (op)))); } /* True iff depi can be used to compute (reg | MASK). */ int ior_mask_p (unsigned HOST_WIDE_INT mask) { mask += mask & -mask; return (mask & (mask - 1)) == 0; } /* True iff depi can be used to compute (reg | OP). */ int ior_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && ior_mask_p (INTVAL (op))); } int lhs_lshift_operand (rtx op, enum machine_mode mode) { return register_operand (op, mode) || lhs_lshift_cint_operand (op, mode); } /* True iff OP is a CONST_INT of the forms 0...0xxxx or 0...01...1xxxx. Such values can be the left hand side x in (x << r), using the zvdepi instruction. */ int lhs_lshift_cint_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { unsigned HOST_WIDE_INT x; if (GET_CODE (op) != CONST_INT) return 0; x = INTVAL (op) >> 4; return (x & (x + 1)) == 0; } int arith32_operand (rtx op, enum machine_mode mode) { return register_operand (op, mode) || GET_CODE (op) == CONST_INT; } int pc_or_label_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == PC || GET_CODE (op) == LABEL_REF); } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go to REG. If we need more than one register, we lose. */ rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg) { rtx pic_ref = orig; /* Labels need special handling. */ if (pic_label_operand (orig, mode)) { /* We do not want to go through the movXX expanders here since that would create recursion. Nor do we really want to call a generator for a named pattern since that requires multiple patterns if we want to support multiple word sizes. So instead we just emit the raw set, which avoids the movXX expanders completely. */ mark_reg_pointer (reg, BITS_PER_UNIT); emit_insn (gen_rtx_SET (VOIDmode, reg, orig)); current_function_uses_pic_offset_table = 1; return reg; } if (GET_CODE (orig) == SYMBOL_REF) { rtx insn, tmp_reg; if (reg == 0) abort (); /* Before reload, allocate a temporary register for the intermediate result. This allows the sequence to be deleted when the final result is unused and the insns are trivially dead. */ tmp_reg = ((reload_in_progress || reload_completed) ? reg : gen_reg_rtx (Pmode)); emit_move_insn (tmp_reg, gen_rtx_PLUS (word_mode, pic_offset_table_rtx, gen_rtx_HIGH (word_mode, orig))); pic_ref = gen_rtx_MEM (Pmode, gen_rtx_LO_SUM (Pmode, tmp_reg, gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), 0))); current_function_uses_pic_offset_table = 1; MEM_NOTRAP_P (pic_ref) = 1; RTX_UNCHANGING_P (pic_ref) = 1; mark_reg_pointer (reg, BITS_PER_UNIT); insn = emit_move_insn (reg, pic_ref); /* Put a REG_EQUAL note on this insn, so that it can be optimized. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn)); return reg; } else if (GET_CODE (orig) == CONST) { rtx base; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) abort (); if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); } else abort (); if (GET_CODE (orig) == CONST_INT) { if (INT_14_BITS (orig)) return plus_constant (base, INTVAL (orig)); orig = force_reg (Pmode, orig); } pic_ref = gen_rtx_PLUS (Pmode, base, orig); /* Likewise, should we set special REG_NOTEs here? */ } return pic_ref; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the PA, transform: memory(X + ) into: if ( & mask) >= 16 Y = ( & ~mask) + mask + 1 Round up. else Y = ( & ~mask) Round down. Z = X + Y memory (Z + ( - Y)); This is for CSE to find several similar references, and only use one Z. X can either be a SYMBOL_REF or REG, but because combine can not perform a 4->2 combination we do nothing for SYMBOL_REF + D where D will not fit in 14 bits. MODE_FLOAT references allow displacements which fit in 5 bits, so use 0x1f as the mask. MODE_INT references allow displacements which fit in 14 bits, so use 0x3fff as the mask. This relies on the fact that most mode MODE_FLOAT references will use FP registers and most mode MODE_INT references will use integer registers. (In the rare case of an FP register used in an integer MODE, we depend on secondary reloads to clean things up.) It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed addressing modes to be used). Put X and Z into registers. Then put the entire expression into a register. */ rtx hppa_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode) { rtx orig = x; /* We need to canonicalize the order of operands in unscaled indexed addresses since the code that checks if an address is valid doesn't always try both orders. */ if (!TARGET_NO_SPACE_REGS && GET_CODE (x) == PLUS && GET_MODE (x) == Pmode && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)) && REG_POINTER (XEXP (x, 0)) && !REG_POINTER (XEXP (x, 1))) return gen_rtx_PLUS (Pmode, XEXP (x, 1), XEXP (x, 0)); if (flag_pic) return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode)); /* Strip off CONST. */ if (GET_CODE (x) == CONST) x = XEXP (x, 0); /* Special case. Get the SYMBOL_REF into a register and use indexing. That should always be safe. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == SYMBOL_REF) { rtx reg = force_reg (Pmode, XEXP (x, 1)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, reg, XEXP (x, 0))); } /* Note we must reject symbols which represent function addresses since the assembler/linker can't handle arithmetic on plabels. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT && ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF && !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0))) || GET_CODE (XEXP (x, 0)) == REG)) { rtx int_part, ptr_reg; int newoffset; int offset = INTVAL (XEXP (x, 1)); int mask; mask = (GET_MODE_CLASS (mode) == MODE_FLOAT ? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff); /* Choose which way to round the offset. Round up if we are >= halfway to the next boundary. */ if ((offset & mask) >= ((mask + 1) / 2)) newoffset = (offset & ~ mask) + mask + 1; else newoffset = (offset & ~ mask); /* If the newoffset will not fit in 14 bits (ldo), then handling this would take 4 or 5 instructions (2 to load the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to add the new offset and the SYMBOL_REF.) Combine can not handle 4->2 or 5->2 combinations, so do not create them. */ if (! VAL_14_BITS_P (newoffset) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF) { rtx const_part = plus_constant (XEXP (x, 0), newoffset); rtx tmp_reg = force_reg (Pmode, gen_rtx_HIGH (Pmode, const_part)); ptr_reg = force_reg (Pmode, gen_rtx_LO_SUM (Pmode, tmp_reg, const_part)); } else { if (! VAL_14_BITS_P (newoffset)) int_part = force_reg (Pmode, GEN_INT (newoffset)); else int_part = GEN_INT (newoffset); ptr_reg = force_reg (Pmode, gen_rtx_PLUS (Pmode, force_reg (Pmode, XEXP (x, 0)), int_part)); } return plus_constant (ptr_reg, offset - newoffset); } /* Handle (plus (mult (a) (shadd_constant)) (b)). */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))) && (OBJECT_P (XEXP (x, 1)) || GET_CODE (XEXP (x, 1)) == SUBREG) && GET_CODE (XEXP (x, 1)) != CONST) { int val = INTVAL (XEXP (XEXP (x, 0), 1)); rtx reg1, reg2; reg1 = XEXP (x, 1); if (GET_CODE (reg1) != REG) reg1 = force_reg (Pmode, force_operand (reg1, 0)); reg2 = XEXP (XEXP (x, 0), 0); if (GET_CODE (reg2) != REG) reg2 = force_reg (Pmode, force_operand (reg2, 0)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, reg2, GEN_INT (val)), reg1)); } /* Similarly for (plus (plus (mult (a) (shadd_constant)) (b)) (c)). Only do so for floating point modes since this is more speculative and we lose if it's an integer store. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))) && (mode == SFmode || mode == DFmode)) { /* First, try and figure out what to use as a base register. */ rtx reg1, reg2, base, idx, orig_base; reg1 = XEXP (XEXP (x, 0), 1); reg2 = XEXP (x, 1); base = NULL_RTX; idx = NULL_RTX; /* Make sure they're both regs. If one was a SYMBOL_REF [+ const], then emit_move_sequence will turn on REG_POINTER so we'll know it's a base register below. */ if (GET_CODE (reg1) != REG) reg1 = force_reg (Pmode, force_operand (reg1, 0)); if (GET_CODE (reg2) != REG) reg2 = force_reg (Pmode, force_operand (reg2, 0)); /* Figure out what the base and index are. */ if (GET_CODE (reg1) == REG && REG_POINTER (reg1)) { base = reg1; orig_base = XEXP (XEXP (x, 0), 1); idx = gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, XEXP (XEXP (XEXP (x, 0), 0), 0), XEXP (XEXP (XEXP (x, 0), 0), 1)), XEXP (x, 1)); } else if (GET_CODE (reg2) == REG && REG_POINTER (reg2)) { base = reg2; orig_base = XEXP (x, 1); idx = XEXP (x, 0); } if (base == 0) return orig; /* If the index adds a large constant, try to scale the constant so that it can be loaded with only one insn. */ if (GET_CODE (XEXP (idx, 1)) == CONST_INT && VAL_14_BITS_P (INTVAL (XEXP (idx, 1)) / INTVAL (XEXP (XEXP (idx, 0), 1))) && INTVAL (XEXP (idx, 1)) % INTVAL (XEXP (XEXP (idx, 0), 1)) == 0) { /* Divide the CONST_INT by the scale factor, then add it to A. */ int val = INTVAL (XEXP (idx, 1)); val /= INTVAL (XEXP (XEXP (idx, 0), 1)); reg1 = XEXP (XEXP (idx, 0), 0); if (GET_CODE (reg1) != REG) reg1 = force_reg (Pmode, force_operand (reg1, 0)); reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, reg1, GEN_INT (val))); /* We can now generate a simple scaled indexed address. */ return force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, reg1, XEXP (XEXP (idx, 0), 1)), base)); } /* If B + C is still a valid base register, then add them. */ if (GET_CODE (XEXP (idx, 1)) == CONST_INT && INTVAL (XEXP (idx, 1)) <= 4096 && INTVAL (XEXP (idx, 1)) >= -4096) { int val = INTVAL (XEXP (XEXP (idx, 0), 1)); rtx reg1, reg2; reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, XEXP (idx, 1))); reg2 = XEXP (XEXP (idx, 0), 0); if (GET_CODE (reg2) != CONST_INT) reg2 = force_reg (Pmode, force_operand (reg2, 0)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, reg2, GEN_INT (val)), reg1)); } /* Get the index into a register, then add the base + index and return a register holding the result. */ /* First get A into a register. */ reg1 = XEXP (XEXP (idx, 0), 0); if (GET_CODE (reg1) != REG) reg1 = force_reg (Pmode, force_operand (reg1, 0)); /* And get B into a register. */ reg2 = XEXP (idx, 1); if (GET_CODE (reg2) != REG) reg2 = force_reg (Pmode, force_operand (reg2, 0)); reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, reg1, XEXP (XEXP (idx, 0), 1)), reg2)); /* Add the result to our base register and return. */ return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, reg1)); } /* Uh-oh. We might have an address for x[n-100000]. This needs special handling to avoid creating an indexed memory address with x-100000 as the base. If the constant part is small enough, then it's still safe because there is a guard page at the beginning and end of the data segment. Scaled references are common enough that we want to try and rearrange the terms so that we can use indexing for these addresses too. Only do the optimization for floatint point modes. */ if (GET_CODE (x) == PLUS && symbolic_expression_p (XEXP (x, 1))) { /* Ugly. We modify things here so that the address offset specified by the index expression is computed first, then added to x to form the entire address. */ rtx regx1, regx2, regy1, regy2, y; /* Strip off any CONST. */ y = XEXP (x, 1); if (GET_CODE (y) == CONST) y = XEXP (y, 0); if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS) { /* See if this looks like (plus (mult (reg) (shadd_const)) (const (plus (symbol_ref) (const_int)))) Where const_int is small. In that case the const expression is a valid pointer for indexing. If const_int is big, but can be divided evenly by shadd_const and added to (reg). This allows more scaled indexed addresses. */ if (GET_CODE (XEXP (y, 0)) == SYMBOL_REF && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (y, 1)) == CONST_INT && INTVAL (XEXP (y, 1)) >= -4096 && INTVAL (XEXP (y, 1)) <= 4095 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))) { int val = INTVAL (XEXP (XEXP (x, 0), 1)); rtx reg1, reg2; reg1 = XEXP (x, 1); if (GET_CODE (reg1) != REG) reg1 = force_reg (Pmode, force_operand (reg1, 0)); reg2 = XEXP (XEXP (x, 0), 0); if (GET_CODE (reg2) != REG) reg2 = force_reg (Pmode, force_operand (reg2, 0)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, reg2, GEN_INT (val)), reg1)); } else if ((mode == DFmode || mode == SFmode) && GET_CODE (XEXP (y, 0)) == SYMBOL_REF && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (y, 1)) == CONST_INT && INTVAL (XEXP (y, 1)) % INTVAL (XEXP (XEXP (x, 0), 1)) == 0 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))) { regx1 = force_reg (Pmode, GEN_INT (INTVAL (XEXP (y, 1)) / INTVAL (XEXP (XEXP (x, 0), 1)))); regx2 = XEXP (XEXP (x, 0), 0); if (GET_CODE (regx2) != REG) regx2 = force_reg (Pmode, force_operand (regx2, 0)); regx2 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx2, regx1)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_MULT (Pmode, regx2, XEXP (XEXP (x, 0), 1)), force_reg (Pmode, XEXP (y, 0)))); } else if (GET_CODE (XEXP (y, 1)) == CONST_INT && INTVAL (XEXP (y, 1)) >= -4096 && INTVAL (XEXP (y, 1)) <= 4095) { /* This is safe because of the guard page at the beginning and end of the data space. Just return the original address. */ return orig; } else { /* Doesn't look like one we can optimize. */ regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0)); regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0)); regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0)); regx1 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx1, regy2)); return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1)); } } } return orig; } /* For the HPPA, REG and REG+CONST is cost 0 and addresses involving symbolic constants are cost 2. PIC addresses are very expensive. It is no coincidence that this has the same structure as GO_IF_LEGITIMATE_ADDRESS. */ static int hppa_address_cost (rtx X) { switch (GET_CODE (X)) { case REG: case PLUS: case LO_SUM: return 1; case HIGH: return 2; default: return 4; } } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool hppa_rtx_costs (rtx x, int code, int outer_code, int *total) { switch (code) { case CONST_INT: if (INTVAL (x) == 0) *total = 0; else if (INT_14_BITS (x)) *total = 1; else *total = 2; return true; case HIGH: *total = 2; return true; case CONST: case LABEL_REF: case SYMBOL_REF: *total = 4; return true; case CONST_DOUBLE: if ((x == CONST0_RTX (DFmode) || x == CONST0_RTX (SFmode)) && outer_code != SET) *total = 0; else *total = 8; return true; case MULT: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) *total = COSTS_N_INSNS (3); else if (TARGET_PA_11 && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT) *total = COSTS_N_INSNS (8); else *total = COSTS_N_INSNS (20); return true; case DIV: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { *total = COSTS_N_INSNS (14); return true; } /* FALLTHRU */ case UDIV: case MOD: case UMOD: *total = COSTS_N_INSNS (60); return true; case PLUS: /* this includes shNadd insns */ case MINUS: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) *total = COSTS_N_INSNS (3); else *total = COSTS_N_INSNS (1); return true; case ASHIFT: case ASHIFTRT: case LSHIFTRT: *total = COSTS_N_INSNS (1); return true; default: return false; } } /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a new rtx with the correct mode. */ static inline rtx force_mode (enum machine_mode mode, rtx orig) { if (mode == GET_MODE (orig)) return orig; if (REGNO (orig) >= FIRST_PSEUDO_REGISTER) abort (); return gen_rtx_REG (mode, REGNO (orig)); } /* Emit insns to move operands[1] into operands[0]. Return 1 if we have written out everything that needs to be done to do the move. Otherwise, return 0 and the caller will emit the move normally. Note SCRATCH_REG may not be in the proper mode depending on how it will be used. This routine is responsible for creating a new copy of SCRATCH_REG in the proper mode. */ int emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg) { register rtx operand0 = operands[0]; register rtx operand1 = operands[1]; register rtx tem; /* We can only handle indexed addresses in the destination operand of floating point stores. Thus, we need to break out indexed addresses from the destination operand. */ if (GET_CODE (operand0) == MEM && IS_INDEX_ADDR_P (XEXP (operand0, 0))) { /* This is only safe up to the beginning of life analysis. */ if (no_new_pseudos) abort (); tem = copy_to_mode_reg (Pmode, XEXP (operand0, 0)); operand0 = replace_equiv_address (operand0, tem); } /* On targets with non-equivalent space registers, break out unscaled indexed addresses from the source operand before the final CSE. We have to do this because the REG_POINTER flag is not correctly carried through various optimization passes and CSE may substitute a pseudo without the pointer set for one with the pointer set. As a result, we loose various opportunities to create insns with unscaled indexed addresses. */ if (!TARGET_NO_SPACE_REGS && !cse_not_expected && GET_CODE (operand1) == MEM && GET_CODE (XEXP (operand1, 0)) == PLUS && REG_P (XEXP (XEXP (operand1, 0), 0)) && REG_P (XEXP (XEXP (operand1, 0), 1))) operand1 = replace_equiv_address (operand1, copy_to_mode_reg (Pmode, XEXP (operand1, 0))); if (scratch_reg && reload_in_progress && GET_CODE (operand0) == REG && REGNO (operand0) >= FIRST_PSEUDO_REGISTER) operand0 = reg_equiv_mem[REGNO (operand0)]; else if (scratch_reg && reload_in_progress && GET_CODE (operand0) == SUBREG && GET_CODE (SUBREG_REG (operand0)) == REG && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER) { /* We must not alter SUBREG_BYTE (operand0) since that would confuse the code which tracks sets/uses for delete_output_reload. */ rtx temp = gen_rtx_SUBREG (GET_MODE (operand0), reg_equiv_mem [REGNO (SUBREG_REG (operand0))], SUBREG_BYTE (operand0)); operand0 = alter_subreg (&temp); } if (scratch_reg && reload_in_progress && GET_CODE (operand1) == REG && REGNO (operand1) >= FIRST_PSEUDO_REGISTER) operand1 = reg_equiv_mem[REGNO (operand1)]; else if (scratch_reg && reload_in_progress && GET_CODE (operand1) == SUBREG && GET_CODE (SUBREG_REG (operand1)) == REG && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER) { /* We must not alter SUBREG_BYTE (operand0) since that would confuse the code which tracks sets/uses for delete_output_reload. */ rtx temp = gen_rtx_SUBREG (GET_MODE (operand1), reg_equiv_mem [REGNO (SUBREG_REG (operand1))], SUBREG_BYTE (operand1)); operand1 = alter_subreg (&temp); } if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM && ((tem = find_replacement (&XEXP (operand0, 0))) != XEXP (operand0, 0))) operand0 = gen_rtx_MEM (GET_MODE (operand0), tem); if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM && ((tem = find_replacement (&XEXP (operand1, 0))) != XEXP (operand1, 0))) operand1 = gen_rtx_MEM (GET_MODE (operand1), tem); /* Handle secondary reloads for loads/stores of FP registers from REG+D addresses where D does not fit in 5 bits, including (subreg (mem (addr))) cases. */ if (scratch_reg && fp_reg_operand (operand0, mode) && ((GET_CODE (operand1) == MEM && !memory_address_p (DFmode, XEXP (operand1, 0))) || ((GET_CODE (operand1) == SUBREG && GET_CODE (XEXP (operand1, 0)) == MEM && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))) { if (GET_CODE (operand1) == SUBREG) operand1 = XEXP (operand1, 0); /* SCRATCH_REG will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ scratch_reg = force_mode (word_mode, scratch_reg); /* D might not fit in 14 bits either; for such cases load D into scratch reg. */ if (!memory_address_p (Pmode, XEXP (operand1, 0))) { emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)), Pmode, XEXP (XEXP (operand1, 0), 0), scratch_reg)); } else emit_move_insn (scratch_reg, XEXP (operand1, 0)); emit_insn (gen_rtx_SET (VOIDmode, operand0, gen_rtx_MEM (mode, scratch_reg))); return 1; } else if (scratch_reg && fp_reg_operand (operand1, mode) && ((GET_CODE (operand0) == MEM && ! memory_address_p (DFmode, XEXP (operand0, 0))) || ((GET_CODE (operand0) == SUBREG) && GET_CODE (XEXP (operand0, 0)) == MEM && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))) { if (GET_CODE (operand0) == SUBREG) operand0 = XEXP (operand0, 0); /* SCRATCH_REG will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ scratch_reg = force_mode (word_mode, scratch_reg); /* D might not fit in 14 bits either; for such cases load D into scratch reg. */ if (!memory_address_p (Pmode, XEXP (operand0, 0))) { emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1)); emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0, 0)), Pmode, XEXP (XEXP (operand0, 0), 0), scratch_reg)); } else emit_move_insn (scratch_reg, XEXP (operand0, 0)); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg), operand1)); return 1; } /* Handle secondary reloads for loads of FP registers from constant expressions by forcing the constant into memory. Use scratch_reg to hold the address of the memory location. The proper fix is to change PREFERRED_RELOAD_CLASS to return NO_REGS when presented with a const_int and a register class containing only FP registers. Doing so unfortunately creates more problems than it solves. Fix this for 2.5. */ else if (scratch_reg && CONSTANT_P (operand1) && fp_reg_operand (operand0, mode)) { rtx xoperands[2]; /* SCRATCH_REG will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ scratch_reg = force_mode (word_mode, scratch_reg); /* Force the constant into memory and put the address of the memory location into scratch_reg. */ xoperands[0] = scratch_reg; xoperands[1] = XEXP (force_const_mem (mode, operand1), 0); emit_move_sequence (xoperands, Pmode, 0); /* Now load the destination register. */ emit_insn (gen_rtx_SET (mode, operand0, gen_rtx_MEM (mode, scratch_reg))); return 1; } /* Handle secondary reloads for SAR. These occur when trying to load the SAR from memory, FP register, or with a constant. */ else if (scratch_reg && GET_CODE (operand0) == REG && REGNO (operand0) < FIRST_PSEUDO_REGISTER && REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS && (GET_CODE (operand1) == MEM || GET_CODE (operand1) == CONST_INT || (GET_CODE (operand1) == REG && FP_REG_CLASS_P (REGNO_REG_CLASS (REGNO (operand1)))))) { /* D might not fit in 14 bits either; for such cases load D into scratch reg. */ if (GET_CODE (operand1) == MEM && !memory_address_p (Pmode, XEXP (operand1, 0))) { /* We are reloading the address into the scratch register, so we want to make sure the scratch register is a full register. */ scratch_reg = force_mode (word_mode, scratch_reg); emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)), Pmode, XEXP (XEXP (operand1, 0), 0), scratch_reg)); /* Now we are going to load the scratch register from memory, we want to load it in the same width as the original MEM, which must be the same as the width of the ultimate destination, OPERAND0. */ scratch_reg = force_mode (GET_MODE (operand0), scratch_reg); emit_move_insn (scratch_reg, gen_rtx_MEM (GET_MODE (operand0), scratch_reg)); } else { /* We want to load the scratch register using the same mode as the ultimate destination. */ scratch_reg = force_mode (GET_MODE (operand0), scratch_reg); emit_move_insn (scratch_reg, operand1); } /* And emit the insn to set the ultimate destination. We know that the scratch register has the same mode as the destination at this point. */ emit_move_insn (operand0, scratch_reg); return 1; } /* Handle the most common case: storing into a register. */ else if (register_operand (operand0, mode)) { if (register_operand (operand1, mode) || (GET_CODE (operand1) == CONST_INT && cint_ok_for_move (INTVAL (operand1))) || (operand1 == CONST0_RTX (mode)) || (GET_CODE (operand1) == HIGH && !symbolic_operand (XEXP (operand1, 0), VOIDmode)) /* Only `general_operands' can come here, so MEM is ok. */ || GET_CODE (operand1) == MEM) { /* Various sets are created during RTL generation which don't have the REG_POINTER flag correctly set. After the CSE pass, instruction recognition can fail if we don't consistently set this flag when performing register copies. This should also improve the opportunities for creating insns that use unscaled indexing. */ if (REG_P (operand0) && REG_P (operand1)) { if (REG_POINTER (operand1) && !REG_POINTER (operand0) && !HARD_REGISTER_P (operand0)) copy_reg_pointer (operand0, operand1); else if (REG_POINTER (operand0) && !REG_POINTER (operand1) && !HARD_REGISTER_P (operand1)) copy_reg_pointer (operand1, operand0); } /* When MEMs are broken out, the REG_POINTER flag doesn't get set. In some cases, we can set the REG_POINTER flag from the declaration for the MEM. */ if (REG_P (operand0) && GET_CODE (operand1) == MEM && !REG_POINTER (operand0)) { tree decl = MEM_EXPR (operand1); /* Set the register pointer flag and register alignment if the declaration for this memory reference is a pointer type. Fortran indirect argument references are ignored. */ if (decl && !(flag_argument_noalias > 1 && TREE_CODE (decl) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (decl, 0)) == PARM_DECL)) { tree type; /* If this is a COMPONENT_REF, use the FIELD_DECL from tree operand 1. */ if (TREE_CODE (decl) == COMPONENT_REF) decl = TREE_OPERAND (decl, 1); type = TREE_TYPE (decl); if (TREE_CODE (type) == ARRAY_TYPE) type = get_inner_array_type (type); if (POINTER_TYPE_P (type)) { int align; type = TREE_TYPE (type); /* Using TYPE_ALIGN_OK is rather conservative as only the ada frontend actually sets it. */ align = (TYPE_ALIGN_OK (type) ? TYPE_ALIGN (type) : BITS_PER_UNIT); mark_reg_pointer (operand0, align); } } } emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1)); return 1; } } else if (GET_CODE (operand0) == MEM) { if (mode == DFmode && operand1 == CONST0_RTX (mode) && !