;; GCC machine description for CRIS cpu cores.
;; Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
;; 2008, 2009 Free Software Foundation, Inc.
;; Contributed by Axis Communications.
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; .
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See files "md.texi" and "rtl.def" for documentation on define_insn,
;; match_*, et. al.
;;
;; The function cris_notice_update_cc in cris.c handles condition code
;; updates for most instructions, helped by the "cc" attribute.
;; There are several instructions that are orthogonal in size, and seems
;; they could be matched by a single pattern without a specified size
;; for the operand that is orthogonal. However, this did not work on
;; gcc-2.7.2 (and probably not on gcc-2.8.1), relating to that when a
;; constant is substituted into an operand, the actual mode must be
;; deduced from the pattern. There is reasonable hope that that has been
;; fixed, so FIXME: try again.
;; You will notice that three-operand alternatives ("=r", "r", "!To")
;; are marked with a "!" constraint modifier to avoid being reloaded
;; into. This is because gcc would otherwise prefer to use the constant
;; pool and its offsettable address instead of reloading to an
;; ("=r", "0", "i") alternative. Also, the constant-pool support was not
;; only suboptimal but also buggy in 2.7.2, ??? maybe only in 2.6.3.
;; All insns that look like (set (...) (plus (...) (reg:SI 8)))
;; get problems when reloading r8 (frame pointer) to r14 + offs (stack
;; pointer). Thus the instructions that get into trouble have specific
;; checks against matching frame_pointer_rtx.
;; ??? But it should be re-checked for gcc > 2.7.2
;; FIXME: This changed some time ago (from 2000-03-16) for gcc-2.9x.
;; FIXME: When PIC, all [rX=rY+S] could be enabled to match
;; [rX=gotless_symbol].
;; The movsi for a gotless symbol could be split (post reload).
(define_constants
[
;; PLT reference from call expansion: operand 0 is the address,
;; the mode is VOIDmode. Always wrapped in CONST.
;; The value is relative to the GOT.
(CRIS_UNSPEC_PLT_GOTREL 0)
;; PLT reference from call expansion: operand 0 is the address,
;; the mode is VOIDmode. Always wrapped in CONST.
;; The value is relative to the PC. It's arch-dependent whether
;; the offset counts from the start or the end of the current item.
(CRIS_UNSPEC_PLT_PCREL 1)
;; The address of the global offset table as a source operand.
(CRIS_UNSPEC_GOT 2)
;; The offset from the global offset table to the operand.
(CRIS_UNSPEC_GOTREL 3)
;; The PC-relative offset to the operand. It's arch-dependent whether
;; the offset counts from the start or the end of the current item.
(CRIS_UNSPEC_PCREL 4)
;; The index into the global offset table of a symbol, while
;; also generating a GOT entry for the symbol.
(CRIS_UNSPEC_GOTREAD 5)
;; Similar to CRIS_UNSPEC_GOTREAD, but also generating a PLT entry.
(CRIS_UNSPEC_PLTGOTREAD 6)
;; Condition for v32 casesi jump, since it needs to have if_then_else
;; form with register as one branch and default label as other.
;; Operand 0 is const_int 0.
(CRIS_UNSPEC_CASESI 7)
;; Stack frame deallocation barrier.
(CRIS_UNSPEC_FRAME_DEALLOC 8)
;; Swap all 32 bits of the operand; 31 <=> 0, 30 <=> 1...
(CRIS_UNSPEC_SWAP_BITS 9)
])
;; Register numbers.
(define_constants
[(CRIS_GOT_REGNUM 0)
(CRIS_STATIC_CHAIN_REGNUM 7)
(CRIS_FP_REGNUM 8)
(CRIS_SP_REGNUM 14)
(CRIS_ACR_REGNUM 15)
(CRIS_SRP_REGNUM 16)
(CRIS_MOF_REGNUM 17)
(CRIS_AP_REGNUM 18)
(CRIS_CC0_REGNUM 19)]
)
;; We need an attribute to define whether an instruction can be put in
;; a branch-delay slot or not, and whether it has a delay slot.
;;
;; Branches and return instructions have a delay slot, and cannot
;; themselves be put in a delay slot. This has changed *for short
;; branches only* between architecture variants, but the possible win
;; is presumed negligible compared to the added complexity of the machine
;; description: one would have to add always-correct infrastructure to
;; distinguish short branches.
;;
;; Whether an instruction can be put in a delay slot depends on the
;; instruction (all short instructions except jumps and branches)
;; and the addressing mode (must not be prefixed or referring to pc).
;; In short, any "slottable" instruction must be 16 bit and not refer
;; to pc, or alter it.
;;
;; The possible values are "yes", "no", "has_slot", "has_return_slot"
;; and "has_call_slot".
;; Yes/no tells whether the insn is slottable or not. Has_call_slot means
;; that the insn is a call insn, which for CRIS v32 has a delay-slot.
;; Of special concern is that no RTX_FRAME_RELATED insn must go in that
;; call delay slot, as it's located in the address *after* the call insn,
;; and the unwind machinery doesn't know about delay slots.
;; Has_slot means that the insn is a branch insn (which are
;; not considered slottable since that is generally true). Having the
;; seemingly illogical value "has_slot" means we do not have to add
;; another attribute just to say that an insn has a delay-slot, since it
;; also infers that it is not slottable. Better names for the attribute
;; were found to be longer and not add readability to the machine
;; description.
;; Has_return_slot is similar, for the return insn.
;;
;; The default that is defined here for this attribute is "no", not
;; slottable, not having a delay-slot, so there's no need to worry about
;; it being wrong for non-branch and return instructions.
;; The default could depend on the kind of insn and the addressing
;; mode, but that would need more attributes and hairier, more error
;; prone code.
;;
;; There is an extra memory constraint, 'Q', which recognizes an indirect
;; register. The constraints 'Q' and '>' together match all possible
;; memory operands that are slottable.
;; For other operands, you need to check if it has a valid "slottable"
;; quick-immediate operand, where the particular signedness-variation
;; may match the constraints 'I' or 'J'.), and include it in the
;; constraint pattern for the slottable pattern. An alternative using
;; only "r" constraints is most often slottable.
(define_attr "slottable" "no,yes,has_slot,has_return_slot,has_call_slot"
(const_string "no"))
;; We also need attributes to sanely determine the condition code
;; state. See cris_notice_update_cc for how this is used.
(define_attr "cc" "none,clobber,normal,noov32,rev" (const_string "normal"))
;; At the moment, this attribute is just used to help bb-reorder do its
;; work; the default 0 doesn't help it. Many insns have other lengths,
;; though none are shorter.
(define_attr "length" "" (const_int 2))
;; A branch has one delay-slot. The instruction in the
;; delay-slot is always executed, independent of whether the branch is
;; taken or not. Note that besides setting "slottable" to "has_slot",
;; there also has to be a "%#" at the end of a "delayed" instruction
;; output pattern (for "jump" this means "ba %l0%#"), so print_operand can
;; catch it and print a "nop" if necessary. This method was stolen from
;; sparc.md.
(define_delay (eq_attr "slottable" "has_slot")
[(eq_attr "slottable" "yes") (nil) (nil)])
;; We can't put prologue insns in call-insn delay-slots when
;; DWARF2 unwind info is emitted, because the unwinder matches the
;; address after the insn. It must see the return address of a call at
;; a position at least *one byte after* the insn, or it'll think that
;; the insn hasn't been executed. If the insn is in a delay-slot of a
;; call, it's just *exactly* after the insn.
(define_delay (eq_attr "slottable" "has_call_slot")
[(and (eq_attr "slottable" "yes")
(ior (eq (symbol_ref "RTX_FRAME_RELATED_P (insn)")
(const_int 0))
(eq (symbol_ref "flag_exceptions")
(const_int 0))))
(nil) (nil)])
;; The insn in the return insn slot must not be the
;; return-address-register restore. FIXME: Use has_slot and express
;; as a parallel with a use of the return-address-register (currently
;; only SRP). However, this requires an amount of fixing tests for
;; naked RETURN in middle-end.
(define_delay (eq_attr "slottable" "has_return_slot")
[(and (eq_attr "slottable" "yes")
(eq (symbol_ref "dead_or_set_regno_p (insn, CRIS_SRP_REGNUM)")
(const_int 0)))
(nil) (nil)])
;; Iterator definitions.
;; For the "usual" pattern size alternatives.
(define_mode_iterator BWD [SI HI QI])
(define_mode_iterator WD [SI HI])
(define_mode_iterator BW [HI QI])
(define_mode_attr S [(SI "HI") (HI "QI")])
(define_mode_attr s [(SI "hi") (HI "qi")])
(define_mode_attr m [(SI ".d") (HI ".w") (QI ".b")])
(define_mode_attr mm [(SI ".w") (HI ".b")])
(define_mode_attr nbitsm1 [(SI "31") (HI "15") (QI "7")])
;; For the sign_extend+zero_extend variants.
(define_code_iterator szext [sign_extend zero_extend])
(define_code_attr u [(sign_extend "") (zero_extend "u")])
(define_code_attr su [(sign_extend "s") (zero_extend "u")])
;; For the shift variants.
(define_code_iterator shift [ashiftrt lshiftrt ashift])
(define_code_iterator shiftrt [ashiftrt lshiftrt])
(define_code_attr shlr [(ashiftrt "ashr") (lshiftrt "lshr") (ashift "ashl")])
(define_code_attr slr [(ashiftrt "asr") (lshiftrt "lsr") (ashift "lsl")])
(define_code_iterator ncond [eq ne gtu ltu geu leu])
(define_code_iterator ocond [gt le])
(define_code_iterator rcond [lt ge])
(define_code_attr CC [(eq "eq") (ne "ne") (gt "gt") (gtu "hi") (lt "lt")
(ltu "lo") (ge "ge") (geu "hs") (le "le") (leu "ls")])
(define_code_attr rCC [(eq "ne") (ne "eq") (gt "le") (gtu "ls") (lt "ge")
(ltu "hs") (ge "lt") (geu "lo") (le "gt") (leu "hi")])
(define_code_attr oCC [(lt "mi") (ge "pl")])
(define_code_attr roCC [(lt "pl") (ge "mi")])
;; Operand and operator predicates.
(include "predicates.md")
;; Test insns.
;; No test insns with side-effect on the mem addressing.
;;
;; See note on cmp-insns with side-effects (or lack of them)
;; Normal named test patterns from SI on.
(define_insn "*tstsi"
[(set (cc0)
(compare (match_operand:SI 0 "nonimmediate_operand" "r,Q>,m")
(const_int 0)))]
""
{
if (which_alternative == 0 && TARGET_V32)
return "cmpq 0,%0";
return "test.d %0";
}
[(set_attr "slottable" "yes,yes,no")])
(define_insn "*tst_cmp"
[(set (cc0)
(compare (match_operand:BW 0 "nonimmediate_operand" "r,Q>,m")
(const_int 0)))]
"cris_cc0_user_requires_cmp (insn)"
"@
cmp 0,%0
test %0
test %0"
[(set_attr "slottable" "no,yes,no")])
(define_insn "*tst_non_cmp"
[(set (cc0)
(compare (match_operand:BW 0 "nonimmediate_operand" "r,Q>,m")
(const_int 0)))]
"!cris_cc0_user_requires_cmp (insn)"
"@
move %0,%0
test %0
test %0"
[(set_attr "slottable" "yes,yes,no")
(set_attr "cc" "noov32,*,*")])
;; It seems that the position of the sign-bit and the fact that 0.0 is
;; all 0-bits would make "tstsf" a straight-forward implementation;
;; either "test.d" it for positive/negative or "btstq 30,r" it for
;; zeroness.
;;
;; FIXME: Do that some time; check next_cc0_user to determine if
;; zero or negative is tested for.
;; Compare insns.
;; We could optimize the sizes of the immediate operands for various
;; cases, but that is not worth it because of the very little usage of
;; DImode for anything else but a structure/block-mode. Just do the
;; obvious stuff for the straight-forward constraint letters.
(define_insn "*cmpdi_non_v32"
[(set (cc0)
(compare (match_operand:DI 0 "nonimmediate_operand" "rm,r,r,r,r,r,r,o")
(match_operand:DI 1 "general_operand" "M,Kc,I,P,n,r,o,r")))]
"!TARGET_V32"
"@
test.d %M0\;ax\;test.d %H0
cmpq %1,%M0\;ax\;cmpq 0,%H0
cmpq %1,%M0\;ax\;cmpq -1,%H0
cmp%e1.%z1 %1,%M0\;ax\;cmpq %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M0,%M1\;ax\;cmp.d %H0,%H1")
(define_insn "*cmpdi_v32"
[(set (cc0)
(compare (match_operand:DI 0 "register_operand" "r,r,r,r,r")
(match_operand:DI 1 "nonmemory_operand" "Kc,I,P,n,r")))]
"TARGET_V32"
"@
cmpq %1,%M0\;ax\;cmpq 0,%H0
cmpq %1,%M0\;ax\;cmpq -1,%H0
cmp%e1.%z1 %1,%M0\;ax\;cmpq %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0")
;; Note that compare insns with side effect addressing mode (e.g.):
;;
;; cmp.S [rx=ry+i],rz;
;; cmp.S [%3=%1+%2],%0
;;
;; are *not* usable for gcc since the reloader *does not accept*
;; cc0-changing insns with side-effects other than setting the condition
;; codes. The reason is that the reload stage *may* cause another insn to
;; be output after the main instruction, in turn invalidating cc0 for the
;; insn using the test. (This does not apply to the CRIS case, since a
;; reload for output -- move to memory -- does not change the condition
;; code. Unfortunately we have no way to describe that at the moment. I
;; think code would improve being in the order of one percent faster.
;; We have cmps and cmpu (compare reg w. sign/zero extended mem).
;; These are mostly useful for compares in SImode, using 8 or 16-bit
;; constants, but sometimes gcc will find its way to use it for other
;; (memory) operands. Avoid side-effect patterns, though (see above).
(define_insn "*cmp_ext"
[(set (cc0)
(compare
(match_operand:SI 0 "register_operand" "r,r")
(match_operator:SI 2 "cris_extend_operator"
[(match_operand:BW 1 "memory_operand" "Q>,m")])))]
""
"cmp%e2 %1,%0"
[(set_attr "slottable" "yes,no")])
;; Swap operands; it seems the canonical look (if any) is not enforced.
;;
;; FIXME: Investigate that.
(define_insn "*cmp_swapext"
[(set (cc0)
(compare
(match_operator:SI 2 "cris_extend_operator"
[(match_operand:BW 0 "memory_operand" "Q>,m")])
(match_operand:SI 1 "register_operand" "r,r")))]
""
"cmp%e2 %0,%1"
[(set_attr "slottable" "yes,no")
(set_attr "cc" "rev")])
;; The "normal" compare patterns, from SI on. Special-cases with zero
;; are covered above.
(define_insn "*cmpsi"
[(set (cc0)
(compare
(match_operand:SI 0 "nonimmediate_operand" "r,r,r, Q>,r,r,m")
(match_operand:SI 1 "general_operand" "I,r,Q>,r, P,g,r")))]
""
"@
cmpq %1,%0
cmp.d %1,%0
cmp.d %1,%0
cmp.d %0,%1
cmp%e1.%z1 %1,%0
cmp.d %1,%0
cmp.d %0,%1"
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no")
(set_attr "cc" "normal,normal,normal,rev,normal,normal,rev")])
(define_insn "*cmp"
[(set (cc0)
(compare (match_operand:BW 0 "nonimmediate_operand" "r,r, Q>,r,m")
(match_operand:BW 1 "general_operand" "r,Q>,r, g,r")))]
""
"@
cmp %1,%0
cmp %1,%0
cmp %0,%1
cmp %1,%0
cmp %0,%1"
[(set_attr "slottable" "yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,rev,normal,rev")])
;; Pattern matching the BTST insn.
;; It is useful for "if (i & val)" constructs, where val is an exact
;; power of 2, or if val + 1 is a power of two, where we check for a bunch
;; of zeros starting at bit 0).
;; SImode. This mode is the only one needed, since gcc automatically
;; extends subregs for lower-size modes. FIXME: Add testcase.
(define_insn "*btst"
[(set (cc0)
(compare
(zero_extract:SI
(match_operand:SI 0 "nonmemory_operand" "r, r,r, r,r, r,Kp")
(match_operand:SI 1 "const_int_operand" "Kc,n,Kc,n,Kc,n,n")
(match_operand:SI 2 "nonmemory_operand" "M, M,Kc,n,r, r,r"))
(const_int 0)))]
;; Either it is a single bit, or consecutive ones starting at 0.
;; The btst ones depend on stuff in NOTICE_UPDATE_CC.
"CONST_INT_P (operands[1])
&& (operands[1] == const1_rtx || operands[2] == const0_rtx)
&& (REG_S_P (operands[0])
|| (operands[1] == const1_rtx
&& REG_S_P (operands[2])
&& CONST_INT_P (operands[0])
&& exact_log2 (INTVAL (operands[0])) >= 0))
&& !TARGET_CCINIT"
;; The next-to-last "&&" condition above should be caught by some kind of
;; canonicalization in gcc, but we can easily help with it here.
;; It results from expressions of the type
;; "power_of_2_value & (1 << y)".
;;
;; Since there may be codes with tests in on bits (in constant position)
;; beyond the size of a word, handle that by assuming those bits are 0.
;; GCC should handle that, but it's a matter of easily-added belts while
;; having suspenders.
"@
btstq (%1-1),%0
cmpq 0,%0
btstq %2,%0
clearf nz
btst %2,%0
clearf nz
cmpq %p0,%2"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Move insns.
