/* Definitions for option handling for Renesas M32R cpu. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef M32R_OPTS_H #define M32R_OPTS_H /* Code Models Code models are used to select between two choices of two separate possibilities (address space size, call insn to use): small: addresses use 24 bits, use bl to make calls medium: addresses use 32 bits, use bl to make calls (*1) large: addresses use 32 bits, use seth/add3/jl to make calls (*2) The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but using this one doesn't make much sense. (*1) The linker may eventually be able to relax seth/add3 -> ld24. (*2) The linker may eventually be able to relax seth/add3/jl -> bl. Internally these are recorded as TARGET_ADDR{24,32} and TARGET_CALL{26,32}. The __model__ attribute can be used to select the code model to use when accessing particular objects. */ enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE }; #define TARGET_MODEL_SMALL (m32r_model_selected == M32R_MODEL_SMALL) #define TARGET_MODEL_MEDIUM (m32r_model_selected == M32R_MODEL_MEDIUM) #define TARGET_MODEL_LARGE (m32r_model_selected == M32R_MODEL_LARGE) #define TARGET_ADDR24 (m32r_model_selected == M32R_MODEL_SMALL) #define TARGET_ADDR32 (! TARGET_ADDR24) #define TARGET_CALL26 (! TARGET_CALL32) #define TARGET_CALL32 (m32r_model_selected == M32R_MODEL_LARGE) /* The default is the small model. */ #ifndef M32R_MODEL_DEFAULT #define M32R_MODEL_DEFAULT M32R_MODEL_SMALL #endif /* Small Data Area The SDA consists of sections .sdata, .sbss, and .scommon. .scommon isn't a real section, symbols in it have their section index set to SHN_M32R_SCOMMON, though support for it exists in the linker script. Two switches control the SDA: -G NNN - specifies the maximum size of variable to go in the SDA -msdata=foo - specifies how such variables are handled -msdata=none - small data area is disabled -msdata=sdata - small data goes in the SDA, special code isn't generated to use it, and special relocs aren't generated -msdata=use - small data goes in the SDA, special code is generated to use the SDA and special relocs are generated The SDA is not multilib'd, it isn't necessary. MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use -msdata=use will successfully link with them (references in header files will cause the compiler to emit code that refers to library objects in .data). ??? There can be a problem if the user passes a -G value greater than the default and a library object in a header file is that size. The default is 8 so this should be rare - if it occurs the user is required to rebuild the libraries or use a smaller value for -G. */ /* Maximum size of variables that go in .sdata/.sbss. The -msdata=foo switch also controls how small variables are handled. */ #ifndef SDATA_DEFAULT_SIZE #define SDATA_DEFAULT_SIZE 8 #endif enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE }; #define TARGET_SDATA_NONE (m32r_sdata_selected == M32R_SDATA_NONE) #define TARGET_SDATA_SDATA (m32r_sdata_selected == M32R_SDATA_SDATA) #define TARGET_SDATA_USE (m32r_sdata_selected == M32R_SDATA_USE) /* Default is to disable the SDA [for upward compatibility with previous toolchains]. */ #ifndef M32R_SDATA_DEFAULT #define M32R_SDATA_DEFAULT M32R_SDATA_NONE #endif #endif