(reload_in_progress || reload_completed)) { rtx temp = gen_reg_rtx (DFmode); emit_insn (gen_rtx_SET (VOIDmode, temp, operand1)); emit_insn (gen_rtx_SET (VOIDmode, operand0, temp)); return 1; } if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode)) { /* Run this case quickly. */ emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1)); return 1; } if (! (reload_in_progress || reload_completed)) { operands[0] = validize_mem (operand0); operands[1] = operand1 = force_reg (mode, operand1); } } /* Simplify the source if we need to. Note we do have to handle function labels here, even though we do not consider them legitimate constants. Loop optimizations can call the emit_move_xxx with one as a source. */ if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode)) || function_label_operand (operand1, mode) || (GET_CODE (operand1) == HIGH && symbolic_operand (XEXP (operand1, 0), mode))) { int ishighonly = 0; if (GET_CODE (operand1) == HIGH) { ishighonly = 1; operand1 = XEXP (operand1, 0); } if (symbolic_operand (operand1, mode)) { /* Argh. The assembler and linker can't handle arithmetic involving plabels. So we force the plabel into memory, load operand0 from the memory location, then add in the constant part. */ if ((GET_CODE (operand1) == CONST && GET_CODE (XEXP (operand1, 0)) == PLUS && function_label_operand (XEXP (XEXP (operand1, 0), 0), Pmode)) || function_label_operand (operand1, mode)) { rtx temp, const_part; /* Figure out what (if any) scratch register to use. */ if (reload_in_progress || reload_completed) { scratch_reg = scratch_reg ? scratch_reg : operand0; /* SCRATCH_REG will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ scratch_reg = force_mode (word_mode, scratch_reg); } else if (flag_pic) scratch_reg = gen_reg_rtx (Pmode); if (GET_CODE (operand1) == CONST) { /* Save away the constant part of the expression. */ const_part = XEXP (XEXP (operand1, 0), 1); if (GET_CODE (const_part) != CONST_INT) abort (); /* Force the function label into memory. */ temp = force_const_mem (mode, XEXP (XEXP (operand1, 0), 0)); } else { /* No constant part. */ const_part = NULL_RTX; /* Force the function label into memory. */ temp = force_const_mem (mode, operand1); } /* Get the address of the memory location. PIC-ify it if necessary. */ temp = XEXP (temp, 0); if (flag_pic) temp = legitimize_pic_address (temp, mode, scratch_reg); /* Put the address of the memory location into our destination register. */ operands[1] = temp; emit_move_sequence (operands, mode, scratch_reg); /* Now load from the memory location into our destination register. */ operands[1] = gen_rtx_MEM (Pmode, operands[0]); emit_move_sequence (operands, mode, scratch_reg); /* And add back in the constant part. */ if (const_part != NULL_RTX) expand_inc (operand0, const_part); return 1; } if (flag_pic) { rtx temp; if (reload_in_progress || reload_completed) { temp = scratch_reg ? scratch_reg : operand0; /* TEMP will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ temp = force_mode (word_mode, temp); } else temp = gen_reg_rtx (Pmode); /* (const (plus (symbol) (const_int))) must be forced to memory during/after reload if the const_int will not fit in 14 bits. */ if (GET_CODE (operand1) == CONST && GET_CODE (XEXP (operand1, 0)) == PLUS && GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT && !INT_14_BITS (XEXP (XEXP (operand1, 0), 1)) && (reload_completed || reload_in_progress) && flag_pic) { operands[1] = force_const_mem (mode, operand1); operands[1] = legitimize_pic_address (XEXP (operands[1], 0), mode, temp); emit_move_sequence (operands, mode, temp); } else { operands[1] = legitimize_pic_address (operand1, mode, temp); if (REG_P (operand0) && REG_P (operands[1])) copy_reg_pointer (operand0, operands[1]); emit_insn (gen_rtx_SET (VOIDmode, operand0, operands[1])); } } /* On the HPPA, references to data space are supposed to use dp, register 27, but showing it in the RTL inhibits various cse and loop optimizations. */ else { rtx temp, set; if (reload_in_progress || reload_completed) { temp = scratch_reg ? scratch_reg : operand0; /* TEMP will hold an address and maybe the actual data. We want it in WORD_MODE regardless of what mode it was originally given to us. */ temp = force_mode (word_mode, temp); } else temp = gen_reg_rtx (mode); /* Loading a SYMBOL_REF into a register makes that register safe to be used as the base in an indexed address. Don't mark hard registers though. That loses. */ if (GET_CODE (operand0) == REG && REGNO (operand0) >= FIRST_PSEUDO_REGISTER) mark_reg_pointer (operand0, BITS_PER_UNIT); if (REGNO (temp) >= FIRST_PSEUDO_REGISTER) mark_reg_pointer (temp, BITS_PER_UNIT); if (ishighonly) set = gen_rtx_SET (mode, operand0, temp); else set = gen_rtx_SET (VOIDmode, operand0, gen_rtx_LO_SUM (mode, temp, operand1)); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_HIGH (mode, operand1))); emit_insn (set); } return 1; } else if (GET_CODE (operand1) != CONST_INT || !cint_ok_for_move (INTVAL (operand1))) { rtx insn, temp; rtx op1 = operand1; HOST_WIDE_INT value = 0; HOST_WIDE_INT insv = 0; int insert = 0; if (GET_CODE (operand1) == CONST_INT) value = INTVAL (operand1); if (TARGET_64BIT && GET_CODE (operand1) == CONST_INT && HOST_BITS_PER_WIDE_INT > 32 && GET_MODE_BITSIZE (GET_MODE (operand0)) > 32) { HOST_WIDE_INT nval; /* Extract the low order 32 bits of the value and sign extend. If the new value is the same as the original value, we can can use the original value as-is. If the new value is different, we use it and insert the most-significant 32-bits of the original value into the final result. */ nval = ((value & (((HOST_WIDE_INT) 2 << 31) - 1)) ^ ((HOST_WIDE_INT) 1 << 31)) - ((HOST_WIDE_INT) 1 << 31); if (value != nval) { #if HOST_BITS_PER_WIDE_INT > 32 insv = value >= 0 ? value >> 32 : ~(~value >> 32); #endif insert = 1; value = nval; operand1 = GEN_INT (nval); } } if (reload_in_progress || reload_completed) temp = scratch_reg ? scratch_reg : operand0; else temp = gen_reg_rtx (mode); /* We don't directly split DImode constants on 32-bit targets because PLUS uses an 11-bit immediate and the insn sequence generated is not as efficient as the one using HIGH/LO_SUM. */ if (GET_CODE (operand1) == CONST_INT && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT && !insert) { /* Directly break constant into high and low parts. This provides better optimization opportunities because various passes recognize constants split with PLUS but not LO_SUM. We use a 14-bit signed low part except when the addition of 0x4000 to the high part might change the sign of the high part. */ HOST_WIDE_INT low = value & 0x3fff; HOST_WIDE_INT high = value & ~ 0x3fff; if (low >= 0x2000) { if (high == 0x7fffc000 || (mode == HImode && high == 0x4000)) high += 0x2000; else high += 0x4000; } low = value - high; emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (high))); operands[1] = gen_rtx_PLUS (mode, temp, GEN_INT (low)); } else { emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_HIGH (mode, operand1))); operands[1] = gen_rtx_LO_SUM (mode, temp, operand1); } insn = emit_move_insn (operands[0], operands[1]); /* Now insert the most significant 32 bits of the value into the register. When we don't have a second register available, it could take up to nine instructions to load a 64-bit integer constant. Prior to reload, we force constants that would take more than three instructions to load to the constant pool. During and after reload, we have to handle all possible values. */ if (insert) { /* Use a HIGH/LO_SUM/INSV sequence if we have a second register and the value to be inserted is outside the range that can be loaded with three depdi instructions. */ if (temp != operand0 && (insv >= 16384 || insv < -16384)) { operand1 = GEN_INT (insv); emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_HIGH (mode, operand1))); emit_move_insn (temp, gen_rtx_LO_SUM (mode, temp, operand1)); emit_insn (gen_insv (operand0, GEN_INT (32), const0_rtx, temp)); } else { int len = 5, pos = 27; /* Insert the bits using the depdi instruction. */ while (pos >= 0) { HOST_WIDE_INT v5 = ((insv & 31) ^ 16) - 16; HOST_WIDE_INT sign = v5 < 0; /* Left extend the insertion. */ insv = (insv >= 0 ? insv >> len : ~(~insv >> len)); while (pos > 0 && (insv & 1) == sign) { insv = (insv >= 0 ? insv >> 1 : ~(~insv >> 1)); len += 1; pos -= 1; } emit_insn (gen_insv (operand0, GEN_INT (len), GEN_INT (pos), GEN_INT (v5))); len = pos > 0 && pos < 5 ? pos : 5; pos -= len; } } } REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, op1, REG_NOTES (insn)); return 1; } } /* Now have insn-emit do whatever it normally does. */ return 0; } /* Examine EXP and return nonzero if it contains an ADDR_EXPR (meaning it will need a link/runtime reloc). */ int reloc_needed (tree exp) { int reloc = 0; switch (TREE_CODE (exp)) { case ADDR_EXPR: return 1; case PLUS_EXPR: case MINUS_EXPR: reloc = reloc_needed (TREE_OPERAND (exp, 0)); reloc |= reloc_needed (TREE_OPERAND (exp, 1)); break; case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR: reloc = reloc_needed (TREE_OPERAND (exp, 0)); break; case CONSTRUCTOR: { register tree link; for (link = CONSTRUCTOR_ELTS (exp); link; link = TREE_CHAIN (link)) if (TREE_VALUE (link) != 0) reloc |= reloc_needed (TREE_VALUE (link)); } break; case ERROR_MARK: break; default: break; } return reloc; } /* Does operand (which is a symbolic_operand) live in text space? If so, SYMBOL_REF_FLAG, which is set by pa_encode_section_info, will be true. */ int read_only_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED) { if (GET_CODE (operand) == CONST) operand = XEXP (XEXP (operand, 0), 0); if (flag_pic) { if (GET_CODE (operand) == SYMBOL_REF) return SYMBOL_REF_FLAG (operand) && !CONSTANT_POOL_ADDRESS_P (operand); } else { if (GET_CODE (operand) == SYMBOL_REF) return SYMBOL_REF_FLAG (operand) || CONSTANT_POOL_ADDRESS_P (operand); } return 1; } /* Return the best assembler insn template for moving operands[1] into operands[0] as a fullword. */ const char * singlemove_string (rtx *operands) { HOST_WIDE_INT intval; if (GET_CODE (operands[0]) == MEM) return "stw %r1,%0"; if (GET_CODE (operands[1]) == MEM) return "ldw %1,%0"; if (GET_CODE (operands[1]) == CONST_DOUBLE) { long i; REAL_VALUE_TYPE d; if (GET_MODE (operands[1]) != SFmode) abort (); /* Translate the CONST_DOUBLE to a CONST_INT with the same target bit pattern. */ REAL_VALUE_FROM_CONST_DOUBLE (d, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (d, i); operands[1] = GEN_INT (i); /* Fall through to CONST_INT case. */ } if (GET_CODE (operands[1]) == CONST_INT) { intval = INTVAL (operands[1]); if (VAL_14_BITS_P (intval)) return "ldi %1,%0"; else if ((intval & 0x7ff) == 0) return "ldil L'%1,%0"; else if (zdepi_cint_p (intval)) return "{zdepi %Z1,%0|depwi,z %Z1,%0}"; else return "ldil L'%1,%0\n\tldo R'%1(%0),%0"; } return "copy %1,%0"; } /* Compute position (in OP[1]) and width (in OP[2]) useful for copying IMM to a register using the zdepi instructions. Store the immediate value to insert in OP[0]. */ static void compute_zdepwi_operands (unsigned HOST_WIDE_INT imm, unsigned *op) { int lsb, len; /* Find the least significant set bit in IMM. */ for (lsb = 0; lsb < 32; lsb++) { if ((imm & 1) != 0) break; imm >>= 1; } /* Choose variants based on *sign* of the 5-bit field. */ if ((imm & 0x10) == 0) len = (lsb <= 28) ? 4 : 32 - lsb; else { /* Find the width of the bitstring in IMM. */ for (len = 5; len < 32; len++) { if ((imm & (1 << len)) == 0) break; } /* Sign extend IMM as a 5-bit value. */ imm = (imm & 0xf) - 0x10; } op[0] = imm; op[1] = 31 - lsb; op[2] = len; } /* Compute position (in OP[1]) and width (in OP[2]) useful for copying IMM to a register using the depdi,z instructions. Store the immediate value to insert in OP[0]. */ void compute_zdepdi_operands (unsigned HOST_WIDE_INT imm, unsigned *op) { HOST_WIDE_INT lsb, len; /* Find the least significant set bit in IMM. */ for (lsb = 0; lsb < HOST_BITS_PER_WIDE_INT; lsb++) { if ((imm & 1) != 0) break; imm >>= 1; } /* Choose variants based on *sign* of the 5-bit field. */ if ((imm & 0x10) == 0) len = ((lsb <= HOST_BITS_PER_WIDE_INT - 4) ? 4 : HOST_BITS_PER_WIDE_INT - lsb); else { /* Find the width of the bitstring in IMM. */ for (len = 5; len < HOST_BITS_PER_WIDE_INT; len++) { if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0) break; } /* Sign extend IMM as a 5-bit value. */ imm = (imm & 0xf) - 0x10; } op[0] = imm; op[1] = 63 - lsb; op[2] = len; } /* Output assembler code to perform a doubleword move insn with operands OPERANDS. */ const char * output_move_double (rtx *operands) { enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1; rtx latehalf[2]; rtx addreg0 = 0, addreg1 = 0; /* First classify both operands. */ if (REG_P (operands[0])) optype0 = REGOP; else if (offsettable_memref_p (operands[0])) optype0 = OFFSOP; else if (GET_CODE (operands[0]) == MEM) optype0 = MEMOP; else optype0 = RNDOP; if (REG_P (operands[1])) optype1 = REGOP; else if (CONSTANT_P (operands[1])) optype1 = CNSTOP; else if (offsettable_memref_p (operands[1])) optype1 = OFFSOP; else if (GET_CODE (operands[1]) == MEM) optype1 = MEMOP; else optype1 = RNDOP; /* Check for the cases that the operand constraints are not supposed to allow to happen. Abort if we get one, because generating code for these cases is painful. */ if (optype0 != REGOP && optype1 != REGOP) abort (); /* Handle auto decrementing and incrementing loads and stores specifically, since the structure of the function doesn't work for them without major modification. Do it better when we learn this port about the general inc/dec addressing of PA. (This was written by tege. Chide him if it doesn't work.) */ if (optype0 == MEMOP) { /* We have to output the address syntax ourselves, since print_operand doesn't deal with the addresses we want to use. Fix this later. */ rtx addr = XEXP (operands[0], 0); if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC) { rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0); operands[0] = XEXP (addr, 0); if (GET_CODE (operands[1]) != REG || GET_CODE (operands[0]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == POST_INC) return "{stws|stw},ma %1,8(%0)\n\tstw %R1,-4(%0)"; return "{stws|stw},ma %1,-8(%0)\n\tstw %R1,12(%0)"; } else abort (); } else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC) { rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0); operands[0] = XEXP (addr, 0); if (GET_CODE (operands[1]) != REG || GET_CODE (operands[0]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == PRE_INC) return "{stws|stw},mb %1,8(%0)\n\tstw %R1,4(%0)"; return "{stws|stw},mb %1,-8(%0)\n\tstw %R1,4(%0)"; } else abort (); } } if (optype1 == MEMOP) { /* We have to output the address syntax ourselves, since print_operand doesn't deal with the addresses we want to use. Fix this later. */ rtx addr = XEXP (operands[1], 0); if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC) { rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0); operands[1] = XEXP (addr, 0); if (GET_CODE (operands[0]) != REG || GET_CODE (operands[1]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == POST_INC) return "{ldws|ldw},ma 8(%1),%0\n\tldw -4(%1),%R0"; return "{ldws|ldw},ma -8(%1),%0\n\tldw 12(%1),%R0"; } else { /* This is an undefined situation. We should load into the address register *and* update that register. Probably we don't need to handle this at all. */ if (GET_CODE (addr) == POST_INC) return "ldw 4(%1),%R0\n\t{ldws|ldw},ma 8(%1),%0"; return "ldw 4(%1),%R0\n\t{ldws|ldw},ma -8(%1),%0"; } } else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC) { rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0); operands[1] = XEXP (addr, 0); if (GET_CODE (operands[0]) != REG || GET_CODE (operands[1]) != REG) abort (); if (!reg_overlap_mentioned_p (high_reg, addr)) { /* No overlap between high target register and address register. (We do this in a non-obvious way to save a register file writeback) */ if (GET_CODE (addr) == PRE_INC) return "{ldws|ldw},mb 8(%1),%0\n\tldw 4(%1),%R0"; return "{ldws|ldw},mb -8(%1),%0\n\tldw 4(%1),%R0"; } else { /* This is an undefined situation. We should load into the address register *and* update that register. Probably we don't need to handle this at all. */ if (GET_CODE (addr) == PRE_INC) return "ldw 12(%1),%R0\n\t{ldws|ldw},mb 8(%1),%0"; return "ldw -4(%1),%R0\n\t{ldws|ldw},mb -8(%1),%0"; } } else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == MULT) { rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0); if (!reg_overlap_mentioned_p (high_reg, addr)) { rtx xoperands[3]; xoperands[0] = high_reg; xoperands[1] = XEXP (addr, 1); xoperands[2] = XEXP (XEXP (addr, 0), 0); xoperands[3] = XEXP (XEXP (addr, 0), 1); output_asm_insn ("{sh%O3addl %2,%1,%0|shladd,l %2,%O3,%1,%0}", xoperands); return "ldw 4(%0),%R0\n\tldw 0(%0),%0"; } else { rtx xoperands[3]; xoperands[0] = high_reg; xoperands[1] = XEXP (addr, 1); xoperands[2] = XEXP (XEXP (addr, 0), 0); xoperands[3] = XEXP (XEXP (addr, 0), 1); output_asm_insn ("{sh%O3addl %2,%1,%R0|shladd,l %2,%O3,%1,%R0}", xoperands); return "ldw 0(%R0),%0\n\tldw 4(%R0),%R0"; } } } /* If an operand is an unoffsettable memory ref, find a register we can increment temporarily to make it refer to the second word. */ if (optype0 == MEMOP) addreg0 = find_addr_reg (XEXP (operands[0], 0)); if (optype1 == MEMOP) addreg1 = find_addr_reg (XEXP (operands[1], 0)); /* Ok, we can do one word at a time. Normally we do the low-numbered word first. In either case, set up in LATEHALF the operands to use for the high-numbered word and in some cases alter the operands in OPERANDS to be suitable for the low-numbered word. */ if (optype0 == REGOP) latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1); else if (optype0 == OFFSOP) latehalf[0] = adjust_address (operands[0], SImode, 4); else latehalf[0] = operands[0]; if (optype1 == REGOP) latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1); else if (optype1 == OFFSOP) latehalf[1] = adjust_address (operands[1], SImode, 4); else if (optype1 == CNSTOP) split_double (operands[1], &operands[1], &latehalf[1]); else latehalf[1] = operands[1]; /* If the first move would clobber the source of the second one, do them in the other order. This can happen in two cases: mem -> register where the first half of the destination register is the same register used in the memory's address. Reload can create such insns. mem in this case will be either register indirect or register indirect plus a valid offset. register -> register move where REGNO(dst) == REGNO(src + 1) someone (Tim/Tege?) claimed this can happen for parameter loads. Handle mem -> register case first. */ if (optype0 == REGOP && (optype1 == MEMOP || optype1 == OFFSOP) && refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands[1], 0)) { /* Do the late half first. */ if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); output_asm_insn (singlemove_string (latehalf), latehalf); /* Then clobber. */ if (addreg1) output_asm_insn ("ldo -4(%0),%0", &addreg1); return singlemove_string (operands); } /* Now handle register -> register case. */ if (optype0 == REGOP && optype1 == REGOP && REGNO (operands[0]) == REGNO (operands[1]) + 1) { output_asm_insn (singlemove_string (latehalf), latehalf); return singlemove_string (operands); } /* Normal case: do the two words, low-numbered first. */ output_asm_insn (singlemove_string (operands), operands); /* Make any unoffsettable addresses point at high-numbered word. */ if (addreg0) output_asm_insn ("ldo 4(%0),%0", &addreg0); if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("ldo -4(%0),%0", &addreg0); if (addreg1) output_asm_insn ("ldo -4(%0),%0", &addreg1); return ""; } const char * output_fp_move_double (rtx *operands) { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1]) || operands[1] == CONST0_RTX (GET_MODE (operands[0]))) output_asm_insn ("fcpy,dbl %f1,%0", operands); else output_asm_insn ("fldd%F1 %1,%0", operands); } else if (FP_REG_P (operands[1])) { output_asm_insn ("fstd%F0 %1,%0", operands); } else if (operands[1] == CONST0_RTX (GET_MODE (operands[0]))) { if (GET_CODE (operands[0]) == REG) { rtx xoperands[2]; xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1); xoperands[0] = operands[0]; output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands); } /* This is a pain. You have to be prepared to deal with an arbitrary address here including pre/post increment/decrement. so avoid this in the MD. */ else abort (); } else abort (); return ""; } /* Return a REG that occurs in ADDR with coefficient 1. ADDR can be effectively incremented by incrementing REG. */ static rtx find_addr_reg (rtx addr) { while (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG) addr = XEXP (addr, 0); else if (GET_CODE (XEXP (addr, 1)) == REG) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 0))) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 1))) addr = XEXP (addr, 0); else abort (); } if (GET_CODE (addr) == REG) return addr; abort (); } /* Emit code to perform a block move. OPERANDS[0] is the destination pointer as a REG, clobbered. OPERANDS[1] is the source pointer as a REG, clobbered. OPERANDS[2] is a register for temporary storage. OPERANDS[3] is a register for temporary storage. OPERANDS[4] is the size as a CONST_INT OPERANDS[5] is the alignment safe to use, as a CONST_INT. OPERANDS[6] is another temporary register. */ const char * output_block_move (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED) { int align = INTVAL (operands[5]); unsigned long n_bytes = INTVAL (operands[4]); /* We can't move more than a word at a time because the PA has no longer integer move insns. (Could use fp mem ops?) */ if (align > (TARGET_64BIT ? 8 : 4)) align = (TARGET_64BIT ? 8 : 4); /* Note that we know each loop below will execute at least twice (else we would have open-coded the copy). */ switch (align) { case 8: /* Pre-adjust the loop counter. */ operands[4] = GEN_INT (n_bytes - 16); output_asm_insn ("ldi %4,%2", operands); /* Copying loop. */ output_asm_insn ("ldd,ma 8(%1),%3", operands); output_asm_insn ("ldd,ma 8(%1),%6", operands); output_asm_insn ("std,ma %3,8(%0)", operands); output_asm_insn ("addib,>= -16,%2,.-12", operands); output_asm_insn ("std,ma %6,8(%0)", operands); /* Handle the residual. There could be up to 7 bytes of residual to copy! */ if (n_bytes % 16 != 0) { operands[4] = GEN_INT (n_bytes % 8); if (n_bytes % 16 >= 8) output_asm_insn ("ldd,ma 8(%1),%3", operands); if (n_bytes % 8 != 0) output_asm_insn ("ldd 0(%1),%6", operands); if (n_bytes % 16 >= 8) output_asm_insn ("std,ma %3,8(%0)", operands); if (n_bytes % 8 != 0) output_asm_insn ("stdby,e %6,%4(%0)", operands); } return ""; case 4: /* Pre-adjust the loop counter. */ operands[4] = GEN_INT (n_bytes - 8); output_asm_insn ("ldi %4,%2", operands); /* Copying loop. */ output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands); output_asm_insn ("{ldws|ldw},ma 4(%1),%6", operands); output_asm_insn ("{stws|stw},ma %3,4(%0)", operands); output_asm_insn ("addib,>= -8,%2,.-12", operands); output_asm_insn ("{stws|stw},ma %6,4(%0)", operands); /* Handle the residual. There could be up to 7 bytes of residual to copy! */ if (n_bytes % 8 != 0) { operands[4] = GEN_INT (n_bytes % 4); if (n_bytes % 8 >= 4) output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands); if (n_bytes % 4 != 0) output_asm_insn ("ldw 0(%1),%6", operands); if (n_bytes % 8 >= 4) output_asm_insn ("{stws|stw},ma %3,4(%0)", operands); if (n_bytes % 4 != 0) output_asm_insn ("{stbys|stby},e %6,%4(%0)", operands); } return ""; case 2: /* Pre-adjust the loop counter. */ operands[4] = GEN_INT (n_bytes - 4); output_asm_insn ("ldi %4,%2", operands); /* Copying loop. */ output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands); output_asm_insn ("{ldhs|ldh},ma 2(%1),%6", operands); output_asm_insn ("{sths|sth},ma %3,2(%0)", operands); output_asm_insn ("addib,>= -4,%2,.-12", operands); output_asm_insn ("{sths|sth},ma %6,2(%0)", operands); /* Handle the residual. */ if (n_bytes % 4 != 0) { if (n_bytes % 4 >= 2) output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands); if (n_bytes % 2 != 0) output_asm_insn ("ldb 0(%1),%6", operands); if (n_bytes % 4 >= 2) output_asm_insn ("{sths|sth},ma %3,2(%0)", operands); if (n_bytes % 2 != 0) output_asm_insn ("stb %6,0(%0)", operands); } return ""; case 1: /* Pre-adjust the loop counter. */ operands[4] = GEN_INT (n_bytes - 2); output_asm_insn ("ldi %4,%2", operands); /* Copying loop. */ output_asm_insn ("{ldbs|ldb},ma 1(%1),%3", operands); output_asm_insn ("{ldbs|ldb},ma 1(%1),%6", operands); output_asm_insn ("{stbs|stb},ma %3,1(%0)", operands); output_asm_insn ("addib,>= -2,%2,.-12", operands); output_asm_insn ("{stbs|stb},ma %6,1(%0)", operands); /* Handle the residual. */ if (n_bytes % 2 != 0) { output_asm_insn ("ldb 0(%1),%3", operands); output_asm_insn ("stb %3,0(%0)", operands); } return ""; default: abort (); } } /* Count the number of insns necessary to handle this block move. Basic structure is the same as emit_block_move, except that we count insns rather than emit them. */ static int compute_movstr_length (rtx insn) { rtx pat = PATTERN (insn); unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 7), 0)); unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0)); unsigned int n_insns = 0; /* We can't move more than four bytes at a time because the PA has no longer integer move insns. (Could use fp mem ops?) */ if (align > (TARGET_64BIT ? 8 : 4)) align = (TARGET_64BIT ? 8 : 4); /* The basic copying loop. */ n_insns = 6; /* Residuals. */ if (n_bytes % (2 * align) != 0) { if ((n_bytes % (2 * align)) >= align) n_insns += 2; if ((n_bytes % align) != 0) n_insns += 2; } /* Lengths are expressed in bytes now; each insn is 4 bytes. */ return n_insns * 4; } /* Emit code to perform a block clear. OPERANDS[0] is the destination pointer as a REG, clobbered. OPERANDS[1] is a register for temporary storage. OPERANDS[2] is the size as a CONST_INT OPERANDS[3] is the alignment safe to use, as a CONST_INT. */ const char * output_block_clear (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED) { int align = INTVAL (operands[3]); unsigned long n_bytes = INTVAL (operands[2]); /* We can't clear more than a word at a time because the PA has no longer integer move insns. */ if (align > (TARGET_64BIT ? 8 : 4)) align = (TARGET_64BIT ? 8 : 4); /* Note that we know each loop below will execute at least twice (else we would have open-coded the copy). */ switch (align) { case 8: /* Pre-adjust the loop counter. */ operands[2] = GEN_INT (n_bytes - 16); output_asm_insn ("ldi %2,%1", operands); /* Loop. */ output_asm_insn ("std,ma %%r0,8(%0)", operands); output_asm_insn ("addib,>= -16,%1,.-4", operands); output_asm_insn ("std,ma %%r0,8(%0)", operands); /* Handle the residual. There could be up to 7 bytes of residual to copy! */ if (n_bytes % 16 != 0) { operands[2] = GEN_INT (n_bytes % 8); if (n_bytes % 16 >= 8) output_asm_insn ("std,ma %%r0,8(%0)", operands); if (n_bytes % 8 != 0) output_asm_insn ("stdby,e %%r0,%2(%0)", operands); } return ""; case 4: /* Pre-adjust the loop counter. */ operands[2] = GEN_INT (n_bytes - 8); output_asm_insn ("ldi %2,%1", operands); /* Loop. */ output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands); output_asm_insn ("addib,>= -8,%1,.-4", operands); output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands); /* Handle the residual. There could be up to 7 bytes of residual to copy! */ if (n_bytes % 8 != 0) { operands[2] = GEN_INT (n_bytes % 4); if (n_bytes % 8 >= 4) output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands); if (n_bytes % 4 != 0) output_asm_insn ("{stbys|stby},e %%r0,%2(%0)", operands); } return ""; case 2: /* Pre-adjust the loop counter. */ operands[2] = GEN_INT (n_bytes - 4); output_asm_insn ("ldi %2,%1", operands); /* Loop. */ output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands); output_asm_insn ("addib,>= -4,%1,.