;; The whole mandatory movdi family is here; expander, "anonymous"
;; recognizer and splitter. We're forced to have a movdi pattern,
;; although GCC should be able to split it up itself. Normally it can,
;; but if other insns have DI operands (as is the case here), reload
;; must be able to generate or match a movdi. many testcases fail at
;; -O3 or -fssa if we don't have this. FIXME: Fix GCC... See
;; .
;; However, a patch from Richard Kenner (similar to the cause of
;; discussion at the URL above), indicates otherwise. See
;; .
;; The truth has IMO is not been decided yet, so check from time to
;; time by disabling the movdi patterns.
;; To appease testcase gcc.c-torture/execute/920501-2.c (and others) at
;; -O0, we need a movdi as a temporary measure. Here's how things fail:
;; A cmpdi RTX needs reloading (global):
;; (insn 185 326 186 (set (cc0)
;; (compare (mem/f:DI (reg/v:SI 22) 0)
;; (const_int 1 [0x1]))) 4 {cmpdi} (nil)
;; (nil))
;; Now, reg 22 is reloaded for input address, and the mem is also moved
;; out of the instruction (into a register), since one of the operands
;; must be a register. Reg 22 is reloaded (into reg 10), and the mem is
;; moved out and synthesized in SImode parts (reg 9, reg 10 - should be ok
;; wrt. overlap). The bad things happen with the synthesis in
;; emit_move_insn_1; the location where to substitute reg 10 is lost into
;; two new RTX:es, both still having reg 22. Later on, the left-over reg
;; 22 is recognized to have an equivalent in memory which is substituted
;; straight in, and we end up with an unrecognizable insn:
;; (insn 325 324 326 (set (reg:SI 9 r9)
;; (mem/f:SI (mem:SI (plus:SI (reg:SI 8 r8)
;; (const_int -84 [0xffffffac])) 0) 0)) -1 (nil)
;; (nil))
;; which is the first part of the reloaded synthesized "movdi".
;; The right thing would be to add equivalent replacement locations for
;; insn with pseudos that need more reloading. The question is where.
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
{
if (MEM_P (operands[0])
&& operands[1] != const0_rtx
&& (!TARGET_V32 || (!REG_P (operands[1]) && can_create_pseudo_p ())))
operands[1] = copy_to_mode_reg (DImode, operands[1]);
/* Some other ports (as of 2001-09-10 for example mcore and romp) also
prefer to split up constants early, like this. The testcase in
gcc.c-torture/execute/961213-1.c shows that CSE2 gets confused by the
resulting subreg sets when using the construct from mcore (as of FSF
CVS, version -r 1.5), and it believes that the high part (the last one
emitted) is the final value. */
if ((CONST_INT_P (operands[1]) || GET_CODE (operands[1]) == CONST_DOUBLE)
&& ! reload_completed
&& ! reload_in_progress)
{
rtx insns;
rtx op0 = operands[0];
rtx op1 = operands[1];
start_sequence ();
emit_move_insn (operand_subword (op0, 0, 1, DImode),
operand_subword (op1, 0, 1, DImode));
emit_move_insn (operand_subword (op0, 1, 1, DImode),
operand_subword (op1, 1, 1, DImode));
insns = get_insns ();
end_sequence ();
emit_insn (insns);
DONE;
}
})
(define_insn_and_split "*movdi_insn_non_v32"
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,rx,m")
(match_operand:DI 1 "general_operand" "rx,g,rxM"))]
"(register_operand (operands[0], DImode)
|| register_operand (operands[1], DImode)
|| operands[1] == const0_rtx)
&& !TARGET_V32"
"#"
"&& reload_completed"
[(match_dup 2)]
"operands[2] = cris_split_movdx (operands);")
;; Overlapping (but non-identical) source memory address and destination
;; register would be a compiler bug, so we don't have to specify that.
(define_insn "*movdi_v32"
[(set
(match_operand:DI 0 "nonimmediate_operand" "=r,rx,&r,>, m,r,x,m")
(match_operand:DI 1 "general_operand" "rxi,r>,m, rx,r,m,m,x"))]
"TARGET_V32"
{
switch (which_alternative)
{
/* FIXME: 1) Use autoincrement where possible. 2) Have peephole2,
particularly for cases where the address register is dead. */
case 5:
if (REGNO (operands[0]) == REGNO (XEXP (operands[1], 0)))
return "addq 4,%L1\;move.d %1,%H0\;subq 4,%L1\;move.d %1,%M0";
gcc_assert (REGNO (operands[0]) + 1 == REGNO (XEXP (operands[1], 0)));
return "move.d [%L1+],%M0\;move.d [%L1],%H0";
case 2:
/* We could do away with the addq if we knew the address-register
isn't ACR. If we knew the address-register is dead, we could do
away with the subq too. */
return "move.d [%L1],%M0\;addq 4,%L1\;move.d [%L1],%H0\;subq 4,%L1";
case 4:
return "move.d %M1,[%L0]\;addq 4,%L0\;move.d %H1,[%L0]\;subq 4,%L0";
case 6:
return "move [%L1],%M0\;addq 4,%L1\;move [%L1],%H0\;subq 4,%L1";
case 7:
return "move %M1,[%L0]\;addq 4,%L0\;move %H1,[%L0]\;subq 4,%L0";
default:
return "#";
}
}
;; The non-split cases clobber cc0 because of their adds and subs.
;; Beware that NOTICE_UPDATE_CC is called before the forced split happens.
[(set_attr "cc" "*,*,clobber,*,clobber,clobber,*,*")])
;; Much like "*movdi_insn_non_v32". Overlapping registers and constants
;; is handled so much better in cris_split_movdx.
(define_split
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
"TARGET_V32
&& reload_completed
&& (!MEM_P (operands[0]) || !REG_P (XEXP (operands[0], 0)))
&& (!MEM_P (operands[1]) || !REG_P (XEXP (operands[1], 0)))"
[(match_dup 2)]
"operands[2] = cris_split_movdx (operands);")
;; Side-effect patterns for move.S1 [rx=ry+rx.S2],rw
;; and move.S1 [rx=ry+i],rz
;; Then movs.S1 and movu.S1 for both modes.
;;
;; move.S1 [rx=ry+rz.S],rw avoiding when rx is ry, or rw is rx
;; FIXME: These could have anonymous mode for operand 0.
;; FIXME: Special registers' alternatives too.
(define_insn "*mov_side_biap"
[(set (match_operand:BW 0 "register_operand" "=r,r")
(mem:BW (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r"))))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
move [%4=%3+%1%T2],%0")
(define_insn "*mov_sidesisf_biap"
[(set (match_operand 0 "register_operand" "=r,r,x,x")
(mem (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r,r,r")
(match_operand:SI 2 "const_int_operand" "n,n,n,n"))
(match_operand:SI 3 "register_operand" "r,r,r,r"))))
(set (match_operand:SI 4 "register_operand" "=*3,r,*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"GET_MODE_SIZE (GET_MODE (operands[0])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
move.%s0 [%4=%3+%1%T2],%0
#
move [%4=%3+%1%T2],%0")
;; move.S1 [rx=ry+i],rz
;; avoiding move.S1 [ry=ry+i],rz
;; and move.S1 [rz=ry+i],rz
;; Note that "i" is allowed to be a register.
(define_insn "*mov_side"
[(set (match_operand:BW 0 "register_operand" "=r,r,r,r,r")
(mem:BW
(plus:SI (match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r"))))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[2])
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "move [%3=%2%S1],%0";
return "move [%3=%1%S2],%0";
})
(define_insn "*mov_sidesisf"
[(set (match_operand 0 "register_operand" "=r,r,r,x,x,x,r,r,x,x")
(mem
(plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,r,r,r,R,R,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r>Rn,r,>Rn,r,r,r,r"))))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*1,r,r,*2,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"GET_MODE_SIZE (GET_MODE (operands[0])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0
|| which_alternative == 3
|| which_alternative == 6
|| which_alternative == 8)
&& (!CONST_INT_P (operands[2])
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative < 3)
return "move.%s0 [%3=%1%S2],%0";
if (which_alternative == 7)
return "move.%s0 [%3=%2%S1],%0";
if (which_alternative == 9)
return "move [%3=%2%S1],%0";
return "move [%3=%1%S2],%0";
})
;; Other way around; move to memory.
;; Note that the condition (which for side-effect patterns is usually a
;; call to cris_side_effect_mode_ok), isn't consulted for register
;; allocation preferences -- constraints is the method for that. The
;; drawback is that we can't exclude register allocation to cause
;; "move.s rw,[rx=ry+rz.S]" when rw==rx without also excluding rx==ry or
;; rx==rz if we use an earlyclobber modifier for the constraint for rx.
;; Instead of that, we recognize and split the cases where dangerous
;; register combinations are spotted: where a register is set in the
;; side-effect, and used in the main insn. We don't handle the case where
;; the set in the main insn overlaps the set in the side-effect; that case
;; must be handled in gcc. We handle just the case where the set in the
;; side-effect overlaps the input operand of the main insn (i.e. just
;; moves to memory).
;;
;; move.s rz,[ry=rx+rw.S]
(define_insn "*mov_side_biap_mem"
[(set (mem:BW (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r,r")
(match_operand:SI 1 "const_int_operand" "n,n,n"))
(match_operand:SI 2 "register_operand" "r,r,r")))
(match_operand:BW 3 "register_operand" "r,r,r"))
(set (match_operand:SI 4 "register_operand" "=*2,!3,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 2, 0, 1, 3)"
"@
#
#
move %3,[%4=%2+%0%T1]")
(define_insn "*mov_sidesisf_biap_mem"
[(set (mem (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r,r,r,r,r")
(match_operand:SI 1 "const_int_operand" "n,n,n,n,n,n"))
(match_operand:SI 2 "register_operand" "r,r,r,r,r,r")))
(match_operand 3 "register_operand" "r,r,r,x,x,x"))
(set (match_operand:SI 4 "register_operand" "=*2,!3,r,*2,!3,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"GET_MODE_SIZE (GET_MODE (operands[3])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (MULT, operands, 4, 2, 0, 1, 3)"
"@
#
#
move.%s3 %3,[%4=%2+%0%T1]
#
#
move %3,[%4=%2+%0%T1]")
;; Split for the case above where we're out of luck with register
;; allocation (again, the condition isn't checked for that), and we end up
;; with the set in the side-effect getting the same register as the input
;; register.
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" ""))])
(match_operand 3 "register_operand" ""))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"reload_completed && reg_overlap_mentioned_p (operands[4], operands[3])"
[(set (match_dup 5) (match_dup 3))
(set (match_dup 4) (match_dup 2))
(set (match_dup 4)
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 4)))]
"operands[5]
= replace_equiv_address (operands[6],
gen_rtx_PLUS (SImode,
gen_rtx_MULT (SImode,
operands[0],
operands[1]),
operands[2]));")
;; move.s rx,[ry=rz+i]
;; FIXME: These could have anonymous mode for operand 2.
;; QImode
(define_insn "*mov_side_mem"
[(set (mem:BW
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r,r,r,r,R,R,R")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r>Rn,r,>Rn,r,r,r")))
(match_operand:BW 2 "register_operand" "r,r,r,r,r,r,r"))
(set (match_operand:SI 3 "register_operand" "=*0,!*2,r,r,*1,!*2,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 0, 1, -1, 2)"
{
if ((which_alternative == 0 || which_alternative == 4)
&& (!CONST_INT_P (operands[1])
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 1 || which_alternative == 5)
return "#";
if (which_alternative == 6)
return "move.%s2 %2,[%3=%1%S0]";
return "move %2,[%3=%0%S1]";
})
;; SImode
(define_insn "*mov_sidesisf_mem"
[(set (mem
(plus:SI
(match_operand:SI
0 "cris_bdap_operand"
"%r, r, r,r, r, r,r, R,R, R,R, R")
(match_operand:SI
1 "cris_bdap_operand"
"r>Rn,r>Rn,r,>Rn,r>Rn,r,>Rn,r,r, r,r, r")))
(match_operand 2 "register_operand"
"r, r, r,r, x, x,x, r,r, r,x, x"))
(set (match_operand:SI 3 "register_operand"
"=*0,!2, r,r, *0, r,r, *1,!*2,r,*1,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"GET_MODE_SIZE (GET_MODE (operands[2])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (PLUS, operands, 3, 0, 1, -1, 2)"
{
if ((which_alternative == 0 || which_alternative == 4)
&& (!CONST_INT_P (operands[1])
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 1
|| which_alternative == 7
|| which_alternative == 8
|| which_alternative == 10)
return "#";
if (which_alternative < 4)
return "move.%s2 %2,[%3=%0%S1]";
if (which_alternative == 9)
return "move.%s2 %2,[%3=%1%S0]";
if (which_alternative == 11)
return "move %2,[%3=%1%S0]";
return "move %2,[%3=%0%S1]";
})
;; Like the biap case, a split where the set in the side-effect gets the
;; same register as the input register to the main insn, since the
;; condition isn't checked at register allocation.
(define_split
[(parallel
[(set (match_operator
4 "cris_mem_op"
[(plus:SI
(match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" ""))])
(match_operand 2 "register_operand" ""))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 0) (match_dup 1)))])]
"reload_completed && reg_overlap_mentioned_p (operands[3], operands[2])"
[(set (match_dup 4) (match_dup 2))
(set (match_dup 3) (match_dup 0))
(set (match_dup 3) (plus:SI (match_dup 3) (match_dup 1)))]
"")
;; Clear memory side-effect patterns. It is hard to get to the mode if
;; the MEM was anonymous, so there will be one for each mode.
;; clear.[bwd] [ry=rx+rw.s2]
(define_insn "*clear_side_biap"
[(set (mem:BWD (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "const_int_operand" "n,n"))
(match_operand:SI 2 "register_operand" "r,r")))
(const_int 0))
(set (match_operand:SI 3 "register_operand" "=*2,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"cris_side_effect_mode_ok (MULT, operands, 3, 2, 0, 1, -1)"
"@
#
clear [%3=%2+%0%T1]")
;; clear.[bwd] [ry=rz+i]
(define_insn "*clear_side"
[(set (mem:BWD
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))
(const_int 0))
(set (match_operand:SI 2 "register_operand" "=*0,r,r,*1,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"cris_side_effect_mode_ok (PLUS, operands, 2, 0, 1, -1, -1)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[1])
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 4)
return "clear [%2=%1%S0]";
return "clear [%2=%0%S1]";
})
;; Normal move patterns from SI on.
(define_expand "movsi"
[(set
(match_operand:SI 0 "nonimmediate_operand" "")
(match_operand:SI 1 "cris_general_operand_or_symbol" ""))]
""
{
/* If the output goes to a MEM, make sure we have zero or a register as
input. */
if (MEM_P (operands[0])
&& ! REG_S_P (operands[1])
&& operands[1] != const0_rtx
&& can_create_pseudo_p ())
operands[1] = force_reg (SImode, operands[1]);
/* If we're generating PIC and have an incoming symbol, validize it to a
general operand or something that will match a special pattern.
FIXME: Do we *have* to recognize anything that would normally be a
valid symbol? Can we exclude global PIC addresses with an added
offset? */
if (flag_pic
&& CONSTANT_ADDRESS_P (operands[1])
&& !cris_valid_pic_const (operands[1], false))
{
enum cris_pic_symbol_type t = cris_pic_symbol_type_of (operands[1]);
gcc_assert (t != cris_no_symbol);
if (! REG_S_P (operands[0]))
{
/* We must have a register as destination for what we're about to
do, and for the patterns we generate. */
CRIS_ASSERT (can_create_pseudo_p ());
operands[1] = force_reg (SImode, operands[1]);
}
else
{
/* FIXME: add a REG_EQUAL (or is it REG_EQUIV) note to the
destination register for the symbol. It might not be
worth it. Measure. */
crtl->uses_pic_offset_table = 1;
if (t == cris_rel_symbol)
{
/* Change a "move.d sym(+offs),rN" into (allocate register rM)
for pre-v32:
"move.d (const (plus (unspec [sym]
CRIS_UNSPEC_GOTREL) offs)),rM" "add.d rPIC,rM,rN"
and for v32:
"move.d (const (plus (unspec [sym]
CRIS_UNSPEC_PCREL) offs)),rN". */
rtx tem, rm, rn = operands[0];
rtx sym = GET_CODE (operands[1]) != CONST
? operands[1] : get_related_value (operands[1]);
HOST_WIDE_INT offs = get_integer_term (operands[1]);
gcc_assert (can_create_pseudo_p ());
if (TARGET_V32)
{
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, sym),
CRIS_UNSPEC_PCREL);
if (offs != 0)
tem = plus_constant (tem, offs);
rm = rn;
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
}
else
{
/* We still uses GOT-relative addressing for
pre-v32. */
crtl->uses_pic_offset_table = 1;
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, sym),
CRIS_UNSPEC_GOTREL);
if (offs != 0)
tem = plus_constant (tem, offs);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx,
rn, 0, OPTAB_LIB_WIDEN) != rn)
internal_error ("expand_binop failed in movsi gotrel");
}
DONE;
}
else if (t == cris_got_symbol)
{
/* Change a "move.d sym,rN" into (allocate register rM, rO)
"move.d (const (unspec [sym] CRIS_UNSPEC_GOTREAD)),rM"
"add.d rPIC,rM,rO", "move.d [rO],rN" with
the memory access marked as read-only. */
rtx tem, mem, rm, ro, rn = operands[0];
gcc_assert (can_create_pseudo_p ());
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, operands[1]),
CRIS_UNSPEC_GOTREAD);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
ro = gen_reg_rtx (Pmode);
if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx,
ro, 0, OPTAB_LIB_WIDEN) != ro)
internal_error ("expand_binop failed in movsi got");
mem = gen_rtx_MEM (Pmode, ro);
/* This MEM doesn't alias anything. Whether it
aliases other same symbols is unimportant. */
set_mem_alias_set (mem, new_alias_set ());
MEM_NOTRAP_P (mem) = 1;
/* We can set the GOT memory read of a non-called symbol
to readonly, but not that of a call symbol, as those
are subject to lazy evaluation and usually have the value
changed from the first call to the second (but
constant thereafter). */
MEM_READONLY_P (mem) = 1;
emit_move_insn (rn, mem);
DONE;
}
else
{
/* We get here when we have to change something that would
be recognizable if it wasn't PIC. A ``sym'' is ok for
PIC symbols both with and without a GOT entry. And ``sym
+ offset'' is ok for local symbols, so the only thing it
could be, is a global symbol with an offset. Check and
abort if not. */
rtx reg = gen_reg_rtx (Pmode);
rtx sym = get_related_value (operands[1]);
HOST_WIDE_INT offs = get_integer_term (operands[1]);
gcc_assert (can_create_pseudo_p ()
&& t == cris_got_symbol_needing_fixup
&& sym != NULL_RTX && offs != 0);
emit_move_insn (reg, sym);
if (expand_binop (SImode, add_optab, reg,
GEN_INT (offs), operands[0], 0,
OPTAB_LIB_WIDEN) != operands[0])
internal_error ("expand_binop failed in movsi got+offs");
DONE;
}
}
}
})
(define_insn "*movsi_got_load"
[(set (reg:SI CRIS_GOT_REGNUM) (unspec:SI [(const_int 0)] CRIS_UNSPEC_GOT))]
"flag_pic"
{
return TARGET_V32
? "lapc _GLOBAL_OFFSET_TABLE_,%:"
: "move.d $pc,%:\;sub.d .:GOTOFF,%:";
}
[(set_attr "cc" "clobber")])
(define_insn "*movsi_internal"
[(set
(match_operand:SI 0 "nonimmediate_operand"
"=r,r, r,Q>,r,Q>,g,r,r, r,g,rQ>,x, m,x")
(match_operand:SI 1 "cris_general_operand_or_pic_source"
"r,Q>,M,M, I,r, M,n,!S,g,r,x, rQ>,x,gi"))]
;; Note that we prefer not to use the S alternative (if for some reason
;; it competes with others) above, but g matches S.
