/* -*- Mode: Asm -*- */ /* Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc. Contributed by Denis Chertykov This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define __zero_reg__ r1 #define __tmp_reg__ r0 #define __SREG__ 0x3f #define __SP_H__ 0x3e #define __SP_L__ 0x3d .section .text.libgcc, "ax", @progbits /* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */ #if !defined (__AVR_ENHANCED__) /******************************************************* Multiplication 8 x 8 *******************************************************/ #if defined (L_mulqi3) #define r_arg2 r22 /* multiplicand */ #define r_arg1 r24 /* multiplier */ #define r_res __tmp_reg__ /* result */ .global __mulqi3 .func __mulqi3 __mulqi3: clr r_res ; clear result __mulqi3_loop: sbrc r_arg1,0 add r_res,r_arg2 add r_arg2,r_arg2 ; shift multiplicand breq __mulqi3_exit ; while multiplicand != 0 lsr r_arg1 ; brne __mulqi3_loop ; exit if multiplier = 0 __mulqi3_exit: mov r_arg1,r_res ; result to return register ret #undef r_arg2 #undef r_arg1 #undef r_res .endfunc #endif /* defined (L_mulqi3) */ /******************************************************* Multiplication 16 x 16 *******************************************************/ #if defined (L_mulhi3) #define r_arg1L r24 /* multiplier Low */ #define r_arg1H r25 /* multiplier High */ #define r_arg2L r22 /* multiplicand Low */ #define r_arg2H r23 /* multiplicand High */ #define r_resL r20 /* result Low */ #define r_resH r21 /* result High */ .global __mulhi3 .func __mulhi3 __mulhi3: clr r_resH ; clear result clr r_resL ; clear result __mulhi3_loop: sbrs r_arg1L,0 rjmp __mulhi3_skip1 add r_resL,r_arg2L ; result + multiplicand adc r_resH,r_arg2H __mulhi3_skip1: add r_arg2L,r_arg2L ; shift multiplicand adc r_arg2H,r_arg2H cpc r_arg2L,__zero_reg__ breq __mulhi3_exit ; while multiplicand != 0 lsr r_arg1H ; gets LSB of multiplier ror r_arg1L cpc r_arg1H,__zero_reg__ brne __mulhi3_loop ; exit if multiplier = 0 __mulhi3_exit: mov r_arg1H,r_resH ; result to return register mov r_arg1L,r_resL ret #undef r_arg1L #undef r_arg1H #undef r_arg2L #undef r_arg2H #undef r_resL #undef r_resH .endfunc #endif /* defined (L_mulhi3) */ #endif /* !defined (__AVR_ENHANCED__) */ #if defined (L_mulsi3) /******************************************************* Multiplication 32 x 32 *******************************************************/ #define r_arg1L r22 /* multiplier Low */ #define r_arg1H r23 #define r_arg1HL r24 #define r_arg1HH r25 /* multiplier High */ #define r_arg2L r18 /* multiplicand Low */ #define r_arg2H r19 #define r_arg2HL r20 #define r_arg2HH r21 /* multiplicand High */ #define r_resL r26 /* result Low */ #define r_resH r27 #define r_resHL r30 #define r_resHH r31 /* result High */ .global __mulsi3 .func __mulsi3 __mulsi3: #if defined (__AVR_ENHANCED__) mul r_arg1L, r_arg2L movw r_resL, r0 mul r_arg1H, r_arg2H movw r_resHL, r0 mul r_arg1HL, r_arg2L add r_resHL, r0 adc r_resHH, r1 mul r_arg1L, r_arg2HL add r_resHL, r0 adc r_resHH, r1 mul r_arg1HH, r_arg2L add r_resHH, r0 mul r_arg1HL, r_arg2H add r_resHH, r0 mul r_arg1H, r_arg2HL add r_resHH, r0 mul r_arg1L, r_arg2HH add r_resHH, r0 clr r_arg1HH ; use instead of __zero_reg__ to add carry mul r_arg1H, r_arg2L add r_resH, r0 adc r_resHL, r1 adc r_resHH, r_arg1HH ; add carry mul r_arg1L, r_arg2H