-4", operands); output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands); /* Handle the residual. */ if (n_bytes % 4 != 0) { if (n_bytes % 4 >= 2) output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands); if (n_bytes % 2 != 0) output_asm_insn ("stb %%r0,0(%0)", operands); } return ""; case 1: /* Pre-adjust the loop counter. */ operands[2] = GEN_INT (n_bytes - 2); output_asm_insn ("ldi %2,%1", operands); /* Loop. */ output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands); output_asm_insn ("addib,>= -2,%1,.-4", operands); output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands); /* Handle the residual. */ if (n_bytes % 2 != 0) output_asm_insn ("stb %%r0,0(%0)", operands); return ""; default: abort (); } } /* Count the number of insns necessary to handle this block move. Basic structure is the same as emit_block_move, except that we count insns rather than emit them. */ static int compute_clrstr_length (rtx insn) { rtx pat = PATTERN (insn); unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 4), 0)); unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 3), 0)); unsigned int n_insns = 0; /* We can't clear more than a word at a time because the PA has no longer integer move insns. */ if (align > (TARGET_64BIT ? 8 : 4)) align = (TARGET_64BIT ? 8 : 4); /* The basic loop. */ n_insns = 4; /* Residuals. */ if (n_bytes % (2 * align) != 0) { if ((n_bytes % (2 * align)) >= align) n_insns++; if ((n_bytes % align) != 0) n_insns++; } /* Lengths are expressed in bytes now; each insn is 4 bytes. */ return n_insns * 4; } const char * output_and (rtx *operands) { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0) { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int ls0, ls1, ms0, p, len; for (ls0 = 0; ls0 < 32; ls0++) if ((mask & (1 << ls0)) == 0) break; for (ls1 = ls0; ls1 < 32; ls1++) if ((mask & (1 << ls1)) != 0) break; for (ms0 = ls1; ms0 < 32; ms0++) if ((mask & (1 << ms0)) == 0) break; if (ms0 != 32) abort (); if (ls1 == 32) { len = ls0; if (len == 0) abort (); operands[2] = GEN_INT (len); return "{extru|extrw,u} %1,31,%2,%0"; } else { /* We could use this `depi' for the case above as well, but `depi' requires one more register file access than an `extru'. */ p = 31 - ls0; len = ls1 - ls0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "{depi|depwi} 0,%2,%3,%0"; } } else return "and %1,%2,%0"; } /* Return a string to perform a bitwise-and of operands[1] with operands[2] storing the result in operands[0]. */ const char * output_64bit_and (rtx *operands) { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0) { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int ls0, ls1, ms0, p, len; for (ls0 = 0; ls0 < HOST_BITS_PER_WIDE_INT; ls0++) if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls0)) == 0) break; for (ls1 = ls0; ls1 < HOST_BITS_PER_WIDE_INT; ls1++) if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls1)) != 0) break; for (ms0 = ls1; ms0 < HOST_BITS_PER_WIDE_INT; ms0++) if ((mask & ((unsigned HOST_WIDE_INT) 1 << ms0)) == 0) break; if (ms0 != HOST_BITS_PER_WIDE_INT) abort (); if (ls1 == HOST_BITS_PER_WIDE_INT) { len = ls0; if (len == 0) abort (); operands[2] = GEN_INT (len); return "extrd,u %1,63,%2,%0"; } else { /* We could use this `depi' for the case above as well, but `depi' requires one more register file access than an `extru'. */ p = 63 - ls0; len = ls1 - ls0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "depdi 0,%2,%3,%0"; } } else return "and %1,%2,%0"; } const char * output_ior (rtx *operands) { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int bs0, bs1, p, len; if (INTVAL (operands[2]) == 0) return "copy %1,%0"; for (bs0 = 0; bs0 < 32; bs0++) if ((mask & (1 << bs0)) != 0) break; for (bs1 = bs0; bs1 < 32; bs1++) if ((mask & (1 << bs1)) == 0) break; if (bs1 != 32 && ((unsigned HOST_WIDE_INT) 1 << bs1) <= mask) abort (); p = 31 - bs0; len = bs1 - bs0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "{depi|depwi} -1,%2,%3,%0"; } /* Return a string to perform a bitwise-and of operands[1] with operands[2] storing the result in operands[0]. */ const char * output_64bit_ior (rtx *operands) { unsigned HOST_WIDE_INT mask = INTVAL (operands[2]); int bs0, bs1, p, len; if (INTVAL (operands[2]) == 0) return "copy %1,%0"; for (bs0 = 0; bs0 < HOST_BITS_PER_WIDE_INT; bs0++) if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs0)) != 0) break; for (bs1 = bs0; bs1 < HOST_BITS_PER_WIDE_INT; bs1++) if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs1)) == 0) break; if (bs1 != HOST_BITS_PER_WIDE_INT && ((unsigned HOST_WIDE_INT) 1 << bs1) <= mask) abort (); p = 63 - bs0; len = bs1 - bs0; operands[2] = GEN_INT (p); operands[3] = GEN_INT (len); return "depdi -1,%2,%3,%0"; } /* Target hook for assembling integer objects. This code handles aligned SI and DI integers specially, since function references must be preceded by P%. */ static bool pa_assemble_integer (rtx x, unsigned int size, int aligned_p) { if (size == UNITS_PER_WORD && aligned_p && function_label_operand (x, VOIDmode)) { fputs (size == 8? "\t.dword\tP%" : "\t.word\tP%", asm_out_file); output_addr_const (asm_out_file, x); fputc ('\n', asm_out_file); return true; } return default_assemble_integer (x, size, aligned_p); } /* Output an ascii string. */ void output_ascii (FILE *file, const char *p, int size) { int i; int chars_output; unsigned char partial_output[16]; /* Max space 4 chars can occupy. */ /* The HP assembler can only take strings of 256 characters at one time. This is a limitation on input line length, *not* the length of the string. Sigh. Even worse, it seems that the restriction is in number of input characters (see \xnn & \whatever). So we have to do this very carefully. */ fputs ("\t.STRING \"", file); chars_output = 0; for (i = 0; i < size; i += 4) { int co = 0; int io = 0; for (io = 0, co = 0; io < MIN (4, size - i); io++) { register unsigned int c = (unsigned char) p[i + io]; if (c == '\"' || c == '\\') partial_output[co++] = '\\'; if (c >= ' ' && c < 0177) partial_output[co++] = c; else { unsigned int hexd; partial_output[co++] = '\\'; partial_output[co++] = 'x'; hexd = c / 16 - 0 + '0'; if (hexd > '9') hexd -= '9' - 'a' + 1; partial_output[co++] = hexd; hexd = c % 16 - 0 + '0'; if (hexd > '9') hexd -= '9' - 'a' + 1; partial_output[co++] = hexd; } } if (chars_output + co > 243) { fputs ("\"\n\t.STRING \"", file); chars_output = 0; } fwrite (partial_output, 1, (size_t) co, file); chars_output += co; co = 0; } fputs ("\"\n", file); } /* Try to rewrite floating point comparisons & branches to avoid useless add,tr insns. CHECK_NOTES is nonzero if we should examine REG_DEAD notes to see if FPCC is dead. CHECK_NOTES is nonzero for the first attempt to remove useless add,tr insns. It is zero for the second pass as reorg sometimes leaves bogus REG_DEAD notes lying around. When CHECK_NOTES is zero we can only eliminate add,tr insns when there's a 1:1 correspondence between fcmp and ftest/fbranch instructions. */ static void remove_useless_addtr_insns (int check_notes) { rtx insn; static int pass = 0; /* This is fairly cheap, so always run it when optimizing. */ if (optimize > 0) { int fcmp_count = 0; int fbranch_count = 0; /* Walk all the insns in this function looking for fcmp & fbranch instructions. Keep track of how many of each we find. */ for (insn = get_insns (); insn; insn = next_insn (insn)) { rtx tmp; /* Ignore anything that isn't an INSN or a JUMP_INSN. */ if (GET_CODE (insn) != INSN && GET_CODE (insn) != JUMP_INSN) continue; tmp = PATTERN (insn); /* It must be a set. */ if (GET_CODE (tmp) != SET) continue; /* If the destination is CCFP, then we've found an fcmp insn. */ tmp = SET_DEST (tmp); if (GET_CODE (tmp) == REG && REGNO (tmp) == 0) { fcmp_count++; continue; } tmp = PATTERN (insn); /* If this is an fbranch instruction, bump the fbranch counter. */ if (GET_CODE (tmp) == SET && SET_DEST (tmp) == pc_rtx && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (tmp), 0)) == NE && GET_CODE (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == REG && REGNO (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == 0) { fbranch_count++; continue; } } /* Find all floating point compare + branch insns. If possible, reverse the comparison & the branch to avoid add,tr insns. */ for (insn = get_insns (); insn; insn = next_insn (insn)) { rtx tmp, next; /* Ignore anything that isn't an INSN. */ if (GET_CODE (insn) != INSN) continue; tmp = PATTERN (insn); /* It must be a set. */ if (GET_CODE (tmp) != SET) continue; /* The destination must be CCFP, which is register zero. */ tmp = SET_DEST (tmp); if (GET_CODE (tmp) != REG || REGNO (tmp) != 0) continue; /* INSN should be a set of CCFP. See if the result of this insn is used in a reversed FP conditional branch. If so, reverse our condition and the branch. Doing so avoids useless add,tr insns. */ next = next_insn (insn); while (next) { /* Jumps, calls and labels stop our search. */ if (GET_CODE (next) == JUMP_INSN || GET_CODE (next) == CALL_INSN || GET_CODE (next) == CODE_LABEL) break; /* As does another fcmp insn. */ if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SET && GET_CODE (SET_DEST (PATTERN (next))) == REG && REGNO (SET_DEST (PATTERN (next))) == 0) break; next = next_insn (next); } /* Is NEXT_INSN a branch? */ if (next && GET_CODE (next) == JUMP_INSN) { rtx pattern = PATTERN (next); /* If it a reversed fp conditional branch (eg uses add,tr) and CCFP dies, then reverse our conditional and the branch to avoid the add,tr. */ if (GET_CODE (pattern) == SET && SET_DEST (pattern) == pc_rtx && GET_CODE (SET_SRC (pattern)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (pattern), 0)) == NE && GET_CODE (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == REG && REGNO (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == 0 && GET_CODE (XEXP (SET_SRC (pattern), 1)) == PC && (fcmp_count == fbranch_count || (check_notes && find_regno_note (next, REG_DEAD, 0)))) { /* Reverse the branch. */ tmp = XEXP (SET_SRC (pattern), 1); XEXP (SET_SRC (pattern), 1) = XEXP (SET_SRC (pattern), 2); XEXP (SET_SRC (pattern), 2) = tmp; INSN_CODE (next) = -1; /* Reverse our condition. */ tmp = PATTERN (insn); PUT_CODE (XEXP (tmp, 1), (reverse_condition_maybe_unordered (GET_CODE (XEXP (tmp, 1))))); } } } } pass = !pass; } /* You may have trouble believing this, but this is the 32 bit HP-PA stack layout. Wow. Offset Contents Variable arguments (optional; any number may be allocated) SP-(4*(N+9)) arg word N : : SP-56 arg word 5 SP-52 arg word 4 Fixed arguments (must be allocated; may remain unused) SP-48 arg word 3 SP-44 arg word 2 SP-40 arg word 1 SP-36 arg word 0 Frame Marker SP-32 External Data Pointer (DP) SP-28 External sr4 SP-24 External/stub RP (RP') SP-20 Current RP SP-16 Static Link SP-12 Clean up SP-8 Calling Stub RP (RP'') SP-4 Previous SP Top of Frame SP-0 Stack Pointer (points to next available address) */ /* This function saves registers as follows. Registers marked with ' are this function's registers (as opposed to the previous function's). If a frame_pointer isn't needed, r4 is saved as a general register; the space for the frame pointer is still allocated, though, to keep things simple. Top of Frame SP (FP') Previous FP SP + 4 Alignment filler (sigh) SP + 8 Space for locals reserved here. . . . SP + n All call saved register used. . . . SP + o All call saved fp registers used. . . . SP + p (SP') points to next available address. */ /* Global variables set by output_function_prologue(). */ /* Size of frame. Need to know this to emit return insns from leaf procedures. */ static HOST_WIDE_INT actual_fsize, local_fsize; static int save_fregs; /* Emit RTL to store REG at the memory location specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const patterns. Note in DISP > 8k case, we will leave the high part of the address in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/ static void store_reg (int reg, HOST_WIDE_INT disp, int base) { rtx insn, dest, src, basereg; src = gen_rtx_REG (word_mode, reg); basereg = gen_rtx_REG (Pmode, base); if (VAL_14_BITS_P (disp)) { dest = gen_rtx_MEM (word_mode, plus_constant (basereg, disp)); insn = emit_move_insn (dest, src); } else if (TARGET_64BIT && !VAL_32_BITS_P (disp)) { rtx delta = GEN_INT (disp); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, delta); emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg)); dest = gen_rtx_MEM (word_mode, tmpreg); insn = emit_move_insn (dest, src); if (DO_FRAME_NOTES) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (word_mode, gen_rtx_PLUS (word_mode, basereg, delta)), src), REG_NOTES (insn)); } } else { rtx delta = GEN_INT (disp); rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta)); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, high); dest = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta)); insn = emit_move_insn (dest, src); if (DO_FRAME_NOTES) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (word_mode, gen_rtx_PLUS (word_mode, basereg, delta)), src), REG_NOTES (insn)); } } if (DO_FRAME_NOTES) RTX_FRAME_RELATED_P (insn) = 1; } /* Emit RTL to store REG at the memory location specified by BASE and then add MOD to BASE. MOD must be <= 8k. */ static void store_reg_modify (int base, int reg, HOST_WIDE_INT mod) { rtx insn, basereg, srcreg, delta; if (!VAL_14_BITS_P (mod)) abort (); basereg = gen_rtx_REG (Pmode, base); srcreg = gen_rtx_REG (word_mode, reg); delta = GEN_INT (mod); insn = emit_insn (gen_post_store (basereg, srcreg, delta)); if (DO_FRAME_NOTES) { RTX_FRAME_RELATED_P (insn) = 1; /* RTX_FRAME_RELATED_P must be set on each frame related set in a parallel with more than one element. Don't set RTX_FRAME_RELATED_P in the first set if reg is temporary register 1. The effect of this operation is recorded in the initial copy. */ if (reg != 1) { RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 0)) = 1; RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1; } else { /* The first element of a PARALLEL is always processed if it is a SET. Thus, we need an expression list for this case. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, basereg, gen_rtx_PLUS (word_mode, basereg, delta)), REG_NOTES (insn)); } } } /* Emit RTL to set REG to the value specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const patterns. NOTE indicates whether to add a frame note or not. In the DISP > 8k case, we leave the high part of the address in %r1. There is code in expand_hppa_{prologue,epilogue} that knows about this. */ static void set_reg_plus_d (int reg, int base, HOST_WIDE_INT disp, int note) { rtx insn; if (VAL_14_BITS_P (disp)) { insn = emit_move_insn (gen_rtx_REG (Pmode, reg), plus_constant (gen_rtx_REG (Pmode, base), disp)); } else if (TARGET_64BIT && !VAL_32_BITS_P (disp)) { rtx basereg = gen_rtx_REG (Pmode, base); rtx delta = GEN_INT (disp); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, delta); insn = emit_move_insn (gen_rtx_REG (Pmode, reg), gen_rtx_PLUS (Pmode, tmpreg, basereg)); } else { rtx basereg = gen_rtx_REG (Pmode, base); rtx delta = GEN_INT (disp); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta))); insn = emit_move_insn (gen_rtx_REG (Pmode, reg), gen_rtx_LO_SUM (Pmode, tmpreg, delta)); } if (DO_FRAME_NOTES && note) RTX_FRAME_RELATED_P (insn) = 1; } HOST_WIDE_INT compute_frame_size (HOST_WIDE_INT size, int *fregs_live) { int freg_saved = 0; int i, j; /* The code in hppa_expand_prologue and hppa_expand_epilogue must be consistent with the rounding and size calculation done here. Change them at the same time. */ /* We do our own stack alignment. First, round the size of the stack locals up to a word boundary. */ size = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1); /* Space for previous frame pointer + filler. If any frame is allocated, we need to add in the STARTING_FRAME_OFFSET. We waste some space here for the sake of HP compatibility. The first slot is only used when the frame pointer is needed. */ if (size || frame_pointer_needed) size += STARTING_FRAME_OFFSET; /* If the current function calls __builtin_eh_return, then we need to allocate stack space for registers that will hold data for the exception handler. */ if (DO_FRAME_NOTES && current_function_calls_eh_return) { unsigned int i; for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i) continue; size += i * UNITS_PER_WORD; } /* Account for space used by the callee general register saves. */ for (i = 18, j = frame_pointer_needed ? 4 : 3; i >= j; i--) if (regs_ever_live[i]) size += UNITS_PER_WORD; /* Account for space used by the callee floating point register saves. */ for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP) if (regs_ever_live[i] || (!TARGET_64BIT && regs_ever_live[i + 1])) { freg_saved = 1; /* We always save both halves of the FP register, so always increment the frame size by 8 bytes. */ size += 8; } /* If any of the floating registers are saved, account for the alignment needed for the floating point register save block. */ if (freg_saved) { size = (size + 7) & ~7; if (fregs_live) *fregs_live = 1; } /* The various ABIs include space for the outgoing parameters in the size of the current function's stack frame. We don't need to align for the outgoing arguments as their alignment is set by the final rounding for the frame as a whole. */ size += current_function_outgoing_args_size; /* Allocate space for the fixed frame marker. This space must be allocated for any function that makes calls or allocates stack space. */ if (!current_function_is_leaf || size) size += TARGET_64BIT ? 48 : 32; /* Finally, round to the preferred stack boundary. */ return ((size + PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1) & ~(PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)); } /* Generate the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This function is responsible for knowing which registers should not be saved even if used. */ /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block of memory. If any fpu reg is used in the function, we allocate such a block here, at the bottom of the frame, just in case it's needed. If this function is a leaf procedure, then we may choose not to do a "save" insn. The decision about whether or not to do this is made in regclass.c. */ static void pa_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { /* The function's label and associated .PROC must never be separated and must be output *after* any profiling declarations to avoid changing spaces/subspaces within a procedure. */ ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); fputs ("\t.PROC\n", file); /* hppa_expand_prologue does the dirty work now. We just need to output the assembler directives which denote the start of a function. */ fprintf (file, "\t.CALLINFO FRAME=" HOST_WIDE_INT_PRINT_DEC, actual_fsize); if (regs_ever_live[2]) fputs (",CALLS,SAVE_RP", file); else fputs (",NO_CALLS", file); /* The SAVE_SP flag is used to indicate that register %r3 is stored at the beginning of the frame and that it is used as the frame pointer for the frame. We do this because our current frame layout doesn't conform to that specified in the the HP runtime documentation and we need a way to indicate to programs such as GDB where %r3 is saved. The SAVE_SP flag was chosen because it isn't used by HP compilers but is supported by the assembler. However, SAVE_SP is supposed to indicate that the previous stack pointer has been saved in the frame marker. */ if (frame_pointer_needed) fputs (",SAVE_SP", file); /* Pass on information about the number of callee register saves performed in the prologue. The compiler is supposed to pass the highest register number saved, the assembler then has to adjust that number before entering it into the unwind descriptor (to account for any caller saved registers with lower register numbers than the first callee saved register). */ if (gr_saved) fprintf (file, ",ENTRY_GR=%d", gr_saved + 2); if (fr_saved) fprintf (file, ",ENTRY_FR=%d", fr_saved + 11); fputs ("\n\t.ENTRY\n", file); remove_useless_addtr_insns (0); } void hppa_expand_prologue (void) { int merge_sp_adjust_with_store = 0; HOST_WIDE_INT size = get_frame_size (); HOST_WIDE_INT offset; int i; rtx insn, tmpreg; gr_saved = 0; fr_saved = 0; save_fregs = 0; /* Compute total size for frame pointer, filler, locals and rounding to the next word boundary. Similar code appears in compute_frame_size and must be changed in tandem with this code. */ local_fsize = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1); if (local_fsize || frame_pointer_needed) local_fsize += STARTING_FRAME_OFFSET; actual_fsize = compute_frame_size (size, &save_fregs); /* Compute a few things we will use often. */ tmpreg = gen_rtx_REG (word_mode, 1); /* Save RP first. The calling conventions manual states RP will always be stored into the caller's frame at sp - 20 or sp - 16 depending on which ABI is in use. */ if (regs_ever_live[2] || current_function_calls_eh_return) store_reg (2, TARGET_64BIT ? -16 : -20, STACK_POINTER_REGNUM); /* Allocate the local frame and set up the frame pointer if needed. */ if (actual_fsize != 0) { if (frame_pointer_needed) { /* Copy the old frame pointer temporarily into %r1. Set up the new stack pointer, then store away the saved old frame pointer into the stack at sp and at the same time update the stack pointer by actual_fsize bytes. Two versions, first handles small (<8k) frames. The second handles large (>=8k) frames. */ insn = emit_move_insn (tmpreg, frame_pointer_rtx); if (DO_FRAME_NOTES) { /* We need to record the frame pointer save here since the new frame pointer is set in the following insn. */ RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (word_mode, stack_pointer_rtx), frame_pointer_rtx), REG_NOTES (insn)); } insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); if (DO_FRAME_NOTES) RTX_FRAME_RELATED_P (insn) = 1; if (VAL_14_BITS_P (actual_fsize)) store_reg_modify (STACK_POINTER_REGNUM, 1, actual_fsize); else { /* It is incorrect to store the saved frame pointer at *sp, then increment sp (writes beyond the current stack boundary). So instead use stwm to store at *sp and post-increment the stack pointer as an atomic operation. Then increment sp to finish allocating the new frame. */ HOST_WIDE_INT adjust1 = 8192 - 64; HOST_WIDE_INT adjust2 = actual_fsize - adjust1; store_reg_modify (STACK_POINTER_REGNUM, 1, adjust1); set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, adjust2, 1); } /* We set SAVE_SP in frames that need a frame pointer. Thus, we need to store the previous stack pointer (frame pointer) into the frame marker on targets that use the HP unwind library. This allows the HP unwind library to be used to unwind GCC frames. However, we are not fully compatible with the HP library because our frame layout differs from that specified in the HP runtime specification. We don't want a frame note on this instruction as the frame marker moves during dynamic stack allocation. This instruction also serves as a blockage to prevent register spills from being scheduled before the stack pointer is raised. This is necessary as we store registers using the frame pointer as a base register, and the frame pointer is set before sp is raised. */ if (TARGET_HPUX_UNWIND_LIBRARY) { rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (TARGET_64BIT ? -8 : -4)); emit_move_insn (gen_rtx_MEM (word_mode, addr), frame_pointer_rtx); } else emit_insn (gen_blockage ()); } /* no frame pointer needed. */ else { /* In some cases we can perform the first callee register save and allocating the stack frame at the same time. If so, just make a note of it and defer allocating the frame until saving the callee registers. */ if (VAL_14_BITS_P (actual_fsize) && local_fsize == 0) merge_sp_adjust_with_store = 1; /* Can not optimize. Adjust the stack frame by actual_fsize bytes. */ else set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, actual_fsize, 1); } } /* Normal register save. Do not save the frame pointer in the frame_pointer_needed case. It was done earlier. */ if (frame_pointer_needed) { offset = local_fsize; /* Saving the EH return data registers in the frame is the simplest way to get the frame unwind information emitted. We put them just before the general registers. */ if (DO_FRAME_NOTES && current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; store_reg (regno, offset, FRAME_POINTER_REGNUM); offset += UNITS_PER_WORD; } } for (i = 18; i >= 4; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { store_reg (i, offset, FRAME_POINTER_REGNUM); offset += UNITS_PER_WORD; gr_saved++; } /* Account for %r3 which is saved in a special place. */ gr_saved++; } /* No frame pointer needed. */ else { offset = local_fsize - actual_fsize; /* Saving the EH return data registers in the frame is the simplest way to get the frame unwind information emitted. */ if (DO_FRAME_NOTES && current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; /* If merge_sp_adjust_with_store is nonzero, then we can optimize the first save. */ if (merge_sp_adjust_with_store) { store_reg_modify (STACK_POINTER_REGNUM, regno, -offset); merge_sp_adjust_with_store = 0; } else store_reg (regno, offset, STACK_POINTER_REGNUM); offset += UNITS_PER_WORD; } } for (i = 18; i >= 3; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { /* If merge_sp_adjust_with_store is nonzero, then we can optimize the first GR save. */ if (merge_sp_adjust_with_store) { store_reg_modify (STACK_POINTER_REGNUM, i, -offset); merge_sp_adjust_with_store = 0; } else store_reg (i, offset, STACK_POINTER_REGNUM); offset += UNITS_PER_WORD; gr_saved++; } /* If we wanted to merge the SP adjustment with a GR save, but we never did any GR saves, then just emit the adjustment here. */ if (merge_sp_adjust_with_store) set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, actual_fsize, 1); } /* The hppa calling conventions say that %r19, the pic offset register, is saved at sp - 32 (in this function's frame) when generating PIC code. FIXME: What is the correct thing to do for functions which make no calls and allocate no frame? Do we need to allocate a frame, or can we just omit the save? For now we'll just omit the save. We don't want a note on this insn as the frame marker can move if there is a dynamic stack allocation. */ if (flag_pic && actual_fsize != 0 && !TARGET_64BIT) { rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (-32)); emit_move_insn (gen_rtx_MEM (word_mode, addr), pic_offset_table_rtx); } /* Align pointer properly (doubleword boundary). */ offset = (offset + 7) & ~7; /* Floating point register store. */ if (save_fregs) { rtx base; /* First get the frame or stack pointer to the start of the FP register save area. */ if (frame_pointer_needed) { set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0); base = frame_pointer_rtx; } else { set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0); base = stack_pointer_rtx; } /* Now actually save the FP registers. */ for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP) { if (regs_ever_live[i] || (! TARGET_64BIT && regs_ever_live[i + 1])) { rtx addr, insn, reg; addr = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg)); reg = gen_rtx_REG (DFmode, i); insn = emit_move_insn (addr, reg); if (DO_FRAME_NOTES) { RTX_FRAME_RELATED_P (insn) = 1; if (TARGET_64BIT) { rtx mem = gen_rtx_MEM (DFmode, plus_constant (base, offset)); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, mem, reg), REG_NOTES (insn)); } else { rtx meml = gen_rtx_MEM (SFmode, plus_constant (base, offset)); rtx memr = gen_rtx_MEM (SFmode, plus_constant (base, offset + 4)); rtx regl = gen_rtx_REG (SFmode, i); rtx regr = gen_rtx_REG (SFmode, i + 1); rtx setl = gen_rtx_SET (VOIDmode, meml, regl); rtx setr = gen_rtx_SET (VOIDmode, memr, regr); rtvec vec; RTX_FRAME_RELATED_P (setl) = 1; RTX_FRAME_RELATED_P (setr) = 1; vec = gen_rtvec (2, setl, setr); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SEQUENCE (VOIDmode, vec), REG_NOTES (insn)); } } offset += GET_MODE_SIZE (DFmode); fr_saved++; } } } } /* Emit RTL to load REG from the memory location specified by BASE+DISP. Handle case where DISP > 8k by using the add_high_const patterns. */ static void load_reg (int reg, HOST_WIDE_INT disp, int base) { rtx dest = gen_rtx_REG (word_mode, reg); rtx basereg = gen_rtx_REG (Pmode, base); rtx src; if (VAL_14_BITS_P (disp)) src = gen_rtx_MEM (word_mode, plus_constant (basereg, disp)); else if (TARGET_64BIT && !VAL_32_BITS_P (disp)) { rtx delta = GEN_INT (disp); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, delta); if (TARGET_DISABLE_INDEXING) { emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg)); src = gen_rtx_MEM (word_mode, tmpreg); } else src = gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, tmpreg, basereg)); } else { rtx delta = GEN_INT (disp); rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta)); rtx tmpreg = gen_rtx_REG (Pmode, 1); emit_move_insn (tmpreg, high); src = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta)); } emit_move_insn (dest, src); } /* Update the total code bytes output to the text section. */ static void update_total_code_bytes (int nbytes) { if ((TARGET_PORTABLE_RUNTIME || !TARGET_GAS || !TARGET_SOM) && !IN_NAMED_SECTION_P (cfun->decl)) { if (INSN_ADDRESSES_SET_P ()) { unsigned long old_total = total_code_bytes; total_code_bytes += nbytes; /* Be prepared to handle overflows. */ if (old_total > total_code_bytes) total_code_bytes = -1; } else total_code_bytes = -1; } } /* This function generates the assembly code for function exit. Args are as for output_function_prologue (). The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ static void pa_output_function_epilogue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { rtx insn = get_last_insn (); last_address = 0; /* hppa_expand_epilogue does the dirty work now. We just need to output the assembler directives which denote the end of a function. To make debuggers happy, emit a nop if the epilogue was completely eliminated due to a volatile call as the last insn in the current function. That way the return address (in %r2) will always point to a valid instruction in the current function. */ /* Get the last real insn. */ if (GET_CODE (insn) == NOTE) insn = prev_real_insn (insn); /* If it is a sequence, then look inside. */ if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) insn = XVECEXP (PATTERN (insn), 0, 0); /* If insn is a CALL_INSN, then it must be a call to a volatile function (otherwise there would be epilogue insns). */ if (insn && GET_CODE (insn) == CALL_INSN) { fputs ("\tnop\n", file); last_address += 4; } fputs ("\t.EXIT\n\t.PROCEND\n", file); if (INSN_ADDRESSES_SET_P ()) { insn = get_last_nonnote_insn (); last_address += INSN_ADDRESSES (INSN_UID (insn)); if (INSN_P (insn)) last_address += insn_default_length (insn); last_address = ((last_address + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1) & ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)); } /* Finally, update the total number of code bytes output so far. */ update_total_code_bytes (last_address); } void hppa_expand_epilogue (void) { rtx tmpreg; HOST_WIDE_INT offset; HOST_WIDE_INT ret_off = 0; int i; int merge_sp_adjust_with_load = 0; /* We will use this often. */ tmpreg = gen_rtx_REG (word_mode, 1); /* Try to restore RP early to avoid load/use interlocks when RP gets used in the return (bv) instruction. This appears to still be necessary even when we schedule the prologue and epilogue. */ if (regs_ever_live [2] || current_function_calls_eh_return) { ret_off = TARGET_64BIT ? -16 : -20; if (frame_pointer_needed) { load_reg (2, ret_off, FRAME_POINTER_REGNUM); ret_off = 0; } else { /* No frame pointer, and stack is smaller than 8k. */ if (VAL_14_BITS_P (ret_off - actual_fsize)) { load_reg (2, ret_off - actual_fsize, STACK_POINTER_REGNUM); ret_off = 0; } } } /* General register restores. */ if (frame_pointer_needed) { offset = local_fsize; /* If the current function calls __builtin_eh_return, then we need to restore the saved EH data registers. */ if (DO_FRAME_NOTES && current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; load_reg (regno, offset, FRAME_POINTER_REGNUM); offset += UNITS_PER_WORD; } } for (i = 18; i >= 4; i--) if (regs_ever_live[i] && ! call_used_regs[i]) { load_reg (i, offset, FRAME_POINTER_REGNUM); offset += UNITS_PER_WORD; } } else { offset = local_fsize - actual_fsize; /* If the current function calls __builtin_eh_return, then we need to restore the saved EH data registers. */ if (DO_FRAME_NOTES && current_function_calls_eh_return) { unsigned int i, regno; for (i = 0; ; ++i) { regno = EH_RETURN_DATA_REGNO (i); if (regno == INVALID_REGNUM) break; /* Only for the first load. merge_sp_adjust_with_load holds the register load with which we will merge the sp adjustment. */ if (merge_sp_adjust_with_load == 0 && local_fsize == 0 && VAL_14_BITS_P (-actual_fsize)) merge_sp_adjust_with_load = regno; else load_reg (regno, offset, STACK_POINTER_REGNUM); offset += UNITS_PER_WORD; } } for (i = 18; i >= 3; i--) { if (regs_ever_live[i] && ! call_used_regs[i]) { /* Only for the first load. merge_sp_adjust_with_load holds the register load with which we will merge the sp adjustment. */ if (merge_sp_adjust_with_load == 0 && local_fsize == 0 && VAL_14_BITS_P (-actual_fsize)) merge_sp_adjust_with_load = i; else load_reg (i, offset, STACK_POINTER_REGNUM); offset += UNITS_PER_WORD; } } } /* Align pointer properly (doubleword boundary). */ offset = (offset + 7) & ~7; /* FP register restores. */ if (save_fregs) { /* Adjust the register to index off of. */ if (frame_pointer_needed) set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0); else set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0); /* Actually do the restores now. */ for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP) if (regs_ever_live[i] || (! TARGET_64BIT && regs_ever_live[i + 1])) { rtx src = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg)); rtx dest = gen_rtx_REG (DFmode, i); emit_move_insn (dest, src); } } /* Emit a blockage insn here to keep these insns from being moved to an earlier spot in the epilogue, or into the main instruction stream. This is necessary as we must not cut the stack back before all the restores are finished. */ emit_insn (gen_blockage ()); /* Reset stack pointer (and possibly frame pointer). The stack pointer is initially set to fp + 64 to avoid a race condition. */ if (frame_pointer_needed) { rtx delta = GEN_INT (-64); set_reg_plus_d (STACK_POINTER_REGNUM, FRAME_POINTER_REGNUM, 64, 0); emit_insn (gen_pre_load (frame_pointer_rtx, stack_pointer_rtx, delta)); } /* If we were deferring a callee register restore, do it now. */ else if (merge_sp_adjust_with_load) { rtx delta = GEN_INT (-actual_fsize); rtx dest = gen_rtx_REG (word_mode, merge_sp_adjust_with_load); emit_insn (gen_pre_load (dest, stack_pointer_rtx, delta)); } else if (actual_fsize != 0) set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, - actual_fsize, 0); /* If we haven't restored %r2 yet (no frame pointer, and a stack frame greater than 8k), do so now. */ if (ret_off != 0) load_reg (2, ret_off, STACK_POINTER_REGNUM); if (DO_FRAME_NOTES && current_function_calls_eh_return) { rtx sa = EH_RETURN_STACKADJ_RTX; emit_insn (gen_blockage ()); emit_insn (TARGET_64BIT ? gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx, sa) : gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, sa)); } } rtx hppa_pic_save_rtx (void) { return get_hard_reg_initial_val (word_mode, PIC_OFFSET_TABLE_REGNUM); } void hppa_profile_hook (int label_no) { /* We use SImode for the address of the function in both 32 and 64-bit code to avoid having to provide DImode versions of the lcla2 and load_offset_label_address insn patterns. */ rtx reg = gen_reg_rtx (SImode); rtx label_rtx = gen_label_rtx (); rtx begin_label_rtx, call_insn; char begin_label_name[16]; ASM_GENERATE_INTERNAL_LABEL (begin_label_name, FUNC_BEGIN_PROLOG_LABEL, label_no); begin_label_rtx = gen_rtx_SYMBOL_REF (SImode, ggc_strdup (begin_label_name)); if (TARGET_64BIT) emit_move_insn (arg_pointer_rtx, gen_rtx_PLUS (word_mode, virtual_outgoing_args_rtx, GEN_INT (64))); emit_move_insn (gen_rtx_REG (word_mode, 26), gen_rtx_REG (word_mode, 2)); /* The address of the function is loaded into %r25 with a instruction- relative sequence that avoids the use of relocations. The sequence is split so that the load_offset_label_address instruction can occupy the delay slot of the call to _mcount. */ if (TARGET_PA_20) emit_insn (gen_lcla2 (reg, label_rtx)); else emit_insn (gen_lcla1 (reg, label_rtx)); emit_insn (gen_load_offset_label_address (gen_rtx_REG (SImode, 25), reg, begin_label_rtx, label_rtx)); #ifndef NO_PROFILE_COUNTERS { rtx count_label_rtx, addr, r24; char count_label_name[16]; ASM_GENERATE_INTERNAL_LABEL (count_label_name, "LP", label_no); count_label_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (count_label_name)); addr = force_reg (Pmode, count_label_rtx); r24 = gen_rtx_REG (Pmode, 24); emit_move_insn (r24, addr); call_insn = emit_call_insn (gen_call (gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "_mcount")), GEN_INT (TARGET_64BIT ? 24 : 12))); use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), r24); } #else call_insn = emit_call_insn (gen_call (gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "_mcount")), GEN_INT (TARGET_64BIT ? 16 : 8))); #endif use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 25)); use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 26)); /* Indicate the _mcount call cannot throw, nor will it execute a non-local goto. */ REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx, REG_NOTES (call_insn)); } /* Fetch the return address for the frame COUNT steps up from the current frame, after the prologue. FRAMEADDR is the frame pointer of the COUNT frame. We want to ignore any export stub remnants here. To handle this, we examine the code at the return address, and if it is an export stub, we return a memory rtx for the stub return address stored at frame-24. The value returned is used in two different ways: 1. To find a function's caller. 2. To change the return address for a function. This function handles most instances of case 1; however, it will fail if there are two levels of stubs to execute on the return path. The only way I believe that can happen is if the return value needs a parameter relocation, which never happens for C code. This function handles most instances of case 2; however, it will fail if we did not originally have stub code on the return path but will need stub code on the new return path. This can happen if the caller & callee are both in the main program, but the new return location is in a shared library. */ rtx return_addr_rtx (int count, rtx frameaddr) { rtx label; rtx rp; rtx saved_rp; rtx ins; if (count != 0) return NULL_RTX; rp = get_hard_reg_initial_val (Pmode, 2); if (TARGET_64BIT || TARGET_NO_SPACE_REGS) return rp; saved_rp = gen_reg_rtx (Pmode); emit_move_insn (saved_rp, rp); /* Get pointer to the instruction stream. We have to mask out the privilege level from the two low order bits of the return address pointer here so that ins will point to the start of the first instruction that would have been executed if we returned. */ ins = copy_to_reg (gen_rtx_AND (Pmode, rp, MASK_RETURN_ADDR)); label = gen_label_rtx (); /* Check the instruction stream at the normal return address for the export stub: 0x4bc23fd1 | stub+8: ldw -18(sr0,sp),rp 0x004010a1 | stub+12: ldsid (sr0,rp),r1 0x00011820 | stub+16: mtsp r1,sr0 0xe0400002 | stub+20: be,n 0(sr0,rp) If it is an export stub, than our return address is really in -24[frameaddr]. */ emit_cmp_insn (gen_rtx_MEM (SImode, ins), GEN_INT (0x4bc23fd1), NE, NULL_RTX, SImode, 1); emit_jump_insn (gen_bne (label)); emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 4)), GEN_INT (0x004010a1), NE, NULL_RTX, SImode, 1); emit_jump_insn (gen_bne (label)); emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 8)), GEN_INT (0x00011820), NE, NULL_RTX, SImode, 1); emit_jump_insn (gen_bne (label)); emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 12)), GEN_INT (0xe0400002), NE, NULL_RTX, SImode, 1); /* If there is no export stub then just use the value saved from the return pointer register. */ emit_jump_insn (gen_bne (label)); /* Here we know that our return address points to an export stub. We don't want to return the address of the export stub, but rather the return address of the export stub. That return address is stored at -24[frameaddr]. */ emit_move_insn (saved_rp, gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (frameaddr, -24)))); emit_label (label); return saved_rp; } /* This is only valid once reload has completed because it depends on knowing exactly how much (if any) frame there is and... It's only valid if there is no frame marker to de-allocate and... It's only valid if %r2 hasn't been saved into the caller's frame (we're not profiling and %r2 isn't live anywhere). */ int hppa_can_use_return_insn_p (void) { return (reload_completed && (compute_frame_size (get_frame_size (), 0) ? 0 : 1) && ! regs_ever_live[2] && ! frame_pointer_needed); } void emit_bcond_fp (enum rtx_code code, rtx operand0) { emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (CCFPmode, 0), const0_rtx), gen_rtx_LABEL_REF (VOIDmode, operand0), pc_rtx))); } rtx gen_cmp_fp (enum rtx_code code, rtx operand0, rtx operand1) { return gen_rtx_SET (VOIDmode, gen_rtx_REG (CCFPmode, 0), gen_rtx_fmt_ee (code, CCFPmode, operand0, operand1)); } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ static int pa_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) { enum attr_type attr_type; /* Don't adjust costs for a pa8000 chip, also do not adjust any true dependencies as they are described with bypasses now. */ if (pa_cpu >= PROCESSOR_8000 || REG_NOTE_KIND (link) == 0) return cost; if (! recog_memoized (insn)) return 0; attr_type = get_attr_type (insn); if (REG_NOTE_KIND (link) == REG_DEP_ANTI) { /* Anti dependency; DEP_INSN reads a register that INSN writes some cycles later. */ if (attr_type == TYPE_FPLOAD) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPALU: case TYPE_FPMULSGL: case TYPE_FPMULDBL: case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* A fpload can't be issued until one cycle before a preceding arithmetic operation has finished if the target of the fpload is any of the sources (or destination) of the arithmetic operation. */ return insn_default_latency (dep_insn) - 1; default: return 0; } } } else if (attr_type == TYPE_FPALU) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* An ALU flop can't be issued until two cycles before a preceding divide or sqrt operation has finished if the target of the ALU flop is any of the sources (or destination) of the divide or sqrt operation. */ return insn_default_latency (dep_insn) - 2; default: return 0; } } } /* For other anti dependencies, the cost is 0. */ return 0; } else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT) { /* Output dependency; DEP_INSN writes a register that INSN writes some cycles later. */ if (attr_type == TYPE_FPLOAD) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPALU: case TYPE_FPMULSGL: case TYPE_FPMULDBL: case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* A fpload can't be issued until one cycle before a preceding arithmetic operation has finished if the target of the fpload is the destination of the arithmetic operation. Exception: For PA7100LC, PA7200 and PA7300, the cost is 3 cycles, unless they bundle together. We also pay the penalty if the second insn is a fpload. */ return insn_default_latency (dep_insn) - 1; default: return 0; } } } else if (attr_type == TYPE_FPALU) { rtx pat = PATTERN (insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) == PARALLEL) { /* This happens for the fldXs,mb patterns. */ pat = XVECEXP (pat, 0, 0); } if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) /* If this happens, we have to extend this to schedule optimally. Return 0 for now. */ return 0; if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat))) { if (! recog_memoized (dep_insn)) return 0; switch (get_attr_type (dep_insn)) { case TYPE_FPDIVSGL: case TYPE_FPDIVDBL: case TYPE_FPSQRTSGL: case TYPE_FPSQRTDBL: /* An ALU flop can't be issued until two cycles before a preceding divide or sqrt operation has finished if the target of the ALU flop is also the target of the divide or sqrt operation. */ return insn_default_latency (dep_insn) - 2; default: return 0; } } } /* For other output dependencies, the cost is 0. */ return 0; } else abort (); } /* Adjust scheduling priorities. We use this to try and keep addil and the next use of %r1 close together. */ static int pa_adjust_priority (rtx insn, int priority) { rtx set = single_set (insn); rtx src, dest; if (set) { src = SET_SRC (set); dest = SET_DEST (set); if (GET_CODE (src) == LO_SUM && symbolic_operand (XEXP (src, 1), VOIDmode) && ! read_only_operand (XEXP (src, 1), VOIDmode)) priority >>= 3; else if (GET_CODE (src) == MEM && GET_CODE (XEXP (src, 0)) == LO_SUM && symbolic_operand (XEXP (XEXP (src, 0), 1), VOIDmode) && ! read_only_operand (XEXP (XEXP (src, 0), 1), VOIDmode)) priority >>= 1; else if (GET_CODE (dest) == MEM && GET_CODE (XEXP (dest, 0)) == LO_SUM && symbolic_operand (XEXP (XEXP (dest, 0), 1), VOIDmode) && ! read_only_operand (XEXP (XEXP (dest, 0), 1), VOIDmode)) priority >>= 3; } return priority; } /* The 700 can only issue a single insn at a time. The 7XXX processors can issue two insns at a time. The 8000 can issue 4 insns at a time. */ static int pa_issue_rate (void) { switch (pa_cpu) { case PROCESSOR_700: return 1; case PROCESSOR_7100: return 2; case PROCESSOR_7100LC: return 2; case PROCESSOR_7200: return 2; case PROCESSOR_7300: return 2; case PROCESSOR_8000: return 4; default: abort (); } } /* Return any length adjustment needed by INSN which already has its length computed as LENGTH. Return zero if no adjustment is necessary. For the PA: function calls, millicode calls, and backwards short conditional branches with unfilled delay slots need an adjustment by +1 (to account for the NOP which will be inserted into the instruction stream). Also compute the length of an inline block move here as it is too complicated to express as a length attribute in pa.md. */ int pa_adjust_insn_length (rtx insn, int length) { rtx pat = PATTERN (insn); /* Jumps inside switch tables which have unfilled delay slots need adjustment. */ if (GET_CODE (insn) == JUMP_INSN && GET_CODE (pat) == PARALLEL && get_attr_type (insn) == TYPE_BTABLE_BRANCH) return 4; /* Millicode insn with an unfilled delay slot. */ else if (GET_CODE (insn) == INSN && GET_CODE (pat) != SEQUENCE && GET_CODE (pat) != USE && GET_CODE (pat) != CLOBBER && get_attr_type (insn) == TYPE_MILLI) return 4; /* Block move pattern. */ else if (GET_CODE (insn) == INSN && GET_CODE (pat) == PARALLEL && GET_CODE (XVECEXP (pat, 0, 0)) == SET && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 1)) == MEM && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 1)) == BLKmode) return compute_movstr_length (insn) - 4; /* Block clear pattern. */ else if (GET_CODE (insn) == INSN && GET_CODE (pat) == PARALLEL && GET_CODE (XVECEXP (pat, 0, 0)) == SET && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM && XEXP (XVECEXP (pat, 0, 0), 1) == const0_rtx && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode) return compute_clrstr_length (insn) - 4; /* Conditional branch with an unfilled delay slot. */ else if (GET_CODE (insn) == JUMP_INSN && ! simplejump_p (insn)) { /* Adjust a short backwards conditional with an unfilled delay slot. */ if (GET_CODE (pat) == SET && length == 4 && ! forward_branch_p (insn)) return 4; else if (GET_CODE (pat) == PARALLEL && get_attr_type (insn) == TYPE_PARALLEL_BRANCH && length == 4) return 4; /* Adjust dbra insn with short backwards conditional branch with unfilled delay slot -- only for case where counter is in a general register register. */ else if (GET_CODE (pat) == PARALLEL && GET_CODE (XVECEXP (pat, 0, 1)) == SET && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == REG && ! FP_REG_P (XEXP (XVECEXP (pat, 0, 1), 0)) && length == 4 && ! forward_branch_p (insn)) return 4; else return 0; } return 0; } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ void print_operand (FILE *file, rtx x, int code) { switch (code) { case '#': /* Output a 'nop' if there's nothing for the delay slot. */ if (dbr_sequence_length () == 0) fputs ("\n\tnop", file); return; case '*': /* Output a nullification completer if there's nothing for the */ /* delay slot or nullification is requested. */ if (dbr_sequence_length () == 0 || (final_sequence && INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0)))) fputs (",n", file); return; case 'R': /* Print out the second register name of a register pair. I.e., R (6) => 7. */ fputs (reg_names[REGNO (x) + 1], file); return; case 'r': /* A register or zero. */ if (x == const0_rtx || (x == CONST0_RTX (DFmode)) || (x == CONST0_RTX (SFmode))) { fputs ("%r0", file); return; } else break; case 'f': /* A register or zero (floating point). */ if (x == const0_rtx || (x == CONST0_RTX (DFmode)) || (x == CONST0_RTX (SFmode))) { fputs ("%fr0", file); return; } else break; case 'A': { rtx xoperands[2]; xoperands[0] = XEXP (XEXP (x, 0), 0); xoperands[1] = XVECEXP (XEXP (XEXP (x, 0), 1), 0, 0); output_global_address (file, xoperands[1], 0); fprintf (file, "(%s)", reg_names [REGNO (xoperands[0])]); return; } case 'C': /* Plain (C)ondition */ case 'X': switch (GET_CODE (x)) { case EQ: fputs ("=", file); break; case NE: fputs ("<>", file); break; case GT: fputs (">", file); break; case GE: fputs (">=", file); break; case GEU: fputs (">>=", file); break; case GTU: fputs (">>", file); break; case LT: fputs ("<", file); break; case LE: fputs ("<=", file); break; case LEU: fputs ("<<=", file); break; case LTU: fputs ("<<", file); break; default: abort (); } return; case 'N': /* Condition, (N)egated */ switch (GET_CODE (x)) { case EQ: fputs ("<>", file); break; case NE: fputs ("=", file); break; case GT: fputs ("<=", file); break; case GE: fputs ("<", file); break; case GEU: fputs ("<<", file); break; case GTU: fputs ("<<=", file); break; case LT: fputs (">=", file); break; case LE: fputs (">", file); break; case LEU: fputs (">>", file); break; case LTU: fputs (">>=", file); break; default: abort (); } return; /* For floating point comparisons. Note that the output predicates are the complement of the desired mode. */ case 'Y': switch (GET_CODE (x)) { case EQ: fputs ("!=", file); break; case NE: fputs ("=", file); break; case GT: fputs ("!>", file); break; case GE: fputs ("!>=", file); break; case LT: fputs ("!<", file); break; case LE: fputs ("!<=", file); break; case LTGT: fputs ("!<>", file); break; case UNLE: fputs (">", file); break; case UNLT: fputs (">=", file); break; case UNGE: fputs ("<", file); break; case UNGT: fputs ("<=", file); break; case UNEQ: fputs ("<>", file); break; case UNORDERED: fputs ("<=>", file); break; case ORDERED: fputs ("!