""
{
/* Better to have c-switch here; it is worth it to optimize the size of
move insns. The alternative would be to try to find more constraint
letters. FIXME: Check again. It seems this could shrink a bit. */
switch (which_alternative)
{
case 9:
if (TARGET_V32)
{
if (!flag_pic
&& (GET_CODE (operands[1]) == SYMBOL_REF
|| GET_CODE (operands[1]) == LABEL_REF
|| GET_CODE (operands[1]) == CONST))
{
/* FIXME: Express this through (set_attr cc none) instead,
since we can't express the ``none'' at this point. FIXME:
Use lapc for everything except const_int and when next cc0
user would want the flag setting. */
CC_STATUS_INIT;
return "lapc %1,%0";
}
if (flag_pic == 1
&& GET_CODE (operands[1]) == CONST
&& GET_CODE (XEXP (operands[1], 0)) == UNSPEC
&& XINT (XEXP (operands[1], 0), 1) == CRIS_UNSPEC_GOTREAD)
return "movu.w %1,%0";
}
/* FALLTHROUGH */
case 0:
case 1:
case 5:
case 10:
return "move.d %1,%0";
case 11:
case 12:
case 13:
case 14:
return "move %d1,%0";
case 2:
case 3:
case 6:
return "clear.d %0";
/* Constants -32..31 except 0. */
case 4:
return "moveq %1,%0";
/* We can win a little on constants -32768..-33, 32..65535. */
case 7:
if (INTVAL (operands[1]) > 0 && INTVAL (operands[1]) < 65536)
{
if (INTVAL (operands[1]) < 256)
return "movu.b %1,%0";
return "movu.w %1,%0";
}
else if (INTVAL (operands[1]) >= -32768 && INTVAL (operands[1]) < 32768)
{
if (INTVAL (operands[1]) >= -128 && INTVAL (operands[1]) < 128)
return "movs.b %1,%0";
return "movs.w %1,%0";
}
return "move.d %1,%0";
case 8:
{
rtx tem = operands[1];
gcc_assert (GET_CODE (tem) == CONST);
tem = XEXP (tem, 0);
if (GET_CODE (tem) == PLUS
&& GET_CODE (XEXP (tem, 0)) == UNSPEC
&& (XINT (XEXP (tem, 0), 1) == CRIS_UNSPEC_GOTREL
|| XINT (XEXP (tem, 0), 1) == CRIS_UNSPEC_PCREL)
&& CONST_INT_P (XEXP (tem, 1)))
tem = XEXP (tem, 0);
gcc_assert (GET_CODE (tem) == UNSPEC);
switch (XINT (tem, 1))
{
case CRIS_UNSPEC_GOTREAD:
case CRIS_UNSPEC_PLTGOTREAD:
/* Using sign-extend mostly to be consistent with the
indexed addressing mode. */
if (flag_pic == 1)
return "movs.w %1,%0";
return "move.d %1,%0";
case CRIS_UNSPEC_GOTREL:
case CRIS_UNSPEC_PLT_GOTREL:
gcc_assert (!TARGET_V32);
return "move.d %1,%0";
case CRIS_UNSPEC_PCREL:
case CRIS_UNSPEC_PLT_PCREL:
gcc_assert (TARGET_V32);
return "lapc %1,%0";
default:
gcc_unreachable ();
}
}
default:
return "BOGUS: %1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,no,no,no,no,yes,yes,no,no")
(set_attr "cc" "*,*,*,*,*,*,*,*,*,*,*,none,none,none,none")])
;; Extend operations with side-effect from mem to register, using
;; MOVS/MOVU. These are from mem to register only.
;;
;; [rx=ry+rz.S]
;;
;; QImode to HImode
;;
;; FIXME: Can we omit extend to HImode, since GCC should truncate for
;; HImode by itself? Perhaps use only anonymous modes?
(define_insn "*ext_sideqihi_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(match_operator:HI
5 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
mov%e5.%m5 [%4=%3+%1%T2],%0")
(define_insn "*ext_sidesi_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
5 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
mov%e5 [%4=%3+%1%T2],%0")
;; Same but [rx=ry+i]
;; QImode to HImode
(define_insn "*ext_sideqihi"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(match_operator:HI
4 "cris_extend_operator"
[(mem:QI (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[2])
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "mov%e4.%m4 [%3=%2%S1],%0";
return "mov%e4.%m4 [%3=%1%S2],%0";
})
(define_insn "*ext_sidesi"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
4 "cris_extend_operator"
[(mem:BW (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[2])
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "mov%e4 [%3=%2%S1],%0";
return "mov%e4 [%3=%1%S2],%0";
})
;; FIXME: See movsi.
(define_insn "movhi"
[(set
(match_operand:HI 0 "nonimmediate_operand" "=r,r, r,Q>,r,Q>,r,r,r,g,g,r,r,x")
(match_operand:HI 1 "general_operand" "r,Q>,M,M, I,r, L,O,n,M,r,g,x,r"))]
""
{
switch (which_alternative)
{
case 0:
case 1:
case 5:
case 10:
case 11:
return "move.w %1,%0";
case 12:
case 13:
return "move %1,%0";
case 2:
case 3:
case 9:
return "clear.w %0";
case 4:
return "moveq %1,%0";
case 6:
case 8:
if (INTVAL (operands[1]) < 256 && INTVAL (operands[1]) >= -128)
{
if (INTVAL (operands[1]) > 0)
return "movu.b %1,%0";
return "movs.b %1,%0";
}
return "move.w %1,%0";
case 7:
return "movEq %b1,%0";
default:
return "BOGUS: %1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,yes,no,no,no,no,yes,yes")
(set_attr "cc" "*,*,none,none,*,none,*,clobber,*,none,none,*,none,none")])
(define_insn "movstricthi"
[(set
(strict_low_part
(match_operand:HI 0 "nonimmediate_operand" "+r,r, r,Q>,Q>,g,r,g"))
(match_operand:HI 1 "general_operand" "r,Q>,M,M, r, M,g,r"))]
""
"@
move.w %1,%0
move.w %1,%0
clear.w %0
clear.w %0
move.w %1,%0
clear.w %0
move.w %1,%0
move.w %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no")])
(define_expand "reload_in"
[(set (match_operand:BW 2 "register_operand" "=r")
(match_operand:BW 1 "memory_operand" "m"))
(set (match_operand:BW 0 "register_operand" "=x")
(match_dup 2))]
""
"")
(define_expand "reload_out"
[(set (match_operand:BW 2 "register_operand" "=&r")
(match_operand:BW 1 "register_operand" "x"))
(set (match_operand:BW 0 "memory_operand" "=m")
(match_dup 2))]
""
"")
(define_insn "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,Q>,r, r,Q>,r,g,g,r,r,r,x")
(match_operand:QI 1 "general_operand" "r,r, Q>,M,M, I,M,r,O,g,x,r"))]
""
"@
move.b %1,%0
move.b %1,%0
move.b %1,%0
clear.b %0
clear.b %0
moveq %1,%0
clear.b %0
move.b %1,%0
moveq %b1,%0
move.b %1,%0
move %1,%0
move %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,no,yes,no,yes,yes")
(set_attr "cc" "*,*,*,*,*,*,*,*,clobber,*,none,none")])
(define_insn "movstrictqi"
[(set (strict_low_part
(match_operand:QI 0 "nonimmediate_operand" "+r,Q>,r, r,Q>,g,g,r"))
(match_operand:QI 1 "general_operand" "r,r, Q>,M,M, M,r,g"))]
""
"@
move.b %1,%0
move.b %1,%0
move.b %1,%0
clear.b %0
clear.b %0
clear.b %0
move.b %1,%0
move.b %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no")])
;; The valid "quick" bit-patterns are, except for 0.0, denormalized
;; values REALLY close to 0, and some NaN:s (I think; their exponent is
;; all ones); the worthwhile one is "0.0".
;; It will use clear, so we know ALL types of immediate 0 never change cc.
(define_insn "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,Q>,r, r,Q>,g,g,r,r,x,Q>,m,x, x")
(match_operand:SF 1 "general_operand" "r,r, Q>,G,G, G,r,g,x,r,x, x,Q>,g"))]
""
"@
move.d %1,%0
move.d %1,%0
move.d %1,%0
clear.d %0
clear.d %0
clear.d %0
move.d %1,%0
move.d %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no,yes,yes,yes,no,yes,no")])
;; Movem patterns. Primarily for use in function prologue and epilogue.
;; The V32 variants have an ordering matching the expectations of the
;; standard names "load_multiple" and "store_multiple"; pre-v32 movem
;; store R0 in the highest memory location.
(define_expand "load_multiple"
[(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "const_int_operand" "")]
"TARGET_V32"
{
rtx indreg;
/* Apparently the predicate isn't checked, so we need to do so
manually. Once happened for libstdc++-v3 locale_facets.tcc. */
if (!MEM_P (operands[1]))
FAIL;
indreg = XEXP (operands[1], 0);
if (GET_CODE (indreg) == POST_INC)
indreg = XEXP (indreg, 0);
if (!REG_P (indreg)
|| GET_CODE (operands[2]) != CONST_INT
|| !REG_P (operands[0])
|| REGNO (operands[0]) != 0
|| INTVAL (operands[2]) > CRIS_SP_REGNUM
|| (int) REGNO (indreg) < INTVAL (operands[2]))
FAIL;
gcc_unreachable ();
emit_insn (cris_gen_movem_load (operands[1], operands[2], 0));
DONE;
})
(define_expand "store_multiple"
[(match_operand:SI 0 "memory_operand" "")
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")]
"TARGET_V32"
{
rtx indreg;
/* See load_multiple. */
if (!MEM_P (operands[0]))
FAIL;
indreg = XEXP (operands[0], 0);
if (GET_CODE (indreg) == POST_INC)
indreg = XEXP (indreg, 0);
if (!REG_P (indreg)
|| GET_CODE (operands[2]) != CONST_INT
|| !REG_P (operands[1])
|| REGNO (operands[1]) != 0
|| INTVAL (operands[2]) > CRIS_SP_REGNUM
|| (int) REGNO (indreg) < INTVAL (operands[2]))
FAIL;
gcc_unreachable ();
cris_emit_movem_store (operands[0], operands[2], 0, false);
DONE;
})
(define_insn "*cris_load_multiple"
[(match_parallel 0 "cris_load_multiple_op"
[(set (match_operand:SI 1 "register_operand" "=r,r")
(match_operand:SI 2 "memory_operand" "Q,m"))])]
""
"movem %O0,%o0"
[(set_attr "cc" "none")
(set_attr "slottable" "yes,no")
;; Not true, but setting the length to 0 causes return sequences (ret
;; movem) to have the cost they had when (return) included the movem
;; and reduces the performance penalty taken for needing to emit an
;; epilogue (in turn copied by bb-reorder) instead of return patterns.
;; FIXME: temporary change until all insn lengths are correctly
;; described. FIXME: have better target control over bb-reorder.
(set_attr "length" "0")])
(define_insn "*cris_store_multiple"
[(match_parallel 0 "cris_store_multiple_op"
[(set (match_operand:SI 2 "memory_operand" "=Q,m")
(match_operand:SI 1 "register_operand" "r,r"))])]
""
"movem %o0,%O0"
[(set_attr "cc" "none")
(set_attr "slottable" "yes,no")])
;; Sign- and zero-extend insns with standard names.
;; Those for integer source operand are ordered with the widest source
;; type first.
;; Sign-extend.
(define_insn "extendsidi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:SI 1 "general_operand" "g")))]
""
"move.d %1,%M0\;smi %H0\;neg.d %H0,%H0")
(define_insn "extenddi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:BW 1 "general_operand" "g")))]
""
"movs %1,%M0\;smi %H0\;neg.d %H0,%H0")
(define_insn "extendsi2"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(sign_extend:SI (match_operand:BW 1 "general_operand" "r,Q>,g")))]
""
"movs %1,%0"
[(set_attr "slottable" "yes,yes,no")])
;; To do a byte->word extension, extend to dword, exept that the top half
;; of the register will be clobbered. FIXME: Perhaps this is not needed.
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(sign_extend:HI (match_operand:QI 1 "general_operand" "r,Q>,g")))]
""
"movs.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
;; Zero-extend. The DImode ones are synthesized by gcc, so we don't
;; specify them here.
(define_insn "zero_extendsi2"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(zero_extend:SI
(match_operand:BW 1 "nonimmediate_operand" "r,Q>,m")))]
""
"movu %1,%0"
[(set_attr "slottable" "yes,yes,no")])
;; Same comment as sign-extend QImode to HImode above applies.
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(zero_extend:HI
(match_operand:QI 1 "nonimmediate_operand" "r,Q>,m")))]
""
"movu.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
;; All kinds of arithmetic and logical instructions.
;;
;; First, anonymous patterns to match addressing modes with
;; side-effects.
;;
;; op.S [rx=ry+I],rz; (add, sub, or, and, bound).
;;
;; [rx=ry+rz.S]
(define_insn "*op_side_biap"
[(set (match_operand:BWD 0 "register_operand" "=r,r")
(match_operator:BWD
6 "cris_orthogonal_operator"
[(match_operand:BWD 1 "register_operand" "0,0")
(mem:BWD (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6 [%5=%4+%2%T3],%0")
;; [rx=ry+i] ([%4=%2+%3])
(define_insn "*op_side"
[(set (match_operand:BWD 0 "register_operand" "=r,r,r,r,r")
(match_operator:BWD
5 "cris_orthogonal_operator"
[(match_operand:BWD 1 "register_operand" "0,0,0,0,0")
(mem:BWD (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5.%s0 [%4=%3%S2],%0";
return "%x5 [%4=%2%S3],%0";
})
;; To match all cases for commutative operations we may have to have the
;; following pattern for add, or & and. I do not know really, but it does
;; not break anything.
;;
;; FIXME: This really ought to be checked.
;;
;; op.S [rx=ry+I],rz;
;;
;; [rx=ry+rz.S]
(define_insn "*op_swap_side_biap"
[(set (match_operand:BWD 0 "register_operand" "=r,r")
(match_operator:BWD
6 "cris_commutative_orth_op"
[(mem:BWD (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))
(match_operand:BWD 1 "register_operand" "0,0")]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6 [%5=%4+%2%T3],%0")
;; [rx=ry+i] ([%4=%2+%3])
;; FIXME: These could have anonymous mode for operand 0.
;; QImode
(define_insn "*op_swap_side"
[(set (match_operand:BWD 0 "register_operand" "=r,r,r,r,r")
(match_operator:BWD
5 "cris_commutative_orth_op"
[(mem:BWD
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))
(match_operand:BWD 1 "register_operand" "0,0,0,0,0")]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5 [%4=%3%S2],%0";
return "%x5 [%4=%2%S3],%0";
})
;; Add operations, standard names.
;; Note that for the 'P' constraint, the high part can be -1 or 0. We
;; output the insn through the 'A' output modifier as "adds.w" and "addq",
;; respectively.
(define_expand "adddi3"
[(set (match_operand:DI 0 "register_operand")
(plus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "general_operand")))]
""
{
if (MEM_P (operands[2]) && TARGET_V32)
operands[2] = force_reg (DImode, operands[2]);
})
(define_insn "*adddi3_non_v32"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,&r,&r")
(plus:DI (match_operand:DI 1 "register_operand" "%0,0,0,0,r")
(match_operand:DI 2 "general_operand" "J,N,P,g,!To")))]
"!TARGET_V32"
"@
addq %2,%M0\;ax\;addq 0,%H0
subq %n2,%M0\;ax\;subq 0,%H0
add%e2.%z2 %2,%M0\;ax\;%A2 %H2,%H0
add.d %M2,%M0\;ax\;add.d %H2,%H0
add.d %M2,%M1,%M0\;ax\;add.d %H2,%H1,%H0")
; It seems no use allowing a memory operand for this one, because we'd
; need a scratch register for incrementing the address.
