;; ARM 926EJ-S Pipeline Description ;; Copyright (C) 2003, 2007 Free Software Foundation, Inc. ;; Written by CodeSourcery, LLC. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . */ ;; These descriptions are based on the information contained in the ;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM ;; Limited. ;; ;; This automaton provides a pipeline description for the ARM ;; 926EJ-S core. ;; ;; The model given here assumes that the condition for all conditional ;; instructions is "true", i.e., that all of the instructions are ;; actually executed. (define_automaton "arm926ejs") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Pipelines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; There is a single pipeline ;; ;; The ALU pipeline has fetch, decode, execute, memory, and ;; write stages. We only need to model the execute, memory and write ;; stages. (define_cpu_unit "e,m,w" "arm926ejs") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU instructions require three cycles to execute, and use the ALU ;; pipeline in each of the three stages. The results are available ;; after the execute stage stage has finished. ;; ;; If the destination register is the PC, the pipelines are stalled ;; for several cycles. That case is not modeled here. ;; ALU operations with no shifted operand (define_insn_reservation "9_alu_op" 1 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "alu_reg,simple_alu_imm,simple_alu_shift,alu_shift")) "e,m,w") ;; ALU operations with a shift-by-register operand ;; These really stall in the decoder, in order to read ;; the shift value in a second cycle. Pretend we take two cycles in ;; the execute stage. (define_insn_reservation "9_alu_shift_reg_op" 2 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "alu_shift_reg")) "e*2,m,w") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Multiplication Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Multiplication instructions loop in the execute stage until the ;; instruction has been passed through the multiplier array enough ;; times. Multiply operations occur in both the execute and memory ;; stages of the pipeline (define_insn_reservation "9_mult1" 3 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "smlalxy,mul,mla")) "e*2,m,w") (define_insn_reservation "9_mult2" 4 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "muls,mlas")) "e*3,m,w") (define_insn_reservation "9_mult3" 4 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "umull,umlal,smull,smlal")) "e*3,m,w") (define_insn_reservation "9_mult4" 5 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "umulls,umlals,smulls,smlals")) "e*4,m,w") (define_insn_reservation "9_mult5" 2 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "smulxy,smlaxy,smlawx")) "e,m,w") (define_insn_reservation "9_mult6" 3 (and (eq_attr "tune" "arm926ejs") (eq_attr "insn" "smlalxy")) "e*2,m,w") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/Store Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; The models for load/store instructions do not accurately describe ;; the difference between operations with a base register writeback ;; (such as "ldm!"). These models assume that all memory references ;; hit in dcache. ;; Loads with a shifted offset take 3 cycles, and are (a) probably the ;; most common and (b) the pessimistic assumption will lead to fewer stalls. (define_insn_reservation "9_load1_op" 3 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "load1,load_byte")) "e*2,m,w") (define_insn_reservation "9_store1_op" 0 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "store1")) "e,m,w") ;; multiple word loads and stores (define_insn_reservation "9_load2_op" 3 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "load2")) "e,m*2,w") (define_insn_reservation "9_load3_op" 4 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "load3")) "e,m*3,w") (define_insn_reservation "9_load4_op" 5 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "load4")) "e,m*4,w") (define_insn_reservation "9_store2_op" 0 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "store2")) "e,m*2,w") (define_insn_reservation "9_store3_op" 0 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "store3")) "e,m*3,w") (define_insn_reservation "9_store4_op" 0 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "store4")) "e,m*4,w") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branch and Call Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branch instructions are difficult to model accurately. The ARM ;; core can predict most branches. If the branch is predicted ;; correctly, and predicted early enough, the branch can be completely ;; eliminated from the instruction stream. Some branches can ;; therefore appear to require zero cycles to execute. We assume that ;; all branches are predicted correctly, and that the latency is ;; therefore the minimum value. (define_insn_reservation "9_branch_op" 0 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "branch")) "nothing") ;; The latency for a call is not predictable. Therefore, we use 32 as ;; roughly equivalent to positive infinity. (define_insn_reservation "9_call_op" 32 (and (eq_attr "tune" "arm926ejs") (eq_attr "type" "call")) "nothing")