<=>", file); break; default: abort (); } return; case 'S': /* Condition, operands are (S)wapped. */ switch (GET_CODE (x)) { case EQ: fputs ("=", file); break; case NE: fputs ("<>", file); break; case GT: fputs ("<", file); break; case GE: fputs ("<=", file); break; case GEU: fputs ("<<=", file); break; case GTU: fputs ("<<", file); break; case LT: fputs (">", file); break; case LE: fputs (">=", file); break; case LEU: fputs (">>=", file); break; case LTU: fputs (">>", file); break; default: abort (); } return; case 'B': /* Condition, (B)oth swapped and negate. */ switch (GET_CODE (x)) { case EQ: fputs ("<>", file); break; case NE: fputs ("=", file); break; case GT: fputs (">=", file); break; case GE: fputs (">", file); break; case GEU: fputs (">>", file); break; case GTU: fputs (">>=", file); break; case LT: fputs ("<=", file); break; case LE: fputs ("<", file); break; case LEU: fputs ("<<", file); break; case LTU: fputs ("<<=", file); break; default: abort (); } return; case 'k': if (GET_CODE (x) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (x)); return; } abort (); case 'Q': if (GET_CODE (x) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - (INTVAL (x) & 63)); return; } abort (); case 'L': if (GET_CODE (x) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - (INTVAL (x) & 31)); return; } abort (); case 'O': if (GET_CODE (x) == CONST_INT && exact_log2 (INTVAL (x)) >= 0) { fprintf (file, "%d", exact_log2 (INTVAL (x))); return; } abort (); case 'p': if (GET_CODE (x) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, 63 - (INTVAL (x) & 63)); return; } abort (); case 'P': if (GET_CODE (x) == CONST_INT) { fprintf (file, HOST_WIDE_INT_PRINT_DEC, 31 - (INTVAL (x) & 31)); return; } abort (); case 'I': if (GET_CODE (x) == CONST_INT) fputs ("i", file); return; case 'M': case 'F': switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case PRE_INC: if (ASSEMBLER_DIALECT == 0) fputs ("s,mb", file); else fputs (",mb", file); break; case POST_DEC: case POST_INC: if (ASSEMBLER_DIALECT == 0) fputs ("s,ma", file); else fputs (",ma", file); break; case PLUS: if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG && GET_CODE (XEXP (XEXP (x, 0), 1)) == REG) { if (ASSEMBLER_DIALECT == 0) fputs ("x", file); } else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT || GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT) { if (ASSEMBLER_DIALECT == 0) fputs ("x,s", file); else fputs (",s", file); } else if (code == 'F' && ASSEMBLER_DIALECT == 0) fputs ("s", file); break; default: if (code == 'F' && ASSEMBLER_DIALECT == 0) fputs ("s", file); break; } return; case 'G': output_global_address (file, x, 0); return; case 'H': output_global_address (file, x, 1); return; case 0: /* Don't do anything special */ break; case 'Z': { unsigned op[3]; compute_zdepwi_operands (INTVAL (x), op); fprintf (file, "%d,%d,%d", op[0], op[1], op[2]); return; } case 'z': { unsigned op[3]; compute_zdepdi_operands (INTVAL (x), op); fprintf (file, "%d,%d,%d", op[0], op[1], op[2]); return; } case 'c': /* We can get here from a .vtable_inherit due to our CONSTANT_ADDRESS_P rejecting perfectly good constant addresses. */ break; default: abort (); } if (GET_CODE (x) == REG) { fputs (reg_names [REGNO (x)], file); if (TARGET_64BIT && FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4) { fputs ("R", file); return; } if (FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4 && (REGNO (x) & 1) == 0) fputs ("L", file); } else if (GET_CODE (x) == MEM) { int size = GET_MODE_SIZE (GET_MODE (x)); rtx base = NULL_RTX; switch (GET_CODE (XEXP (x, 0))) { case PRE_DEC: case POST_DEC: base = XEXP (XEXP (x, 0), 0); fprintf (file, "-%d(%s)", size, reg_names [REGNO (base)]); break; case PRE_INC: case POST_INC: base = XEXP (XEXP (x, 0), 0); fprintf (file, "%d(%s)", size, reg_names [REGNO (base)]); break; case PLUS: if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT) fprintf (file, "%s(%s)", reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 0), 0))], reg_names [REGNO (XEXP (XEXP (x, 0), 1))]); else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT) fprintf (file, "%s(%s)", reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 1), 0))], reg_names [REGNO (XEXP (XEXP (x, 0), 0))]); else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG && GET_CODE (XEXP (XEXP (x, 0), 1)) == REG) { /* Because the REG_POINTER flag can get lost during reload, GO_IF_LEGITIMATE_ADDRESS canonicalizes the order of the index and base registers in the combined move patterns. */ rtx base = XEXP (XEXP (x, 0), 1); rtx index = XEXP (XEXP (x, 0), 0); fprintf (file, "%s(%s)", reg_names [REGNO (index)], reg_names [REGNO (base)]); } else output_address (XEXP (x, 0)); break; default: output_address (XEXP (x, 0)); break; } } else output_addr_const (file, x); } /* output a SYMBOL_REF or a CONST expression involving a SYMBOL_REF. */ void output_global_address (FILE *file, rtx x, int round_constant) { /* Imagine (high (const (plus ...))). */ if (GET_CODE (x) == HIGH) x = XEXP (x, 0); if (GET_CODE (x) == SYMBOL_REF && read_only_operand (x, VOIDmode)) assemble_name (file, XSTR (x, 0)); else if (GET_CODE (x) == SYMBOL_REF && !flag_pic) { assemble_name (file, XSTR (x, 0)); fputs ("-$global$", file); } else if (GET_CODE (x) == CONST) { const char *sep = ""; int offset = 0; /* assembler wants -$global$ at end */ rtx base = NULL_RTX; if (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) { base = XEXP (XEXP (x, 0), 0); output_addr_const (file, base); } else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == CONST_INT) offset = INTVAL (XEXP (XEXP (x, 0), 0)); else abort (); if (GET_CODE (XEXP (XEXP (x, 0), 1)) == SYMBOL_REF) { base = XEXP (XEXP (x, 0), 1); output_addr_const (file, base); } else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) offset = INTVAL (XEXP (XEXP (x, 0), 1)); else abort (); /* How bogus. The compiler is apparently responsible for rounding the constant if it uses an LR field selector. The linker and/or assembler seem a better place since they have to do this kind of thing already. If we fail to do this, HP's optimizing linker may eliminate an addil, but not update the ldw/stw/ldo instruction that uses the result of the addil. */ if (round_constant) offset = ((offset + 0x1000) & ~0x1fff); if (GET_CODE (XEXP (x, 0)) == PLUS) { if (offset < 0) { offset = -offset; sep = "-"; } else sep = "+"; } else if (GET_CODE (XEXP (x, 0)) == MINUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)) sep = "-"; else abort (); if (!read_only_operand (base, VOIDmode) && !flag_pic) fputs ("-$global$", file); if (offset) fprintf (file, "%s%d", sep, offset); } else output_addr_const (file, x); } /* Output boilerplate text to appear at the beginning of the file. There are several possible versions. */ #define aputs(x) fputs(x, asm_out_file) static inline void pa_file_start_level (void) { if (TARGET_64BIT) aputs ("\t.LEVEL 2.0w\n"); else if (TARGET_PA_20) aputs ("\t.LEVEL 2.0\n"); else if (TARGET_PA_11) aputs ("\t.LEVEL 1.1\n"); else aputs ("\t.LEVEL 1.0\n"); } static inline void pa_file_start_space (int sortspace) { aputs ("\t.SPACE $PRIVATE$"); if (sortspace) aputs (",SORT=16"); aputs ("\n\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31" "\n\t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82" "\n\t.SPACE $TEXT$"); if (sortspace) aputs (",SORT=8"); aputs ("\n\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44" "\n\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n"); } static inline void pa_file_start_file (int want_version) { if (write_symbols != NO_DEBUG) { output_file_directive (asm_out_file, main_input_filename); if (want_version) aputs ("\t.version\t\"01.01\"\n"); } } static inline void pa_file_start_mcount (const char *aswhat) { if (profile_flag) fprintf (asm_out_file, "\t.IMPORT _mcount,%s\n", aswhat); } static void pa_elf_file_start (void) { pa_file_start_level (); pa_file_start_mcount ("ENTRY"); pa_file_start_file (0); } static void pa_som_file_start (void) { pa_file_start_level (); pa_file_start_space (0); aputs ("\t.IMPORT $global$,DATA\n" "\t.IMPORT $$dyncall,MILLICODE\n"); pa_file_start_mcount ("CODE"); pa_file_start_file (0); } static void pa_linux_file_start (void) { pa_file_start_file (1); pa_file_start_level (); pa_file_start_mcount ("CODE"); } static void pa_hpux64_gas_file_start (void) { pa_file_start_level (); #ifdef ASM_OUTPUT_TYPE_DIRECTIVE if (profile_flag) ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, "_mcount", "function"); #endif pa_file_start_file (1); } static void pa_hpux64_hpas_file_start (void) { pa_file_start_level (); pa_file_start_space (1); pa_file_start_mcount ("CODE"); pa_file_start_file (0); } #undef aputs static struct deferred_plabel * get_plabel (const char *fname) { size_t i; /* See if we have already put this function on the list of deferred plabels. This list is generally small, so a liner search is not too ugly. If it proves too slow replace it with something faster. */ for (i = 0; i < n_deferred_plabels; i++) if (strcmp (fname, deferred_plabels[i].name) == 0) break; /* If the deferred plabel list is empty, or this entry was not found on the list, create a new entry on the list. */ if (deferred_plabels == NULL || i == n_deferred_plabels) { const char *real_name; if (deferred_plabels == 0) deferred_plabels = (struct deferred_plabel *) ggc_alloc (sizeof (struct deferred_plabel)); else deferred_plabels = (struct deferred_plabel *) ggc_realloc (deferred_plabels, ((n_deferred_plabels + 1) * sizeof (struct deferred_plabel))); i = n_deferred_plabels++; deferred_plabels[i].internal_label = gen_label_rtx (); deferred_plabels[i].name = ggc_strdup (fname); /* Gross. We have just implicitly taken the address of this function, mark it as such. */ real_name = (*targetm.strip_name_encoding) (fname); TREE_SYMBOL_REFERENCED (get_identifier (real_name)) = 1; } return &deferred_plabels[i]; } static void output_deferred_plabels (void) { size_t i; /* If we have deferred plabels, then we need to switch into the data section and align it to a 4 byte boundary before we output the deferred plabels. */ if (n_deferred_plabels) { data_section (); ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2); } /* Now output the deferred plabels. */ for (i = 0; i < n_deferred_plabels; i++) { (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (deferred_plabels[i].internal_label)); assemble_integer (gen_rtx_SYMBOL_REF (Pmode, deferred_plabels[i].name), TARGET_64BIT ? 8 : 4, TARGET_64BIT ? 64 : 32, 1); } } #ifdef HPUX_LONG_DOUBLE_LIBRARY /* Initialize optabs to point to HPUX long double emulation routines. */ static void pa_hpux_init_libfuncs (void) { set_optab_libfunc (add_optab, TFmode, "_U_Qfadd"); set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub"); set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy"); set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv"); set_optab_libfunc (smin_optab, TFmode, "_U_Qmin"); set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax"); set_optab_libfunc (sqrt_optab, TFmode, "_U_Qfsqrt"); set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs"); set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg"); set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq"); set_optab_libfunc (ne_optab, TFmode, "_U_Qfne"); set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt"); set_optab_libfunc (ge_optab, TFmode, "_U_Qfge"); set_optab_libfunc (lt_optab, TFmode, "_U_Qflt"); set_optab_libfunc (le_optab, TFmode, "_U_Qfle"); set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad"); set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad"); set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl"); set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl"); set_conv_libfunc (sfix_optab, SImode, TFmode, TARGET_64BIT ? "__U_Qfcnvfxt_quad_to_sgl" : "_U_Qfcnvfxt_quad_to_sgl"); set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl"); set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_usgl"); set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_udbl"); set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad"); set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad"); } #endif /* HP's millicode routines mean something special to the assembler. Keep track of which ones we have used. */ enum millicodes { remI, remU, divI, divU, mulI, end1000 }; static void import_milli (enum millicodes); static char imported[(int) end1000]; static const char * const milli_names[] = {"remI", "remU", "divI", "divU", "mulI"}; static const char import_string[] = ".IMPORT $$....,MILLICODE"; #define MILLI_START 10 static void import_milli (enum millicodes code) { char str[sizeof (import_string)]; if (!imported[(int) code]) { imported[(int) code] = 1; strcpy (str, import_string); strncpy (str + MILLI_START, milli_names[(int) code], 4); output_asm_insn (str, 0); } } /* The register constraints have put the operands and return value in the proper registers. */ const char * output_mul_insn (int unsignedp ATTRIBUTE_UNUSED, rtx insn) { import_milli (mulI); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (Pmode, "$$mulI")); } /* Emit the rtl for doing a division by a constant. */ /* Do magic division millicodes exist for this value? */ static const int magic_milli[]= {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1}; /* We'll use an array to keep track of the magic millicodes and whether or not we've used them already. [n][0] is signed, [n][1] is unsigned. */ static int div_milli[16][2]; int div_operand (rtx op, enum machine_mode mode) { return (mode == SImode && ((GET_CODE (op) == REG && REGNO (op) == 25) || (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && INTVAL (op) < 16 && magic_milli[INTVAL (op)]))); } int emit_hpdiv_const (rtx *operands, int unsignedp) { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) < 16 && magic_milli[INTVAL (operands[2])]) { rtx ret = gen_rtx_REG (SImode, TARGET_64BIT ? 2 : 31); emit_move_insn (gen_rtx_REG (SImode, 26), operands[1]); emit (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (6, gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, 29), gen_rtx_fmt_ee (unsignedp ? UDIV : DIV, SImode, gen_rtx_REG (SImode, 26), operands[2])), gen_rtx_CLOBBER (VOIDmode, operands[4]), gen_rtx_CLOBBER (VOIDmode, operands[3]), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 26)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 25)), gen_rtx_CLOBBER (VOIDmode, ret)))); emit_move_insn (operands[0], gen_rtx_REG (SImode, 29)); return 1; } return 0; } const char * output_div_insn (rtx *operands, int unsignedp, rtx insn) { int divisor; /* If the divisor is a constant, try to use one of the special opcodes .*/ if (GET_CODE (operands[0]) == CONST_INT) { static char buf[100]; divisor = INTVAL (operands[0]); if (!div_milli[divisor][unsignedp]) { div_milli[divisor][unsignedp] = 1; if (unsignedp) output_asm_insn (".IMPORT $$divU_%0,MILLICODE", operands); else output_asm_insn (".IMPORT $$divI_%0,MILLICODE", operands); } if (unsignedp) { sprintf (buf, "$$divU_" HOST_WIDE_INT_PRINT_DEC, INTVAL (operands[0])); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, buf)); } else { sprintf (buf, "$$divI_" HOST_WIDE_INT_PRINT_DEC, INTVAL (operands[0])); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, buf)); } } /* Divisor isn't a special constant. */ else { if (unsignedp) { import_milli (divU); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, "$$divU")); } else { import_milli (divI); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, "$$divI")); } } } /* Output a $$rem millicode to do mod. */ const char * output_mod_insn (int unsignedp, rtx insn) { if (unsignedp) { import_milli (remU); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, "$$remU")); } else { import_milli (remI); return output_millicode_call (insn, gen_rtx_SYMBOL_REF (SImode, "$$remI")); } } void output_arg_descriptor (rtx call_insn) { const char *arg_regs[4]; enum machine_mode arg_mode; rtx link; int i, output_flag = 0; int regno; /* We neither need nor want argument location descriptors for the 64bit runtime environment or the ELF32 environment. */ if (TARGET_64BIT || TARGET_ELF32) return; for (i = 0; i < 4; i++) arg_regs[i] = 0; /* Specify explicitly that no argument relocations should take place if using the portable runtime calling conventions. */ if (TARGET_PORTABLE_RUNTIME) { fputs ("\t.CALL ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,RETVAL=NO\n", asm_out_file); return; } if (GET_CODE (call_insn) != CALL_INSN) abort (); for (link = CALL_INSN_FUNCTION_USAGE (call_insn); link; link = XEXP (link, 1)) { rtx use = XEXP (link, 0); if (! (GET_CODE (use) == USE && GET_CODE (XEXP (use, 0)) == REG && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0))))) continue; arg_mode = GET_MODE (XEXP (use, 0)); regno = REGNO (XEXP (use, 0)); if (regno >= 23 && regno <= 26) { arg_regs[26 - regno] = "GR"; if (arg_mode == DImode) arg_regs[25 - regno] = "GR"; } else if (regno >= 32 && regno <= 39) { if (arg_mode == SFmode) arg_regs[(regno - 32) / 2] = "FR"; else { #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED arg_regs[(regno - 34) / 2] = "FR"; arg_regs[(regno - 34) / 2 + 1] = "FU"; #else arg_regs[(regno - 34) / 2] = "FU"; arg_regs[(regno - 34) / 2 + 1] = "FR"; #endif } } } fputs ("\t.CALL ", asm_out_file); for (i = 0; i < 4; i++) { if (arg_regs[i]) { if (output_flag++) fputc (',', asm_out_file); fprintf (asm_out_file, "ARGW%d=%s", i, arg_regs[i]); } } fputc ('\n', asm_out_file); } /* Return the class of any secondary reload register that is needed to move IN into a register in class CLASS using mode MODE. Profiling has showed this routine and its descendants account for a significant amount of compile time (~7%). So it has been optimized to reduce redundant computations and eliminate useless function calls. It might be worthwhile to try and make this a leaf function too. */ enum reg_class secondary_reload_class (enum reg_class class, enum machine_mode mode, rtx in) { int regno, is_symbolic; /* Trying to load a constant into a FP register during PIC code generation will require %r1 as a scratch register. */ if (flag_pic && GET_MODE_CLASS (mode) == MODE_INT && FP_REG_CLASS_P (class) && (GET_CODE (in) == CONST_INT || GET_CODE (in) == CONST_DOUBLE)) return R1_REGS; /* Profiling showed the PA port spends about 1.3% of its compilation time in true_regnum from calls inside secondary_reload_class. */ if (GET_CODE (in) == REG) { regno = REGNO (in); if (regno >= FIRST_PSEUDO_REGISTER) regno = true_regnum (in); } else if (GET_CODE (in) == SUBREG) regno = true_regnum (in); else regno = -1; /* If we have something like (mem (mem (...)), we can safely assume the inner MEM will end up in a general register after reloading, so there's no need for a secondary reload. */ if (GET_CODE (in) == MEM && GET_CODE (XEXP (in, 0)) == MEM) return NO_REGS; /* Handle out of range displacement for integer mode loads/stores of FP registers. */ if (((regno >= FIRST_PSEUDO_REGISTER || regno == -1) && GET_MODE_CLASS (mode) == MODE_INT && FP_REG_CLASS_P (class)) || (class == SHIFT_REGS && (regno <= 0 || regno >= 32))) return GENERAL_REGS; /* A SAR<->FP register copy requires a secondary register (GPR) as well as secondary memory. */ if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER && ((REGNO_REG_CLASS (regno) == SHIFT_REGS && FP_REG_CLASS_P (class)) || (class == SHIFT_REGS && FP_REG_CLASS_P (REGNO_REG_CLASS (regno))))) return GENERAL_REGS; if (GET_CODE (in) == HIGH) in = XEXP (in, 0); /* Profiling has showed GCC spends about 2.6% of its compilation time in symbolic_operand from calls inside secondary_reload_class. We use an inline copy and only compute its return value once to avoid useless work. */ switch (GET_CODE (in)) { rtx tmp; case SYMBOL_REF: case LABEL_REF: is_symbolic = 1; break; case CONST: tmp = XEXP (in, 0); is_symbolic = ((GET_CODE (XEXP (tmp, 0)) == SYMBOL_REF || GET_CODE (XEXP (tmp, 0)) == LABEL_REF) && GET_CODE (XEXP (tmp, 1)) == CONST_INT); break; default: is_symbolic = 0; break; } if (!flag_pic && is_symbolic && read_only_operand (in, VOIDmode)) return NO_REGS; if (class != R1_REGS && is_symbolic) return R1_REGS; return NO_REGS; } enum direction function_arg_padding (enum machine_mode mode, tree type) { if (mode == BLKmode || (TARGET_64BIT && type && AGGREGATE_TYPE_P (type))) { /* Return none if justification is not required. */ if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (int_size_in_bytes (type) * BITS_PER_UNIT) % PARM_BOUNDARY == 0) return none; /* The directions set here are ignored when a BLKmode argument larger than a word is placed in a register. Different code is used for the stack and registers. This makes it difficult to have a consistent data representation for both the stack and registers. For both runtimes, the justification and padding for arguments on the stack and in registers should be identical. */ if (TARGET_64BIT) /* The 64-bit runtime specifies left justification for aggregates. */ return upward; else /* The 32-bit runtime architecture specifies right justification. When the argument is passed on the stack, the argument is padded with garbage on the left. The HP compiler pads with zeros. */ return downward; } if (GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) return downward; else return none; } /* Do what is necessary for `va_start'. We look at the current function to determine if stdargs or varargs is used and fill in an initial va_list. A pointer to this constructor is returned. */ static rtx hppa_builtin_saveregs (void) { rtx offset, dest; tree fntype = TREE_TYPE (current_function_decl); int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))) ? UNITS_PER_WORD : 0); if (argadj) offset = plus_constant (current_function_arg_offset_rtx, argadj); else offset = current_function_arg_offset_rtx; if (TARGET_64BIT) { int i, off; /* Adjust for varargs/stdarg differences. */ if (argadj) offset = plus_constant (current_function_arg_offset_rtx, -argadj); else offset = current_function_arg_offset_rtx; /* We need to save %r26 .. %r19 inclusive starting at offset -64 from the incoming arg pointer and growing to larger addresses. */ for (i = 26, off = -64; i >= 19; i--, off += 8) emit_move_insn (gen_rtx_MEM (word_mode, plus_constant (arg_pointer_rtx, off)), gen_rtx_REG (word_mode, i)); /* The incoming args pointer points just beyond the flushback area; normally this is not a serious concern. However, when we are doing varargs/stdargs we want to make the arg pointer point to the start of the incoming argument area. */ emit_move_insn (virtual_incoming_args_rtx, plus_constant (arg_pointer_rtx, -64)); /* Now return a pointer to the first anonymous argument. */ return copy_to_reg (expand_binop (Pmode, add_optab, virtual_incoming_args_rtx, offset, 0, 0, OPTAB_LIB_WIDEN)); } /* Store general registers on the stack. */ dest = gen_rtx_MEM (BLKmode, plus_constant (current_function_internal_arg_pointer, -16)); set_mem_alias_set (dest, get_varargs_alias_set ()); set_mem_align (dest, BITS_PER_WORD); move_block_from_reg (23, dest, 4); /* move_block_from_reg will emit code to store the argument registers individually as scalar stores. However, other insns may later load from the same addresses for a structure load (passing a struct to a varargs routine). The alias code assumes that such aliasing can never happen, so we have to keep memory referencing insns from moving up beyond the last argument register store. So we emit a blockage insn here. */ emit_insn (gen_blockage ()); return copy_to_reg (expand_binop (Pmode, add_optab, current_function_internal_arg_pointer, offset, 0, 0, OPTAB_LIB_WIDEN)); } void hppa_va_start (tree valist, rtx nextarg) { nextarg = expand_builtin_saveregs (); std_expand_builtin_va_start (valist, nextarg); } rtx hppa_va_arg (tree valist, tree type) { HOST_WIDE_INT size = int_size_in_bytes (type); HOST_WIDE_INT ofs; tree t, ptr, pptr; if (TARGET_64BIT) { /* Every argument in PA64 is supposed to be passed by value (including large structs). However, as a GCC extension, we pass zero and variable sized arguments by reference. Empty structures are a GCC extension not supported by the HP compilers. Thus, passing them by reference isn't likely to conflict with the ABI. For variable sized arguments, GCC doesn't have the infrastructure to allocate these to registers. */ /* Arguments with a size greater than 8 must be aligned 0 MOD 16. */ if (size > UNITS_PER_WORD) { t = build (PLUS_EXPR, TREE_TYPE (valist), valist, build_int_2 (2 * UNITS_PER_WORD - 1, 0)); t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_2 (-2 * UNITS_PER_WORD, -1)); t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (size > 0) return std_expand_builtin_va_arg (valist, type); else { ptr = build_pointer_type (type); /* Args grow upward. */ t = build (POSTINCREMENT_EXPR, TREE_TYPE (valist), valist, build_int_2 (POINTER_SIZE / BITS_PER_UNIT, 0)); TREE_SIDE_EFFECTS (t) = 1; pptr = build_pointer_type (ptr); t = build1 (NOP_EXPR, pptr, t); TREE_SIDE_EFFECTS (t) = 1; t = build1 (INDIRECT_REF, ptr, t); TREE_SIDE_EFFECTS (t) = 1; } } else /* !TARGET_64BIT */ { ptr = build_pointer_type (type); /* "Large" and variable sized types are passed by reference. */ if (size > 8 || size <= 0) { /* Args grow downward. */ t = build (PREDECREMENT_EXPR, TREE_TYPE (valist), valist, build_int_2 (POINTER_SIZE / BITS_PER_UNIT, 0)); TREE_SIDE_EFFECTS (t) = 1; pptr = build_pointer_type (ptr); t = build1 (NOP_EXPR, pptr, t); TREE_SIDE_EFFECTS (t) = 1; t = build1 (INDIRECT_REF, ptr, t); TREE_SIDE_EFFECTS (t) = 1; } else { t = build (PLUS_EXPR, TREE_TYPE (valist), valist, build_int_2 (-size, -1)); /* Copied from va-pa.h, but we probably don't need to align to word size, since we generate and preserve that invariant. */ t = build (BIT_AND_EXPR, TREE_TYPE (valist), t, build_int_2 ((size > 4 ? -8 : -4), -1)); t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, t); TREE_SIDE_EFFECTS (t) = 1; ofs = (8 - size) % 4; if (ofs) { t = build (PLUS_EXPR, TREE_TYPE (valist), t, build_int_2 (ofs, 0)); TREE_SIDE_EFFECTS (t) = 1; } t = build1 (NOP_EXPR, ptr, t); TREE_SIDE_EFFECTS (t) = 1; } } /* Calculate! */ return expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL); } /* This routine handles all the normal conditional branch sequences we might need to generate. It handles compare immediate vs compare register, nullification of delay slots, varying length branches, negated branches, and all combinations of the above. It returns the output appropriate to emit the branch corresponding to all given parameters. */ const char * output_cbranch (rtx *operands, int nullify, int length, int negated, rtx insn) { static char buf[100]; int useskip = 0; rtx xoperands[5]; /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. This can happen when not optimizing and when jump optimization fails. While it is usually safe to emit nothing, this can fail if the preceding instruction is a nullified branch with an empty delay slot and the same branch target as this branch. We could check for this but jump optimization should eliminate nop jumps. It is always safe to emit a nop. */ if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn)) return "nop"; /* The doubleword form of the cmpib instruction doesn't have the LEU and GTU conditions while the cmpb instruction does. Since we accept zero for cmpb, we must ensure that we use cmpb for the comparison. */ if (GET_MODE (operands[1]) == DImode && operands[2] == const0_rtx) operands[2] = gen_rtx_REG (DImode, 0); /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* A forward branch over a single nullified insn can be done with a comclr instruction. This avoids a single cycle penalty due to mis-predicted branch if we fall through (branch not taken). */ if (length == 4 && next_real_insn (insn) != 0 && get_attr_length (next_real_insn (insn)) == 4 && JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn)) && nullify) useskip = 1; switch (length) { /* All short conditional branches except backwards with an unfilled delay slot. */ case 4: if (useskip) strcpy (buf, "{com%I2clr,|cmp%I2clr,}"); else strcpy (buf, "{com%I2b,|cmp%I2b,}"); if (GET_MODE (operands[1]) == DImode) strcat (buf, "*"); if (negated) strcat (buf, "%B3"); else strcat (buf, "%S3"); if (useskip) strcat (buf, " %2,%r1,%%r0"); else if (nullify) strcat (buf, ",n %2,%r1,%0"); else strcat (buf, " %2,%r1,%0"); break; /* All long conditionals. Note a short backward branch with an unfilled delay slot is treated just like a long backward branch with an unfilled delay slot. */ case 8: /* Handle weird backwards branch with a filled delay slot with is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) { strcpy (buf, "{com%I2b,|cmp%I2b,}"); if (GET_MODE (operands[1]) == DImode) strcat (buf, "*"); if (negated) strcat (buf, "%S3"); else strcat (buf, "%B3"); strcat (buf, ",n %2,%r1,.+12\n\tb %0"); } /* Handle short backwards branch with an unfilled delay slot. Using a comb;nop rather than comiclr;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && INSN_ADDRESSES_SET_P () && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn))) - INSN_ADDRESSES (INSN_UID (insn)) - 8)) { strcpy (buf, "{com%I2b,|cmp%I2b,}"); if (GET_MODE (operands[1]) == DImode) strcat (buf, "*"); if (negated) strcat (buf, "%B3 %2,%r1,%0%#"); else strcat (buf, "%S3 %2,%r1,%0%#"); } else { strcpy (buf, "{com%I2clr,|cmp%I2clr,}"); if (GET_MODE (operands[1]) == DImode) strcat (buf, "*"); if (negated) strcat (buf, "%S3"); else strcat (buf, "%B3"); if (nullify) strcat (buf, " %2,%r1,%%r0\n\tb,n %0"); else strcat (buf, " %2,%r1,%%r0\n\tb %0"); } break; case 20: case 28: xoperands[0] = operands[0]; xoperands[1] = operands[1]; xoperands[2] = operands[2]; xoperands[3] = operands[3]; /* The reversed conditional branch must branch over one additional instruction if the delay slot is filled. If the delay slot is empty, the instruction after the reversed condition branch must be nullified. */ nullify = dbr_sequence_length () == 0; xoperands[4] = nullify ? GEN_INT (length) : GEN_INT (length + 4); /* Create a reversed conditional branch which branches around the following insns. */ if (GET_MODE (operands[1]) != DImode) { if (nullify) { if (negated) strcpy (buf, "{com%I2b,%S3,n %2,%r1,.