(define_insn "*adddi3_v32"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,r,r")
(plus:DI (match_operand:DI 1 "register_operand" "%0,0,0,0,0")
(match_operand:DI 2 "nonmemory_operand" "J,N,P,r,n")))]
"TARGET_V32"
"@
addq %2,%M0\;addc 0,%H0
subq %n2,%M0\;ax\;subq 0,%H0
add%e2.%z2 %2,%M0\;addc %H2,%H0
add.d %M2,%M0\;addc %H2,%H0
add.d %M2,%M0\;addc %H2,%H0")
(define_expand "add3"
[(set (match_operand:BWD 0 "register_operand")
(plus:BWD
(match_operand:BWD 1 "register_operand")
(match_operand:BWD 2 "general_operand")))]
""
"")
(define_insn "*addsi3_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r,r,r, r,r, r")
(plus:SI
(match_operand:SI 1 "register_operand" "%0,0, 0,0,0,0, 0,r, r")
(match_operand:SI 2 "general_operand" "r,Q>,J,N,n,!S,g,!To,0")))]
;; The last constraint is due to that after reload, the '%' is not
;; honored, and canonicalization doesn't care about keeping the same
;; register as in destination. This will happen after insn splitting.
;; gcc <= 2.7.2. FIXME: Check for gcc-2.9x
"!TARGET_V32"
{
switch (which_alternative)
{
case 0:
case 1:
return "add.d %2,%0";
case 2:
return "addq %2,%0";
case 3:
return "subq %n2,%0";
case 4:
/* 'Known value', but not in -63..63.
Check if addu/subu may be used. */
if (INTVAL (operands[2]) > 0)
{
if (INTVAL (operands[2]) < 256)
return "addu.b %2,%0";
if (INTVAL (operands[2]) < 65536)
return "addu.w %2,%0";
}
else
{
if (INTVAL (operands[2]) >= -255)
return "subu.b %n2,%0";
if (INTVAL (operands[2]) >= -65535)
return "subu.w %n2,%0";
}
return "add.d %2,%0";
case 5:
{
rtx tem = operands[2];
gcc_assert (GET_CODE (tem) == CONST);
tem = XEXP (tem, 0);
if (GET_CODE (tem) == PLUS
&& GET_CODE (XEXP (tem, 0)) == UNSPEC
/* We don't allow CRIS_UNSPEC_PCREL here; we can't have a
pc-relative operand in an add insn. */
&& XINT (XEXP (tem, 0), 1) == CRIS_UNSPEC_GOTREL
&& CONST_INT_P (XEXP (tem, 1)))
tem = XEXP (tem, 0);
gcc_assert (GET_CODE (tem) == UNSPEC);
switch (XINT (tem, 1))
{
case CRIS_UNSPEC_GOTREAD:
case CRIS_UNSPEC_PLTGOTREAD:
/* Using sign-extend mostly to be consistent with the
indexed addressing mode. */
if (flag_pic == 1)
return "adds.w %2,%0";
return "add.d %2,%0";
case CRIS_UNSPEC_PLT_GOTREL:
case CRIS_UNSPEC_GOTREL:
return "add.d %2,%0";
default:
gcc_unreachable ();
}
}
case 6:
return "add%u2 %2,%0";
case 7:
return "add.d %2,%1,%0";
case 8:
return "add.d %1,%0";
default:
return "BOGUS addsi %2+%1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no,no,yes")])
; FIXME: Check what's best: having the three-operand ACR alternative
; before or after the corresponding-operand2 alternative. Check for
; *all* insns. FIXME: constant constraint letter for -128..127.
(define_insn "*addsi3_v32"
[(set (match_operand:SI 0 "register_operand" "=r,!a,r,!a, r,r,!a,r,!a,r,r,r,!a")
(plus:SI
(match_operand:SI 1 "register_operand" "%0,r, 0, r, 0,0,r, 0,r, 0,0,0,r")
(match_operand:SI 2 "general_operand" "r, r, Q>,Q>,J,N,NJ,L,L, P,n,g,g")))]
"TARGET_V32"
"@
add.d %2,%0
addi %2.b,%1,%0
add.d %2,%0
addo.d %2,%1,%0
addq %2,%0
subq %n2,%0
addoq %2,%1,%0
adds.w %2,%0
addo %2,%1,%0
addu.w %2,%0
add.d %2,%0
add%u2 %2,%0
addo.%Z2 %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,yes,no,no,no,no,no,no")
(set_attr "cc" "*,none,*,none,*,*,none,*,*,*,*,*,none")])
(define_insn "*addhi3_non_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r, r,r,r,r")
(plus:HI (match_operand:HI 1 "register_operand" "%0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "r,Q>,J,N,g,!To")))]
"!TARGET_V32"
"@
add.w %2,%0
add.w %2,%0
addq %2,%0
subq %n2,%0
add.w %2,%0
add.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,normal,normal")])
(define_insn "*addhi3_v32"
[(set (match_operand:HI 0 "register_operand" "=r, !a,r,!a, r,r,!a,r,!a")
(plus:HI
(match_operand:HI 1 "register_operand" "%0,r, 0, r, 0,0,r, 0,r")
(match_operand:HI 2 "general_operand" "r, r, Q>,Q>,J,N,NJ,g,g")))]
"TARGET_V32"
"@
add.w %2,%0
addi %2.b,%1,%0
add.w %2,%0
addo.w %2,%1,%0
addq %2,%0
subq %n2,%0
addoq %2,%1,%0
add.w %2,%0
addo.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,yes,no,no")
(set_attr "cc" "*,none,*,none,clobber,clobber,none,*,none")])
(define_insn "*addqi3_non_v32"
[(set (match_operand:QI 0 "register_operand" "=r,r, r,r,r,r,r")
(plus:QI (match_operand:QI 1 "register_operand" "%0,0, 0,0,0,0,r")
(match_operand:QI 2 "general_operand" "r,Q>,J,N,O,g,!To")))]
"!TARGET_V32"
"@
add.b %2,%0
add.b %2,%0
addq %2,%0
subq %n2,%0
subQ -%b2,%0
add.b %2,%0
add.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,clobber,normal,normal")])
(define_insn "*addqi3_v32"
[(set (match_operand:QI 0 "register_operand" "=r,!a,r,!a, r,r,!a,r,r,!a")
(plus:QI
(match_operand:QI 1 "register_operand" "%0,r, 0, r, 0,0,r, 0,0,r")
(match_operand:QI 2 "general_operand" "r,r, Q>,Q>,J,N,NJ,O,g,g")))]
"TARGET_V32"
"@
add.b %2,%0
addi %2.b,%1,%0
add.b %2,%0
addo.b %2,%1,%0
addq %2,%0
subq %n2,%0
addoq %2,%1,%0
subQ -%b2,%0
add.b %2,%0
addo.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,yes,yes,no,no")
(set_attr "cc" "*,none,*,none,clobber,clobber,none,clobber,*,none")])
;; Subtract.
;;
;; Note that because of insn canonicalization these will *seldom* but
;; rarely be used with a known constant as an operand.
;; Note that for the 'P' constraint, the high part can be -1 or 0. We
;; output the insn through the 'D' output modifier as "subs.w" and "subq",
;; respectively.
(define_expand "subdi3"
[(set (match_operand:DI 0 "register_operand")
(minus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "general_operand")))]
""
{
if (TARGET_V32 && MEM_P (operands[2]))
operands[2] = force_reg (DImode, operands[2]);
})
(define_insn "*subdi3_non_v32"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,&r,&r")
(minus:DI (match_operand:DI 1 "register_operand" "0,0,0,0,r")
(match_operand:DI 2 "general_operand" "J,N,P,g,!To")))]
"!TARGET_V32"
"@
subq %2,%M0\;ax\;subq 0,%H0
addq %n2,%M0\;ax\;addq 0,%H0
sub%e2.%z2 %2,%M0\;ax\;%D2 %H2,%H0
sub.d %M2,%M0\;ax\;sub.d %H2,%H0
sub.d %M2,%M1,%M0\;ax\;sub.d %H2,%H1,%H0")
(define_insn "*subdi3_v32"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,&r")
(minus:DI (match_operand:DI 1 "register_operand" "0,0,0,0")
(match_operand:DI 2 "nonmemory_operand" "J,N,P,r")))]
"TARGET_V32"
"@
subq %2,%M0\;ax\;subq 0,%H0
addq %n2,%M0\;ax\;addq 0,%H0
sub%e2.%z2 %2,%M0\;ax\;%D2 %H2,%H0
sub.d %M2,%M0\;ax\;sub.d %H2,%H0")
(define_expand "sub3"
[(set (match_operand:BWD 0 "register_operand")
(minus:BWD
(match_operand:BWD 1 "register_operand")
(match_operand:BWD 2 "general_operand")))]
""
"")
(define_insn "*subsi3_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r,r,r,r,r")
(minus:SI
(match_operand:SI 1 "register_operand" "0,0, 0,0,0,0,0,r")
(match_operand:SI 2 "general_operand" "r,Q>,J,N,P,n,g,!To")))]
"!TARGET_V32"
;; This does not do the optimal: "addu.w 65535,r0" when %2 is negative.
;; But then again, %2 should not be negative.
"@
sub.d %2,%0
sub.d %2,%0
subq %2,%0
addq %n2,%0
sub%e2.%z2 %2,%0
sub.d %2,%0
sub.d %2,%0
sub.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no,no")])
(define_insn "*subsi3_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r,r,r")
(minus:SI
(match_operand:SI 1 "register_operand" "0,0,0,0,0,0,0")
(match_operand:SI 2 "general_operand" "r,Q>,J,N,P,n,g")))]
"TARGET_V32"
"@
sub.d %2,%0
sub.d %2,%0
subq %2,%0
addq %n2,%0
sub%e2.%z2 %2,%0
sub.d %2,%0
sub.d %2,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no")])
(define_insn "*sub3_nonv32"
[(set (match_operand:BW 0 "register_operand" "=r,r, r,r,r,r")
(minus:BW (match_operand:BW 1 "register_operand" "0,0, 0,0,0,r")
(match_operand:BW 2 "general_operand" "r,Q>,J,N,g,!To")))]
"!TARGET_V32"
"@
sub %2,%0
sub %2,%0
subq %2,%0
addq %n2,%0
sub %2,%0
sub %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,normal,normal")])
(define_insn "*sub3_v32"
[(set (match_operand:BW 0 "register_operand" "=r,r,r,r,r")
(minus:BW (match_operand:BW 1 "register_operand" "0,0,0,0,0")
(match_operand:BW 2 "general_operand" "r,Q>,J,N,g")))]
"TARGET_V32"
"@
sub %2,%0
sub %2,%0
subq %2,%0
addq %n2,%0
sub %2,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no")
(set_attr "cc" "normal,normal,clobber,clobber,normal")])
;; CRIS has some add/sub-with-sign/zero-extend instructions.
;; Although these perform sign/zero-extension to SImode, they are
;; equally applicable for the HImode case.
;; FIXME: Check; GCC should handle the widening.
;; Note that these must be located after the normal add/sub patterns,
;; so not to get constants into any less specific operands.
;;
;; Extend with add/sub and side-effect.
;;
;; ADDS/SUBS/ADDU/SUBU and BOUND, which needs a check for zero_extend
;;
;; adds/subs/addu/subu bound [rx=ry+rz.S]
;; QImode to HImode
;; FIXME: GCC should widen.
(define_insn "*extopqihi_side_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(match_operator:HI
6 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0")
(match_operator:HI
7 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6%e7.%m7 [%5=%4+%2%T3],%0")
(define_insn "*extopsi_side_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
6 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0")
(match_operator:SI
7 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"(GET_CODE (operands[6]) != UMIN || GET_CODE (operands[7]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6%e7 [%5=%4+%2%T3],%0")
;; [rx=ry+i]
;; QImode to HImode
(define_insn "*extopqihi_side"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(match_operator:HI
5 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0,0,0,0")
(match_operator:HI
6 "cris_extend_operator"
[(mem:QI
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")
))])]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5%E6.%m6 [%4=%3%S2],%0";
return "%x5%E6.%m6 [%4=%2%S3],%0";
})
(define_insn "*extopsi_side"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
5 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0,0,0,0")
(match_operator:SI
6 "cris_extend_operator"
[(mem:BW
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")
))])]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"(GET_CODE (operands[5]) != UMIN || GET_CODE (operands[6]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5%E6 [%4=%3%S2],%0";
return "%x5%E6 [%4=%2%S3],%0";
})
;; As with op.S we may have to add special pattern to match commuted
;; operands to adds/addu and bound
;;
;; adds/addu/bound [rx=ry+rz.S]
;; QImode to HImode
;; FIXME: GCC should widen.
(define_insn "*extopqihi_swap_side_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI
(match_operator:HI
6 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])
(match_operand:HI 1 "register_operand" "0,0")))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
add%e6.b [%5=%4+%2%T3],%0")
(define_insn "*extopsi_swap_side_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
7 "cris_plus_or_bound_operator"
[(match_operator:SI
6 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])
(match_operand:SI 1 "register_operand" "0,0")]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"(GET_CODE (operands[7]) != UMIN || GET_CODE (operands[6]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x7%E6 [%5=%4+%2%T3],%0")
;; [rx=ry+i]
;; FIXME: GCC should widen.
;; QImode to HImode
(define_insn "*extopqihi_swap_side"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(plus:HI
(match_operator:HI
5 "cris_extend_operator"
[(mem:QI (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))])
(match_operand:HI 1 "register_operand" "0,0,0,0,0")))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "add%e5.b [%4=%3%S2],%0";
return "add%e5.b [%4=%2%S3],%0";
})
(define_insn "*extopsi_swap_side"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
6 "cris_plus_or_bound_operator"
[(match_operator:SI
5 "cris_extend_operator"
[(mem:BW (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))])
(match_operand:SI 1 "register_operand" "0,0,0,0,0")]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"(GET_CODE (operands[6]) != UMIN || GET_CODE (operands[5]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (!CONST_INT_P (operands[3])
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return \"%x6%E5.%m5 [%4=%3%S2],%0\";
return "%x6%E5 [%4=%2%S3],%0";
})
;; Extend versions (zero/sign) of normal add/sub (no side-effects).
;; QImode to HImode
;; FIXME: GCC should widen.
(define_insn "*extopqihi_non_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(match_operator:HI
3 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0,0,r")
(match_operator:HI
4 "cris_extend_operator"
[(match_operand:QI 2 "nonimmediate_operand" "r,Q>,m,!To")])]))]
"!TARGET_V32 && GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (operands[1] != frame_pointer_rtx || GET_CODE (operands[3]) != PLUS)"
"@
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
(define_insn "*extopqihi_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(match_operator:HI
3 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0")
(match_operator:HI
4 "cris_extend_operator"
[(match_operand:QI 2 "nonimmediate_operand" "r,m")])]))]
"TARGET_V32"
"%x3%e4.%m4 %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
;; QImode to SImode
(define_insn "*extopsi_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(match_operator:SI
3 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0,0,r")
(match_operator:SI
4 "cris_extend_operator"
[(match_operand:BW 2 "nonimmediate_operand" "r,Q>,m,!To")])]))]
"!TARGET_V32
&& (GET_CODE (operands[3]) != UMIN || GET_CODE (operands[4]) == ZERO_EXTEND)
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (operands[1] != frame_pointer_rtx || GET_CODE (operands[3]) != PLUS)"
"@
%x3%E4 %2,%0
%x3%E4 %2,%0
%x3%E4 %2,%0
%x3%E4 %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")])
(define_insn "*extopsi_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
3 "cris_additive_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0")
(match_operator:SI
4 "cris_extend_operator"
[(match_operand:BW 2 "nonimmediate_operand" "r,m")])]))]
"TARGET_V32"
"%x3%e4.%m4 %2,%0"
[(set_attr "slottable" "yes")])
;; As with the side-effect patterns, may have to have swapped operands for add.
;; For commutative operands, these are the canonical forms.
;; QImode to HImode
(define_insn "*addxqihi_swap_non_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(plus:HI
(match_operator:HI
3 "cris_extend_operator"
[(match_operand:QI 2 "nonimmediate_operand" "r,Q>,m,!To")])
(match_operand:HI 1 "register_operand" "0,0,0,r")))]
"!TARGET_V32 && operands[1] != frame_pointer_rtx"
"@
add%e3.b %2,%0
add%e3.b %2,%0
add%e3.b %2,%0
add%e3.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
;; A case for v32, to catch the "addo" insn in addition to "adds". We
;; only care to match the canonical form; there should be no other.