add r_resH, r0 adc r_resHL, r1 adc r_resHH, r_arg1HH ; add carry movw r_arg1L, r_resL movw r_arg1HL, r_resHL clr r1 ; __zero_reg__ clobbered by "mul" ret #else clr r_resHH ; clear result clr r_resHL ; clear result clr r_resH ; clear result clr r_resL ; clear result __mulsi3_loop: sbrs r_arg1L,0 rjmp __mulsi3_skip1 add r_resL,r_arg2L ; result + multiplicand adc r_resH,r_arg2H adc r_resHL,r_arg2HL adc r_resHH,r_arg2HH __mulsi3_skip1: add r_arg2L,r_arg2L ; shift multiplicand adc r_arg2H,r_arg2H adc r_arg2HL,r_arg2HL adc r_arg2HH,r_arg2HH lsr r_arg1HH ; gets LSB of multiplier ror r_arg1HL ror r_arg1H ror r_arg1L brne __mulsi3_loop sbiw r_arg1HL,0 cpc r_arg1H,r_arg1L brne __mulsi3_loop ; exit if multiplier = 0 __mulsi3_exit: mov r_arg1HH,r_resHH ; result to return register mov r_arg1HL,r_resHL mov r_arg1H,r_resH mov r_arg1L,r_resL ret #endif /* !defined (__AVR_ENHANCED__) */ #undef r_arg1L #undef r_arg1H #undef r_arg1HL #undef r_arg1HH #undef r_arg2L #undef r_arg2H #undef r_arg2HL #undef r_arg2HH #undef r_resL #undef r_resH #undef r_resHL #undef r_resHH .endfunc #endif /* defined (L_mulsi3) */ /******************************************************* Division 8 / 8 => (result + remainder) *******************************************************/ #define r_rem r26 /* remainder */ #define r_arg1 r24 /* dividend */ #define r_arg2 r22 /* divisor */ #define r_cnt r27 /* loop count */ #if defined (L_umodqi3) .global __umodqi3 .func __umodqi3 __umodqi3: clt rcall __udivqi3 mov r24,r_rem ret .endfunc #endif /* defined (L_umodqi3) */ #if defined (L_udivqi3) .global __udivqi3 .func __udivqi3 __udivqi3: clr __tmp_reg__ rjmp __divqi_raw .endfunc #endif /* defined (L_udivqi3) */ #if defined (L_modqi3) .global __modqi3 .func __modqi3 __modqi3: rcall __divqi3 mov r24,r_rem ret .endfunc #endif /* defined (L_modqi3) */ #if defined (L_divqi3) .global __divqi3 .func __divqi3 __divqi3: bst r_arg1,7 ; store sign of divident mov __tmp_reg__,r_arg1 eor __tmp_reg__,r_arg2; r0.7 is sign of result sbrc r_arg1,7 neg r_arg1 ; divident negative : negate sbrc r_arg2,7 neg r_arg2 ; divisor negative : negate .global __divqi_raw __divqi_raw: sub r_rem,r_rem ; clear remainder and carry ldi r_cnt,9 ; init loop counter rjmp __divqi3_ep ; jump to entry point __divqi3_loop: rol r_rem ; shift dividend into remainder cp r_rem,r_arg2 ; compare remainder & divisor brcs __divqi3_ep ; remainder <= divisor sub r_rem,r_arg2 ; restore remainder __divqi3_ep: rol r_arg1 ; shift dividend (with CARRY) dec r_cnt ; decrement loop counter brne __divqi3_loop ; loop com r_arg1 ; complement result ; because C flag was complemented in loop brtc __divqi3_1 neg r_rem ; correct remainder sign __divqi3_1: sbrc __tmp_reg__,7 neg r_arg1 ; correct result sign __divqi3_exit: ret ; result already in r24 (r_arg1) .endfunc #endif /* defined (L_divqi3) */ #undef r_rem #undef r_arg1 #undef r_arg2 #undef r_cnt /******************************************************* Division 16 / 16 => (result + remainder) *******************************************************/ #define r_remL r26 /* remainder Low */ #define r_remH r27 /* remainder High */ #define r_arg1L r24 /* dividend Low */ #define r_arg1H r25 /* dividend High */ #define r_arg2L r22 /* divisor Low */ #define r_arg2H r23 /* divisor High */ #define r_cnt r21 /* loop