+%4|cmp%I2b,%S3,n %2,%r1,.+%4}"); else strcpy (buf, "{com%I2b,%B3,n %2,%r1,.+%4|cmp%I2b,%B3,n %2,%r1,.+%4}"); } else { if (negated) strcpy (buf, "{com%I2b,%S3 %2,%r1,.+%4|cmp%I2b,%S3 %2,%r1,.+%4}"); else strcpy (buf, "{com%I2b,%B3 %2,%r1,.+%4|cmp%I2b,%B3 %2,%r1,.+%4}"); } } else { if (nullify) { if (negated) strcpy (buf, "{com%I2b,*%S3,n %2,%r1,.+%4|cmp%I2b,*%S3,n %2,%r1,.+%4}"); else strcpy (buf, "{com%I2b,*%B3,n %2,%r1,.+%4|cmp%I2b,*%B3,n %2,%r1,.+%4}"); } else { if (negated) strcpy (buf, "{com%I2b,*%S3 %2,%r1,.+%4|cmp%I2b,*%S3 %2,%r1,.+%4}"); else strcpy (buf, "{com%I2b,*%B3 %2,%r1,.+%4|cmp%I2b,*%B3 %2,%r1,.+%4}"); } } output_asm_insn (buf, xoperands); return output_lbranch (operands[0], insn); default: abort (); } return buf; } /* This routine handles long unconditional branches that exceed the maximum range of a simple branch instruction. */ const char * output_lbranch (rtx dest, rtx insn) { rtx xoperands[2]; xoperands[0] = dest; /* First, free up the delay slot. */ if (dbr_sequence_length () != 0) { /* We can't handle a jump in the delay slot. */ if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN) abort (); final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0, 0, NULL); /* Now delete the delay insn. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; } /* Output an insn to save %r1. The runtime documentation doesn't specify whether the "Clean Up" slot in the callers frame can be clobbered by the callee. It isn't copied by HP's builtin alloca, so this suggests that it can be clobbered if necessary. The "Static Link" location is copied by HP builtin alloca, so we avoid using it. Using the cleanup slot might be a problem if we have to interoperate with languages that pass cleanup information. However, it should be possible to handle these situations with GCC's asm feature. The "Current RP" slot is reserved for the called procedure, so we try to use it when we don't have a frame of our own. It's rather unlikely that we won't have a frame when we need to emit a very long branch. Really the way to go long term is a register scavenger; goto the target of the jump and find a register which we can use as a scratch to hold the value in %r1. Then, we wouldn't have to free up the delay slot or clobber a slot that may be needed for other purposes. */ if (TARGET_64BIT) { if (actual_fsize == 0 && !regs_ever_live[2]) /* Use the return pointer slot in the frame marker. */ output_asm_insn ("std %%r1,-16(%%r30)", xoperands); else /* Use the slot at -40 in the frame marker since HP builtin alloca doesn't copy it. */ output_asm_insn ("std %%r1,-40(%%r30)", xoperands); } else { if (actual_fsize == 0 && !regs_ever_live[2]) /* Use the return pointer slot in the frame marker. */ output_asm_insn ("stw %%r1,-20(%%r30)", xoperands); else /* Use the "Clean Up" slot in the frame marker. In GCC, the only other use of this location is for copying a floating point double argument from a floating-point register to two general registers. The copy is done as an "atomic" operation when outputting a call, so it won't interfere with our using the location here. */ output_asm_insn ("stw %%r1,-12(%%r30)", xoperands); } if (TARGET_PORTABLE_RUNTIME) { output_asm_insn ("ldil L'%0,%%r1", xoperands); output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands); output_asm_insn ("bv %%r0(%%r1)", xoperands); } else if (flag_pic) { output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands); if (TARGET_SOM || !TARGET_GAS) { xoperands[1] = gen_label_rtx (); output_asm_insn ("addil L'%l0-%l1,%%r1", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); output_asm_insn ("ldo R'%l0-%l1(%%r1),%%r1", xoperands); } else { output_asm_insn ("addil L'%l0-$PIC_pcrel$0+4,%%r1", xoperands); output_asm_insn ("ldo R'%l0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands); } output_asm_insn ("bv %%r0(%%r1)", xoperands); } else /* Now output a very long branch to the original target. */ output_asm_insn ("ldil L'%l0,%%r1\n\tbe R'%l0(%%sr4,%%r1)", xoperands); /* Now restore the value of %r1 in the delay slot. */ if (TARGET_64BIT) { if (actual_fsize == 0 && !regs_ever_live[2]) return "ldd -16(%%r30),%%r1"; else return "ldd -40(%%r30),%%r1"; } else { if (actual_fsize == 0 && !regs_ever_live[2]) return "ldw -20(%%r30),%%r1"; else return "ldw -12(%%r30),%%r1"; } } /* This routine handles all the branch-on-bit conditional branch sequences we might need to generate. It handles nullification of delay slots, varying length branches, negated branches and all combinations of the above. it returns the appropriate output template to emit the branch. */ const char * output_bb (rtx *operands ATTRIBUTE_UNUSED, int nullify, int length, int negated, rtx insn, int which) { static char buf[100]; int useskip = 0; /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. I do not think this can happen as this pattern is only used when optimizing; jump optimization should eliminate the jump. But be prepared just in case. */ if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn)) return "nop"; /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* A forward branch over a single nullified insn can be done with a extrs instruction. This avoids a single cycle penalty due to mis-predicted branch if we fall through (branch not taken). */ if (length == 4 && next_real_insn (insn) != 0 && get_attr_length (next_real_insn (insn)) == 4 && JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn)) && nullify) useskip = 1; switch (length) { /* All short conditional branches except backwards with an unfilled delay slot. */ case 4: if (useskip) strcpy (buf, "{extrs,|extrw,s,}"); else strcpy (buf, "bb,"); if (useskip && GET_MODE (operands[0]) == DImode) strcpy (buf, "extrd,s,*"); else if (GET_MODE (operands[0]) == DImode) strcpy (buf, "bb,*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (useskip) strcat (buf, " %0,%1,1,%%r0"); else if (nullify && negated) strcat (buf, ",n %0,%1,%3"); else if (nullify && ! negated) strcat (buf, ",n %0,%1,%2"); else if (! nullify && negated) strcat (buf, "%0,%1,%3"); else if (! nullify && ! negated) strcat (buf, " %0,%1,%2"); break; /* All long conditionals. Note a short backward branch with an unfilled delay slot is treated just like a long backward branch with an unfilled delay slot. */ case 8: /* Handle weird backwards branch with a filled delay slot with is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) { strcpy (buf, "bb,"); if (GET_MODE (operands[0]) == DImode) strcat (buf, "*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (negated) strcat (buf, ",n %0,%1,.+12\n\tb %3"); else strcat (buf, ",n %0,%1,.+12\n\tb %2"); } /* Handle short backwards branch with an unfilled delay slot. Using a bb;nop rather than extrs;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && INSN_ADDRESSES_SET_P () && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn))) - INSN_ADDRESSES (INSN_UID (insn)) - 8)) { strcpy (buf, "bb,"); if (GET_MODE (operands[0]) == DImode) strcat (buf, "*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (negated) strcat (buf, " %0,%1,%3%#"); else strcat (buf, " %0,%1,%2%#"); } else { strcpy (buf, "{extrs,|extrw,s,}"); if (GET_MODE (operands[0]) == DImode) strcpy (buf, "extrd,s,*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (nullify && negated) strcat (buf, " %0,%1,1,%%r0\n\tb,n %3"); else if (nullify && ! negated) strcat (buf, " %0,%1,1,%%r0\n\tb,n %2"); else if (negated) strcat (buf, " %0,%1,1,%%r0\n\tb %3"); else strcat (buf, " %0,%1,1,%%r0\n\tb %2"); } break; default: abort (); } return buf; } /* This routine handles all the branch-on-variable-bit conditional branch sequences we might need to generate. It handles nullification of delay slots, varying length branches, negated branches and all combinations of the above. it returns the appropriate output template to emit the branch. */ const char * output_bvb (rtx *operands ATTRIBUTE_UNUSED, int nullify, int length, int negated, rtx insn, int which) { static char buf[100]; int useskip = 0; /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. I do not think this can happen as this pattern is only used when optimizing; jump optimization should eliminate the jump. But be prepared just in case. */ if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn)) return "nop"; /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* A forward branch over a single nullified insn can be done with a extrs instruction. This avoids a single cycle penalty due to mis-predicted branch if we fall through (branch not taken). */ if (length == 4 && next_real_insn (insn) != 0 && get_attr_length (next_real_insn (insn)) == 4 && JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn)) && nullify) useskip = 1; switch (length) { /* All short conditional branches except backwards with an unfilled delay slot. */ case 4: if (useskip) strcpy (buf, "{vextrs,|extrw,s,}"); else strcpy (buf, "{bvb,|bb,}"); if (useskip && GET_MODE (operands[0]) == DImode) strcpy (buf, "extrd,s,*"); else if (GET_MODE (operands[0]) == DImode) strcpy (buf, "bb,*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (useskip) strcat (buf, "{ %0,1,%%r0| %0,%%sar,1,%%r0}"); else if (nullify && negated) strcat (buf, "{,n %0,%3|,n %0,%%sar,%3}"); else if (nullify && ! negated) strcat (buf, "{,n %0,%2|,n %0,%%sar,%2}"); else if (! nullify && negated) strcat (buf, "{%0,%3|%0,%%sar,%3}"); else if (! nullify && ! negated) strcat (buf, "{ %0,%2| %0,%%sar,%2}"); break; /* All long conditionals. Note a short backward branch with an unfilled delay slot is treated just like a long backward branch with an unfilled delay slot. */ case 8: /* Handle weird backwards branch with a filled delay slot with is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) { strcpy (buf, "{bvb,|bb,}"); if (GET_MODE (operands[0]) == DImode) strcat (buf, "*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (negated) strcat (buf, "{,n %0,.+12\n\tb %3|,n %0,%%sar,.+12\n\tb %3}"); else strcat (buf, "{,n %0,.+12\n\tb %2|,n %0,%%sar,.+12\n\tb %2}"); } /* Handle short backwards branch with an unfilled delay slot. Using a bb;nop rather than extrs;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && INSN_ADDRESSES_SET_P () && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn))) - INSN_ADDRESSES (INSN_UID (insn)) - 8)) { strcpy (buf, "{bvb,|bb,}"); if (GET_MODE (operands[0]) == DImode) strcat (buf, "*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, ">="); else strcat (buf, "<"); if (negated) strcat (buf, "{ %0,%3%#| %0,%%sar,%3%#}"); else strcat (buf, "{ %0,%2%#| %0,%%sar,%2%#}"); } else { strcpy (buf, "{vextrs,|extrw,s,}"); if (GET_MODE (operands[0]) == DImode) strcpy (buf, "extrd,s,*"); if ((which == 0 && negated) || (which == 1 && ! negated)) strcat (buf, "<"); else strcat (buf, ">="); if (nullify && negated) strcat (buf, "{ %0,1,%%r0\n\tb,n %3| %0,%%sar,1,%%r0\n\tb,n %3}"); else if (nullify && ! negated) strcat (buf, "{ %0,1,%%r0\n\tb,n %2| %0,%%sar,1,%%r0\n\tb,n %2}"); else if (negated) strcat (buf, "{ %0,1,%%r0\n\tb %3| %0,%%sar,1,%%r0\n\tb %3}"); else strcat (buf, "{ %0,1,%%r0\n\tb %2| %0,%%sar,1,%%r0\n\tb %2}"); } break; default: abort (); } return buf; } /* Return the output template for emitting a dbra type insn. Note it may perform some output operations on its own before returning the final output string. */ const char * output_dbra (rtx *operands, rtx insn, int which_alternative) { /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. Be prepared! */ if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn)) { if (which_alternative == 0) return "ldo %1(%0),%0"; else if (which_alternative == 1) { output_asm_insn ("{fstws|fstw} %0,-16(%%r30)", operands); output_asm_insn ("ldw -16(%%r30),%4", operands); output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands); return "{fldws|fldw} -16(%%r30),%0"; } else { output_asm_insn ("ldw %0,%4", operands); return "ldo %1(%4),%4\n\tstw %4,%0"; } } if (which_alternative == 0) { int nullify = INSN_ANNULLED_BRANCH_P (insn); int length = get_attr_length (insn); /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* Handle short versions first. */ if (length == 4 && nullify) return "addib,%C2,n %1,%0,%3"; else if (length == 4 && ! nullify) return "addib,%C2 %1,%0,%3"; else if (length == 8) { /* Handle weird backwards branch with a fulled delay slot which is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) return "addib,%N2,n %1,%0,.+12\n\tb %3"; /* Handle short backwards branch with an unfilled delay slot. Using a addb;nop rather than addi;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && INSN_ADDRESSES_SET_P () && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn))) - INSN_ADDRESSES (INSN_UID (insn)) - 8)) return "addib,%C2 %1,%0,%3%#"; /* Handle normal cases. */ if (nullify) return "addi,%N2 %1,%0,%0\n\tb,n %3"; else return "addi,%N2 %1,%0,%0\n\tb %3"; } else abort (); } /* Deal with gross reload from FP register case. */ else if (which_alternative == 1) { /* Move loop counter from FP register to MEM then into a GR, increment the GR, store the GR into MEM, and finally reload the FP register from MEM from within the branch's delay slot. */ output_asm_insn ("{fstws|fstw} %0,-16(%%r30)\n\tldw -16(%%r30),%4", operands); output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands); if (get_attr_length (insn) == 24) return "{comb|cmpb},%S2 %%r0,%4,%3\n\t{fldws|fldw} -16(%%r30),%0"; else return "{comclr|cmpclr},%B2 %%r0,%4,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0"; } /* Deal with gross reload from memory case. */ else { /* Reload loop counter from memory, the store back to memory happens in the branch's delay slot. */ output_asm_insn ("ldw %0,%4", operands); if (get_attr_length (insn) == 12) return "addib,%C2 %1,%4,%3\n\tstw %4,%0"; else return "addi,%N2 %1,%4,%4\n\tb %3\n\tstw %4,%0"; } } /* Return the output template for emitting a dbra type insn. Note it may perform some output operations on its own before returning the final output string. */ const char * output_movb (rtx *operands, rtx insn, int which_alternative, int reverse_comparison) { /* A conditional branch to the following instruction (eg the delay slot) is asking for a disaster. Be prepared! */ if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn)) { if (which_alternative == 0) return "copy %1,%0"; else if (which_alternative == 1) { output_asm_insn ("stw %1,-16(%%r30)", operands); return "{fldws|fldw} -16(%%r30),%0"; } else if (which_alternative == 2) return "stw %1,%0"; else return "mtsar %r1"; } /* Support the second variant. */ if (reverse_comparison) PUT_CODE (operands[2], reverse_condition (GET_CODE (operands[2]))); if (which_alternative == 0) { int nullify = INSN_ANNULLED_BRANCH_P (insn); int length = get_attr_length (insn); /* If this is a long branch with its delay slot unfilled, set `nullify' as it can nullify the delay slot and save a nop. */ if (length == 8 && dbr_sequence_length () == 0) nullify = 1; /* If this is a short forward conditional branch which did not get its delay slot filled, the delay slot can still be nullified. */ if (! nullify && length == 4 && dbr_sequence_length () == 0) nullify = forward_branch_p (insn); /* Handle short versions first. */ if (length == 4 && nullify) return "movb,%C2,n %1,%0,%3"; else if (length == 4 && ! nullify) return "movb,%C2 %1,%0,%3"; else if (length == 8) { /* Handle weird backwards branch with a filled delay slot which is nullified. */ if (dbr_sequence_length () != 0 && ! forward_branch_p (insn) && nullify) return "movb,%N2,n %1,%0,.+12\n\tb %3"; /* Handle short backwards branch with an unfilled delay slot. Using a movb;nop rather than or;bl saves 1 cycle for both taken and untaken branches. */ else if (dbr_sequence_length () == 0 && ! forward_branch_p (insn) && INSN_ADDRESSES_SET_P () && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn))) - INSN_ADDRESSES (INSN_UID (insn)) - 8)) return "movb,%C2 %1,%0,%3%#"; /* Handle normal cases. */ if (nullify) return "or,%N2 %1,%%r0,%0\n\tb,n %3"; else return "or,%N2 %1,%%r0,%0\n\tb %3"; } else abort (); } /* Deal with gross reload from FP register case. */ else if (which_alternative == 1) { /* Move loop counter from FP register to MEM then into a GR, increment the GR, store the GR into MEM, and finally reload the FP register from MEM from within the branch's delay slot. */ output_asm_insn ("stw %1,-16(%%r30)", operands); if (get_attr_length (insn) == 12) return "{comb|cmpb},%S2 %%r0,%1,%3\n\t{fldws|fldw} -16(%%r30),%0"; else return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0"; } /* Deal with gross reload from memory case. */ else if (which_alternative == 2) { /* Reload loop counter from memory, the store back to memory happens in the branch's delay slot. */ if (get_attr_length (insn) == 8) return "{comb|cmpb},%S2 %%r0,%1,%3\n\tstw %1,%0"; else return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tstw %1,%0"; } /* Handle SAR as a destination. */ else { if (get_attr_length (insn) == 8) return "{comb|cmpb},%S2 %%r0,%1,%3\n\tmtsar %r1"; else return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tbl %3\n\tmtsar %r1"; } } /* Copy any FP arguments in INSN into integer registers. */ static void copy_fp_args (rtx insn) { rtx link; rtx xoperands[2]; for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { int arg_mode, regno; rtx use = XEXP (link, 0); if (! (GET_CODE (use) == USE && GET_CODE (XEXP (use, 0)) == REG && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0))))) continue; arg_mode = GET_MODE (XEXP (use, 0)); regno = REGNO (XEXP (use, 0)); /* Is it a floating point register? */ if (regno >= 32 && regno <= 39) { /* Copy the FP register into an integer register via memory. */ if (arg_mode == SFmode) { xoperands[0] = XEXP (use, 0); xoperands[1] = gen_rtx_REG (SImode, 26 - (regno - 32) / 2); output_asm_insn ("{fstws|fstw} %0,-16(%%sr0,%%r30)", xoperands); output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands); } else { xoperands[0] = XEXP (use, 0); xoperands[1] = gen_rtx_REG (DImode, 25 - (regno - 34) / 2); output_asm_insn ("{fstds|fstd} %0,-16(%%sr0,%%r30)", xoperands); output_asm_insn ("ldw -12(%%sr0,%%r30),%R1", xoperands); output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands); } } } } /* Compute length of the FP argument copy sequence for INSN. */ static int length_fp_args (rtx insn) { int length = 0; rtx link; for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { int arg_mode, regno; rtx use = XEXP (link, 0); if (! (GET_CODE (use) == USE && GET_CODE (XEXP (use, 0)) == REG && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0))))) continue; arg_mode = GET_MODE (XEXP (use, 0)); regno = REGNO (XEXP (use, 0)); /* Is it a floating point register? */ if (regno >= 32 && regno <= 39) { if (arg_mode == SFmode) length += 8; else length += 12; } } return length; } /* Return the attribute length for the millicode call instruction INSN. The length must match the code generated by output_millicode_call. We include the delay slot in the returned length as it is better to over estimate the length than to under estimate it. */ int attr_length_millicode_call (rtx insn) { unsigned long distance = -1; unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes; if (INSN_ADDRESSES_SET_P ()) { distance = (total + insn_current_reference_address (insn)); if (distance < total) distance = -1; } if (TARGET_64BIT) { if (!TARGET_LONG_CALLS && distance < 7600000) return 8; return 20; } else if (TARGET_PORTABLE_RUNTIME) return 24; else { if (!TARGET_LONG_CALLS && distance < 240000) return 8; if (TARGET_LONG_ABS_CALL && !flag_pic) return 12; return 24; } } /* INSN is a function call. It may have an unconditional jump in its delay slot. CALL_DEST is the routine we are calling. */ const char * output_millicode_call (rtx insn, rtx call_dest) { int attr_length = get_attr_length (insn); int seq_length = dbr_sequence_length (); int distance; rtx seq_insn; rtx xoperands[3]; xoperands[0] = call_dest; xoperands[2] = gen_rtx_REG (Pmode, TARGET_64BIT ? 2 : 31); /* Handle the common case where we are sure that the branch will reach the beginning of the $CODE$ subspace. The within reach form of the $$sh_func_adrs call has a length of 28. Because it has an attribute type of multi, it never has a nonzero sequence length. The length of the $$sh_func_adrs is the same as certain out of reach PIC calls to other routines. */ if (!TARGET_LONG_CALLS && ((seq_length == 0 && (attr_length == 12 || (attr_length == 28 && get_attr_type (insn) == TYPE_MULTI))) || (seq_length != 0 && attr_length == 8))) { output_asm_insn ("{bl|b,l} %0,%2", xoperands); } else { if (TARGET_64BIT) { /* It might seem that one insn could be saved by accessing the millicode function using the linkage table. However, this doesn't work in shared libraries and other dynamically loaded objects. Using a pc-relative sequence also avoids problems related to the implicit use of the gp register. */ output_asm_insn ("b,l .+8,%%r1", xoperands); if (TARGET_GAS) { output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands); output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands); } else { xoperands[1] = gen_label_rtx (); output_asm_insn ("addil L'%0-%l1,%%r1", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands); } output_asm_insn ("bve,l (%%r1),%%r2", xoperands); } else if (TARGET_PORTABLE_RUNTIME) { /* Pure portable runtime doesn't allow be/ble; we also don't have PIC support in the assembler/linker, so this sequence is needed. */ /* Get the address of our target into %r1. */ output_asm_insn ("ldil L'%0,%%r1", xoperands); output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands); /* Get our return address into %r31. */ output_asm_insn ("{bl|b,l} .+8,%%r31", xoperands); output_asm_insn ("addi 8,%%r31,%%r31", xoperands); /* Jump to our target address in %r1. */ output_asm_insn ("bv %%r0(%%r1)", xoperands); } else if (!flag_pic) { output_asm_insn ("ldil L'%0,%%r1", xoperands); if (TARGET_PA_20) output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31", xoperands); else output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands); } else { output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands); output_asm_insn ("addi 16,%%r1,%%r31", xoperands); if (TARGET_SOM || !TARGET_GAS) { /* The HP assembler can generate relocations for the difference of two symbols. GAS can do this for a millicode symbol but not an arbitrary external symbol when generating SOM output. */ xoperands[1] = gen_label_rtx (); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); output_asm_insn ("addil L'%0-%l1,%%r1", xoperands); output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands); } else { output_asm_insn ("addil L'%0-$PIC_pcrel$0+8,%%r1", xoperands); output_asm_insn ("ldo R'%0-$PIC_pcrel$0+12(%%r1),%%r1", xoperands); } /* Jump to our target address in %r1. */ output_asm_insn ("bv %%r0(%%r1)", xoperands); } } if (seq_length == 0) output_asm_insn ("nop", xoperands); /* We are done if there isn't a jump in the delay slot. */ if (seq_length == 0 || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN) return ""; /* This call has an unconditional jump in its delay slot. */ xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1); /* See if the return address can be adjusted. Use the containing sequence insn's address. */ if (INSN_ADDRESSES_SET_P ()) { seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0))); distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn)))) - INSN_ADDRESSES (INSN_UID (seq_insn)) - 8); if (VAL_14_BITS_P (distance)) { xoperands[1] = gen_label_rtx (); output_asm_insn ("ldo %0-%1(%2),%2", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); } else /* ??? This branch may not reach its target. */ output_asm_insn ("nop\n\tb,n %0", xoperands); } else /* ??? This branch may not reach its target. */ output_asm_insn ("nop\n\tb,n %0", xoperands); /* Delete the jump. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; return ""; } /* Return the attribute length of the call instruction INSN. The SIBCALL flag indicates whether INSN is a regular call or a sibling call. The length returned must be longer than the code actually generated by output_call. Since branch shortening is done before delay branch sequencing, there is no way to determine whether or not the delay slot will be filled during branch shortening. Even when the delay slot is filled, we may have to add a nop if the delay slot contains a branch that can't reach its target. Thus, we always have to include the delay slot in the length estimate. This used to be done in pa_adjust_insn_length but we do it here now as some sequences always fill the delay slot and we can save four bytes in the estimate for these sequences. */ int attr_length_call (rtx insn, int sibcall) { int local_call; rtx call_dest; tree call_decl; int length = 0; rtx pat = PATTERN (insn); unsigned long distance = -1; if (INSN_ADDRESSES_SET_P ()) { unsigned long total; total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes; distance = (total + insn_current_reference_address (insn)); if (distance < total) distance = -1; } /* Determine if this is a local call. */ if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL) call_dest = XEXP (XEXP (XVECEXP (pat, 0, 0), 0), 0); else call_dest = XEXP (XEXP (XEXP (XVECEXP (pat, 0, 0), 1), 0), 0); call_decl = SYMBOL_REF_DECL (call_dest); local_call = call_decl && (*targetm.binds_local_p) (call_decl); /* pc-relative branch. */ if (!TARGET_LONG_CALLS && ((TARGET_PA_20 && !sibcall && distance < 7600000) || distance < 240000)) length += 8; /* 64-bit plabel sequence. */ else if (TARGET_64BIT && !local_call) length += sibcall ? 