(define_insn "*addsbw_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,!a")
(plus:HI
(sign_extend:HI
(match_operand:QI 2 "nonimmediate_operand" "r,m,m"))
(match_operand:HI 1 "register_operand" "0,0,r")))]
"TARGET_V32"
"@
adds.b %2,%0
adds.b %2,%0
addo.b %2,%1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber,clobber,none")])
(define_insn "*addubw_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI
(zero_extend:HI
(match_operand:QI 2 "nonimmediate_operand" "r,m"))
(match_operand:HI 1 "register_operand" "0,0")))]
"TARGET_V32"
"addu.b %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
(define_insn "*extopsi_swap_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(match_operator:SI
4 "cris_plus_or_bound_operator"
[(match_operator:SI
3 "cris_extend_operator"
[(match_operand:BW 2 "nonimmediate_operand" "r,Q>,m,!To")])
(match_operand:SI 1 "register_operand" "0,0,0,r")]))]
"!TARGET_V32
&& (GET_CODE (operands[4]) != UMIN || GET_CODE (operands[3]) == ZERO_EXTEND)
&& operands[1] != frame_pointer_rtx"
"@
%x4%E3 %2,%0
%x4%E3 %2,%0
%x4%E3 %2,%0
%x4%E3 %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")])
(define_insn "*adds_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,!a")
(plus:SI
(sign_extend:SI
(match_operand:BW 2 "nonimmediate_operand" "r,m,m"))
(match_operand:SI 1 "register_operand" "0,0,r")))]
"TARGET_V32"
"@
adds %2,%0
adds %2,%0
addo %2,%1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "*,*,none")])
(define_insn "*addu_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI
(zero_extend:SI
(match_operand:BW 2 "nonimmediate_operand" "r,m"))
(match_operand:SI 1 "register_operand" "0,0")))]
"TARGET_V32 && operands[1] != frame_pointer_rtx"
"addu %2,%0"
[(set_attr "slottable" "yes")])
(define_insn "*bound_v32"
[(set (match_operand:SI 0 "register_operand" "=r")
(umin:SI
(zero_extend:SI
(match_operand:BW 2 "register_operand" "r"))
(match_operand:SI 1 "register_operand" "0")))]
"TARGET_V32 && operands[1] != frame_pointer_rtx"
"bound %2,%0"
[(set_attr "slottable" "yes")])
;; This is the special case when we use what corresponds to the
;; instruction above in "casesi". Do *not* change it to use the generic
;; pattern and "REG 15" as pc; I did that and it led to madness and
;; maintenance problems: Instead of (as imagined) recognizing and removing
;; or replacing this pattern with something simpler, other variant
;; patterns were recognized or combined, including some prefix variants
;; where the value in pc is not that of the next instruction (which means
;; this instruction actually *is* special and *should* be marked as such).
;; When switching from the "generic pattern match" approach to this simpler
;; approach, there were insignificant differences in gcc, ipps and
;; product code, somehow due to scratching reload behind the ear or
;; something. Testcase "gcc" looked .01% slower and 4 bytes bigger;
;; product code became .001% smaller but "looked better". The testcase
;; "ipps" was just different at register allocation).
;;
;; Assumptions in the jump optimizer forces us to use IF_THEN_ELSE in this
;; pattern with the default-label as the else, with the "if" being
;; index-is-less-than the max number of cases plus one. The default-label
;; is attached to the end of the case-table at time of output.
(define_insn "*casesi_adds_w"
[(set (pc)
(if_then_else
(ltu (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "const_int_operand" "n"))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (mult:SI (match_dup 0) (const_int 2))
(pc))))
(pc))
(label_ref (match_operand 2 "" ""))))
(use (label_ref (match_operand 3 "" "")))]
"!TARGET_V32 && operands[0] != frame_pointer_rtx"
"adds.w [$pc+%0.w],$pc"
[(set_attr "cc" "clobber")])
;; For V32, we just have a jump, but we need to mark the table as used,
;; and the jump insn must have the if_then_else form expected by core
;; GCC. Since we don't want to prolong the lifetime of the original
;; index value, we compare against "unspec 0". It's a pity we have to
;; jump through to get the default label in place and to keep the jump
;; table around. FIXME: Look into it some time.
(define_insn "*casesi_jump_v32"
[(set (pc)
(if_then_else
(ltu (unspec [(const_int 0)] CRIS_UNSPEC_CASESI)
(match_operand:SI 0 "const_int_operand" "n"))
(match_operand:SI 1 "register_operand" "r")
(label_ref (match_operand 2 "" ""))))
(use (label_ref (match_operand 3 "" "")))]
"TARGET_V32"
"jump %1%#"
[(set_attr "cc" "clobber")
(set_attr "slottable" "has_slot")])
;; Multiply instructions.
;; Sometimes powers of 2 (which are normally canonicalized to a
;; left-shift) appear here, as a result of address reloading.
;; As a special, for values 3 and 5, we can match with an addi, so add those.
;;
;; FIXME: This may be unnecessary now.
;; Explicitly named for convenience of having a gen_... function.
(define_insn "addi_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI
(match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "const_int_operand" "n")))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& CONST_INT_P (operands[2])
&& (INTVAL (operands[2]) == 2
|| INTVAL (operands[2]) == 4 || INTVAL (operands[2]) == 3
|| INTVAL (operands[2]) == 5)"
{
if (INTVAL (operands[2]) == 2)
return "lslq 1,%0";
else if (INTVAL (operands[2]) == 4)
return "lslq 2,%0";
else if (INTVAL (operands[2]) == 3)
return "addi %0.w,%0";
else if (INTVAL (operands[2]) == 5)
return "addi %0.d,%0";
return "BAD: adr_mulsi: %0=%1*%2";
}
[(set_attr "slottable" "yes")
;; No flags are changed if this insn is "addi", but it does not seem
;; worth the trouble to distinguish that to the lslq cases.
(set_attr "cc" "clobber")])
;; The addi insn as it is normally used.
;; Make the the ACR alternative taste bad enough to not choose it as a
;; preference to avoid spilling problems (unwind-dw2-fde.c at build).
;; FIXME: Revisit for new register allocator.
(define_insn "*addi"
[(set (match_operand:SI 0 "register_operand" "=r,!a")
(plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 1 "register_operand" "0,r")))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& CONST_INT_P (operands[3])
&& (INTVAL (operands[3]) == 1
|| INTVAL (operands[3]) == 2 || INTVAL (operands[3]) == 4)"
"@
addi %2%T3,%0
addi %2%T3,%1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
;; The mstep instruction. Probably not useful by itself; it's to
;; non-linear wrt. the other insns. We used to expand to it, so at least
;; it's correct.
(define_insn "mstep_shift"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(lt:SI (cc0) (const_int 0))
(plus:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
(const_int 1))
(match_operand:SI 2 "register_operand" "r"))
(ashift:SI (match_operand:SI 3 "register_operand" "0")
(const_int 1))))]
"!TARGET_V32"
"mstep %2,%0"
[(set_attr "slottable" "yes")])
;; When illegitimate addresses are legitimized, sometimes gcc forgets
;; to canonicalize the multiplications.
;;
;; FIXME: Check gcc > 2.7.2, remove and possibly fix in gcc.
(define_insn "mstep_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(lt:SI (cc0) (const_int 0))
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "0")
(const_int 2))
(match_operand:SI 2 "register_operand" "r"))
(mult:SI (match_operand:SI 3 "register_operand" "0")
(const_int 2))))]
"!TARGET_V32
&& operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& operands[2] != frame_pointer_rtx
&& operands[3] != frame_pointer_rtx"
"mstep %2,%0"
[(set_attr "slottable" "yes")])
(define_insn "mul3"
[(set (match_operand:WD 0 "register_operand" "=r")
(mult:WD
(szext:WD (match_operand: 1 "register_operand" "%0"))
(szext:WD (match_operand: 2 "register_operand" "r"))))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!mul %2,%0"
[(set (attr "slottable")
(if_then_else (ne (symbol_ref "TARGET_MUL_BUG") (const_int 0))
(const_string "no")
(const_string "yes")))
;; For umuls.[bwd] it's just N unusable here, but let's be safe.
;; For muls.b, this really extends to SImode, so cc should be
;; considered clobbered.
;; For muls.w, it's just N unusable here, but let's be safe.
(set_attr "cc" "clobber")])
;; Note that gcc does not make use of such a thing as umulqisi3. It gets
;; confused and will erroneously use it instead of umulhisi3, failing (at
;; least) gcc.c-torture/execute/arith-rand.c at all optimization levels.
;; Inspection of optab code shows that there must be only one widening
;; multiplication per mode widened to.
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!muls.d %2,%0"
[(set (attr "slottable")
(if_then_else (ne (symbol_ref "TARGET_MUL_BUG") (const_int 0))
(const_string "no")
(const_string "yes")))
;; Just N unusable here, but let's be safe.
(set_attr "cc" "clobber")])
;; A few multiply variations.
;; When needed, we can get the high 32 bits from the overflow
;; register. We don't care to split and optimize these.
;;
;; Note that cc0 is still valid after the move-from-overflow-register
;; insn; no special precaution need to be taken in cris_notice_update_cc.
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI
(szext:DI (match_operand:SI 1 "register_operand" "%0"))
(szext:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!mul.d %2,%M0\;move $mof,%H0")
;; These two patterns may be expressible by other means, perhaps by making
;; [u]?mulsidi3 a define_expand.
;; Due to register allocation braindamage, the clobber 1,2 alternatives
;; cause a move into the clobbered register *before* the insn, then
;; after the insn, mof is moved too, rather than the clobber assigned
;; the last mof target. This became apparent when making MOF and SRP
;; visible registers, with the necessary tweak to smulsi3_highpart.
;; Because these patterns are used in division by constants, that damage
;; is visible (ipps regression tests). Therefore the last two
;; alternatives, "helping" reload to avoid an unnecessary move, but
;; punished by force of one "?". Check code from "int d (int a) {return
;; a / 1000;}" and unsigned. FIXME: Comment above was for 3.2, revisit.
(define_insn "mulsi3_highpart"
[(set (match_operand:SI 0 "register_operand" "=h,h,?r,?r")
(truncate:SI
(lshiftrt:DI
(mult:DI
(szext:DI (match_operand:SI 1 "register_operand" "r,r,0,r"))
(szext:DI (match_operand:SI 2 "register_operand" "r,r,r,0")))
(const_int 32))))
(clobber (match_scratch:SI 3 "=1,2,h,h"))]
"TARGET_HAS_MUL_INSNS"
"@
%!mul.d %2,%1
%!mul.d %1,%2
%!mul.d %2,%1\;move $mof,%0
%!mul.d %1,%2\;move $mof,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
;; Divide and modulus instructions. CRIS only has a step instruction.
(define_insn "dstep_shift"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(geu:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
(const_int 1))
(match_operand:SI 2 "register_operand" "r"))
(minus:SI (ashift:SI (match_operand:SI 3 "register_operand" "0")
(const_int 1))
(match_operand:SI 4 "register_operand" "2"))
(ashift:SI (match_operand:SI 5 "register_operand" "0")
(const_int 1))))]
""
"dstep %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Here's a variant with mult instead of ashift.
;;
;; FIXME: This should be investigated. Which one matches through combination?
(define_insn "dstep_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(geu:SI (mult:SI (match_operand:SI 1 "register_operand" "0")
(const_int 2))
(match_operand:SI 2 "register_operand" "r"))
(minus:SI (mult:SI (match_operand:SI 3 "register_operand" "0")
(const_int 2))
(match_operand:SI 4 "register_operand" "2"))
(mult:SI (match_operand:SI 5 "register_operand" "0")
(const_int 2))))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& operands[2] != frame_pointer_rtx
&& operands[3] != frame_pointer_rtx"
"dstep %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Logical operators.
;; Bitwise "and".
;; There is no use in defining "anddi3", because gcc can expand this by
;; itself, and make reasonable code without interference.
;; If the first operand is memory or a register and is the same as the
;; second operand, and the third operand is -256 or -65536, we can use
;; CLEAR instead. Or, if the first operand is a register, and the third
;; operand is 255 or 65535, we can zero_extend.
;; GCC isn't smart enough to recognize these cases (yet), and they seem
;; to be common enough to be worthwhile.
;; FIXME: This should be made obsolete.
(define_expand "andsi3"
[(set (match_operand:SI 0 "nonimmediate_operand" "")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
{
if (! (CONST_INT_P (operands[2])
&& (((INTVAL (operands[2]) == -256
|| INTVAL (operands[2]) == -65536)
&& rtx_equal_p (operands[1], operands[0]))
|| ((INTVAL (operands[2]) == 255
|| INTVAL (operands[2]) == 65535)
&& REG_P (operands[0])))))
{
/* Make intermediate steps if operand0 is not a register or
operand1 is not a register, and hope that the reload pass will
make something useful out of it. Note that the operands are
*not* canonicalized. For the moment, I chicken out on this,
because all or most ports do not describe 'and' with
canonicalized operands, and I seem to remember magic in reload,
checking that operand1 has constraint '%0', in which case
operand0 and operand1 must have similar predicates.
FIXME: Investigate. */
rtx reg0 = REG_P (operands[0]) ? operands[0] : gen_reg_rtx (SImode);
rtx reg1 = operands[1];
if (! REG_P (reg1))
{
emit_move_insn (reg0, reg1);
reg1 = reg0;
}
emit_insn (gen_rtx_SET (SImode, reg0,
gen_rtx_AND (SImode, reg1, operands[2])));
/* Make sure we get the right *final* destination. */
if (! REG_P (operands[0]))
emit_move_insn (operands[0], reg0);
DONE;
}
})
;; Some special cases of andsi3.
(define_insn "*andsi_movu"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "%r,Q,To")
(match_operand:SI 2 "const_int_operand" "n,n,n")))]
"(INTVAL (operands[2]) == 255 || INTVAL (operands[2]) == 65535)
&& !side_effects_p (operands[1])"
"movu.%z2 %1,%0"
[(set_attr "slottable" "yes,yes,no")])
(define_insn "*andsi_clear"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,Q,Q,To,To")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "%0,0,0,0,0,0")
(match_operand:SI 2 "const_int_operand" "P,n,P,n,P,n")))]
"(INTVAL (operands[2]) == -65536 || INTVAL (operands[2]) == -256)
&& !side_effects_p (operands[0])"
"@
cLear.b %0
cLear.w %0
cLear.b %0
cLear.w %0
cLear.b %0
cLear.w %0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "none")])
;; This is a catch-all pattern, taking care of everything that was not
;; matched in the insns above.
;;
;; Sidenote: the tightening from "nonimmediate_operand" to
;; "register_operand" for operand 1 actually increased the register
;; pressure (worse code). That will hopefully change with an
;; improved reload pass.
(define_insn "*expanded_andsi_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r, r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,0, 0,r")
(match_operand:SI 2 "general_operand" "I,r,Q>,g,!To")))]
"!TARGET_V32"
"@
andq %2,%0
and.d %2,%0
and.d %2,%0
and.d %2,%0
and.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no")])
(define_insn "*expanded_andsi_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,0,0")
(match_operand:SI 2 "general_operand" "I,r,Q>,g")))]
"TARGET_V32"
"@
andq %2,%0
and.d %2,%0
and.d %2,%0
and.d %2,%0"
[(set_attr "slottable" "yes,yes,yes,no")
(set_attr "cc" "noov32")])
;; For both QI and HI we may use the quick patterns. This results in
;; useless condition codes, but that is used rarely enough for it to
;; normally be a win (could check ahead for use of cc0, but seems to be
;; more pain than win).
;; FIXME: See note for andsi3
(define_expand "andhi3"
[(set (match_operand:HI 0 "nonimmediate_operand" "")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
{
if (! (CONST_INT_P (operands[2])
&& (((INTVAL (operands[2]) == -256
|| INTVAL (operands[2]) == 65280)
&& rtx_equal_p (operands[1], operands[0]))
|| (INTVAL (operands[2]) == 255
&& REG_P (operands[0])))))
{
/* See comment for andsi3. */
rtx reg0 = REG_P (operands[0]) ? operands[0] : gen_reg_rtx (HImode);
rtx reg1 = operands[1];
if (! REG_P (reg1))
{
emit_move_insn (reg0, reg1);
reg1 = reg0;
}
emit_insn (gen_rtx_SET (HImode, reg0,
gen_rtx_AND (HImode, reg1, operands[2])));
/* Make sure we get the right destination. */
if (! REG_P (operands[0]))
emit_move_insn (operands[0], reg0);
DONE;
}
})
;; Some fast andhi3 special cases.
(define_insn "*andhi_movu"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "r,Q,To")
(const_int 255)))]
"!side_effects_p (operands[1])"
"mOvu.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
(define_insn "*andhi_clear"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,Q,To")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "0,0,0")
(const_int -256)))]
"!side_effects_p (operands[0])"
"cLear.b %0"
[(set_attr "slottable" "yes,yes,no")
(set_attr "cc" "none")])
;; Catch-all andhi3 pattern.
(define_insn "*expanded_andhi_non_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r, r,r,r,r")
(and:HI (match_operand:HI 1 "register_operand" "%0,0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g,!To")))]
;; Sidenote: the tightening from "general_operand" to
;; "register_operand" for operand 1 actually increased the register
;; pressure (worse code). That will hopefully change with an
;; improved reload pass.
"!TARGET_V32"
"@
andq %2,%0
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0
and.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no,no")
(set_attr "cc" "clobber,normal,normal,normal,clobber,normal,normal")])
(define_insn "*expanded_andhi_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r,r")
(and:HI (match_operand:HI 1 "register_operand" "%0,0,0,0,0,0")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g")))]
"TARGET_V32"
"@
andq %2,%0
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no")
(set_attr "cc" "clobber,noov32,noov32,noov32,clobber,noov32")])
;; A strict_low_part pattern.