count */ #if defined (L_umodhi3) .global __umodhi3 .func __umodhi3 __umodhi3: clt rcall __udivhi3 .global __umodhi3_ret __umodhi3_ret: #if defined (__AVR_ENHANCED__) movw r24, r_remL #else mov r24,r_remL mov r25,r_remH #endif ret .endfunc #endif /* defined (L_umodhi3) */ #if defined (L_udivhi3) .global __udivhi3 .func __udivhi3 __udivhi3: clr __tmp_reg__ rjmp __divhi_raw .endfunc #endif /* defined (L_udivhi3) */ #if defined (L_modhi3) .global __modhi3 .func __modhi3 __modhi3: .global _div _div: rcall __divhi3 #if defined (__AVR_ENHANCED__) movw r22, r24 #else mov r22,r24 ; needed for div () function mov r23,r25 #endif rjmp __umodhi3_ret .endfunc #endif /* defined (L_modhi3) */ #if defined (L_divhi3) .global __divhi3 .func __divhi3 __divhi3: bst r_arg1H,7 ; store sign of divident mov __tmp_reg__,r_arg1H eor __tmp_reg__,r_arg2H ; r0.7 is sign of result brtc __divhi3_skip1 com r_arg1H neg r_arg1L ; divident negative : negate sbci r_arg1H,0xff __divhi3_skip1: tst r_arg2H brpl __divhi3_skip2 com r_arg2H neg r_arg2L ; divisor negative : negate sbci r_arg2H,0xff __divhi3_skip2: .global __divhi_raw __divhi_raw: sub r_remL,r_remL sub r_remH,r_remH ; clear remainder and carry ldi r_cnt,17 ; init loop counter rjmp __divhi3_ep ; jump to entry point __divhi3_loop: rol r_remL ; shift dividend into remainder rol r_remH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H brcs __divhi3_ep ; remainder < divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H __divhi3_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H dec r_cnt ; decrement loop counter brne __divhi3_loop ; loop brtc __divhi3_1 com r_remH neg r_remL ; correct remainder sign sbci r_remH,0xff __divhi3_1: tst __tmp_reg__ brpl __divhi3_exit adiw r_arg1L,1 ; correct result sign ret __divhi3_exit: com r_arg1L com r_arg1H ret .endfunc #endif /* defined (L_divhi3) */ #undef r_remH #undef r_remL #undef r_arg1H #undef r_arg1L #undef r_arg2H #undef r_arg2L #undef r_cnt /******************************************************* Division 32 / 32 => (result + remainder) *******************************************************/ #define r_remHH r31 /* remainder High */ #define r_remHL r30 #define r_remH r27 #define r_remL r26 /* remainder Low */ #define r_arg1HH r25 /* dividend High */ #define r_arg1HL r24 #define r_arg1H r23 #define r_arg1L r22 /* dividend Low */ #define r_arg2HH r21 /* divisor High */ #define r_arg2HL r20 #define r_arg2H r19 #define r_arg2L r18 /* divisor Low */ #define r_cnt __zero_reg__ /* loop count (0 after the loop!) */ #if defined (L_umodsi3) .global __umodsi3 .func __umodsi3 __umodsi3: clt rcall __udivsi3 .global __umodsi3_ret __umodsi3_ret: #if defined (__AVR_ENHANCED__) movw r24, r_remHL movw r22, r_remL #else mov r25,r_remHH mov r24,r_remHL mov r23,r_remH mov r22,r_remL #endif ret .endfunc #endif /* defined (L_umodsi3) */ #if defined (L_udivsi3) .global __udivsi3 .func __udivsi3 __udivsi3: clr __tmp_reg__ rjmp __divsi_raw .endfunc #endif /* defined (L_udivsi3) */ #if defined (L_modsi3) .global __modsi3 .func __modsi3 __modsi3: .global _ldiv _ldiv: rcall __divsi3 #if defined (__AVR_ENHANCED__) movw r18, r22 movw r20, r24 #else mov r18,r22 /* Needed for ldiv */ mov r19,r23 mov r20,r24 mov r21,r25 #endif rjmp __umodsi3_ret .endfunc #endif /* defined (L_modsi3) */ #if defined (L_divsi3) .global __divsi3 .func __divsi3 __divsi3: bst r_arg1HH,7 ; store sign of divident mov __tmp_reg__,r_arg1HH eor __tmp_reg__,r_arg2HH ; r0.7 is sign of result brtc __divsi3_skip1 com r_arg1HH com r_arg1HL com r_arg1H neg r_arg1L ; divident negative : negate sbci r_arg1H, 0xff sbci r_arg1HL,0xff sbci r_arg1HH,0xff __divsi3_skip1: tst r_arg2HH brpl __divsi3_skip2 com r_arg2HH com r_arg2HL com r_arg2H neg r_arg2L ; divisor negative : negate sbci r_arg2H, 0xff sbci r_arg2HL,0xff sbci r_arg2HH,0xff __divsi3_skip2: .global __divsi_raw __divsi_raw: ldi r_remL, 33 ; init loop counter mov r_cnt, r_remL sub r_remL,r_remL sub r_remH,r_remH #if defined (__AVR_ENHANCED__) movw r_remHL, r_remL #else sub r_remHL,r_remHL sub r_remHH,r_remHH ; clear remainder and carry #endif rjmp __divsi3_ep ; jump to entry point __divsi3_loop: rol r_remL ; shift dividend into remainder rol r_remH rol r_remHL rol r_remHH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H cpc r_remHL,r_arg2HL cpc r_remHH,r_arg2HH brcs __divsi3_ep ; remainder <= divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H sbc r_remHL,r_arg2HL sbc r_remHH,r_arg2HH __divsi3_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H rol r_arg1HL rol r_arg1HH dec r_cnt ; decrement loop counter brne __divsi3_loop ; loop ; __zero_reg__ now restored (r_cnt == 0) brtc __divsi3_1 com r_remHH com r_remHL com r_remH neg r_remL ; correct remainder sign sbci r_remH, 0xff sbci r_remHL,0xff sbci r_remHH,0xff __divsi3_1: rol __tmp_reg__ brcc __divsi3_exit adc r_arg1L,__zero_reg__; correct result sign adc r_arg1H,__zero_reg__ adc r_arg1HL,__zero_reg__ adc r_arg1HH,__zero_reg__ ret __divsi3_exit: com r_arg1L com r_arg1H com r_arg1HL com r_arg1HH ret .endfunc #endif /* defined (L_divsi3) */ /********************************** * This is a prologue subroutine **********************************/ #if defined (L_prologue) .global __prologue_saves__ .func __prologue_saves__ __prologue_saves__: push r2 push r3 push r4 push r5 push r6 push r7 push r8 push r9 push r10 push r11 push r12 push r13 push r14 push r15 push r16 push r17 push r28 push r29 in r28,__SP_L__ in r29,__SP_H__ sub r28,r26 sbc r29,r27 in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 ijmp .endfunc #endif /* defined (L_prologue) */ /* * This is a epilogue subroutine */ #if defined (L_epilogue) .global __epilogue_restores__ .func __epilogue_restores__ __epilogue_restores__: ldd r2,Y+18 ldd r3,Y+17 ldd r4,Y+16 ldd r5,Y+15 ldd r6,Y+14 ldd r7,Y+13 ldd r8,Y+12 ldd r9,Y+11 ldd r10,Y+10 ldd r11,Y+9 ldd r12,Y+8 ldd r13,Y+7 ldd r14,Y+6 ldd r15,Y+5 ldd r16,Y+4 ldd r17,Y+3 ldd r26,Y+2 ldd r27,Y+1 add r28,r30 adc r29,__zero_reg__ in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 #if defined (__AVR_ENHANCED__) movw r28, r26 #else mov r28,r26 mov r29,r27 #endif ret .endfunc #endif /* defined (L_epilogue) */ #ifdef L_exit .weak _exit .func _exit _exit: rjmp _exit .endfunc #endif /* defined (L_exit) */ #ifdef L_cleanup .weak _cleanup .func _cleanup _cleanup: ret .endfunc #endif /* defined (L_cleanup) */ #ifdef L_tablejump .global __tablejump__ .func __tablejump__ __tablejump__: #if defined (__AVR_ENHANCED__) lpm __tmp_reg__, Z+ lpm r31, Z mov r30, __tmp_reg__ ijmp #else lpm push r0 adiw r30, 1 lpm push r0 ret .endfunc #endif #endif /* defined (L_tablejump) */