28 : 24; /* non-pic long absolute branch sequence. */ else if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic) length += 12; /* long pc-relative branch sequence. */ else if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL) || (TARGET_64BIT && !TARGET_GAS) || (TARGET_GAS && (TARGET_LONG_PIC_PCREL_CALL || local_call))) { length += 20; if (!TARGET_PA_20 && !TARGET_NO_SPACE_REGS) length += 8; } /* 32-bit plabel sequence. */ else { length += 32; if (TARGET_SOM) length += length_fp_args (insn); if (flag_pic) length += 4; if (!TARGET_PA_20) { if (!sibcall) length += 8; if (!TARGET_NO_SPACE_REGS) length += 8; } } return length; } /* INSN is a function call. It may have an unconditional jump in its delay slot. CALL_DEST is the routine we are calling. */ const char * output_call (rtx insn, rtx call_dest, int sibcall) { int delay_insn_deleted = 0; int delay_slot_filled = 0; int seq_length = dbr_sequence_length (); tree call_decl = SYMBOL_REF_DECL (call_dest); int local_call = call_decl && (*targetm.binds_local_p) (call_decl); rtx xoperands[2]; xoperands[0] = call_dest; /* Handle the common case where we're sure that the branch will reach the beginning of the "$CODE$" subspace. This is the beginning of the current function if we are in a named section. */ if (!TARGET_LONG_CALLS && attr_length_call (insn, sibcall) == 8) { xoperands[1] = gen_rtx_REG (word_mode, sibcall ? 0 : 2); output_asm_insn ("{bl|b,l} %0,%1", xoperands); } else { if (TARGET_64BIT && !local_call) { /* ??? As far as I can tell, the HP linker doesn't support the long pc-relative sequence described in the 64-bit runtime architecture. So, we use a slightly longer indirect call. */ struct deferred_plabel *p = get_plabel (XSTR (call_dest, 0)); xoperands[0] = p->internal_label; xoperands[1] = gen_label_rtx (); /* If this isn't a sibcall, we put the load of %r27 into the delay slot. We can't do this in a sibcall as we don't have a second call-clobbered scratch register available. */ if (seq_length != 0 && GET_CODE (NEXT_INSN (insn)) != JUMP_INSN && !sibcall) { final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0, 0, NULL); /* Now delete the delay insn. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; delay_insn_deleted = 1; } output_asm_insn ("addil LT'%0,%%r27", xoperands); output_asm_insn ("ldd RT'%0(%%r1),%%r1", xoperands); output_asm_insn ("ldd 0(%%r1),%%r1", xoperands); if (sibcall) { output_asm_insn ("ldd 24(%%r1),%%r27", xoperands); output_asm_insn ("ldd 16(%%r1),%%r1", xoperands); output_asm_insn ("bve (%%r1)", xoperands); } else { output_asm_insn ("ldd 16(%%r1),%%r2", xoperands); output_asm_insn ("bve,l (%%r2),%%r2", xoperands); output_asm_insn ("ldd 24(%%r1),%%r27", xoperands); delay_slot_filled = 1; } } else { int indirect_call = 0; /* Emit a long call. There are several different sequences of increasing length and complexity. In most cases, they don't allow an instruction in the delay slot. */ if (!((TARGET_LONG_ABS_CALL || local_call) && !flag_pic) && !(TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL) && !(TARGET_GAS && (TARGET_LONG_PIC_PCREL_CALL || local_call)) && !TARGET_64BIT) indirect_call = 1; if (seq_length != 0 && GET_CODE (NEXT_INSN (insn)) != JUMP_INSN && !sibcall && (!TARGET_PA_20 || indirect_call)) { /* A non-jump insn in the delay slot. By definition we can emit this insn before the call (and in fact before argument relocating. */ final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0, 0, NULL); /* Now delete the delay insn. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; delay_insn_deleted = 1; } if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic) { /* This is the best sequence for making long calls in non-pic code. Unfortunately, GNU ld doesn't provide the stub needed for external calls, and GAS's support for this with the SOM linker is buggy. It is safe to use this for local calls. */ output_asm_insn ("ldil L'%0,%%r1", xoperands); if (sibcall) output_asm_insn ("be R'%0(%%sr4,%%r1)", xoperands); else { if (TARGET_PA_20) output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31", xoperands); else output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands); output_asm_insn ("copy %%r31,%%r2", xoperands); delay_slot_filled = 1; } } else { if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL) || (TARGET_64BIT && !TARGET_GAS)) { /* The HP assembler and linker can handle relocations for the difference of two symbols. GAS and the HP linker can't do this when one of the symbols is external. */ xoperands[1] = gen_label_rtx (); output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands); output_asm_insn ("addil L'%0-%l1,%%r1", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands); } else if (TARGET_GAS && (TARGET_LONG_PIC_PCREL_CALL || local_call)) { /* GAS currently can't generate the relocations that are needed for the SOM linker under HP-UX using this sequence. The GNU linker doesn't generate the stubs that are needed for external calls on TARGET_ELF32 with this sequence. For now, we have to use a longer plabel sequence when using GAS. */ output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands); output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands); output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands); } else { /* Emit a long plabel-based call sequence. This is essentially an inline implementation of $$dyncall. We don't actually try to call $$dyncall as this is as difficult as calling the function itself. */ struct deferred_plabel *p = get_plabel (XSTR (call_dest, 0)); xoperands[0] = p->internal_label; xoperands[1] = gen_label_rtx (); /* Since the call is indirect, FP arguments in registers need to be copied to the general registers. Then, the argument relocation stub will copy them back. */ if (TARGET_SOM) copy_fp_args (insn); if (flag_pic) { output_asm_insn ("addil LT'%0,%%r19", xoperands); output_asm_insn ("ldw RT'%0(%%r1),%%r1", xoperands); output_asm_insn ("ldw 0(%%r1),%%r1", xoperands); } else { output_asm_insn ("addil LR'%0-$global$,%%r27", xoperands); output_asm_insn ("ldw RR'%0-$global$(%%r1),%%r1", xoperands); } output_asm_insn ("bb,>=,n %%r1,30,.+16", xoperands); output_asm_insn ("depi 0,31,2,%%r1", xoperands); output_asm_insn ("ldw 4(%%sr0,%%r1),%%r19", xoperands); output_asm_insn ("ldw 0(%%sr0,%%r1),%%r1", xoperands); if (!sibcall && !TARGET_PA_20) { output_asm_insn ("{bl|b,l} .+8,%%r2", xoperands); if (TARGET_NO_SPACE_REGS) output_asm_insn ("addi 8,%%r2,%%r2", xoperands); else output_asm_insn ("addi 16,%%r2,%%r2", xoperands); } } if (TARGET_PA_20) { if (sibcall) output_asm_insn ("bve (%%r1)", xoperands); else { if (indirect_call) { output_asm_insn ("bve,l (%%r1),%%r2", xoperands); output_asm_insn ("stw %%r2,-24(%%sp)", xoperands); delay_slot_filled = 1; } else output_asm_insn ("bve,l (%%r1),%%r2", xoperands); } } else { if (!TARGET_NO_SPACE_REGS) output_asm_insn ("ldsid (%%r1),%%r31\n\tmtsp %%r31,%%sr0", xoperands); if (sibcall) { if (TARGET_NO_SPACE_REGS) output_asm_insn ("be 0(%%sr4,%%r1)", xoperands); else output_asm_insn ("be 0(%%sr0,%%r1)", xoperands); } else { if (TARGET_NO_SPACE_REGS) output_asm_insn ("ble 0(%%sr4,%%r1)", xoperands); else output_asm_insn ("ble 0(%%sr0,%%r1)", xoperands); if (indirect_call) output_asm_insn ("stw %%r31,-24(%%sp)", xoperands); else output_asm_insn ("copy %%r31,%%r2", xoperands); delay_slot_filled = 1; } } } } } if (!delay_slot_filled && (seq_length == 0 || delay_insn_deleted)) output_asm_insn ("nop", xoperands); /* We are done if there isn't a jump in the delay slot. */ if (seq_length == 0 || delay_insn_deleted || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN) return ""; /* A sibcall should never have a branch in the delay slot. */ if (sibcall) abort (); /* This call has an unconditional jump in its delay slot. */ xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1); if (!delay_slot_filled && INSN_ADDRESSES_SET_P ()) { /* See if the return address can be adjusted. Use the containing sequence insn's address. */ rtx seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0))); int distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn)))) - INSN_ADDRESSES (INSN_UID (seq_insn)) - 8); if (VAL_14_BITS_P (distance)) { xoperands[1] = gen_label_rtx (); output_asm_insn ("ldo %0-%1(%%r2),%%r2", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[1])); } else output_asm_insn ("nop\n\tb,n %0", xoperands); } else output_asm_insn ("b,n %0", xoperands); /* Delete the jump. */ PUT_CODE (NEXT_INSN (insn), NOTE); NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0; return ""; } /* Return the attribute length of the indirect call instruction INSN. The length must match the code generated by output_indirect call. The returned length includes the delay slot. Currently, the delay slot of an indirect call sequence is not exposed and it is used by the sequence itself. */ int attr_length_indirect_call (rtx insn) { unsigned long distance = -1; unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes; if (INSN_ADDRESSES_SET_P ()) { distance = (total + insn_current_reference_address (insn)); if (distance < total) distance = -1; } if (TARGET_64BIT) return 12; if (TARGET_FAST_INDIRECT_CALLS || (!TARGET_PORTABLE_RUNTIME && ((TARGET_PA_20 && distance < 7600000) || distance < 240000))) return 8; if (flag_pic) return 24; if (TARGET_PORTABLE_RUNTIME) return 20; /* Out of reach, can use ble. */ return 12; } const char * output_indirect_call (rtx insn, rtx call_dest) { rtx xoperands[1]; if (TARGET_64BIT) { xoperands[0] = call_dest; output_asm_insn ("ldd 16(%0),%%r2", xoperands); output_asm_insn ("bve,l (%%r2),%%r2\n\tldd 24(%0),%%r27", xoperands); return ""; } /* First the special case for kernels, level 0 systems, etc. */ if (TARGET_FAST_INDIRECT_CALLS) return "ble 0(%%sr4,%%r22)\n\tcopy %%r31,%%r2"; /* Now the normal case -- we can reach $$dyncall directly or we're sure that we can get there via a long-branch stub. No need to check target flags as the length uniquely identifies the remaining cases. */ if (attr_length_indirect_call (insn) == 8) return ".CALL\tARGW0=GR\n\t{bl|b,l} $$dyncall,%%r31\n\tcopy %%r31,%%r2"; /* Long millicode call, but we are not generating PIC or portable runtime code. */ if (attr_length_indirect_call (insn) == 12) return ".CALL\tARGW0=GR\n\tldil L'$$dyncall,%%r2\n\tble R'$$dyncall(%%sr4,%%r2)\n\tcopy %%r31,%%r2"; /* Long millicode call for portable runtime. */ if (attr_length_indirect_call (insn) == 20) return "ldil L'$$dyncall,%%r31\n\tldo R'$$dyncall(%%r31),%%r31\n\tblr %%r0,%%r2\n\tbv,n %%r0(%%r31)\n\tnop"; /* We need a long PIC call to $$dyncall. */ xoperands[0] = NULL_RTX; output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands); if (TARGET_SOM || !TARGET_GAS) { xoperands[0] = gen_label_rtx (); output_asm_insn ("addil L'$$dyncall-%0,%%r1", xoperands); (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (xoperands[0])); output_asm_insn ("ldo R'$$dyncall-%0(%%r1),%%r1", xoperands); } else { output_asm_insn ("addil L'$$dyncall-$PIC_pcrel$0+4,%%r1", xoperands); output_asm_insn ("ldo R'$$dyncall-$PIC_pcrel$0+8(%%r1),%%r1", xoperands); } output_asm_insn ("blr %%r0,%%r2", xoperands); output_asm_insn ("bv,n %%r0(%%r1)\n\tnop", xoperands); return ""; } /* Return the total length of the save and restore instructions needed for the data linkage table pointer (i.e., the PIC register) across the call instruction INSN. No-return calls do not require a save and restore. In addition, we may be able to avoid the save and restore for calls within the same translation unit. */ int attr_length_save_restore_dltp (rtx insn) { if (find_reg_note (insn, REG_NORETURN, NULL_RTX)) return 0; return 8; } /* In HPUX 8.0's shared library scheme, special relocations are needed for function labels if they might be passed to a function in a shared library (because shared libraries don't live in code space), and special magic is needed to construct their address. */ void hppa_encode_label (rtx sym) { const char *str = XSTR (sym, 0); int len = strlen (str) + 1; char *newstr, *p; p = newstr = alloca (len + 1); *p++ = '@'; strcpy (p, str); XSTR (sym, 0) = ggc_alloc_string (newstr, len); } static void pa_encode_section_info (tree decl, rtx rtl, int first) { if (first && TEXT_SPACE_P (decl)) { SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; if (TREE_CODE (decl) == FUNCTION_DECL) hppa_encode_label (XEXP (rtl, 0)); } } /* This is sort of inverse to pa_encode_section_info. */ static const char * pa_strip_name_encoding (const char *str) { str += (*str == '@'); str += (*str == '*'); return str; } int function_label_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return GET_CODE (op) == SYMBOL_REF && FUNCTION_NAME_P (XSTR (op, 0)); } /* Returns 1 if OP is a function label involved in a simple addition with a constant. Used to keep certain patterns from matching during instruction combination. */ int is_function_label_plus_const (rtx op) { /* Strip off any CONST. */ if (GET_CODE (op) == CONST) op = XEXP (op, 0); return (GET_CODE (op) == PLUS && function_label_operand (XEXP (op, 0), Pmode) && GET_CODE (XEXP (op, 1)) == CONST_INT); } /* Output assembly code for a thunk to FUNCTION. */ static void pa_asm_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED, tree function) { const char *fname = XSTR (XEXP (DECL_RTL (function), 0), 0); const char *tname = XSTR (XEXP (DECL_RTL (thunk_fndecl), 0), 0); int val_14 = VAL_14_BITS_P (delta); int nbytes = 0; static unsigned int current_thunk_number; char label[16]; ASM_OUTPUT_LABEL (file, tname); fprintf (file, "\t.PROC\n\t.CALLINFO FRAME=0,NO_CALLS\n\t.ENTRY\n"); fname = (*targetm.strip_name_encoding) (fname); tname = (*targetm.strip_name_encoding) (tname); /* Output the thunk. We know that the function is in the same translation unit (i.e., the same space) as the thunk, and that thunks are output after their method. Thus, we don't need an external branch to reach the function. With SOM and GAS, functions and thunks are effectively in different sections. Thus, we can always use a IA-relative branch and the linker will add a long branch stub if necessary. However, we have to be careful when generating PIC code on the SOM port to ensure that the sequence does not transfer to an import stub for the target function as this could clobber the return value saved at SP-24. This would also apply to the 32-bit linux port if the multi-space model is implemented. */ if ((!TARGET_LONG_CALLS && TARGET_SOM && !TARGET_PORTABLE_RUNTIME && !(flag_pic && TREE_PUBLIC (function)) && (TARGET_GAS || last_address < 262132)) || (!TARGET_LONG_CALLS && !TARGET_SOM && !TARGET_PORTABLE_RUNTIME && ((targetm.have_named_sections && DECL_SECTION_NAME (thunk_fndecl) != NULL /* The GNU 64-bit linker has rather poor stub management. So, we use a long branch from thunks that aren't in the same section as the target function. */ && ((!TARGET_64BIT && (DECL_SECTION_NAME (thunk_fndecl) != DECL_SECTION_NAME (function))) || ((DECL_SECTION_NAME (thunk_fndecl) == DECL_SECTION_NAME (function)) && last_address < 262132))) || (!targetm.have_named_sections && last_address < 262132)))) { if (val_14) { fprintf (file, "\tb %s\n\tldo " HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", fname, delta); nbytes += 8; } else { fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n", delta); fprintf (file, "\tb %s\n\tldo R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", fname, delta); nbytes += 12; } } else if (TARGET_64BIT) { /* We only have one call-clobbered scratch register, so we can't make use of the delay slot if delta doesn't fit in 14 bits. */ if (!val_14) fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n\tldo R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", delta, delta); fprintf (file, "\tb,l .+8,%%r1\n"); if (TARGET_GAS) { fprintf (file, "\taddil L'%s-$PIC_pcrel$0+4,%%r1\n", fname); fprintf (file, "\tldo R'%s-$PIC_pcrel$0+8(%%r1),%%r1\n", fname); } else { int off = val_14 ? 8 : 16; fprintf (file, "\taddil L'%s-%s-%d,%%r1\n", fname, tname, off); fprintf (file, "\tldo R'%s-%s-%d(%%r1),%%r1\n", fname, tname, off); } if (val_14) { fprintf (file, "\tbv %%r0(%%r1)\n\tldo "); fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", delta); nbytes += 20; } else { fprintf (file, "\tbv,n %%r0(%%r1)\n"); nbytes += 24; } } else if (TARGET_PORTABLE_RUNTIME) { fprintf (file, "\tldil L'%s,%%r1\n", fname); fprintf (file, "\tldo R'%s(%%r1),%%r22\n", fname); if (val_14) { fprintf (file, "\tbv %%r0(%%r22)\n\tldo "); fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", delta); nbytes += 16; } else { fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n", delta); fprintf (file, "\tbv %%r0(%%r22)\n\tldo "); fprintf (file, "R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", delta); nbytes += 20; } } else if (TARGET_SOM && flag_pic && TREE_PUBLIC (function)) { /* The function is accessible from outside this module. The only way to avoid an import stub between the thunk and function is to call the function directly with an indirect sequence similar to that used by $$dyncall. This is possible because $$dyncall acts as the import stub in an indirect call. */ const char *lab; ASM_GENERATE_INTERNAL_LABEL (label, "LTHN", current_thunk_number); lab = (*targetm.strip_name_encoding) (label); fprintf (file, "\taddil LT'%s,%%r19\n", lab); fprintf (file, "\tldw RT'%s(%%r1),%%r22\n", lab); fprintf (file, "\tldw 0(%%sr0,%%r22),%%r22\n"); fprintf (file, "\tbb,>=,n %%r22,30,.+16\n"); fprintf (file, "\tdepi 0,31,2,%%r22\n"); fprintf (file, "\tldw 4(%%sr0,%%r22),%%r19\n"); fprintf (file, "\tldw 0(%%sr0,%%r22),%%r22\n"); if (!val_14) { fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n", delta); nbytes += 4; } if (TARGET_PA_20) { fprintf (file, "\tbve (%%r22)\n\tldo "); nbytes += 36; } else { if (TARGET_NO_SPACE_REGS) { fprintf (file, "\tbe 0(%%sr4,%%r22)\n\tldo "); nbytes += 36; } else { fprintf (file, "\tldsid (%%sr0,%%r22),%%r21\n"); fprintf (file, "\tmtsp %%r21,%%sr0\n"); fprintf (file, "\tbe 0(%%sr0,%%r22)\n\tldo "); nbytes += 44; } } if (val_14) fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", delta); else fprintf (file, "R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", delta); } else if (flag_pic) { if (TARGET_PA_20) fprintf (file, "\tb,l .+8,%%r1\n"); else fprintf (file, "\tbl .+8,%%r1\n"); if (TARGET_SOM || !TARGET_GAS) { fprintf (file, "\taddil L'%s-%s-8,%%r1\n", fname, tname); fprintf (file, "\tldo R'%s-%s-8(%%r1),%%r22\n", fname, tname); } else { fprintf (file, "\taddil L'%s-$PIC_pcrel$0+4,%%r1\n", fname); fprintf (file, "\tldo R'%s-$PIC_pcrel$0+8(%%r1),%%r22\n", fname); } if (val_14) { fprintf (file, "\tbv %%r0(%%r22)\n\tldo "); fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", delta); nbytes += 20; } else { fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n", delta); fprintf (file, "\tbv %%r0(%%r22)\n\tldo "); fprintf (file, "R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", delta); nbytes += 24; } } else { if (!val_14) fprintf (file, "\taddil L'" HOST_WIDE_INT_PRINT_DEC ",%%r26\n", delta); fprintf (file, "\tldil L'%s,%%r22\n", fname); fprintf (file, "\tbe R'%s(%%sr4,%%r22)\n\tldo ", fname); if (val_14) { fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%%r26),%%r26\n", delta); nbytes += 12; } else { fprintf (file, "R'" HOST_WIDE_INT_PRINT_DEC "(%%r1),%%r26\n", delta); nbytes += 16; } } fprintf (file, "\t.EXIT\n\t.PROCEND\n"); if (TARGET_SOM && flag_pic && TREE_PUBLIC (function)) { data_section (); fprintf (file, "\t.align 4\n"); ASM_OUTPUT_LABEL (file, label); fprintf (file, "\t.word P'%s\n", fname); function_section (thunk_fndecl); } current_thunk_number++; nbytes = ((nbytes + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1) & ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)); last_address += nbytes; update_total_code_bytes (nbytes); } /* Only direct calls to static functions are allowed to be sibling (tail) call optimized. This restriction is necessary because some linker generated stubs will store return pointers into rp' in some cases which might clobber a live value already in rp'. In a sibcall the current function and the target function share stack space. Thus if the path to the current function and the path to the target function save a value in rp', they save the value into the same stack slot, which has undesirable consequences. Because of the deferred binding nature of shared libraries any function with external scope could be in a different load module and thus require rp' to be saved when calling that function. So sibcall optimizations can only be safe for static function. Note that GCC never needs return value relocations, so we don't have to worry about static calls with return value relocations (which require saving rp'). It is safe to perform a sibcall optimization when the target function will never return. */ static bool pa_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) { /* Sibcalls are ok for TARGET_ELF32 as along as the linker is used in single subspace mode and the call is not indirect. As far as I know, there is no operating system support for the multiple subspace mode. It might be possible to support indirect calls if we didn't use $$dyncall (see the indirect sequence generated in output_call). */ if (TARGET_ELF32) return (decl != NULL_TREE); /* Sibcalls are not ok because the arg pointer register is not a fixed register. This prevents the sibcall optimization from occurring. In addition, there are problems with stub placement using GNU ld. This is because a normal sibcall branch uses a 17-bit relocation while a regular call branch uses a 22-bit relocation. As a result, more care needs to be taken in the placement of long-branch stubs. */ if (TARGET_64BIT) return false; return (decl && !TARGET_PORTABLE_RUNTIME && !TREE_PUBLIC (decl)); } /* Returns 1 if the 6 operands specified in OPERANDS are suitable for use in fmpyadd instructions. */ int fmpyaddoperands (rtx *operands) { enum machine_mode mode = GET_MODE (operands[0]); /* Must be a floating point mode. */ if (mode != SFmode && mode != DFmode) return 0; /* All modes must be the same. */ if (! (mode == GET_MODE (operands[1]) && mode == GET_MODE (operands[2]) && mode == GET_MODE (operands[3]) && mode == GET_MODE (operands[4]) && mode == GET_MODE (operands[5]))) return 0; /* All operands must be registers. */ if (! (GET_CODE (operands[1]) == REG && GET_CODE (operands[2]) == REG && GET_CODE (operands[3]) == REG && GET_CODE (operands[4]) == REG && GET_CODE (operands[5]) == REG)) return 0; /* Only 2 real operands to the addition. One of the input operands must be the same as the output operand. */ if (! rtx_equal_p (operands[3], operands[4]) && ! rtx_equal_p (operands[3], operands[5])) return 0; /* Inout operand of add can not conflict with any operands from multiply. */ if (rtx_equal_p (operands[3], operands[0]) || rtx_equal_p (operands[3], operands[1]) || rtx_equal_p (operands[3], operands[2])) return 0; /* multiply can not feed into addition operands. */ if (rtx_equal_p (operands[4], operands[0]) || rtx_equal_p (operands[5], operands[0])) return 0; /* SFmode limits the registers to the upper 32 of the 32bit FP regs. */ if (mode == SFmode && (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS)) return 0; /* Passed. Operands are suitable for fmpyadd. */ return 1; } #if !defined(USE_COLLECT2) static void pa_asm_out_constructor (rtx symbol, int priority) { if (!function_label_operand (symbol, VOIDmode)) hppa_encode_label (symbol); #ifdef CTORS_SECTION_ASM_OP default_ctor_section_asm_out_constructor (symbol, priority); #else # ifdef TARGET_ASM_NAMED_SECTION default_named_section_asm_out_constructor (symbol, priority); # else default_stabs_asm_out_constructor (symbol, priority); # endif #endif } static void pa_asm_out_destructor (rtx symbol, int priority) { if (!function_label_operand (symbol, VOIDmode)) hppa_encode_label (symbol); #ifdef DTORS_SECTION_ASM_OP default_dtor_section_asm_out_destructor (symbol, priority); #else # ifdef TARGET_ASM_NAMED_SECTION default_named_section_asm_out_destructor (symbol, priority); # else default_stabs_asm_out_destructor (symbol, priority); # endif #endif } #endif /* Returns 1 if the 6 operands specified in OPERANDS are suitable for use in fmpysub instructions. */ int fmpysuboperands (rtx *operands) { enum machine_mode mode = GET_MODE (operands[0]); /* Must be a floating point mode. */ if (mode != SFmode && mode != DFmode) return 0; /* All modes must be the same. */ if (! (mode == GET_MODE (operands[1]) && mode == GET_MODE (operands[2]) && mode == GET_MODE (operands[3]) && mode == GET_MODE (operands[4]) && mode == GET_MODE (operands[5]))) return 0; /* All operands must be registers. */ if (! (GET_CODE (operands[1]) == REG && GET_CODE (operands[2]) == REG && GET_CODE (operands[3]) == REG && GET_CODE (operands[4]) == REG && GET_CODE (operands[5]) == REG)) return 0; /* Only 2 real operands to the subtraction. Subtraction is not a commutative operation, so operands[4] must be the same as operand[3]. */ if (! rtx_equal_p (operands[3], operands[4])) return 0; /* multiply can not feed into subtraction. */ if (rtx_equal_p (operands[5], operands[0])) return 0; /* Inout operand of sub can not conflict with any operands from multiply. */ if (rtx_equal_p (operands[3], operands[0]) || rtx_equal_p (operands[3], operands[1]) || rtx_equal_p (operands[3], operands[2])) return 0; /* SFmode limits the registers to the upper 32 of the 32bit FP regs. */ if (mode == SFmode && (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS || REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS)) return 0; /* Passed. Operands are suitable for fmpysub. */ return 1; } int plus_xor_ior_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == PLUS || GET_CODE (op) == XOR || GET_CODE (op) == IOR); } /* Return 1 if the given constant is 2, 4, or 8. These are the valid constants for shadd instructions. */ static int shadd_constant_p (int val) { if (val == 2 || val == 4 || val == 8) return 1; else return 0; } /* Return 1 if OP is a CONST_INT with the value 2, 4, or 8. These are the valid constant for shadd instructions. */ int shadd_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == CONST_INT && shadd_constant_p (INTVAL (op))); } /* Return 1 if OP is valid as a base or index register in a REG+REG address. */ int borx_reg_operand (rtx op, enum machine_mode mode) { if (GET_CODE (op) != REG) return 0; /* We must reject virtual registers as the only expressions that can be instantiated are REG and REG+CONST. */ if (op == virtual_incoming_args_rtx || op == virtual_stack_vars_rtx || op == virtual_stack_dynamic_rtx || op == virtual_outgoing_args_rtx || op == virtual_cfa_rtx) return 0; /* While it's always safe to index off the frame pointer, it's not profitable to do so when the frame pointer is being eliminated. */ if (!reload_completed && flag_omit_frame_pointer && !current_function_calls_alloca && op == frame_pointer_rtx) return 0; return register_operand (op, mode); } /* Return 1 if this operand is anything other than a hard register. */ int non_hard_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return ! (GET_CODE (op) == REG && REGNO (op) < FIRST_PSEUDO_REGISTER); } /* Return 1 if INSN branches forward. Should be using insn_addresses to avoid walking through all the insns... */ static int forward_branch_p (rtx insn) { rtx label = JUMP_LABEL (insn); while (insn) { if (insn == label) break; else insn = NEXT_INSN (insn); } return (insn == label); } /* Return 1 if OP is an equality comparison, else return 0. */ int