(define_insn "*andhi_lowpart_non_v32"
[(set (strict_low_part
(match_operand:HI 0 "register_operand" "+r,r, r,r,r,r"))
(and:HI (match_operand:HI 1 "register_operand" "%0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "r,Q>,L,O,g,!To")))]
"!TARGET_V32"
"@
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0
and.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,yes,no,no")
(set_attr "cc" "normal,normal,normal,clobber,normal,normal")])
(define_insn "*andhi_lowpart_v32"
[(set (strict_low_part
(match_operand:HI 0 "register_operand" "+r,r,r,r,r"))
(and:HI (match_operand:HI 1 "register_operand" "%0,0,0,0,0")
(match_operand:HI 2 "general_operand" "r,Q>,L,O,g")))]
"TARGET_V32"
"@
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0"
[(set_attr "slottable" "yes,yes,no,yes,no")
(set_attr "cc" "noov32,noov32,noov32,clobber,noov32")])
(define_expand "andqi3"
[(set (match_operand:QI 0 "register_operand")
(and:QI (match_operand:QI 1 "register_operand")
(match_operand:QI 2 "general_operand")))]
""
"")
(define_insn "*andqi3_non_v32"
[(set (match_operand:QI 0 "register_operand" "=r,r,r, r,r,r")
(and:QI (match_operand:QI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g,!To")))]
"!TARGET_V32"
"@
andq %2,%0
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0
and.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "clobber,normal,normal,clobber,normal,normal")])
(define_insn "*andqi3_v32"
[(set (match_operand:QI 0 "register_operand" "=r,r,r,r,r")
(and:QI (match_operand:QI 1 "register_operand" "%0,0,0,0,0")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g")))]
"TARGET_V32"
"@
andq %2,%0
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no")
(set_attr "cc" "clobber,noov32,noov32,clobber,noov32")])
(define_insn "*andqi_lowpart_non_v32"
[(set (strict_low_part
(match_operand:QI 0 "register_operand" "+r,r, r,r,r"))
(and:QI (match_operand:QI 1 "register_operand" "%0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "r,Q>,O,g,!To")))]
"!TARGET_V32"
"@
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0
and.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,normal,normal")])
(define_insn "*andqi_lowpart_v32"
[(set (strict_low_part
(match_operand:QI 0 "register_operand" "+r,r,r,r"))
(and:QI (match_operand:QI 1 "register_operand" "%0,0,0,0")
(match_operand:QI 2 "general_operand" "r,Q>,O,g")))]
"TARGET_V32"
"@
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0"
[(set_attr "slottable" "yes,yes,yes,no")
(set_attr "cc" "noov32,noov32,clobber,noov32")])
;; Bitwise or.
;; Same comment as anddi3 applies here - no need for such a pattern.
;; It seems there's no need to jump through hoops to get good code such as
;; with andsi3.
(define_expand "ior3"
[(set (match_operand:BWD 0 "register_operand")
(ior:BWD (match_operand:BWD 1 "register_operand")
(match_operand:BWD 2 "general_operand")))]
""
"")
(define_insn "*iorsi3_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r, r,r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:SI 2 "general_operand" "I, r,Q>,n,g,!To")))]
"!TARGET_V32"
"@
orq %2,%0
or.d %2,%0
or.d %2,%0
oR.%s2 %2,%0
or.d %2,%0
or.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no,no")
(set_attr "cc" "normal,normal,normal,clobber,normal,normal")])
(define_insn "*iorsi3_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,0,0,0")
(match_operand:SI 2 "general_operand" "I,r,Q>,n,g")))]
"TARGET_V32"
"@
orq %2,%0
or.d %2,%0
or.d %2,%0
oR.%s2 %2,%0
or.d %2,%0"
[(set_attr "slottable" "yes,yes,yes,no,no")
(set_attr "cc" "noov32,noov32,noov32,clobber,noov32")])
(define_insn "*iorhi3_non_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r, r,r,r,r")
(ior:HI (match_operand:HI 1 "register_operand" "%0,0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g,!To")))]
"!TARGET_V32"
"@
orq %2,%0
or.w %2,%0
or.w %2,%0
or.w %2,%0
oRq %b2,%0
or.w %2,%0
or.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no,no")
(set_attr "cc" "clobber,normal,normal,normal,clobber,normal,normal")])
(define_insn "*iorhi3_v32"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r,r")
(ior:HI (match_operand:HI 1 "register_operand" "%0,0,0,0,0,0")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g")))]
"TARGET_V32"
"@
orq %2,%0
or.w %2,%0
or.w %2,%0
or.w %2,%0
oRq %b2,%0
or.w %2,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no")
(set_attr "cc" "clobber,noov32,noov32,noov32,clobber,noov32")])
(define_insn "*iorqi3_non_v32"
[(set (match_operand:QI 0 "register_operand" "=r,r,r, r,r,r")
(ior:QI (match_operand:QI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g,!To")))]
"!TARGET_V32"
"@
orq %2,%0
or.b %2,%0
or.b %2,%0
orQ %b2,%0
or.b %2,%0
or.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "clobber,normal,normal,clobber,normal,normal")])
(define_insn "*iorqi3_v32"
[(set (match_operand:QI 0 "register_operand" "=r,r,r,r,r")
(ior:QI (match_operand:QI 1 "register_operand" "%0,0,0,0,0")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g")))]
"TARGET_V32"
"@
orq %2,%0
or.b %2,%0
or.b %2,%0
orQ %b2,%0
or.b %2,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no")
(set_attr "cc" "clobber,noov32,noov32,clobber,noov32")])
;; Exclusive-or
;; See comment about "anddi3" for xordi3 - no need for such a pattern.
;; FIXME: Do we really need the shorter variants?
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(xor:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
(define_insn "xor3"
[(set (match_operand:BW 0 "register_operand" "=r")
(xor:BW (match_operand:BW 1 "register_operand" "%0")
(match_operand:BW 2 "register_operand" "r")))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
;; Negation insns.
;; Questionable use, here mostly as a (slightly usable) define_expand
;; example.
(define_expand "negsf2"
[(set (match_dup 2)
(match_dup 3))
(parallel [(set (match_operand:SF 0 "register_operand" "=r")
(neg:SF (match_operand:SF 1
"register_operand" "0")))
(use (match_dup 2))])]
""
{
operands[2] = gen_reg_rtx (SImode);
operands[3] = GEN_INT (1 << 31);
})
(define_insn "*expanded_negsf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(neg:SF (match_operand:SF 1 "register_operand" "0")))
(use (match_operand:SI 2 "register_operand" "r"))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")])
;; No "negdi2" although we could make one up that may be faster than
;; the one in libgcc.
(define_insn "neg2"
[(set (match_operand:BWD 0 "register_operand" "=r")
(neg:BWD (match_operand:BWD 1 "register_operand" "r")))]
""
"neg %1,%0"
[(set_attr "slottable" "yes")])
;; One-complements.
;; See comment on anddi3 - no need for a DImode pattern.
;; See also xor comment.
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "register_operand" "0")))]
""
"not %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
(define_insn "one_cmpl2"
[(set (match_operand:BW 0 "register_operand" "=r")
(not:BW (match_operand:BW 1 "register_operand" "0")))]
""
"not %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
;; Arithmetic/Logical shift right (and SI left).
(define_insn "si3"
[(set (match_operand:SI 0 "register_operand" "=r")
(shift:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "Kcr")))]
""
{
if (REG_S_P (operands[2]))
return ".d %2,%0";
return "q %2,%0";
}
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Since gcc gets lost, and forgets to zero-extend the source (or mask
;; the destination) when it changes shifts of lower modes into SImode,
;; it is better to make these expands an anonymous patterns instead of
;; the more correct define_insns. This occurs when gcc thinks that is
;; is better to widen to SImode and use immediate shift count.
;; FIXME: Is this legacy or still true for gcc >= 2.7.2?
;; FIXME: Can't parametrize sign_extend and zero_extend (before
;; mentioning "shiftrt"), so we need two patterns.
(define_expand "ashr3"
[(set (match_dup 3)
(sign_extend:SI (match_operand:BW 1 "nonimmediate_operand" "")))
(set (match_dup 4)
(zero_extend:SI (match_operand:BW 2 "nonimmediate_operand" "")))
(set (match_dup 5) (ashiftrt:SI (match_dup 3) (match_dup 4)))
(set (match_operand:BW 0 "general_operand" "")
(subreg:BW (match_dup 5) 0))]
""
{
int i;
for (i = 3; i < 6; i++)
operands[i] = gen_reg_rtx (SImode);
})
(define_expand "lshr3"
[(set (match_dup 3)
(zero_extend:SI (match_operand:BW 1 "nonimmediate_operand" "")))
(set (match_dup 4)
(zero_extend:SI (match_operand:BW 2 "nonimmediate_operand" "")))
(set (match_dup 5) (lshiftrt:SI (match_dup 3) (match_dup 4)))
(set (match_operand:BW 0 "general_operand" "")
(subreg:BW (match_dup 5) 0))]
""
{
int i;
for (i = 3; i < 6; i++)
operands[i] = gen_reg_rtx (SImode);
})
(define_insn "*expanded_"
[(set (match_operand:BW 0 "register_operand" "=r")
(shiftrt:BW (match_operand:BW 1 "register_operand" "0")
(match_operand:BW 2 "register_operand" "r")))]
""
" %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
(define_insn "*_lowpart"
[(set (strict_low_part (match_operand:BW 0 "register_operand" "+r"))
(shiftrt:BW (match_dup 0)
(match_operand:BW 1 "register_operand" "r")))]
""
" %1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Arithmetic/logical shift left.
;; For narrower modes than SI, we can use lslq although it makes cc
;; unusable. The win is that we do not have to reload the shift-count
;; into a register.
(define_insn "ashl3"
[(set (match_operand:BW 0 "register_operand" "=r,r")
(ashift:BW (match_operand:BW 1 "register_operand" "0,0")
(match_operand:BW 2 "nonmemory_operand" "r,Kc")))]
""
{
return
(CONST_INT_P (operands[2]) && INTVAL (operands[2]) > )
? "moveq 0,%0"
: (CONSTANT_P (operands[2])
? "lslq %2,%0" : "lsl %2,%0");
}
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32,clobber")])
;; A strict_low_part matcher.
(define_insn "*ashl_lowpart"
[(set (strict_low_part (match_operand:BW 0 "register_operand" "+r"))
(ashift:BW (match_dup 0)
(match_operand:HI 1 "register_operand" "r")))]
""
"lsl %1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Various strange insns that gcc likes.
;; Fortunately, it is simple to construct an abssf (although it may not
;; be very much used in practice).
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(abs:SF (match_operand:SF 1 "register_operand" "0")))]
""
"lslq 1,%0\;lsrq 1,%0")
(define_insn "abssi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(abs:SI (match_operand:SI 1 "register_operand" "r")))]
""
"abs %1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; FIXME: GCC should be able to do these expansions itself.
(define_expand "abs2"
[(set (match_dup 2)
(sign_extend:SI (match_operand:BW 1 "general_operand" "")))
(set (match_dup 3) (abs:SI (match_dup 2)))
(set (match_operand:BW 0 "register_operand" "")
(subreg:BW (match_dup 3) 0))]
""
"operands[2] = gen_reg_rtx (SImode); operands[3] = gen_reg_rtx (SImode);")
(define_insn "clzsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(clz:SI (match_operand:SI 1 "register_operand" "r")))]
"TARGET_HAS_LZ"
"lz %1,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
(define_insn "bswapsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(bswap:SI (match_operand:SI 1 "register_operand" "0")))]
"TARGET_HAS_SWAP"
"swapwb %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; This instruction swaps all bits in a register.
;; That means that the most significant bit is put in the place
;; of the least significant bit, and so on.
(define_insn "cris_swap_bits"
[(set (match_operand:SI 0 "register_operand" "=r")
(unspec:SI [(match_operand:SI 1 "register_operand" "0")]
CRIS_UNSPEC_SWAP_BITS))]
"TARGET_HAS_SWAP"
"swapwbr %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "noov32")])
;; Implement ctz using two instructions, one for bit swap and one for clz.
;; Defines a scratch register to avoid clobbering input.
(define_expand "ctzsi2"
[(set (match_dup 2)
(match_operand:SI 1 "register_operand"))
(set (match_dup 2)
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_SWAP_BITS))
(set (match_operand:SI 0 "register_operand")
(clz:SI (match_dup 2)))]
"TARGET_HAS_LZ && TARGET_HAS_SWAP"
"operands[2] = gen_reg_rtx (SImode);")
;; Bound-insn. Defined to be the same as an unsigned minimum, which is an
;; operation supported by gcc. Used in casesi, but used now and then in
;; normal code too.
(define_expand "uminsi3"
[(set (match_operand:SI 0 "register_operand" "")
(umin:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
{
if (MEM_P (operands[2]) && TARGET_V32)
operands[2] = force_reg (SImode, operands[2]);
})
(define_insn "*uminsi3_non_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r")
(umin:SI (match_operand:SI 1 "register_operand" "%0,0, 0,r")
(match_operand:SI 2 "general_operand" "r,Q>,g,!To")))]
"!TARGET_V32"
{
if (CONST_INT_P (operands[2]))
{
/* Constant operands are zero-extended, so only 32-bit operands
may be negative. */
if (INTVAL (operands[2]) >= 0)
{
if (INTVAL (operands[2]) < 256)
return "bound.b %2,%0";
if (INTVAL (operands[2]) < 65536)
return "bound.w %2,%0";
}
}
else if (which_alternative == 3)
return "bound.d %2,%1,%0";
return "bound.d %2,%0";
}
[(set_attr "slottable" "yes,yes,no,no")])
(define_insn "*uminsi3_v32"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(umin:SI (match_operand:SI 1 "register_operand" "%0,0")
(match_operand:SI 2 "nonmemory_operand" "r,i")))]
"TARGET_V32"
{
if (GET_CODE (operands[2]) == CONST_INT)
{
/* Constant operands are zero-extended, so only 32-bit operands
may be negative. */
if (INTVAL (operands[2]) >= 0)
{
if (INTVAL (operands[2]) < 256)
return "bound.b %2,%0";
if (INTVAL (operands[2]) < 65536)
return "bound.w %2,%0";
}
}
return "bound.d %2,%0";
}
[(set_attr "slottable" "yes,no")])
;; Jump and branch insns.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"ba %l0%#"
[(set_attr "slottable" "has_slot")])
;; Testcase gcc.c-torture/compile/991213-3.c fails if we allow a constant
;; here, since the insn is not recognized as an indirect jump by
;; jmp_uses_reg_or_mem used by computed_jump_p. Perhaps it is a kludge to
;; change from general_operand to nonimmediate_operand (at least the docs
;; should be changed), but then again the pattern is called indirect_jump.
(define_expand "indirect_jump"
[(set (pc) (match_operand:SI 0 "nonimmediate_operand"))]
""
{
if (TARGET_V32 && MEM_P (operands[0]))
operands[0] = force_reg (SImode, operands[0]);
})
(define_insn "*indirect_jump_non_v32"
[(set (pc) (match_operand:SI 0 "nonimmediate_operand" "rm"))]
"!TARGET_V32"
"jump %0")
(define_insn "*indirect_jump_v32"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
"TARGET_V32"
"jump %0%#"
[(set_attr "slottable" "has_slot")])
;; Return insn. Used whenever the epilogue is very simple; if it is only
;; a single ret or jump [sp+]. No allocated stack space or saved
;; registers are allowed.
;; Note that for this pattern, although named, it is ok to check the
;; context of the insn in the test, not only compiler switches.
(define_expand "return"
[(return)]
"cris_simple_epilogue ()"
"cris_expand_return (cris_return_address_on_stack ()); DONE;")
(define_insn "*return_expanded"
[(return)]
""
{
return cris_return_address_on_stack_for_return ()
? "jump [$sp+]" : "ret%#";
}
[(set (attr "slottable")
(if_then_else
(ne (symbol_ref
"(cris_return_address_on_stack_for_return ())")
(const_int 0))
(const_string "no")
(const_string "has_return_slot")))])
(define_expand "prologue"
[(const_int 0)]
"TARGET_PROLOGUE_EPILOGUE"
"cris_expand_prologue (); DONE;")
;; Note that the (return) from the expander itself is always the last
;; insn in the epilogue.
(define_expand "epilogue"
[(const_int 0)]
"TARGET_PROLOGUE_EPILOGUE"
"cris_expand_epilogue (); DONE;")
;; Conditional branches.
(define_expand "cbranch4"
[(set (cc0) (compare
(match_operand:BWD 1 "nonimmediate_operand")
(match_operand:BWD 2 "general_operand")))
(set (pc)
(if_then_else (match_operator 0 "ordered_comparison_operator"
[(cc0) (const_int 0)])
(label_ref (match_operand 3 "" ""))
(pc)))]
""
"")
(define_expand "cbranchdi4"
[(set (cc0)
(compare (match_operand:DI 1 "nonimmediate_operand" "")
(match_operand:DI 2 "general_operand" "")))
(set (pc)
(if_then_else (match_operator 0 "ordered_comparison_operator"
[(cc0) (const_int 0)])
(label_ref (match_operand 3 "" ""))
(pc)))]
""
{
if (TARGET_V32 && !REG_P (operands[1]))
operands[1] = force_reg (DImode, operands[1]);
if (TARGET_V32 && MEM_P (operands[2]))
operands[2] = force_reg (DImode, operands[2]);
})
;; We suffer from the same overflow-bit-gets-in-the-way problem as
;; e.g. m68k, so we have to check if overflow bit is set on all "signed"
;; conditions.
(define_insn "b"
[(set (pc)
(if_then_else (ncond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"b %l0%#"
[(set_attr "slottable" "has_slot")])
(define_insn "b"
[(set (pc)
(if_then_else (ocond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "b %l0%#";
}
[(set_attr "slottable" "has_slot")])
(define_insn "b"
[(set (pc)
(if_then_else (rcond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "b %l0%#" : "b %l0%#";
}
[(set_attr "slottable" "has_slot")])
;; Reversed anonymous patterns to the ones above, as mandated.
(define_insn "*b_reversed"
[(set (pc)
(if_then_else (ncond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"b %l0%#"
[(set_attr "slottable" "has_slot")])
(define_insn "*b_reversed"
[(set (pc)
(if_then_else (ocond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "b %l0%#";
}
[(set_attr "slottable" "has_slot")])
(define_insn "*b_reversed"
[(set (pc)
(if_then_else (rcond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "b %l0%#" : "b %l0%#";
}
[(set_attr "slottable" "has_slot")])
;; Set on condition: sCC.