eq_neq_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return 1 if OP is an operator suitable for use in a movb instruction. */ int movb_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return (GET_CODE (op) == EQ || GET_CODE (op) == NE || GET_CODE (op) == LT || GET_CODE (op) == GE); } /* Return 1 if INSN is in the delay slot of a call instruction. */ int jump_in_call_delay (rtx insn) { if (GET_CODE (insn) != JUMP_INSN) return 0; if (PREV_INSN (insn) && PREV_INSN (PREV_INSN (insn)) && GET_CODE (next_real_insn (PREV_INSN (PREV_INSN (insn)))) == INSN) { rtx test_insn = next_real_insn (PREV_INSN (PREV_INSN (insn))); return (GET_CODE (PATTERN (test_insn)) == SEQUENCE && XVECEXP (PATTERN (test_insn), 0, 1) == insn); } else return 0; } /* Output an unconditional move and branch insn. */ const char * output_parallel_movb (rtx *operands, int length) { /* These are the cases in which we win. */ if (length == 4) return "mov%I1b,tr %1,%0,%2"; /* None of these cases wins, but they don't lose either. */ if (dbr_sequence_length () == 0) { /* Nothing in the delay slot, fake it by putting the combined insn (the copy or add) in the delay slot of a bl. */ if (GET_CODE (operands[1]) == CONST_INT) return "b %2\n\tldi %1,%0"; else return "b %2\n\tcopy %1,%0"; } else { /* Something in the delay slot, but we've got a long branch. */ if (GET_CODE (operands[1]) == CONST_INT) return "ldi %1,%0\n\tb %2"; else return "copy %1,%0\n\tb %2"; } } /* Output an unconditional add and branch insn. */ const char * output_parallel_addb (rtx *operands, int length) { /* To make life easy we want operand0 to be the shared input/output operand and operand1 to be the readonly operand. */ if (operands[0] == operands[1]) operands[1] = operands[2]; /* These are the cases in which we win. */ if (length == 4) return "add%I1b,tr %1,%0,%3"; /* None of these cases win, but they don't lose either. */ if (dbr_sequence_length () == 0) { /* Nothing in the delay slot, fake it by putting the combined insn (the copy or add) in the delay slot of a bl. */ return "b %3\n\tadd%I1 %1,%0,%0"; } else { /* Something in the delay slot, but we've got a long branch. */ return "add%I1 %1,%0,%0\n\tb %3"; } } /* Return nonzero if INSN (a jump insn) immediately follows a call to a named function. This is used to avoid filling the delay slot of the jump since it can usually be eliminated by modifying RP in the delay slot of the call. */ int following_call (rtx insn) { if (! TARGET_JUMP_IN_DELAY) return 0; /* Find the previous real insn, skipping NOTEs. */ insn = PREV_INSN (insn); while (insn && GET_CODE (insn) == NOTE) insn = PREV_INSN (insn); /* Check for CALL_INSNs and millicode calls. */ if (insn && ((GET_CODE (insn) == CALL_INSN && get_attr_type (insn) != TYPE_DYNCALL) || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) != SEQUENCE && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER && get_attr_type (insn) == TYPE_MILLI))) return 1; return 0; } /* We use this hook to perform a PA specific optimization which is difficult to do in earlier passes. We want the delay slots of branches within jump tables to be filled. None of the compiler passes at the moment even has the notion that a PA jump table doesn't contain addresses, but instead contains actual instructions! Because we actually jump into the table, the addresses of each entry must stay constant in relation to the beginning of the table (which itself must stay constant relative to the instruction to jump into it). I don't believe we can guarantee earlier passes of the compiler will adhere to those rules. So, late in the compilation process we find all the jump tables, and expand them into real code -- eg each entry in the jump table vector will get an appropriate label followed by a jump to the final target. Reorg and the final jump pass can then optimize these branches and fill their delay slots. We end up with smaller, more efficient code. The jump instructions within the table are special; we must be able to identify them during assembly output (if the jumps don't get filled we need to emit a nop rather than nullifying the delay slot)). We identify jumps in switch tables by using insns with the attribute type TYPE_BTABLE_BRANCH. We also surround the jump table itself with BEGIN_BRTAB and END_BRTAB insns. This serves two purposes, first it prevents jump.c from noticing that the last N entries in the table jump to the instruction immediately after the table and deleting the jumps. Second, those insns mark where we should emit .begin_brtab and .end_brtab directives when using GAS (allows for better link time optimizations). */ static void pa_reorg (void) { rtx insn; remove_useless_addtr_insns (1); if (pa_cpu < PROCESSOR_8000) pa_combine_instructions (); /* This is fairly cheap, so always run it if optimizing. */ if (optimize > 0 && !TARGET_BIG_SWITCH) { /* Find and explode all ADDR_VEC or ADDR_DIFF_VEC insns. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { rtx pattern, tmp, location, label; unsigned int length, i; /* Find an ADDR_VEC or ADDR_DIFF_VEC insn to explode. */ if (GET_CODE (insn) != JUMP_INSN || (GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)) continue; /* Emit marker for the beginning of the branch table. */ emit_insn_before (gen_begin_brtab (), insn); pattern = PATTERN (insn); location = PREV_INSN (insn); length = XVECLEN (pattern, GET_CODE (pattern) == ADDR_DIFF_VEC); for (i = 0; i < length; i++) { /* Emit a label before each jump to keep jump.c from removing this code. */ tmp = gen_label_rtx (); LABEL_NUSES (tmp) = 1; emit_label_after (tmp, location); location = NEXT_INSN (location); if (GET_CODE (pattern) == ADDR_VEC) label = XEXP (XVECEXP (pattern, 0, i), 0); else label = XEXP (XVECEXP (pattern, 1, i), 0); tmp = gen_short_jump (label); /* Emit the jump itself. */ tmp = emit_jump_insn_after (tmp, location); JUMP_LABEL (tmp) = label; LABEL_NUSES (label)++; location = NEXT_INSN (location); /* Emit a BARRIER after the jump. */ emit_barrier_after (location); location = NEXT_INSN (location); } /* Emit marker for the end of the branch table. */ emit_insn_before (gen_end_brtab (), location); location = NEXT_INSN (location); emit_barrier_after (location); /* Delete the ADDR_VEC or ADDR_DIFF_VEC. */ delete_insn (insn); } } else { /* Still need brtab marker insns. FIXME: the presence of these markers disables output of the branch table to readonly memory, and any alignment directives that might be needed. Possibly, the begin_brtab insn should be output before the label for the table. This doesn't matter at the moment since the tables are always output in the text section. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Find an ADDR_VEC insn. */ if (GET_CODE (insn) != JUMP_INSN || (GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)) continue; /* Now generate markers for the beginning and end of the branch table. */ emit_insn_before (gen_begin_brtab (), insn); emit_insn_after (gen_end_brtab (), insn); } } } /* The PA has a number of odd instructions which can perform multiple tasks at once. On first generation PA machines (PA1.0 and PA1.1) it may be profitable to combine two instructions into one instruction with two outputs. It's not profitable PA2.0 machines because the two outputs would take two slots in the reorder buffers. This routine finds instructions which can be combined and combines them. We only support some of the potential combinations, and we only try common ways to find suitable instructions. * addb can add two registers or a register and a small integer and jump to a nearby (+-8k) location. Normally the jump to the nearby location is conditional on the result of the add, but by using the "true" condition we can make the jump unconditional. Thus addb can perform two independent operations in one insn. * movb is similar to addb in that it can perform a reg->reg or small immediate->reg copy and jump to a nearby (+-8k location). * fmpyadd and fmpysub can perform a FP multiply and either an FP add or FP sub if the operands of the multiply and add/sub are independent (there are other minor restrictions). Note both the fmpy and fadd/fsub can in theory move to better spots according to data dependencies, but for now we require the fmpy stay at a fixed location. * Many of the memory operations can perform pre & post updates of index registers. GCC's pre/post increment/decrement addressing is far too simple to take advantage of all the possibilities. This pass may not be suitable since those insns may not be independent. * comclr can compare two ints or an int and a register, nullify the following instruction and zero some other register. This is more difficult to use as it's harder to find an insn which will generate a comclr than finding something like an unconditional branch. (conditional moves & long branches create comclr insns). * Most arithmetic operations can conditionally skip the next instruction. They can be viewed as "perform this operation and conditionally jump to this nearby location" (where nearby is an insns away). These are difficult to use due to the branch length restrictions. */ static void pa_combine_instructions (void) { rtx anchor, new; /* This can get expensive since the basic algorithm is on the order of O(n^2) (or worse). Only do it for -O2 or higher levels of optimization. */ if (optimize < 2) return; /* Walk down the list of insns looking for "anchor" insns which may be combined with "floating" insns. As the name implies, "anchor" instructions don't move, while "floating" insns may move around. */ new = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, NULL_RTX, NULL_RTX)); new = make_insn_raw (new); for (anchor = get_insns (); anchor; anchor = NEXT_INSN (anchor)) { enum attr_pa_combine_type anchor_attr; enum attr_pa_combine_type floater_attr; /* We only care about INSNs, JUMP_INSNs, and CALL_INSNs. Also ignore any special USE insns. */ if ((GET_CODE (anchor) != INSN && GET_CODE (anchor) != JUMP_INSN && GET_CODE (anchor) != CALL_INSN) || GET_CODE (PATTERN (anchor)) == USE || GET_CODE (PATTERN (anchor)) == CLOBBER || GET_CODE (PATTERN (anchor)) == ADDR_VEC || GET_CODE (PATTERN (anchor)) == ADDR_DIFF_VEC) continue; anchor_attr = get_attr_pa_combine_type (anchor); /* See if anchor is an insn suitable for combination. */ if (anchor_attr == PA_COMBINE_TYPE_FMPY || anchor_attr == PA_COMBINE_TYPE_FADDSUB || (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH && ! forward_branch_p (anchor))) { rtx floater; for (floater = PREV_INSN (anchor); floater; floater = PREV_INSN (floater)) { if (GET_CODE (floater) == NOTE || (GET_CODE (floater) == INSN && (GET_CODE (PATTERN (floater)) == USE || GET_CODE (PATTERN (floater)) == CLOBBER))) continue; /* Anything except a regular INSN will stop our search. */ if (GET_CODE (floater) != INSN || GET_CODE (PATTERN (floater)) == ADDR_VEC || GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC) { floater = NULL_RTX; break; } /* See if FLOATER is suitable for combination with the anchor. */ floater_attr = get_attr_pa_combine_type (floater); if ((anchor_attr == PA_COMBINE_TYPE_FMPY && floater_attr == PA_COMBINE_TYPE_FADDSUB) || (anchor_attr == PA_COMBINE_TYPE_FADDSUB && floater_attr == PA_COMBINE_TYPE_FMPY)) { /* If ANCHOR and FLOATER can be combined, then we're done with this pass. */ if (pa_can_combine_p (new, anchor, floater, 0, SET_DEST (PATTERN (floater)), XEXP (SET_SRC (PATTERN (floater)), 0), XEXP (SET_SRC (PATTERN (floater)), 1))) break; } else if (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH && floater_attr == PA_COMBINE_TYPE_ADDMOVE) { if (GET_CODE (SET_SRC (PATTERN (floater))) == PLUS) { if (pa_can_combine_p (new, anchor, floater, 0, SET_DEST (PATTERN (floater)), XEXP (SET_SRC (PATTERN (floater)), 0), XEXP (SET_SRC (PATTERN (floater)), 1))) break; } else { if (pa_can_combine_p (new, anchor, floater, 0, SET_DEST (PATTERN (floater)), SET_SRC (PATTERN (floater)), SET_SRC (PATTERN (floater)))) break; } } } /* If we didn't find anything on the backwards scan try forwards. */ if (!floater && (anchor_attr == PA_COMBINE_TYPE_FMPY || anchor_attr == PA_COMBINE_TYPE_FADDSUB)) { for (floater = anchor; floater; floater = NEXT_INSN (floater)) { if (GET_CODE (floater) == NOTE || (GET_CODE (floater) == INSN && (GET_CODE (PATTERN (floater)) == USE || GET_CODE (PATTERN (floater)) == CLOBBER))) continue; /* Anything except a regular INSN will stop our search. */ if (GET_CODE (floater) != INSN || GET_CODE (PATTERN (floater)) == ADDR_VEC || GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC) { floater = NULL_RTX; break; } /* See if FLOATER is suitable for combination with the anchor. */ floater_attr = get_attr_pa_combine_type (floater); if ((anchor_attr == PA_COMBINE_TYPE_FMPY && floater_attr == PA_COMBINE_TYPE_FADDSUB) || (anchor_attr == PA_COMBINE_TYPE_FADDSUB && floater_attr == PA_COMBINE_TYPE_FMPY)) { /* If ANCHOR and FLOATER can be combined, then we're done with this pass. */ if (pa_can_combine_p (new, anchor, floater, 1, SET_DEST (PATTERN (floater)), XEXP (SET_SRC (PATTERN (floater)), 0), XEXP (SET_SRC (PATTERN (floater)), 1))) break; } } } /* FLOATER will be nonzero if we found a suitable floating insn for combination with ANCHOR. */ if (floater && (anchor_attr == PA_COMBINE_TYPE_FADDSUB || anchor_attr == PA_COMBINE_TYPE_FMPY)) { /* Emit the new instruction and delete the old anchor. */ emit_insn_before (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, PATTERN (anchor), PATTERN (floater))), anchor); PUT_CODE (anchor, NOTE); NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (anchor) = 0; /* Emit a special USE insn for FLOATER, then delete the floating insn. */ emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater); delete_insn (floater); continue; } else if (floater && anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH) { rtx temp; /* Emit the new_jump instruction and delete the old anchor. */ temp = emit_jump_insn_before (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, PATTERN (anchor), PATTERN (floater))), anchor); JUMP_LABEL (temp) = JUMP_LABEL (anchor); PUT_CODE (anchor, NOTE); NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (anchor) = 0; /* Emit a special USE insn for FLOATER, then delete the floating insn. */ emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater); delete_insn (floater); continue; } } } } static int pa_can_combine_p (rtx new, rtx anchor, rtx floater, int reversed, rtx dest, rtx src1, rtx src2) { int insn_code_number; rtx start, end; /* Create a PARALLEL with the patterns of ANCHOR and FLOATER, try to recognize it, then test constraints for the resulting pattern. If the pattern doesn't match or the constraints aren't met keep searching for a suitable floater insn. */ XVECEXP (PATTERN (new), 0, 0) = PATTERN (anchor); XVECEXP (PATTERN (new), 0, 1) = PATTERN (floater); INSN_CODE (new) = -1; insn_code_number = recog_memoized (new); if (insn_code_number < 0 || (extract_insn (new), ! constrain_operands (1))) return 0; if (reversed) { start = anchor; end = floater; } else { start = floater; end = anchor; } /* There's up to three operands to consider. One output and two inputs. The output must not be used between FLOATER & ANCHOR exclusive. The inputs must not be set between FLOATER and ANCHOR exclusive. */ if (reg_used_between_p (dest, start, end)) return 0; if (reg_set_between_p (src1, start, end)) return 0; if (reg_set_between_p (src2, start, end)) return 0; /* If we get here, then everything is good. */ return 1; } /* Return nonzero if references for INSN are delayed. Millicode insns are actually function calls with some special constraints on arguments and register usage. Millicode calls always expect their arguments in the integer argument registers, and always return their result in %r29 (ret1). They are expected to clobber their arguments, %r1, %r29, and the return pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else. This function tells reorg that the references to arguments and millicode calls do not appear to happen until after the millicode call. This allows reorg to put insns which set the argument registers into the delay slot of the millicode call -- thus they act more like traditional CALL_INSNs. Note we can not consider side effects of the insn to be delayed because the branch and link insn will clobber the return pointer. If we happened to use the return pointer in the delay slot of the call, then we lose. get_attr_type will try to recognize the given insn, so make sure to filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns in particular. */ int insn_refs_are_delayed (rtx insn) { return ((GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) != SEQUENCE && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER && get_attr_type (insn) == TYPE_MILLI)); } /* On the HP-PA the value is found in register(s) 28(-29), unless the mode is SF or DF. Then the value is returned in fr4 (32). This must perform the same promotions as PROMOTE_MODE, else TARGET_PROMOTE_FUNCTION_RETURN will not work correctly. Small structures must be returned in a PARALLEL on PA64 in order to match the HP Compiler ABI. */ rtx function_value (tree valtype, tree func ATTRIBUTE_UNUSED) { enum machine_mode valmode; /* Aggregates with a size less than or equal to 128 bits are returned in GR 28(-29). They are left justified. The pad bits are undefined. Larger aggregates are returned in memory. */ if (TARGET_64BIT && AGGREGATE_TYPE_P (valtype)) { rtx loc[2]; int i, offset = 0; int ub = int_size_in_bytes (valtype) <= UNITS_PER_WORD ? 1 : 2; for (i = 0; i < ub; i++) { loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DImode, 28 + i), GEN_INT (offset)); offset += 8; } return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (ub, loc)); } if ((INTEGRAL_TYPE_P (valtype) && TYPE_PRECISION (valtype) < BITS_PER_WORD) || POINTER_TYPE_P (valtype)) valmode = word_mode; else valmode = TYPE_MODE (valtype); if (TREE_CODE (valtype) == REAL_TYPE && TYPE_MODE (valtype) != TFmode && !TARGET_SOFT_FLOAT) return gen_rtx_REG (valmode, 32); return gen_rtx_REG (valmode, 28); } /* Return the location of a parameter that is passed in a register or NULL if the parameter has any component that is passed in memory. This is new code and will be pushed to into the net sources after further testing. ??? We might want to restructure this so that it looks more like other ports. */ rtx function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named ATTRIBUTE_UNUSED) { int max_arg_words = (TARGET_64BIT ? 8 : 4); int alignment = 0; int arg_size; int fpr_reg_base; int gpr_reg_base; rtx retval; if (mode == VOIDmode) return NULL_RTX; arg_size = FUNCTION_ARG_SIZE (mode, type); /* If this arg would be passed partially or totally on the stack, then this routine should return zero. FUNCTION_ARG_PARTIAL_NREGS will handle arguments which are split between regs and stack slots if the ABI mandates split arguments. */ if (! TARGET_64BIT) { /* The 32-bit ABI does not split arguments. */ if (cum->words + arg_size > max_arg_words) return NULL_RTX; } else { if (arg_size > 1) alignment = cum->words & 1; if (cum->words + alignment >= max_arg_words) return NULL_RTX; } /* The 32bit ABIs and the 64bit ABIs are rather different, particularly in their handling of FP registers. We might be able to cleverly share code between them, but I'm not going to bother in the hope that splitting them up results in code that is more easily understood. */ if (TARGET_64BIT) { /* Advance the base registers to their current locations. Remember, gprs grow towards smaller register numbers while fprs grow to higher register numbers. Also remember that although FP regs are 32-bit addressable, we pretend that the registers are 64-bits wide. */ gpr_reg_base = 26 - cum->words; fpr_reg_base = 32 + cum->words; /* Arguments wider than one word and small aggregates need special treatment. */ if (arg_size > 1 || mode == BLKmode || (type && AGGREGATE_TYPE_P (type))) { /* Double-extended precision (80-bit), quad-precision (128-bit) and aggregates including complex numbers are aligned on 128-bit boundaries. The first eight 64-bit argument slots are associated one-to-one, with general registers r26 through r19, and also with floating-point registers fr4 through fr11. Arguments larger than one word are always passed in general registers. Using a PARALLEL with a word mode register results in left justified data on a big-endian target. */ rtx loc[8]; int i, offset = 0, ub = arg_size; /* Align the base register. */ gpr_reg_base -= alignment; ub = MIN (ub, max_arg_words - cum->words - alignment); for (i = 0; i < ub; i++) { loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DImode, gpr_reg_base), GEN_INT (offset)); gpr_reg_base -= 1; offset += 8; } return gen_rtx_PARALLEL (mode, gen_rtvec_v (ub, loc)); } } else { /* If the argument is larger than a word, then we know precisely which registers we must use. */ if (arg_size > 1) { if (cum->words) { gpr_reg_base = 23; fpr_reg_base = 38; } else { gpr_reg_base = 25; fpr_reg_base = 34; } /* Structures 5 to 8 bytes in size are passed in the general registers in the same manner as other non floating-point objects. The data is right-justified and zero-extended to 64 bits. This is magic. Normally, using a PARALLEL results in left justified data on a big-endian target. However, using a single double-word register provides the required right justification for 5 to 8 byte structures. This has nothing to do with the direction of padding specified for the argument. It has to do with how the data is widened and shifted into and from the register. Aside from adding load_multiple and store_multiple patterns, this is the only way that I have found to obtain right justification of BLKmode data when it has a size greater than one word. Splitting the operation into two SImode loads or returning a DImode REG results in left justified data. */ if (mode == BLKmode) { rtx loc = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DImode, gpr_reg_base), const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (1, loc)); } } else { /* We have a single word (32 bits). A simple computation will get us the register #s we need. */ gpr_reg_base = 26 - cum->words; fpr_reg_base = 32 + 2 * cum->words; } } /* Determine if the argument needs to be passed in both general and floating point registers. */ if (((TARGET_PORTABLE_RUNTIME || TARGET_64BIT || TARGET_ELF32) /* If we are doing soft-float with portable runtime, then there is no need to worry about FP regs. */ && !TARGET_SOFT_FLOAT /* The parameter must be some kind of float, else we can just pass it in integer registers. */ && FLOAT_MODE_P (mode) /* The target function must not have a prototype. */ && cum->nargs_prototype <= 0 /* libcalls do not need to pass items in both FP and general registers. */ && type != NULL_TREE /* All this hair applies to "outgoing" args only. This includes sibcall arguments setup with FUNCTION_INCOMING_ARG. */ && !cum->incoming) /* Also pass outgoing floating arguments in both registers in indirect calls with the 32 bit ABI and the HP assembler since there is no way to the specify argument locations in static functions. */ || (!TARGET_64BIT && !TARGET_GAS && !cum->incoming && cum->indirect && FLOAT_MODE_P (mode))) { retval = gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, fpr_reg_base), const0_rtx), gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, gpr_reg_base), const0_rtx))); } else { /* See if we should pass this parameter in a general register. */ if (TARGET_SOFT_FLOAT /* Indirect calls in the normal 32bit ABI require all arguments to be passed in general registers. */ || (!TARGET_PORTABLE_RUNTIME && !TARGET_64BIT && !TARGET_ELF32 && cum->indirect) /* If the parameter is not a floating point parameter, then it belongs in GPRs. */ || !FLOAT_MODE_P (mode)) retval = gen_rtx_REG (mode, gpr_reg_base); else retval = gen_rtx_REG (mode, fpr_reg_base); } return retval; } /* If this arg would be passed totally in registers or totally on the stack, then this routine should return zero. It is currently called only for the 64-bit target. */ int function_arg_partial_nregs (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named ATTRIBUTE_UNUSED) { unsigned int max_arg_words = 8; unsigned int offset = 0; if (FUNCTION_ARG_SIZE (mode, type) > 1 && (cum->words & 1)) offset = 1; if (cum->words + offset + FUNCTION_ARG_SIZE (mode, type) <= max_arg_words) /* Arg fits fully into registers. */ return 0; else if (cum->words + offset >= max_arg_words) /* Arg fully on the stack. */ return 0; else /* Arg is split. */ return max_arg_words - cum->words - offset; } /* Return 1 if this is a comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int cmpib_comparison_operator (rtx op, enum machine_mode mode) { return ((mode == VOIDmode || GET_MODE (op) == mode) && (GET_CODE (op) == EQ || GET_CODE (op) == NE || GET_CODE (op) == GT || GET_CODE (op) == GTU || GET_CODE (op) == GE || GET_CODE (op) == LT || GET_CODE (op) == LE || GET_CODE (op) == LEU)); } /* On hpux10, the linker will give an error if we have a reference in the read-only data section to a symbol defined in a shared library. Therefore, expressions that might require a reloc can not be placed in the read-only data section. */ static void pa_select_section (tree exp, int reloc, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED) { if (TREE_CODE (exp) == VAR_DECL && TREE_READONLY (exp) && !TREE_THIS_VOLATILE (exp) && DECL_INITIAL (exp) && (DECL_INITIAL (exp) == error_mark_node || TREE_CONSTANT (DECL_INITIAL (exp))) && !reloc) readonly_data_section (); else if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c' && !reloc) readonly_data_section (); else data_section (); } static void pa_globalize_label (FILE *stream, const char *name) { /* We only handle DATA objects here, functions are globalized in ASM_DECLARE_FUNCTION_NAME. */ if (! FUNCTION_NAME_P (name)) { fputs ("\t.EXPORT ", stream); assemble_name (stream, name); fputs (",DATA\n", stream); } } /* Worker function for TARGET_STRUCT_VALUE_RTX. */ static rtx pa_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, PA_STRUCT_VALUE_REGNUM); } /* Worker function for TARGET_RETURN_IN_MEMORY. */ bool pa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED) { /* SOM ABI says that objects larger than 64 bits are returned in memory. PA64 ABI says that objects larger than 128 bits are returned in memory. Note, int_size_in_bytes can return -1 if the size of the object is variable or larger than the maximum value that can be expressed as a HOST_WIDE_INT. It can also return zero for an empty type. The simplest way to handle variable and empty types is to pass them in memory. This avoids problems in defining the boundaries of argument slots, allocating registers, etc. */ return (int_size_in_bytes (type) > (TARGET_64BIT ? 16 : 8) || int_size_in_bytes (type) <= 0); } #include "gt-pa.h"