(define_expand "cstoredi4"
[(set (cc0) (compare
(match_operand:DI 2 "nonimmediate_operand")
(match_operand:DI 3 "general_operand")))
(set (match_operand:SI 0 "register_operand")
(match_operator:SI 1 "ordered_comparison_operator"
[(cc0) (const_int 0)]))]
""
{
if (TARGET_V32 && !REG_P (operands[2]))
operands[2] = force_reg (DImode, operands[2]);
if (TARGET_V32 && MEM_P (operands[3]))
operands[3] = force_reg (DImode, operands[3]);
})
(define_expand "cstore4"
[(set (cc0) (compare
(match_operand:BWD 2 "nonimmediate_operand")
(match_operand:BWD 3 "general_operand")))
(set (match_operand:SI 0 "register_operand")
(match_operator:SI 1 "ordered_comparison_operator"
[(cc0) (const_int 0)]))]
""
"")
;; Like bCC, we have to check the overflow bit for
;; signed conditions.
(define_insn "s"
[(set (match_operand:SI 0 "register_operand" "=r")
(ncond:SI (cc0) (const_int 0)))]
""
"s %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
(define_insn "s"
[(set (match_operand:SI 0 "register_operand" "=r")
(rcond:SI (cc0) (const_int 0)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "s %0" : "s %0";
}
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
(define_insn "s"
[(set (match_operand:SI 0 "register_operand" "=r")
(ocond:SI (cc0) (const_int 0)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "s %0";
}
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
;; Call insns.
;; We need to make these patterns "expand", since the real operand is
;; hidden in a (mem:QI ) inside operand[0] (call_value: operand[1]),
;; and cannot be checked if it were a "normal" pattern.
;; Note that "call" and "call_value" are *always* called with a
;; mem-operand for operand 0 and 1 respective. What happens for combined
;; instructions is a different issue.
(define_expand "call"
[(parallel [(call (match_operand:QI 0 "cris_mem_call_operand" "")
(match_operand 1 "general_operand" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
""
{
gcc_assert (MEM_P (operands[0]));
if (flag_pic)
cris_expand_pic_call_address (&operands[0]);
})
;; Accept *anything* as operand 1. Accept operands for operand 0 in
;; order of preference.
(define_insn "*expanded_call_non_v32"
[(call (mem:QI (match_operand:SI 0 "general_operand" "r,Q>,g"))
(match_operand 1 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))]
"!TARGET_V32"
"jsr %0")
(define_insn "*expanded_call_v32"
[(call
(mem:QI
(match_operand:SI 0 "cris_nonmemory_operand_or_callable_symbol" "n,r,U,i"))
(match_operand 1 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))]
"TARGET_V32"
"@
jsr %0%#
jsr %0%#
bsr %0%#
bsr %0%#"
[(set_attr "slottable" "has_call_slot")])
;; Parallel when calculating and reusing address of indirect pointer
;; with simple offset. (Makes most sense with PIC.) It looks a bit
;; wrong not to have the clobber last, but that's the way combine
;; generates it (except it doesn' look into the *inner* mem, so this
;; just matches a peephole2). FIXME: investigate that.
(define_insn "*expanded_call_side"
[(call (mem:QI
(mem:SI
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r, r,r")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r,>Rn"))))
(match_operand 2 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_operand:SI 3 "register_operand" "=*0,r,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"!TARGET_AVOID_GOTPLT && !TARGET_V32"
"jsr [%3=%0%S1]")
(define_expand "call_value"
[(parallel [(set (match_operand 0 "" "")
(call (match_operand:QI 1 "cris_mem_call_operand" "")
(match_operand 2 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
""
{
gcc_assert (MEM_P (operands[1]));
if (flag_pic)
cris_expand_pic_call_address (&operands[1]);
})
;; Accept *anything* as operand 2. The validity other than "general" of
;; operand 0 will be checked elsewhere. Accept operands for operand 1 in
;; order of preference (Q includes r, but r is shorter, faster).
;; We also accept a PLT symbol. We output it as [rPIC+sym:GOTPLT] rather
;; than requiring getting rPIC + sym:PLT into a register.
(define_insn "*expanded_call_value_non_v32"
[(set (match_operand 0 "nonimmediate_operand" "=g,g,g")
(call (mem:QI (match_operand:SI 1 "general_operand" "r,Q>,g"))
(match_operand 2 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))]
"!TARGET_V32"
"Jsr %1"
[(set_attr "cc" "clobber")])
;; See similar call special-case.
(define_insn "*expanded_call_value_side"
[(set (match_operand 0 "nonimmediate_operand" "=g,g,g")
(call
(mem:QI
(mem:SI
(plus:SI (match_operand:SI 1 "cris_bdap_operand" "%r, r,r")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn"))))
(match_operand 3 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_operand:SI 4 "register_operand" "=*1,r,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"!TARGET_AVOID_GOTPLT && !TARGET_V32"
"Jsr [%4=%1%S2]"
[(set_attr "cc" "clobber")])
(define_insn "*expanded_call_value_v32"
[(set
(match_operand 0 "nonimmediate_operand" "=g,g,g,g")
(call
(mem:QI
(match_operand:SI 1 "cris_nonmemory_operand_or_callable_symbol" "n,r,U,i"))
(match_operand 2 "" "")))
(clobber (reg:SI 16))]
"TARGET_V32"
"@
Jsr %1%#
Jsr %1%#
Bsr %1%#
Bsr %1%#"
[(set_attr "cc" "clobber")
(set_attr "slottable" "has_call_slot")])
;; Used in debugging. No use for the direct pattern; unfilled
;; delayed-branches are taken care of by other means.
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "cc" "none")])
;; We need to stop accesses to the stack after the memory is
;; deallocated. Unfortunately, reorg doesn't look at naked clobbers,
;; e.g. (insn ... (clobber (mem:BLK (stack_pointer_rtx)))) and we don't
;; want to use a naked (unspec_volatile) as that would stop any
;; scheduling in the epilogue. Hence we model it as a "real" insn that
;; sets the memory in an unspecified manner. FIXME: Unfortunately it
;; still has the effect of an unspec_volatile.
(define_insn "cris_frame_deallocated_barrier"
[(set (mem:BLK (reg:SI CRIS_SP_REGNUM))
(unspec:BLK [(const_int 0)] CRIS_UNSPEC_FRAME_DEALLOC))]
""
""
[(set_attr "length" "0")])
;; We expand on casesi so we can use "bound" and "add offset fetched from
;; a table to pc" (adds.w [pc+%0.w],pc).
;; Note: if you change the "parallel" (or add anything after it) in
;; this expansion, you must change the macro ASM_OUTPUT_CASE_END
;; accordingly, to add the default case at the end of the jump-table.
(define_expand "cris_casesi_non_v32"
[(set (match_dup 5) (match_operand:SI 0 "general_operand" ""))
(set (match_dup 6)
(minus:SI (match_dup 5)
(match_operand:SI 1 "const_int_operand" "n")))
(set (match_dup 7)
(umin:SI (match_dup 6)
(match_operand:SI 2 "const_int_operand" "n")))
(parallel
[(set (pc)
(if_then_else
(ltu (match_dup 7) (match_dup 2))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (mult:SI (match_dup 7) (const_int 2))
(pc))))
(pc))
(label_ref (match_operand 4 "" ""))))
(use (label_ref (match_operand 3 "" "")))])]
""
{
operands[2] = plus_constant (operands[2], 1);
operands[5] = gen_reg_rtx (SImode);
operands[6] = gen_reg_rtx (SImode);
operands[7] = gen_reg_rtx (SImode);
})
;; FIXME: Check effect of not JUMP_TABLES_IN_TEXT_SECTION.
(define_expand "cris_casesi_v32"
[(set (match_dup 5) (match_operand:SI 0 "general_operand"))
(set (match_dup 6)
(minus:SI (match_dup 5)
(match_operand:SI 1 "const_int_operand")))
(set (match_dup 7)
(umin:SI (match_dup 6)
(match_operand:SI 2 "const_int_operand")))
(set (match_dup 8) (match_dup 11))
(set (match_dup 9)
(plus:SI (mult:SI (match_dup 7) (const_int 2))
(match_dup 8)))
(set (match_dup 10)
(plus:SI (sign_extend:SI (mem:HI (match_dup 9)))
(match_dup 9)))
(parallel
[(set (pc)
(if_then_else
(ltu (unspec [(const_int 0)] CRIS_UNSPEC_CASESI) (match_dup 2))
(match_dup 10)
(label_ref (match_operand 4 "" ""))))
(use (label_ref (match_dup 3)))])]
"TARGET_V32"
{
int i;
rtx xlabel = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
for (i = 5; i <= 10; i++)
operands[i] = gen_reg_rtx (SImode);
operands[2] = plus_constant (operands[2], 1);
/* Don't forget to decorate labels too, for PIC. */
operands[11] = flag_pic
? gen_rtx_CONST (Pmode,
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xlabel),
CRIS_UNSPEC_PCREL))
: xlabel;
})
(define_expand "casesi"
[(match_operand:SI 0 "general_operand")
(match_operand:SI 1 "const_int_operand")
(match_operand:SI 2 "const_int_operand")
(match_operand 3 "" "")
(match_operand 4 "" "")]
""
{
if (TARGET_V32)
emit_insn (gen_cris_casesi_v32 (operands[0], operands[1], operands[2],
operands[3], operands[4]));
else
emit_insn (gen_cris_casesi_non_v32 (operands[0], operands[1], operands[2],
operands[3], operands[4]));
DONE;
})
;; Split-patterns. Some of them have modes unspecified. This
;; should always be ok; if for no other reason sparc.md has it as
;; well.
;;
;; When register_operand is specified for an operand, we can get a
;; subreg as well (Axis-990331), so don't just assume that REG_P is true
;; for a register_operand and that REGNO can be used as is. It is best to
;; guard with REG_P, unless it is worth it to adjust for the subreg case.
;; op [rx + 0],ry,rz
;; The index to rx is optimized into zero, and gone.
;; First, recognize bound [rx],ry,rz; where [rx] is zero-extended,
;; and add/sub [rx],ry,rz, with zero or sign-extend on [rx].
;; Split this into:
;; move ry,rz
;; op [rx],rz
;; Lose if rz=ry or rx=rz.
;; Call this op-extend-split.
;; Do not match for V32; the addo and addi shouldn't be split
;; up.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_op_dup 3 [(match_dup 2)])]))]
"")
;; As op-extend-split, but recognize and split op [rz],ry,rz into
;; ext [rz],rz
;; op ry,rz
;; Do this for plus or bound only, being commutative operations, since we
;; have swapped the operands.
;; Call this op-extend-split-rx=rz
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operand 1 "register_operand" "")
(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_op_dup 3 [(match_dup 2)]))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_dup 1)]))]
"")
;; As the op-extend-split, but swapped operands, and only for
;; plus or bound, being the commutative extend-operators. FIXME: Why is
;; this needed? Is it?
;; Call this op-extend-split-swapped
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])
(match_operand 1 "register_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_op_dup 3 [(match_dup 2)])]))]
"")
;; As op-extend-split-rx=rz, but swapped operands, only for plus or
;; bound. Call this op-extend-split-swapped-rx=rz.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])
(match_operand 1 "register_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_op_dup 3 [(match_dup 2)]))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_dup 1)]))]
"")
;; As op-extend-split, but the mem operand is not extended.
;;
;; op [rx],ry,rz changed into
;; move ry,rz
;; op [rx],rz
;; lose if ry=rz or rx=rz
;; Call this op-extend.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(match_operand 2 "memory_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 2)]))]
"")
;; As op-extend-split-rx=rz, non-extended.
;; Call this op-split-rx=rz
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_commutative_orth_op"
[(match_operand 2 "memory_operand" "")
(match_operand 1 "register_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 2)]))]
"")
;; As op-extend-split-swapped, nonextended.
;; Call this op-split-swapped.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_commutative_orth_op"
[(match_operand 1 "register_operand" "")
(match_operand 2 "memory_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 2))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 1)]))]
"")
;; As op-extend-split-swapped-rx=rz, non-extended.
;; Call this op-split-swapped-rx=rz.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_orthogonal_operator"
[(match_operand 2 "memory_operand" "")
(match_operand 1 "register_operand" "")]))]
"!TARGET_V32
&& REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 2))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 1)]))]
"")
;; Splits for all cases in side-effect insns where (possibly after reload
;; and register allocation) rx and ry in [rx=ry+i] are equal.
;; move.S1 [rx=rx+rz.S2],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" ""))
(match_operand:SI 3 "register_operand" ""))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))])]
"REG_P (operands[3]) && REG_P (operands[4])
&& REGNO (operands[3]) == REGNO (operands[4])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 1) (match_dup 2))
(match_dup 3)))
(set (match_dup 0) (match_dup 5))]
"operands[5] = replace_equiv_address (operands[6], operands[3]);")
;; move.S1 [rx=rx+i],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_mem_op"
[(plus:SI (match_operand:SI 1 "cris_bdap_operand" "")
(match_operand:SI 2 "cris_bdap_operand" ""))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 1)
(match_dup 2)))])]
"(rtx_equal_p (operands[3], operands[1])
|| rtx_equal_p (operands[3], operands[2]))"
[(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (match_dup 4))]
{
operands[4] = replace_equiv_address (operands[5], operands[3]);
cris_order_for_addsi3 (operands, 1);
})
;; move.S1 ry,[rx=rx+rz.S2]
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" ""))])
(match_operand 3 "register_operand" ""))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"REG_P (operands[2]) && REG_P (operands[4])
&& REGNO (operands[4]) == REGNO (operands[2])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 0) (match_dup 1))
(match_dup 2)))
(set (match_dup 5) (match_dup 3))]
"operands[5] = replace_equiv_address (operands[6], operands[4]);")
;; move.S1 ry,[rx=rx+i]
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI (match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" ""))])
(match_operand 2 "register_operand" ""))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 0)
(match_dup 1)))])]
"(rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1]))"
[(set (match_dup 3) (plus:SI (match_dup 0) (match_dup 1)))
(set (match_dup 5) (match_dup 2))]
{
operands[5] = replace_equiv_address (operands[6], operands[3]);
cris_order_for_addsi3 (operands, 0);
})
;; clear.[bwd] [rx=rx+rz.S2]
(define_split
[(parallel
[(set (mem:BWD (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" "")))
(const_int 0))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"REG_P (operands[2]) && REG_P (operands[3])
&& REGNO (operands[3]) == REGNO (operands[2])"
[(set (match_dup 3) (plus:SI (mult:SI (match_dup 0) (match_dup 1))
(match_dup 2)))
(set (mem:BWD (match_dup 3)) (const_int 0))]
"")
;; clear.[bwd] [rx=rx+i]
(define_split
[(parallel
[(set (mem:BWD
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" "")))
(const_int 0))
(set (match_operand:SI 2 "register_operand" "")
(plus:SI (match_dup 0)
(match_dup 1)))])]
"(rtx_equal_p (operands[0], operands[2])
|| rtx_equal_p (operands[2], operands[1]))"
[(set (match_dup 2) (plus:SI (match_dup 0) (match_dup 1)))
(set (mem:BWD (match_dup 2)) (const_int 0))]
"cris_order_for_addsi3 (operands, 0);")
;; mov(s|u).S1 [rx=rx+rz.S2],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" ""))
(match_operand:SI 3 "register_operand" "")))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))])]
"REG_P (operands[3])
&& REG_P (operands[4])
&& REGNO (operands[3]) == REGNO (operands[4])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 1) (match_dup 2))
(match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 6)]))]
"operands[6] = replace_equiv_address (XEXP (operands[5], 0), operands[4]);")
;; mov(s|u).S1 [rx=rx+i],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_extend_operator"
[(mem (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "")
(match_operand:SI 2 "cris_bdap_operand" "")))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 1)
(match_dup 2)))])]
"(rtx_equal_p (operands[1], operands[3])
|| rtx_equal_p (operands[2], operands[3]))"
[(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (match_op_dup 4 [(match_dup 5)]))]
{
operands[5] = replace_equiv_address (XEXP (operands[4], 0), operands[3]);
cris_order_for_addsi3 (operands, 1);
})
;; op.S1 [rx=rx+i],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(mem (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 1) (match_dup 6)]))]
{
operands[6] = replace_equiv_address (XEXP (operands[5], 1), operands[4]);
cris_order_for_addsi3 (operands, 2);
})
;; op.S1 [rx=rx+rz.S2],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 1) (match_dup 7)]))]
"operands[7] = replace_equiv_address (XEXP (operands[6], 1), operands[5]);")
;; op.S1 [rx=rx+rz.S2],ry (swapped)
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_commutative_orth_op"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 7) (match_dup 1)]))]
"operands[7] = replace_equiv_address (XEXP (operands[6], 0), operands[5]);")
;; op.S1 [rx=rx+i],ry (swapped)
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_commutative_orth_op"
[(mem
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 6) (match_dup 1)]))]
{
operands[6] = replace_equiv_address (XEXP (operands[5], 0), operands[4]);
cris_order_for_addsi3 (operands, 2);
})
;; op(s|u).S1 [rx=rx+rz.S2],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
7 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))])]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 1) (match_dup 8)]))]
"operands[8] = gen_rtx_fmt_e (GET_CODE (operands[7]), GET_MODE (operands[7]),
replace_equiv_address (XEXP (operands[7], 0),
operands[5]));")
;; op(s|u).S1 [rx=rx+i],ry
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
6 "cris_extend_operator"
[(mem
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")
))])]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 1) (match_dup 7)]))]
{
operands[7] = gen_rtx_fmt_e (GET_CODE (operands[6]), GET_MODE (operands[6]),
replace_equiv_address (XEXP (operands[6], 0),
operands[4]));
cris_order_for_addsi3 (operands, 2);
})
;; op(s|u).S1 [rx=rx+rz.S2],ry (swapped, plus or bound)
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
7 "cris_plus_or_bound_operator"
[(match_operator
6 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))])
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4]) && REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 8) (match_dup 1)]))]
"operands[8] = gen_rtx_fmt_e (GET_CODE (operands[6]), GET_MODE (operands[6]),
replace_equiv_address (XEXP (operands[6], 0),
operands[5]));")
;; op(s|u).S1 [rx=rx+i],ry (swapped, plus or bound)
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_plus_or_bound_operator"
[(match_operator
5 "cris_extend_operator"
[(mem (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))])
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 7) (match_dup 1)]))]
{
operands[7] = gen_rtx_fmt_e (GET_CODE (operands[5]), GET_MODE (operands[5]),
replace_equiv_address (XEXP (operands[5], 0),
operands[4]));
cris_order_for_addsi3 (operands, 2);
})
;; Splits for addressing prefixes that have no side-effects, so we can
;; fill a delay slot. Never split if we lose something, though.
;; If we have a
;; move [indirect_ref],rx
;; where indirect ref = {const, [r+], [r]}, it costs as much as
;; move indirect_ref,rx
;; move [rx],rx
;; Take care not to allow indirect_ref = register.
;; We're not allowed to generate copies of registers with different mode
;; until after reload; copying pseudos upsets reload. CVS as of
;; 2001-08-24, unwind-dw2-fde.c, _Unwind_Find_FDE ICE in
;; cselib_invalidate_regno.
(define_split ; indir_to_reg_split
[(set (match_operand 0 "register_operand" "")
(match_operand 1 "indirect_operand" ""))]
"reload_completed
&& REG_P (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (MEM_P (XEXP (operands[1], 0)) || CONSTANT_P (XEXP (operands[1], 0)))
&& REGNO (operands[0]) < CRIS_LAST_GENERAL_REGISTER"
[(set (match_dup 2) (match_dup 4))
(set (match_dup 0) (match_dup 3))]
"operands[2] = gen_rtx_REG (Pmode, REGNO (operands[0]));
operands[3] = replace_equiv_address (operands[1], operands[2]);
operands[4] = XEXP (operands[1], 0);")
;; As the above, but MOVS and MOVU.
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_extend_operator"
[(match_operand 1 "indirect_operand" "")]))]
"reload_completed
&& REG_P (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (MEM_P (XEXP (operands[1], 0))
|| CONSTANT_P (XEXP (operands[1], 0)))"
[(set (match_dup 2) (match_dup 5))
(set (match_dup 0) (match_op_dup 4 [(match_dup 3)]))]
"operands[2] = gen_rtx_REG (Pmode, REGNO (operands[0]));
operands[3] = replace_equiv_address (XEXP (operands[4], 0), operands[2]);
operands[5] = XEXP (operands[1], 0);")
;; Various peephole optimizations.
;;
;; Watch out: when you exchange one set of instructions for another, the
;; condition codes setting must be the same, or you have to CC_INIT or
;; whatever is appropriate, in the pattern before you emit the
;; assembly text. This is best done here, not in cris_notice_update_cc,
;; to keep changes local to their cause.
;;
;; Do not add patterns that you do not know will be matched.
;; Please also add a self-contained testcase.
;; We have trouble with and:s and shifts. Maybe something is broken in
;; gcc? Or it could just be that bit-field insn expansion is a bit
;; suboptimal when not having extzv insns.
;; Testcase for the following four peepholes: gcc.dg/cris-peep2-xsrand.c
(define_peephole2 ; asrandb (peephole casesi+31)
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0)
(match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 255
&& INTVAL (operands[1]) > 23
/* Check that the and-operation enables us to use logical-shift. */
&& (INTVAL (operands[2])
& ((HOST_WIDE_INT) -1 << (32 - INTVAL (operands[1])))) == 0"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:QI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (QImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), QImode));
})
(define_peephole2 ; asrandw (peephole casesi+32)
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 65535
&& INTVAL (operands[2]) != 255
&& INTVAL (operands[1]) > 15
/* Check that the and-operation enables us to use logical-shift. */
&& (INTVAL (operands[2])
& ((HOST_WIDE_INT) -1 << (32 - INTVAL (operands[1])))) == 0"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:HI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (HImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), HImode));
})
(define_peephole2 ; lsrandb (peephole casesi+33)
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 255
&& INTVAL (operands[1]) > 23"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:QI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (QImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), QImode));
})
(define_peephole2 ; lsrandw (peephole casesi+34)
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31 && INTVAL (operands[2]) < 65535
&& INTVAL (operands[2]) != 255
&& INTVAL (operands[1]) > 15"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:HI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (HImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), HImode));
})
;; Change
;; add.d n,rx
;; move [rx],ry
;; into
;; move [rx=rx+n],ry
;; when -128 <= n <= 127.
;; This will reduce the size of the assembler code for n = [-128..127],
;; and speed up accordingly. Don't match if the previous insn is
;; (set rx rz) because that combination is matched by another peephole.
;; No stable test-case.
(define_peephole2 ; moversideqi (peephole casesi+35)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operand 3 "register_operand" "")
(match_operator 4 "cris_mem_op" [(match_dup 0)]))]
"GET_MODE_SIZE (GET_MODE (operands[4])) <= UNITS_PER_WORD
&& REGNO (operands[3]) != REGNO (operands[0])
&& (BASE_P (operands[1]) || BASE_P (operands[2]))
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& (INTVAL (operands[2]) >= -128 && INTVAL (operands[2]) < 128)
&& TARGET_SIDE_EFFECT_PREFIXES"
[(parallel
[(set (match_dup 3) (match_dup 5))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
;; Checking the previous insn is a bit too awkward for the condition.
{
rtx prev = prev_nonnote_insn (curr_insn);
if (prev != NULL_RTX)
{
rtx set = single_set (prev);
if (set != NULL_RTX
&& REG_S_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) == REGNO (operands[0])
&& REG_S_P (SET_SRC (set)))
FAIL;
}
operands[5]
= replace_equiv_address (operands[4],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));
})
;; Vice versa: move ry,[rx=rx+n]
(define_peephole2 ; movemsideqi (peephole casesi+36)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operator 3 "cris_mem_op" [(match_dup 0)])
(match_operand 4 "register_operand" ""))]
"GET_MODE_SIZE (GET_MODE (operands[4])) <= UNITS_PER_WORD
&& REGNO (operands[4]) != REGNO (operands[0])
&& (BASE_P (operands[1]) || BASE_P (operands[2]))
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& (INTVAL (operands[2]) >= -128 && INTVAL (operands[2]) < 128)
&& TARGET_SIDE_EFFECT_PREFIXES"
[(parallel
[(set (match_dup 5) (match_dup 4))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
"operands[5]
= replace_equiv_address (operands[3],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));")
;; As above, change:
;; add.d n,rx
;; op.d [rx],ry
;; into:
;; op.d [rx=rx+n],ry
;; Saves when n = [-128..127].
;;
;; Splitting and joining combinations for side-effect modes are slightly
;; out of hand. They probably will not save the time they take typing in,
;; not to mention the bugs that creep in. FIXME: Get rid of as many of
;; the splits and peepholes as possible.
;; No stable test-case.
(define_peephole2 ; mover2side (peephole casesi+37)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operand 3 "register_operand" "")
(match_operator 4 "cris_orthogonal_operator"
[(match_dup 3)
(match_operator
5 "cris_mem_op" [(match_dup 0)])]))]
;; FIXME: What about DFmode?
;; Change to GET_MODE_SIZE (GET_MODE (operands[3])) <= UNITS_PER_WORD?
"GET_MODE (operands[3]) != DImode
&& REGNO (operands[0]) != REGNO (operands[3])
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& INTVAL (operands[2]) >= -128
&& INTVAL (operands[2]) <= 127
&& TARGET_SIDE_EFFECT_PREFIXES"
[(parallel
[(set (match_dup 3) (match_op_dup 4 [(match_dup 3) (match_dup 6)]))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
"operands[6]
= replace_equiv_address (operands[5],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));")
;; Sometimes, for some reason the pattern
;; move x,rx
;; add y,rx
;; move [rx],rz
;; will occur. Solve this, and likewise for to-memory.
;; No stable test-case.
(define_peephole2 ; moverside (peephole casesi+38)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "cris_bdap_biap_operand" ""))
(set (match_dup 0)
(plus:SI (match_operand:SI 2 "cris_bdap_biap_operand" "")
(match_operand:SI 3 "cris_bdap_biap_operand" "")))
(set (match_operand 4 "register_operand" "")
(match_operator 5 "cris_mem_op" [(match_dup 0)]))]
"(rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[3], operands[0]))
&& cris_side_effect_mode_ok (PLUS, operands, 0,
(REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
(! REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
-1, 4)"
[(parallel
[(set (match_dup 4) (match_dup 6))
(set (match_dup 0) (plus:SI (match_dup 7) (match_dup 8)))])]
{
rtx otherop
= rtx_equal_p (operands[2], operands[0]) ? operands[3] : operands[2];
/* Make sure we have canonical RTX so we match the insn pattern -
not a constant in the first operand. We also require the order
(plus reg mem) to match the final pattern. */
if (CONSTANT_P (otherop) || MEM_P (otherop))
{
operands[7] = operands[1];
operands[8] = otherop;
}
else
{
operands[7] = otherop;
operands[8] = operands[1];
}
operands[6]
= replace_equiv_address (operands[5],
gen_rtx_PLUS (SImode,
operands[7], operands[8]));
})
;; As above but to memory.
;; FIXME: Split movemside and moverside into variants and prune
;; the ones that don't trig.
;; No stable test-case.
(define_peephole2 ; movemside (peephole casesi+39)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "cris_bdap_biap_operand" ""))
(set (match_dup 0)
(plus:SI (match_operand:SI 2 "cris_bdap_biap_operand" "")
(match_operand:SI 3 "cris_bdap_biap_operand" "")))
(set (match_operator 4 "cris_mem_op" [(match_dup 0)])
(match_operand 5 "register_operand" ""))]
"(rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[3], operands[0]))
&& cris_side_effect_mode_ok (PLUS, operands, 0,
(REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
(! REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
-1, 5)"
[(parallel
[(set (match_dup 6) (match_dup 5))
(set (match_dup 0) (plus:SI (match_dup 7) (match_dup 8)))])]
{
rtx otherop
= rtx_equal_p (operands[2], operands[0]) ? operands[3] : operands[2];
/* Make sure we have canonical RTX so we match the insn pattern -
not a constant in the first operand. We also require the order
(plus reg mem) to match the final pattern. */
if (CONSTANT_P (otherop) || MEM_P (otherop))
{
operands[7] = operands[1];
operands[8] = otherop;
}
else
{
operands[7] = otherop;
operands[8] = operands[1];
}
operands[6]
= replace_equiv_address (operands[4],
gen_rtx_PLUS (SImode,
operands[7], operands[8]));
})
;; Another spotted bad code:
;; move rx,ry
;; move [ry],ry
;; No stable test-case.
(define_peephole2 ; movei (peephole casesi+42)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand 2 "register_operand" "")
(match_operator 3 "cris_mem_op" [(match_dup 0)]))]
"REGNO (operands[0]) == REGNO (operands[2])
&& (REGNO_REG_CLASS (REGNO (operands[0]))
== REGNO_REG_CLASS (REGNO (operands[1])))
&& GET_MODE_SIZE (GET_MODE (operands[2])) <= UNITS_PER_WORD"
[(set (match_dup 2) (match_dup 4))]
"operands[4] = replace_equiv_address (operands[3], operands[1]);")
;; move.d [r10+16],r9
;; and.d r12,r9
;; change to
;; and.d [r10+16],r12,r9
;; With generalization of the operation, the size and the addressing mode.
;; This seems to be the result of a quirk in register allocation
;; missing the three-operand cases when having different predicates.
;; Maybe that it matters that it is a commutative operation.
;; This pattern helps that situation, but there's still the increased
;; register pressure.
;; Note that adding the noncommutative variant did not show any matches
;; in ipps and cc1, so it's not here.
;; No stable test-case.
(define_peephole2 ; op3 (peephole casesi+44)
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_mem_op"
[(plus:SI
(match_operand:SI 1 "cris_bdap_biap_operand" "")
(match_operand:SI 2 "cris_bdap_biap_operand" ""))]))
(set (match_dup 0)
(match_operator
5 "cris_commutative_orth_op"
[(match_operand 3 "register_operand" "")
(match_operand 4 "register_operand" "")]))]
"(rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[4], operands[0]))
&& ! rtx_equal_p (operands[3], operands[4])
&& (REG_S_P (operands[1]) || REG_S_P (operands[2]))
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD"
[(set (match_dup 0) (match_op_dup 5 [(match_dup 7) (match_dup 6)]))]
"operands[7]
= rtx_equal_p (operands[3], operands[0]) ? operands[4] : operands[3];")
;; I cannot tell GCC (2.1, 2.7.2) how to correctly reload an instruction
;; that looks like
;; and.b some_byte,const,reg_32
;; where reg_32 is the destination of the "three-address" code optimally.
;; It should be:
;; movu.b some_byte,reg_32
;; and.b const,reg_32
;; but is turns into:
;; move.b some_byte,reg_32
;; and.d const,reg_32
;; Fix it here.
;; Testcases: gcc.dg/cris-peep2-andu1.c gcc.dg/cris-peep2-andu2.c
(define_peephole2 ; andu (casesi+45)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonimmediate_operand" ""))
(set (match_operand:SI 2 "register_operand" "")
(and:SI (match_dup 0)
(match_operand:SI 3 "const_int_operand" "")))]
;; Since the size of the memory access could be made different here,
;; don't do this for a mem-volatile access.
"REGNO (operands[2]) == REGNO (operands[0])
&& INTVAL (operands[3]) <= 65535 && INTVAL (operands[3]) >= 0
&& !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'I')
&& !side_effects_p (operands[1])"
;; FIXME: CC0 valid except for M (i.e. CC_NOT_NEGATIVE).
[(set (match_dup 0) (match_dup 4))
(set (match_dup 5) (match_dup 6))]
{
enum machine_mode zmode = INTVAL (operands[3]) <= 255 ? QImode : HImode;
enum machine_mode amode
= CRIS_CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'O') ? SImode : zmode;
rtx op1
= (REG_S_P (operands[1])
? gen_rtx_REG (zmode, REGNO (operands[1]))
: adjust_address (operands[1], zmode, 0));
operands[4]
= gen_rtx_ZERO_EXTEND (SImode, op1);
operands[5] = gen_rtx_REG (amode, REGNO (operands[0]));
operands[6]
= gen_rtx_AND (amode, gen_rtx_REG (amode, REGNO (operands[0])),
GEN_INT (trunc_int_for_mode (INTVAL (operands[3]),
amode == SImode
? QImode : amode)));
})
;; Try and avoid GOTPLT reads escaping a call: transform them into
;; PLT. Curiously (but thankfully), peepholes for instructions
;; *without side-effects* that just feed a call (or call_value) are
;; not matched neither in a build or test-suite, so those patterns are
;; omitted.
;; A "normal" move where we don't check the consumer.
(define_peephole2 ; gotplt-to-plt
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI 2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1), true)
&& REGNO_REG_CLASS (REGNO (operands[0])) == REGNO_REG_CLASS (0)"
[(set (match_dup 0) (const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLT_GOTREL)))
(set (match_dup 0) (plus:SI (match_dup 0) (reg:SI CRIS_GOT_REGNUM)))]
"")
;; And one set with a side-effect getting the PLTGOT offset.
;; First call and call_value variants.
(define_peephole2 ; gotplt-to-plt-side-call
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])
(parallel [(call (mem:QI (match_dup 0))
(match_operand 4 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1), true)
&& peep2_reg_dead_p (2, operands[0])"
[(parallel [(call (mem:QI (match_dup 1))
(match_dup 4))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_dup 3)
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)]
CRIS_UNSPEC_PLTGOTREAD))))])]
"")
(define_peephole2 ; gotplt-to-plt-side-call-value
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])
(parallel [(set (match_operand 5 "" "")
(call (mem:QI (match_dup 0))
(match_operand 4 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1), true)
&& peep2_reg_dead_p (2, operands[0])"
[(parallel [(set (match_dup 5)
(call (mem:QI (match_dup 1))
(match_dup 4)))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_dup 3)
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)]
CRIS_UNSPEC_PLTGOTREAD))))])]
"")
(define_peephole2 ; gotplt-to-plt-side
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1), true)
&& REGNO_REG_CLASS (REGNO (operands[0])) == REGNO_REG_CLASS (0)"
[(set (match_dup 3)
(const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD)))
(set (match_dup 3) (plus:SI (match_dup 3) (reg:SI CRIS_GOT_REGNUM)))
(set (match_dup 0)
(const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLT_GOTREL)))
(set (match_dup 0) (plus:SI (match_dup 0) (reg:SI CRIS_GOT_REGNUM)))]
"")
;; Local variables:
;; mode:emacs-lisp
;; comment-start: ";; "
;; eval: (set-syntax-table (copy-sequence (syntax-table)))
;; eval: (modify-syntax-entry ?[ "(]")
;; eval: (modify-syntax-entry ?] ")[")
;; eval: (modify-syntax-entry ?{ "(}")
;; eval: (modify-syntax-entry ?} "){")
;; eval: (setq indent-tabs-mode t)
;; End: