/* Machine description for AArch64 architecture. Copyright (C) 2009-2015 Free Software Foundation, Inc. Contributed by ARM Ltd. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "cfghooks.h" #include "tree.h" #include "gimple.h" #include "rtl.h" #include "df.h" #include "insn-codes.h" #include "insn-attr.h" #include "alias.h" #include "fold-const.h" #include "stringpool.h" #include "stor-layout.h" #include "calls.h" #include "varasm.h" #include "regs.h" #include "cfgrtl.h" #include "cfganal.h" #include "lcm.h" #include "cfgbuild.h" #include "cfgcleanup.h" #include "output.h" #include "flags.h" #include "insn-config.h" #include "expmed.h" #include "dojump.h" #include "explow.h" #include "emit-rtl.h" #include "stmt.h" #include "expr.h" #include "reload.h" #include "toplev.h" #include "target.h" #include "targhooks.h" #include "tm_p.h" #include "recog.h" #include "langhooks.h" #include "opts.h" #include "diagnostic.h" #include "diagnostic-core.h" #include "internal-fn.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimplify.h" #include "optabs.h" #include "dwarf2.h" #include "cfgloop.h" #include "tree-vectorizer.h" #include "aarch64-cost-tables.h" #include "dumpfile.h" #include "builtins.h" #include "rtl-iter.h" #include "tm-constrs.h" #include "sched-int.h" #include "cortex-a57-fma-steering.h" #include "target-globals.h" /* This file should be included last. */ #include "target-def.h" /* Defined for convenience. */ #define POINTER_BYTES (POINTER_SIZE / BITS_PER_UNIT) /* Classifies an address. ADDRESS_REG_IMM A simple base register plus immediate offset. ADDRESS_REG_WB A base register indexed by immediate offset with writeback. ADDRESS_REG_REG A base register indexed by (optionally scaled) register. ADDRESS_REG_UXTW A base register indexed by (optionally scaled) zero-extended register. ADDRESS_REG_SXTW A base register indexed by (optionally scaled) sign-extended register. ADDRESS_LO_SUM A LO_SUM rtx with a base register and "LO12" symbol relocation. ADDRESS_SYMBOLIC: A constant symbolic address, in pc-relative literal pool. */ enum aarch64_address_type { ADDRESS_REG_IMM, ADDRESS_REG_WB, ADDRESS_REG_REG, ADDRESS_REG_UXTW, ADDRESS_REG_SXTW, ADDRESS_LO_SUM, ADDRESS_SYMBOLIC }; struct aarch64_address_info { enum aarch64_address_type type; rtx base; rtx offset; int shift; enum aarch64_symbol_type symbol_type; }; struct simd_immediate_info { rtx value; int shift; int element_width; bool mvn; bool msl; }; /* The current code model. */ enum aarch64_code_model aarch64_cmodel; #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS 1 #endif static bool aarch64_composite_type_p (const_tree, machine_mode); static bool aarch64_vfp_is_call_or_return_candidate (machine_mode, const_tree, machine_mode *, int *, bool *); static void aarch64_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED; static void aarch64_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED; static void aarch64_override_options_after_change (void); static bool aarch64_vector_mode_supported_p (machine_mode); static bool aarch64_vectorize_vec_perm_const_ok (machine_mode vmode, const unsigned char *sel); static int aarch64_address_cost (rtx, machine_mode, addr_space_t, bool); /* Major revision number of the ARM Architecture implemented by the target. */ unsigned aarch64_architecture_version; /* The processor for which instructions should be scheduled. */ enum aarch64_processor aarch64_tune = cortexa53; /* Mask to specify which instruction scheduling options should be used. */ unsigned long aarch64_tune_flags = 0; /* Support for command line parsing of boolean flags in the tuning structures. */ struct aarch64_flag_desc { const char* name; unsigned int flag; }; #define AARCH64_FUSION_PAIR(name, internal_name) \ { name, AARCH64_FUSE_##internal_name }, static const struct aarch64_flag_desc aarch64_fusible_pairs[] = { { "none", AARCH64_FUSE_NOTHING }, #include "aarch64-fusion-pairs.def" { "all", AARCH64_FUSE_ALL }, { NULL, AARCH64_FUSE_NOTHING } }; #undef AARCH64_FUION_PAIR #define AARCH64_EXTRA_TUNING_OPTION(name, internal_name) \ { name, AARCH64_EXTRA_TUNE_##internal_name }, static const struct aarch64_flag_desc aarch64_tuning_flags[] = { { "none", AARCH64_EXTRA_TUNE_NONE }, #include "aarch64-tuning-flags.def" { "all", AARCH64_EXTRA_TUNE_ALL }, { NULL, AARCH64_EXTRA_TUNE_NONE } }; #undef AARCH64_EXTRA_TUNING_OPTION /* Tuning parameters. */ static const struct cpu_addrcost_table generic_addrcost_table = { { 0, /* hi */ 0, /* si */ 0, /* di */ 0, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 0, /* register_offset */ 0, /* register_extend */ 0 /* imm_offset */ }; static const struct cpu_addrcost_table cortexa57_addrcost_table = { { 1, /* hi */ 0, /* si */ 0, /* di */ 1, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 0, /* register_offset */ 0, /* register_extend */ 0, /* imm_offset */ }; static const struct cpu_addrcost_table xgene1_addrcost_table = { { 1, /* hi */ 0, /* si */ 0, /* di */ 1, /* ti */ }, 1, /* pre_modify */ 0, /* post_modify */ 0, /* register_offset */ 1, /* register_extend */ 0, /* imm_offset */ }; static const struct cpu_regmove_cost generic_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost cortexa57_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost cortexa53_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost thunderx_regmove_cost = { 2, /* GP2GP */ 2, /* GP2FP */ 6, /* FP2GP */ 4 /* FP2FP */ }; static const struct cpu_regmove_cost xgene1_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 8, /* GP2FP */ 8, /* FP2GP */ 2 /* FP2FP */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost generic_vector_cost = { 1, /* scalar_stmt_cost */ 1, /* scalar_load_cost */ 1, /* scalar_store_cost */ 1, /* vec_stmt_cost */ 1, /* vec_to_scalar_cost */ 1, /* scalar_to_vec_cost */ 1, /* vec_align_load_cost */ 1, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 3, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost cortexa57_vector_cost = { 1, /* scalar_stmt_cost */ 4, /* scalar_load_cost */ 1, /* scalar_store_cost */ 3, /* vec_stmt_cost */ 8, /* vec_to_scalar_cost */ 8, /* scalar_to_vec_cost */ 5, /* vec_align_load_cost */ 5, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 1, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost xgene1_vector_cost = { 1, /* scalar_stmt_cost */ 5, /* scalar_load_cost */ 1, /* scalar_store_cost */ 2, /* vec_stmt_cost */ 4, /* vec_to_scalar_cost */ 4, /* scalar_to_vec_cost */ 10, /* vec_align_load_cost */ 10, /* vec_unalign_load_cost */ 2, /* vec_unalign_store_cost */ 2, /* vec_store_cost */ 2, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Generic costs for branch instructions. */ static const struct cpu_branch_cost generic_branch_cost = { 2, /* Predictable. */ 2 /* Unpredictable. */ }; static const struct tune_params generic_tunings = { &cortexa57_extra_costs, &generic_addrcost_table, &generic_regmove_cost, &generic_vector_cost, &generic_branch_cost, 4, /* memmov_cost */ 2, /* issue_rate */ AARCH64_FUSE_NOTHING, /* fusible_ops */ 8, /* function_align. */ 8, /* jump_align. */ 4, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_NONE) /* tune_flags. */ }; static const struct tune_params cortexa53_tunings = { &cortexa53_extra_costs, &generic_addrcost_table, &cortexa53_regmove_cost, &generic_vector_cost, &generic_branch_cost, 4, /* memmov_cost */ 2, /* issue_rate */ (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops */ 8, /* function_align. */ 8, /* jump_align. */ 4, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_NONE) /* tune_flags. */ }; static const struct tune_params cortexa57_tunings = { &cortexa57_extra_costs, &cortexa57_addrcost_table, &cortexa57_regmove_cost, &cortexa57_vector_cost, &generic_branch_cost, 4, /* memmov_cost */ 3, /* issue_rate */ (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops */ 16, /* function_align. */ 8, /* jump_align. */ 4, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_RENAME_FMA_REGS) /* tune_flags. */ }; static const struct tune_params cortexa72_tunings = { &cortexa57_extra_costs, &cortexa57_addrcost_table, &cortexa57_regmove_cost, &cortexa57_vector_cost, &generic_branch_cost, 4, /* memmov_cost */ 3, /* issue_rate */ (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops */ 16, /* function_align. */ 8, /* jump_align. */ 4, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_NONE) /* tune_flags. */ }; static const struct tune_params thunderx_tunings = { &thunderx_extra_costs, &generic_addrcost_table, &thunderx_regmove_cost, &generic_vector_cost, &generic_branch_cost, 6, /* memmov_cost */ 2, /* issue_rate */ AARCH64_FUSE_CMP_BRANCH, /* fusible_ops */ 8, /* function_align. */ 8, /* jump_align. */ 8, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_NONE) /* tune_flags. */ }; static const struct tune_params xgene1_tunings = { &xgene1_extra_costs, &xgene1_addrcost_table, &xgene1_regmove_cost, &xgene1_vector_cost, &generic_branch_cost, 6, /* memmov_cost */ 4, /* issue_rate */ AARCH64_FUSE_NOTHING, /* fusible_ops */ 16, /* function_align. */ 8, /* jump_align. */ 16, /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ (AARCH64_EXTRA_TUNE_NONE) /* tune_flags. */ }; /* Support for fine-grained override of the tuning structures. */ struct aarch64_tuning_override_function { const char* name; void (*parse_override)(const char*, struct tune_params*); }; static void aarch64_parse_fuse_string (const char*, struct tune_params*); static void aarch64_parse_tune_string (const char*, struct tune_params*); static const struct aarch64_tuning_override_function aarch64_tuning_override_functions[] = { { "fuse", aarch64_parse_fuse_string }, { "tune", aarch64_parse_tune_string }, { NULL, NULL } }; /* A processor implementing AArch64. */ struct processor { const char *const name; enum aarch64_processor ident; enum aarch64_processor sched_core; enum aarch64_arch arch; unsigned architecture_version; const unsigned long flags; const struct tune_params *const tune; }; /* Architectures implementing AArch64. */ static const struct processor all_architectures[] = { #define AARCH64_ARCH(NAME, CORE, ARCH_IDENT, ARCH_REV, FLAGS) \ {NAME, CORE, CORE, AARCH64_ARCH_##ARCH_IDENT, ARCH_REV, FLAGS, NULL}, #include "aarch64-arches.def" #undef AARCH64_ARCH {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL} }; /* Processor cores implementing AArch64. */ static const struct processor all_cores[] = { #define AARCH64_CORE(NAME, IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART) \ {NAME, IDENT, SCHED, AARCH64_ARCH_##ARCH, \ all_architectures[AARCH64_ARCH_##ARCH].architecture_version, \ FLAGS, &COSTS##_tunings}, #include "aarch64-cores.def" #undef AARCH64_CORE {"generic", generic, cortexa53, AARCH64_ARCH_8A, 8, AARCH64_FL_FOR_ARCH8, &generic_tunings}, {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL} }; /* Target specification. These are populated by the -march, -mtune, -mcpu handling code or by target attributes. */ static const struct processor *selected_arch; static const struct processor *selected_cpu; static const struct processor *selected_tune; /* The current tuning set. */ struct tune_params aarch64_tune_params = generic_tunings; #define AARCH64_CPU_DEFAULT_FLAGS ((selected_cpu) ? selected_cpu->flags : 0) /* An ISA extension in the co-processor and main instruction set space. */ struct aarch64_option_extension { const char *const name; const unsigned long flags_on; const unsigned long flags_off; }; /* ISA extensions in AArch64. */ static const struct aarch64_option_extension all_extensions[] = { #define AARCH64_OPT_EXTENSION(NAME, FLAGS_ON, FLAGS_OFF, FEATURE_STRING) \ {NAME, FLAGS_ON, FLAGS_OFF}, #include "aarch64-option-extensions.def" #undef AARCH64_OPT_EXTENSION {NULL, 0, 0} }; /* Used to track the size of an address when generating a pre/post increment address. */ static machine_mode aarch64_memory_reference_mode; typedef enum aarch64_cond_code { AARCH64_EQ = 0, AARCH64_NE, AARCH64_CS, AARCH64_CC, AARCH64_MI, AARCH64_PL, AARCH64_VS, AARCH64_VC, AARCH64_HI, AARCH64_LS, AARCH64_GE, AARCH64_LT, AARCH64_GT, AARCH64_LE, AARCH64_AL, AARCH64_NV } aarch64_cc; #define AARCH64_INVERSE_CONDITION_CODE(X) ((aarch64_cc) (((int) X) ^ 1)) /* The condition codes of the processor, and the inverse function. */ static const char * const aarch64_condition_codes[] = { "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", "nv" }; /* Generate code to enable conditional branches in functions over 1 MiB. */ const char * aarch64_gen_far_branch (rtx * operands, int pos_label, const char * dest, const char * branch_format) { rtx_code_label * tmp_label = gen_label_rtx (); char label_buf[256]; char buffer[128]; ASM_GENERATE_INTERNAL_LABEL (label_buf, dest, CODE_LABEL_NUMBER (tmp_label)); const char *label_ptr = targetm.strip_name_encoding (label_buf); rtx dest_label = operands[pos_label]; operands[pos_label] = tmp_label; snprintf (buffer, sizeof (buffer), "%s%s", branch_format, label_ptr); output_asm_insn (buffer, operands); snprintf (buffer, sizeof (buffer), "b\t%%l%d\n%s:", pos_label, label_ptr); operands[pos_label] = dest_label; output_asm_insn (buffer, operands); return ""; } void aarch64_err_no_fpadvsimd (machine_mode mode, const char *msg) { const char *mc = FLOAT_MODE_P (mode) ? "floating-point" : "vector"; if (TARGET_GENERAL_REGS_ONLY) error ("%qs is incompatible with %s %s", "-mgeneral-regs-only", mc, msg); else error ("%qs feature modifier is incompatible with %s %s", "+nofp", mc, msg); } static unsigned int aarch64_min_divisions_for_recip_mul (enum machine_mode mode) { if (GET_MODE_UNIT_SIZE (mode) == 4) return aarch64_tune_params.min_div_recip_mul_sf; return aarch64_tune_params.min_div_recip_mul_df; } static int aarch64_reassociation_width (unsigned opc ATTRIBUTE_UNUSED, enum machine_mode mode) { if (VECTOR_MODE_P (mode)) return aarch64_tune_params.vec_reassoc_width; if (INTEGRAL_MODE_P (mode)) return aarch64_tune_params.int_reassoc_width; if (FLOAT_MODE_P (mode)) return aarch64_tune_params.fp_reassoc_width; return 1; } /* Provide a mapping from gcc register numbers to dwarf register numbers. */ unsigned aarch64_dbx_register_number (unsigned regno) { if (GP_REGNUM_P (regno)) return AARCH64_DWARF_R0 + regno - R0_REGNUM; else if (regno == SP_REGNUM) return AARCH64_DWARF_SP; else if (FP_REGNUM_P (regno)) return AARCH64_DWARF_V0 + regno - V0_REGNUM; /* Return values >= DWARF_FRAME_REGISTERS indicate that there is no equivalent DWARF register. */ return DWARF_FRAME_REGISTERS; } /* Return TRUE if MODE is any of the large INT modes. */ static bool aarch64_vect_struct_mode_p (machine_mode mode) { return mode == OImode || mode == CImode || mode == XImode; } /* Return TRUE if MODE is any of the vector modes. */ static bool aarch64_vector_mode_p (machine_mode mode) { return aarch64_vector_mode_supported_p (mode) || aarch64_vect_struct_mode_p (mode); } /* Implement target hook TARGET_ARRAY_MODE_SUPPORTED_P. */ static bool aarch64_array_mode_supported_p (machine_mode mode, unsigned HOST_WIDE_INT nelems) { if (TARGET_SIMD && (AARCH64_VALID_SIMD_QREG_MODE (mode) || AARCH64_VALID_SIMD_DREG_MODE (mode)) && (nelems >= 2 && nelems <= 4)) return true; return false; } /* Implement HARD_REGNO_NREGS. */ int aarch64_hard_regno_nregs (unsigned regno, machine_mode mode) { switch (aarch64_regno_regclass (regno)) { case FP_REGS: case FP_LO_REGS: return (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG; default: return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } gcc_unreachable (); } /* Implement HARD_REGNO_MODE_OK. */ int aarch64_hard_regno_mode_ok (unsigned regno, machine_mode mode) { if (GET_MODE_CLASS (mode) == MODE_CC) return regno == CC_REGNUM; if (regno == SP_REGNUM) /* The purpose of comparing with ptr_mode is to support the global register variable associated with the stack pointer register via the syntax of asm ("wsp") in ILP32. */ return mode == Pmode || mode == ptr_mode; if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return mode == Pmode; if (GP_REGNUM_P (regno) && ! aarch64_vect_struct_mode_p (mode)) return 1; if (FP_REGNUM_P (regno)) { if (aarch64_vect_struct_mode_p (mode)) return (regno + aarch64_hard_regno_nregs (regno, mode) - 1) <= V31_REGNUM; else return 1; } return 0; } /* Implement HARD_REGNO_CALLER_SAVE_MODE. */ machine_mode aarch64_hard_regno_caller_save_mode (unsigned regno, unsigned nregs, machine_mode mode) { /* Handle modes that fit within single registers. */ if (nregs == 1 && GET_MODE_SIZE (mode) <= 16) { if (GET_MODE_SIZE (mode) >= 4) return mode; else return SImode; } /* Fall back to generic for multi-reg and very large modes. */ else return choose_hard_reg_mode (regno, nregs, false); } /* Return true if calls to DECL should be treated as long-calls (ie called via a register). */ static bool aarch64_decl_is_long_call_p (const_tree decl ATTRIBUTE_UNUSED) { return false; } /* Return true if calls to symbol-ref SYM should be treated as long-calls (ie called via a register). */ bool aarch64_is_long_call_p (rtx sym) { return aarch64_decl_is_long_call_p (SYMBOL_REF_DECL (sym)); } /* Return true if calls to symbol-ref SYM should not go through plt stubs. */ bool aarch64_is_noplt_call_p (rtx sym) { const_tree decl = SYMBOL_REF_DECL (sym); if (flag_pic && decl && (!flag_plt || lookup_attribute ("noplt", DECL_ATTRIBUTES (decl))) && !targetm.binds_local_p (decl)) return true; return false; } /* Return true if the offsets to a zero/sign-extract operation represent an expression that matches an extend operation. The operands represent the paramters from (extract:MODE (mult (reg) (MULT_IMM)) (EXTRACT_IMM) (const_int 0)). */ bool aarch64_is_extend_from_extract (machine_mode mode, rtx mult_imm, rtx extract_imm) { HOST_WIDE_INT mult_val, extract_val; if (! CONST_INT_P (mult_imm) || ! CONST_INT_P (extract_imm)) return false; mult_val = INTVAL (mult_imm); extract_val = INTVAL (extract_imm); if (extract_val > 8 && extract_val < GET_MODE_BITSIZE (mode) && exact_log2 (extract_val & ~7) > 0 && (extract_val & 7) <= 4 && mult_val == (1 << (extract_val & 7))) return true; return false; } /* Emit an insn that's a simple single-set. Both the operands must be known to be valid. */ inline static rtx emit_set_insn (rtx x, rtx y) { return emit_insn (gen_rtx_SET (x, y)); } /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for register 0 in the proper mode. */ rtx aarch64_gen_compare_reg (RTX_CODE code, rtx x, rtx y) { machine_mode mode = SELECT_CC_MODE (code, x, y); rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM); emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y)); return cc_reg; } /* Build the SYMBOL_REF for __tls_get_addr. */ static GTY(()) rtx tls_get_addr_libfunc; rtx aarch64_tls_get_addr (void) { if (!tls_get_addr_libfunc) tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr"); return tls_get_addr_libfunc; } /* Return the TLS model to use for ADDR. */ static enum tls_model tls_symbolic_operand_type (rtx addr) { enum tls_model tls_kind = TLS_MODEL_NONE; rtx sym, addend; if (GET_CODE (addr) == CONST) { split_const (addr, &sym, &addend); if (GET_CODE (sym) == SYMBOL_REF) tls_kind = SYMBOL_REF_TLS_MODEL (sym); } else if (GET_CODE (addr) == SYMBOL_REF) tls_kind = SYMBOL_REF_TLS_MODEL (addr); return tls_kind; } /* We'll allow lo_sum's in addresses in our legitimate addresses so that combine would take care of combining addresses where necessary, but for generation purposes, we'll generate the address as : RTL Absolute tmp = hi (symbol_ref); adrp x1, foo dest = lo_sum (tmp, symbol_ref); add dest, x1, :lo_12:foo nop PIC TLS adrp x1, :got:foo adrp tmp, :tlsgd:foo ldr x1, [:got_lo12:foo] add dest, tmp, :tlsgd_lo12:foo bl __tls_get_addr nop Load TLS symbol, depending on TLS mechanism and TLS access model. Global Dynamic - Traditional TLS: adrp tmp, :tlsgd:imm add dest, tmp, #:tlsgd_lo12:imm bl __tls_get_addr Global Dynamic - TLS Descriptors: adrp dest, :tlsdesc:imm ldr tmp, [dest, #:tlsdesc_lo12:imm] add dest, dest, #:tlsdesc_lo12:imm blr tmp mrs tp, tpidr_el0 add dest, dest, tp Initial Exec: mrs tp, tpidr_el0 adrp tmp, :gottprel:imm ldr dest, [tmp, #:gottprel_lo12:imm] add dest, dest, tp Local Exec: mrs tp, tpidr_el0 add t0, tp, #:tprel_hi12:imm, lsl #12 add t0, t0, #:tprel_lo12_nc:imm */ static void aarch64_load_symref_appropriately (rtx dest, rtx imm, enum aarch64_symbol_type type) { switch (type) { case SYMBOL_SMALL_ABSOLUTE: { /* In ILP32, the mode of dest can be either SImode or DImode. */ rtx tmp_reg = dest; machine_mode mode = GET_MODE (dest); gcc_assert (mode == Pmode || mode == ptr_mode); if (can_create_pseudo_p ()) tmp_reg = gen_reg_rtx (mode); emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm)); emit_insn (gen_add_losym (dest, tmp_reg, imm)); return; } case SYMBOL_TINY_ABSOLUTE: emit_insn (gen_rtx_SET (dest, imm)); return; case SYMBOL_SMALL_GOT_28K: { machine_mode mode = GET_MODE (dest); rtx gp_rtx = pic_offset_table_rtx; rtx insn; rtx mem; /* NOTE: pic_offset_table_rtx can be NULL_RTX, because we can reach here before rtl expand. Tree IVOPT will generate rtl pattern to decide rtx costs, in which case pic_offset_table_rtx is not initialized. For that case no need to generate the first adrp instruction as the final cost for global variable access is one instruction. */ if (gp_rtx != NULL) { /* -fpic for -mcmodel=small allow 32K GOT table size (but we are using the page base as GOT base, the first page may be wasted, in the worst scenario, there is only 28K space for GOT). The generate instruction sequence for accessing global variable is: ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym] Only one instruction needed. But we must initialize pic_offset_table_rtx properly. We generate initialize insn for every global access, and allow CSE to remove all redundant. The final instruction sequences will look like the following for multiply global variables access. adrp pic_offset_table_rtx, _GLOBAL_OFFSET_TABLE_ ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym1] ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym2] ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym3] ... */ rtx s = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); crtl->uses_pic_offset_table = 1; emit_move_insn (gp_rtx, gen_rtx_HIGH (Pmode, s)); if (mode != GET_MODE (gp_rtx)) gp_rtx = simplify_gen_subreg (mode, gp_rtx, GET_MODE (gp_rtx), 0); } if (mode == ptr_mode) { if (mode == DImode) insn = gen_ldr_got_small_28k_di (dest, gp_rtx, imm); else insn = gen_ldr_got_small_28k_si (dest, gp_rtx, imm); mem = XVECEXP (SET_SRC (insn), 0, 0); } else { gcc_assert (mode == Pmode); insn = gen_ldr_got_small_28k_sidi (dest, gp_rtx, imm); mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0); } /* The operand is expected to be MEM. Whenever the related insn pattern changed, above code which calculate mem should be updated. */ gcc_assert (GET_CODE (mem) == MEM); MEM_READONLY_P (mem) = 1; MEM_NOTRAP_P (mem) = 1; emit_insn (insn); return; } case SYMBOL_SMALL_GOT_4G: { /* In ILP32, the mode of dest can be either SImode or DImode, while the got entry is always of SImode size. The mode of dest depends on how dest is used: if dest is assigned to a pointer (e.g. in the memory), it has SImode; it may have DImode if dest is dereferenced to access the memeory. This is why we have to handle three different ldr_got_small patterns here (two patterns for ILP32). */ rtx insn; rtx mem; rtx tmp_reg = dest; machine_mode mode = GET_MODE (dest); if (can_create_pseudo_p ()) tmp_reg = gen_reg_rtx (mode); emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm)); if (mode == ptr_mode) { if (mode == DImode) insn = gen_ldr_got_small_di (dest, tmp_reg, imm); else insn = gen_ldr_got_small_si (dest, tmp_reg, imm); mem = XVECEXP (SET_SRC (insn), 0, 0); } else { gcc_assert (mode == Pmode); insn = gen_ldr_got_small_sidi (dest, tmp_reg, imm); mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0); } gcc_assert (GET_CODE (mem) == MEM); MEM_READONLY_P (mem) = 1; MEM_NOTRAP_P (mem) = 1; emit_insn (insn); return; } case SYMBOL_SMALL_TLSGD: { rtx_insn *insns; rtx result = gen_rtx_REG (Pmode, R0_REGNUM); start_sequence (); aarch64_emit_call_insn (gen_tlsgd_small (result, imm)); insns = get_insns (); end_sequence (); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, dest, result, imm); return; } case SYMBOL_SMALL_TLSDESC: { machine_mode mode = GET_MODE (dest); rtx x0 = gen_rtx_REG (mode, R0_REGNUM); rtx tp; gcc_assert (mode == Pmode || mode == ptr_mode); /* In ILP32, the got entry is always of SImode size. Unlike small GOT, the dest is fixed at reg 0. */ if (TARGET_ILP32) emit_insn (gen_tlsdesc_small_si (imm)); else emit_insn (gen_tlsdesc_small_di (imm)); tp = aarch64_load_tp (NULL); if (mode != Pmode) tp = gen_lowpart (mode, tp); emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, x0))); set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_SMALL_TLSIE: { /* In ILP32, the mode of dest can be either SImode or DImode, while the got entry is always of SImode size. The mode of dest depends on how dest is used: if dest is assigned to a pointer (e.g. in the memory), it has SImode; it may have DImode if dest is dereferenced to access the memeory. This is why we have to handle three different tlsie_small patterns here (two patterns for ILP32). */ machine_mode mode = GET_MODE (dest); rtx tmp_reg = gen_reg_rtx (mode); rtx tp = aarch64_load_tp (NULL); if (mode == ptr_mode) { if (mode == DImode) emit_insn (gen_tlsie_small_di (tmp_reg, imm)); else { emit_insn (gen_tlsie_small_si (tmp_reg, imm)); tp = gen_lowpart (mode, tp); } } else { gcc_assert (mode == Pmode); emit_insn (gen_tlsie_small_sidi (tmp_reg, imm)); } emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, tmp_reg))); set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_TLSLE12: case SYMBOL_TLSLE24: case SYMBOL_TLSLE32: case SYMBOL_TLSLE48: { machine_mode mode = GET_MODE (dest); rtx tp = aarch64_load_tp (NULL); if (mode != Pmode) tp = gen_lowpart (mode, tp); switch (type) { case SYMBOL_TLSLE12: emit_insn ((mode == DImode ? gen_tlsle12_di : gen_tlsle12_si) (dest, tp, imm)); break; case SYMBOL_TLSLE24: emit_insn ((mode == DImode ? gen_tlsle24_di : gen_tlsle24_si) (dest, tp, imm)); break; case SYMBOL_TLSLE32: emit_insn ((mode == DImode ? gen_tlsle32_di : gen_tlsle32_si) (dest, imm)); emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3) (dest, dest, tp)); break; case SYMBOL_TLSLE48: emit_insn ((mode == DImode ? gen_tlsle48_di : gen_tlsle48_si) (dest, imm)); emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3) (dest, dest, tp)); break; default: gcc_unreachable (); } set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_TINY_GOT: emit_insn (gen_ldr_got_tiny (dest, imm)); return; case SYMBOL_TINY_TLSIE: { machine_mode mode = GET_MODE (dest); rtx tp = aarch64_load_tp (NULL); if (mode == ptr_mode) { if (mode == DImode) emit_insn (gen_tlsie_tiny_di (dest, imm, tp)); else { tp = gen_lowpart (mode, tp); emit_insn (gen_tlsie_tiny_si (dest, imm, tp)); } } else { gcc_assert (mode == Pmode); emit_insn (gen_tlsie_tiny_sidi (dest, imm, tp)); } set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } default: gcc_unreachable (); } } /* Emit a move from SRC to DEST. Assume that the move expanders can handle all moves if !can_create_pseudo_p (). The distinction is important because, unlike emit_move_insn, the move expanders know how to force Pmode objects into the constant pool even when the constant pool address is not itself legitimate. */ static rtx aarch64_emit_move (rtx dest, rtx src) { return (can_create_pseudo_p () ? emit_move_insn (dest, src) : emit_move_insn_1 (dest, src)); } /* Split a 128-bit move operation into two 64-bit move operations, taking care to handle partial overlap of register to register copies. Special cases are needed when moving between GP regs and FP regs. SRC can be a register, constant or memory; DST a register or memory. If either operand is memory it must not have any side effects. */ void aarch64_split_128bit_move (rtx dst, rtx src) { rtx dst_lo, dst_hi; rtx src_lo, src_hi; machine_mode mode = GET_MODE (dst); gcc_assert (mode == TImode || mode == TFmode); gcc_assert (!(side_effects_p (src) || side_effects_p (dst))); gcc_assert (mode == GET_MODE (src) || GET_MODE (src) == VOIDmode); if (REG_P (dst) && REG_P (src)) { int src_regno = REGNO (src); int dst_regno = REGNO (dst); /* Handle FP <-> GP regs. */ if (FP_REGNUM_P (dst_regno) && GP_REGNUM_P (src_regno)) { src_lo = gen_lowpart (word_mode, src); src_hi = gen_highpart (word_mode, src); if (mode == TImode) { emit_insn (gen_aarch64_movtilow_di (dst, src_lo)); emit_insn (gen_aarch64_movtihigh_di (dst, src_hi)); } else { emit_insn (gen_aarch64_movtflow_di (dst, src_lo)); emit_insn (gen_aarch64_movtfhigh_di (dst, src_hi)); } return; } else if (GP_REGNUM_P (dst_regno) && FP_REGNUM_P (src_regno)) { dst_lo = gen_lowpart (word_mode, dst); dst_hi = gen_highpart (word_mode, dst); if (mode == TImode) { emit_insn (gen_aarch64_movdi_tilow (dst_lo, src)); emit_insn (gen_aarch64_movdi_tihigh (dst_hi, src)); } else { emit_insn (gen_aarch64_movdi_tflow (dst_lo, src)); emit_insn (gen_aarch64_movdi_tfhigh (dst_hi, src)); } return; } } dst_lo = gen_lowpart (word_mode, dst); dst_hi = gen_highpart (word_mode, dst); src_lo = gen_lowpart (word_mode, src); src_hi = gen_highpart_mode (word_mode, mode, src); /* At most one pairing may overlap. */ if (reg_overlap_mentioned_p (dst_lo, src_hi)) { aarch64_emit_move (dst_hi, src_hi); aarch64_emit_move (dst_lo, src_lo); } else { aarch64_emit_move (dst_lo, src_lo); aarch64_emit_move (dst_hi, src_hi); } } bool aarch64_split_128bit_move_p (rtx dst, rtx src) { return (! REG_P (src) || ! (FP_REGNUM_P (REGNO (dst)) && FP_REGNUM_P (REGNO (src)))); } /* Split a complex SIMD combine. */ void aarch64_split_simd_combine (rtx dst, rtx src1, rtx src2) { machine_mode src_mode = GET_MODE (src1); machine_mode dst_mode = GET_MODE (dst); gcc_assert (VECTOR_MODE_P (dst_mode)); if (REG_P (dst) && REG_P (src1) && REG_P (src2)) { rtx (*gen) (rtx, rtx, rtx); switch (src_mode) { case V8QImode: gen = gen_aarch64_simd_combinev8qi; break; case V4HImode: gen = gen_aarch64_simd_combinev4hi; break; case V2SImode: gen = gen_aarch64_simd_combinev2si; break; case V4HFmode: gen = gen_aarch64_simd_combinev4hf; break; case V2SFmode: gen = gen_aarch64_simd_combinev2sf; break; case DImode: gen = gen_aarch64_simd_combinedi; break; case DFmode: gen = gen_aarch64_simd_combinedf; break; default: gcc_unreachable (); } emit_insn (gen (dst, src1, src2)); return; } } /* Split a complex SIMD move. */ void aarch64_split_simd_move (rtx dst, rtx src) { machine_mode src_mode = GET_MODE (src); machine_mode dst_mode = GET_MODE (dst); gcc_assert (VECTOR_MODE_P (dst_mode)); if (REG_P (dst) && REG_P (src)) { rtx (*gen) (rtx, rtx); gcc_assert (VECTOR_MODE_P (src_mode)); switch (src_mode) { case V16QImode: gen = gen_aarch64_split_simd_movv16qi; break; case V8HImode: gen = gen_aarch64_split_simd_movv8hi; break; case V4SImode: gen = gen_aarch64_split_simd_movv4si; break; case V2DImode: gen = gen_aarch64_split_simd_movv2di; break; case V8HFmode: gen = gen_aarch64_split_simd_movv8hf; break; case V4SFmode: gen = gen_aarch64_split_simd_movv4sf; break; case V2DFmode: gen = gen_aarch64_split_simd_movv2df; break; default: gcc_unreachable (); } emit_insn (gen (dst, src)); return; } } static rtx aarch64_force_temporary (machine_mode mode, rtx x, rtx value) { if (can_create_pseudo_p ()) return force_reg (mode, value); else { x = aarch64_emit_move (x, value); return x; } } static rtx aarch64_add_offset (machine_mode mode, rtx temp, rtx reg, HOST_WIDE_INT offset) { if (!aarch64_plus_immediate (GEN_INT (offset), mode)) { rtx high; /* Load the full offset into a register. This might be improvable in the future. */ high = GEN_INT (offset); offset = 0; high = aarch64_force_temporary (mode, temp, high); reg = aarch64_force_temporary (mode, temp, gen_rtx_PLUS (mode, high, reg)); } return plus_constant (mode, reg, offset); } static int aarch64_internal_mov_immediate (rtx dest, rtx imm, bool generate, machine_mode mode) { int i; unsigned HOST_WIDE_INT val, val2, mask; int one_match, zero_match; int num_insns; val = INTVAL (imm); if (aarch64_move_imm (val, mode)) { if (generate) emit_insn (gen_rtx_SET (dest, imm)); return 1; } if ((val >> 32) == 0 || mode == SImode) { if (generate) { emit_insn (gen_rtx_SET (dest, GEN_INT (val & 0xffff))); if (mode == SImode) emit_insn (gen_insv_immsi (dest, GEN_INT (16), GEN_INT ((val >> 16) & 0xffff))); else emit_insn (gen_insv_immdi (dest, GEN_INT (16), GEN_INT ((val >> 16) & 0xffff))); } return 2; } /* Remaining cases are all for DImode. */ mask = 0xffff; zero_match = ((val & mask) == 0) + ((val & (mask << 16)) == 0) + ((val & (mask << 32)) == 0) + ((val & (mask << 48)) == 0); one_match = ((~val & mask) == 0) + ((~val & (mask << 16)) == 0) + ((~val & (mask << 32)) == 0) + ((~val & (mask << 48)) == 0); if (zero_match != 2 && one_match != 2) { /* Try emitting a bitmask immediate with a movk replacing 16 bits. For a 64-bit bitmask try whether changing 16 bits to all ones or zeroes creates a valid bitmask. To check any repeated bitmask, try using 16 bits from the other 32-bit half of val. */ for (i = 0; i < 64; i += 16, mask <<= 16) { val2 = val & ~mask; if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; val2 = val | mask; if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; val2 = val2 & ~mask; val2 = val2 | (((val2 >> 32) | (val2 << 32)) & mask); if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; } if (i != 64) { if (generate) { emit_insn (gen_rtx_SET (dest, GEN_INT (val2))); emit_insn (gen_insv_immdi (dest, GEN_INT (i), GEN_INT ((val >> i) & 0xffff))); } } } /* Generate 2-4 instructions, skipping 16 bits of all zeroes or ones which are emitted by the initial mov. If one_match > zero_match, skip set bits, otherwise skip zero bits. */ num_insns = 1; mask = 0xffff; val2 = one_match > zero_match ? ~val : val; i = (val2 & mask) != 0 ? 0 : (val2 & (mask << 16)) != 0 ? 16 : 32; if (generate) emit_insn (gen_rtx_SET (dest, GEN_INT (one_match > zero_match ? (val | ~(mask << i)) : (val & (mask << i))))); for (i += 16; i < 64; i += 16) { if ((val2 & (mask << i)) == 0) continue; if (generate) emit_insn (gen_insv_immdi (dest, GEN_INT (i), GEN_INT ((val >> i) & 0xffff))); num_insns ++; } return num_insns; } void aarch64_expand_mov_immediate (rtx dest, rtx imm) { machine_mode mode = GET_MODE (dest); gcc_assert (mode == SImode || mode == DImode); /* Check on what type of symbol it is. */ if (GET_CODE (imm) == SYMBOL_REF || GET_CODE (imm) == LABEL_REF || GET_CODE (imm) == CONST) { rtx mem, base, offset; enum aarch64_symbol_type sty; /* If we have (const (plus symbol offset)), separate out the offset before we start classifying the symbol. */ split_const (imm, &base, &offset); sty = aarch64_classify_symbol (base, offset); switch (sty) { case SYMBOL_FORCE_TO_MEM: if (offset != const0_rtx && targetm.cannot_force_const_mem (mode, imm)) { gcc_assert (can_create_pseudo_p ()); base = aarch64_force_temporary (mode, dest, base); base = aarch64_add_offset (mode, NULL, base, INTVAL (offset)); aarch64_emit_move (dest, base); return; } mem = force_const_mem (ptr_mode, imm); gcc_assert (mem); /* If we aren't generating PC relative literals, then we need to expand the literal pool access carefully. This is something that needs to be done in a number of places, so could well live as a separate function. */ if (nopcrelative_literal_loads) { gcc_assert (can_create_pseudo_p ()); base = gen_reg_rtx (ptr_mode); aarch64_expand_mov_immediate (base, XEXP (mem, 0)); mem = gen_rtx_MEM (ptr_mode, base); } if (mode != ptr_mode) mem = gen_rtx_ZERO_EXTEND (mode, mem); emit_insn (gen_rtx_SET (dest, mem)); return; case SYMBOL_SMALL_TLSGD: case SYMBOL_SMALL_TLSDESC: case SYMBOL_SMALL_TLSIE: case SYMBOL_SMALL_GOT_28K: case SYMBOL_SMALL_GOT_4G: case SYMBOL_TINY_GOT: case SYMBOL_TINY_TLSIE: if (offset != const0_rtx) { gcc_assert(can_create_pseudo_p ()); base = aarch64_force_temporary (mode, dest, base); base = aarch64_add_offset (mode, NULL, base, INTVAL (offset)); aarch64_emit_move (dest, base); return; } /* FALLTHRU */ case SYMBOL_SMALL_ABSOLUTE: case SYMBOL_TINY_ABSOLUTE: case SYMBOL_TLSLE12: case SYMBOL_TLSLE24: case SYMBOL_TLSLE32: case SYMBOL_TLSLE48: aarch64_load_symref_appropriately (dest, imm, sty); return; default: gcc_unreachable (); } } if (!CONST_INT_P (imm)) { if (GET_CODE (imm) == HIGH) emit_insn (gen_rtx_SET (dest, imm)); else { rtx mem = force_const_mem (mode, imm); gcc_assert (mem); emit_insn (gen_rtx_SET (dest, mem)); } return; } aarch64_internal_mov_immediate (dest, imm, true, GET_MODE (dest)); } static bool aarch64_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED, tree exp ATTRIBUTE_UNUSED) { /* Currently, always true. */ return true; } /* Implement TARGET_PASS_BY_REFERENCE. */ static bool aarch64_pass_by_reference (cumulative_args_t pcum ATTRIBUTE_UNUSED, machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { HOST_WIDE_INT size; machine_mode dummymode; int nregs; /* GET_MODE_SIZE (BLKmode) is useless since it is 0. */ size = (mode == BLKmode && type) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); /* Aggregates are passed by reference based on their size. */ if (type && AGGREGATE_TYPE_P (type)) { size = int_size_in_bytes (type); } /* Variable sized arguments are always returned by reference. */ if (size < 0) return true; /* Can this be a candidate to be passed in fp/simd register(s)? */ if (aarch64_vfp_is_call_or_return_candidate (mode, type, &dummymode, &nregs, NULL)) return false; /* Arguments which are variable sized or larger than 2 registers are passed by reference unless they are a homogenous floating point aggregate. */ return size > 2 * UNITS_PER_WORD; } /* Return TRUE if VALTYPE is padded to its least significant bits. */ static bool aarch64_return_in_msb (const_tree valtype) { machine_mode dummy_mode; int dummy_int; /* Never happens in little-endian mode. */ if (!BYTES_BIG_ENDIAN) return false; /* Only composite types smaller than or equal to 16 bytes can be potentially returned in registers. */ if (!aarch64_composite_type_p (valtype, TYPE_MODE (valtype)) || int_size_in_bytes (valtype) <= 0 || int_size_in_bytes (valtype) > 16) return false; /* But not a composite that is an HFA (Homogeneous Floating-point Aggregate) or an HVA (Homogeneous Short-Vector Aggregate); such a special composite is always passed/returned in the least significant bits of fp/simd register(s). */ if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (valtype), valtype, &dummy_mode, &dummy_int, NULL)) return false; return true; } /* Implement TARGET_FUNCTION_VALUE. Define how to find the value returned by a function. */ static rtx aarch64_function_value (const_tree type, const_tree func, bool outgoing ATTRIBUTE_UNUSED) { machine_mode mode; int unsignedp; int count; machine_mode ag_mode; mode = TYPE_MODE (type); if (INTEGRAL_TYPE_P (type)) mode = promote_function_mode (type, mode, &unsignedp, func, 1); if (aarch64_return_in_msb (type)) { HOST_WIDE_INT size = int_size_in_bytes (type); if (size % UNITS_PER_WORD != 0) { size += UNITS_PER_WORD - size % UNITS_PER_WORD; mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); } } if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &count, NULL)) { if (!aarch64_composite_type_p (type, mode)) { gcc_assert (count == 1 && mode == ag_mode); return gen_rtx_REG (mode, V0_REGNUM); } else { int i; rtx par; par = gen_rtx_PARALLEL (mode, rtvec_alloc (count)); for (i = 0; i < count; i++) { rtx tmp = gen_rtx_REG (ag_mode, V0_REGNUM + i); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, GEN_INT (i * GET_MODE_SIZE (ag_mode))); XVECEXP (par, 0, i) = tmp; } return par; } } else return gen_rtx_REG (mode, R0_REGNUM); } /* Implements TARGET_FUNCTION_VALUE_REGNO_P. Return true if REGNO is the number of a hard register in which the values of called function may come back. */ static bool aarch64_function_value_regno_p (const unsigned int regno) { /* Maximum of 16 bytes can be returned in the general registers. Examples of 16-byte return values are: 128-bit integers and 16-byte small structures (excluding homogeneous floating-point aggregates). */ if (regno == R0_REGNUM || regno == R1_REGNUM) return true; /* Up to four fp/simd registers can return a function value, e.g. a homogeneous floating-point aggregate having four members. */ if (regno >= V0_REGNUM && regno < V0_REGNUM + HA_MAX_NUM_FLDS) return TARGET_FLOAT; return false; } /* Implement TARGET_RETURN_IN_MEMORY. If the type T of the result of a function is such that void func (T arg) would require that arg be passed as a value in a register (or set of registers) according to the parameter passing rules, then the result is returned in the same registers as would be used for such an argument. */ static bool aarch64_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) { HOST_WIDE_INT size; machine_mode ag_mode; int count; if (!AGGREGATE_TYPE_P (type) && TREE_CODE (type) != COMPLEX_TYPE && TREE_CODE (type) != VECTOR_TYPE) /* Simple scalar types always returned in registers. */ return false; if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type, &ag_mode, &count, NULL)) return false; /* Types larger than 2 registers returned in memory. */ size = int_size_in_bytes (type); return (size < 0 || size > 2 * UNITS_PER_WORD); } static bool aarch64_vfp_is_call_candidate (cumulative_args_t pcum_v, machine_mode mode, const_tree type, int *nregs) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); return aarch64_vfp_is_call_or_return_candidate (mode, type, &pcum->aapcs_vfp_rmode, nregs, NULL); } /* Given MODE and TYPE of a function argument, return the alignment in bits. The idea is to suppress any stronger alignment requested by the user and opt for the natural alignment (specified in AAPCS64 \S 4.1). This is a helper function for local use only. */ static unsigned int aarch64_function_arg_alignment (machine_mode mode, const_tree type) { unsigned int alignment; if (type) { if (!integer_zerop (TYPE_SIZE (type))) { if (TYPE_MODE (type) == mode) alignment = TYPE_ALIGN (type); else alignment = GET_MODE_ALIGNMENT (mode); } else alignment = 0; } else alignment = GET_MODE_ALIGNMENT (mode); return alignment; } /* Layout a function argument according to the AAPCS64 rules. The rule numbers refer to the rule numbers in the AAPCS64. */ static void aarch64_layout_arg (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); int ncrn, nvrn, nregs; bool allocate_ncrn, allocate_nvrn; HOST_WIDE_INT size; /* We need to do this once per argument. */ if (pcum->aapcs_arg_processed) return; pcum->aapcs_arg_processed = true; /* Size in bytes, rounded to the nearest multiple of 8 bytes. */ size = AARCH64_ROUND_UP (type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode), UNITS_PER_WORD); allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode); allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v, mode, type, &nregs); /* allocate_ncrn may be false-positive, but allocate_nvrn is quite reliable. The following code thus handles passing by SIMD/FP registers first. */ nvrn = pcum->aapcs_nvrn; /* C1 - C5 for floating point, homogenous floating point aggregates (HFA) and homogenous short-vector aggregates (HVA). */ if (allocate_nvrn) { if (!TARGET_FLOAT) aarch64_err_no_fpadvsimd (mode, "argument"); if (nvrn + nregs <= NUM_FP_ARG_REGS) { pcum->aapcs_nextnvrn = nvrn + nregs; if (!aarch64_composite_type_p (type, mode)) { gcc_assert (nregs == 1); pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn); } else { rtx par; int i; par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); for (i = 0; i < nregs; i++) { rtx tmp = gen_rtx_REG (pcum->aapcs_vfp_rmode, V0_REGNUM + nvrn + i); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, GEN_INT (i * GET_MODE_SIZE (pcum->aapcs_vfp_rmode))); XVECEXP (par, 0, i) = tmp; } pcum->aapcs_reg = par; } return; } else { /* C.3 NSRN is set to 8. */ pcum->aapcs_nextnvrn = NUM_FP_ARG_REGS; goto on_stack; } } ncrn = pcum->aapcs_ncrn; nregs = size / UNITS_PER_WORD; /* C6 - C9. though the sign and zero extension semantics are handled elsewhere. This is the case where the argument fits entirely general registers. */ if (allocate_ncrn && (ncrn + nregs <= NUM_ARG_REGS)) { unsigned int alignment = aarch64_function_arg_alignment (mode, type); gcc_assert (nregs == 0 || nregs == 1 || nregs == 2); /* C.8 if the argument has an alignment of 16 then the NGRN is rounded up to the next even number. */ if (nregs == 2 && alignment == 16 * BITS_PER_UNIT && ncrn % 2) { ++ncrn; gcc_assert (ncrn + nregs <= NUM_ARG_REGS); } /* NREGS can be 0 when e.g. an empty structure is to be passed. A reg is still generated for it, but the caller should be smart enough not to use it. */ if (nregs == 0 || nregs == 1 || GET_MODE_CLASS (mode) == MODE_INT) { pcum->aapcs_reg = gen_rtx_REG (mode, R0_REGNUM + ncrn); } else { rtx par; int i; par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); for (i = 0; i < nregs; i++) { rtx tmp = gen_rtx_REG (word_mode, R0_REGNUM + ncrn + i); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, GEN_INT (i * UNITS_PER_WORD)); XVECEXP (par, 0, i) = tmp; } pcum->aapcs_reg = par; } pcum->aapcs_nextncrn = ncrn + nregs; return; } /* C.11 */ pcum->aapcs_nextncrn = NUM_ARG_REGS; /* The argument is passed on stack; record the needed number of words for this argument and align the total size if necessary. */ on_stack: pcum->aapcs_stack_words = size / UNITS_PER_WORD; if (aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT) pcum->aapcs_stack_size = AARCH64_ROUND_UP (pcum->aapcs_stack_size, 16 / UNITS_PER_WORD); return; } /* Implement TARGET_FUNCTION_ARG. */ static rtx aarch64_function_arg (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); gcc_assert (pcum->pcs_variant == ARM_PCS_AAPCS64); if (mode == VOIDmode) return NULL_RTX; aarch64_layout_arg (pcum_v, mode, type, named); return pcum->aapcs_reg; } void aarch64_init_cumulative_args (CUMULATIVE_ARGS *pcum, const_tree fntype ATTRIBUTE_UNUSED, rtx libname ATTRIBUTE_UNUSED, const_tree fndecl ATTRIBUTE_UNUSED, unsigned n_named ATTRIBUTE_UNUSED) { pcum->aapcs_ncrn = 0; pcum->aapcs_nvrn = 0; pcum->aapcs_nextncrn = 0; pcum->aapcs_nextnvrn = 0; pcum->pcs_variant = ARM_PCS_AAPCS64; pcum->aapcs_reg = NULL_RTX; pcum->aapcs_arg_processed = false; pcum->aapcs_stack_words = 0; pcum->aapcs_stack_size = 0; if (!TARGET_FLOAT && fndecl && TREE_PUBLIC (fndecl) && fntype && fntype != error_mark_node) { const_tree type = TREE_TYPE (fntype); machine_mode mode ATTRIBUTE_UNUSED; /* To pass pointer as argument. */ int nregs ATTRIBUTE_UNUSED; /* Likewise. */ if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type, &mode, &nregs, NULL)) aarch64_err_no_fpadvsimd (TYPE_MODE (type), "return type"); } return; } static void aarch64_function_arg_advance (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); if (pcum->pcs_variant == ARM_PCS_AAPCS64) { aarch64_layout_arg (pcum_v, mode, type, named); gcc_assert ((pcum->aapcs_reg != NULL_RTX) != (pcum->aapcs_stack_words != 0)); pcum->aapcs_arg_processed = false; pcum->aapcs_ncrn = pcum->aapcs_nextncrn; pcum->aapcs_nvrn = pcum->aapcs_nextnvrn; pcum->aapcs_stack_size += pcum->aapcs_stack_words; pcum->aapcs_stack_words = 0; pcum->aapcs_reg = NULL_RTX; } } bool aarch64_function_arg_regno_p (unsigned regno) { return ((GP_REGNUM_P (regno) && regno < R0_REGNUM + NUM_ARG_REGS) || (FP_REGNUM_P (regno) && regno < V0_REGNUM + NUM_FP_ARG_REGS)); } /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least PARM_BOUNDARY bits of alignment, but will be given anything up to STACK_BOUNDARY bits if the type requires it. This makes sure that both before and after the layout of each argument, the Next Stacked Argument Address (NSAA) will have a minimum alignment of 8 bytes. */ static unsigned int aarch64_function_arg_boundary (machine_mode mode, const_tree type) { unsigned int alignment = aarch64_function_arg_alignment (mode, type); if (alignment < PARM_BOUNDARY) alignment = PARM_BOUNDARY; if (alignment > STACK_BOUNDARY) alignment = STACK_BOUNDARY; return alignment; } /* For use by FUNCTION_ARG_PADDING (MODE, TYPE). Return true if an argument passed on the stack should be padded upwards, i.e. if the least-significant byte of the stack slot has useful data. Small aggregate types are placed in the lowest memory address. The related parameter passing rules are B.4, C.3, C.5 and C.14. */ bool aarch64_pad_arg_upward (machine_mode mode, const_tree type) { /* On little-endian targets, the least significant byte of every stack argument is passed at the lowest byte address of the stack slot. */ if (!BYTES_BIG_ENDIAN) return true; /* Otherwise, integral, floating-point and pointer types are padded downward: the least significant byte of a stack argument is passed at the highest byte address of the stack slot. */ if (type ? (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type) || POINTER_TYPE_P (type)) : (SCALAR_INT_MODE_P (mode) || SCALAR_FLOAT_MODE_P (mode))) return false; /* Everything else padded upward, i.e. data in first byte of stack slot. */ return true; } /* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST). It specifies padding for the last (may also be the only) element of a block move between registers and memory. If assuming the block is in the memory, padding upward means that the last element is padded after its highest significant byte, while in downward padding, the last element is padded at the its least significant byte side. Small aggregates and small complex types are always padded upwards. We don't need to worry about homogeneous floating-point or short-vector aggregates; their move is not affected by the padding direction determined here. Regardless of endianness, each element of such an aggregate is put in the least significant bits of a fp/simd register. Return !BYTES_BIG_ENDIAN if the least significant byte of the register has useful data, and return the opposite if the most significant byte does. */ bool aarch64_pad_reg_upward (machine_mode mode, const_tree type, bool first ATTRIBUTE_UNUSED) { /* Small composite types are always padded upward. */ if (BYTES_BIG_ENDIAN && aarch64_composite_type_p (type, mode)) { HOST_WIDE_INT size = (type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); if (size < 2 * UNITS_PER_WORD) return true; } /* Otherwise, use the default padding. */ return !BYTES_BIG_ENDIAN; } static machine_mode aarch64_libgcc_cmp_return_mode (void) { return SImode; } static bool aarch64_frame_pointer_required (void) { /* In aarch64_override_options_after_change flag_omit_leaf_frame_pointer turns off the frame pointer by default. Turn it back on now if we've not got a leaf function. */ if (flag_omit_leaf_frame_pointer && (!crtl->is_leaf || df_regs_ever_live_p (LR_REGNUM))) return true; return false; } /* Mark the registers that need to be saved by the callee and calculate the size of the callee-saved registers area and frame record (both FP and LR may be omitted). */ static void aarch64_layout_frame (void) { HOST_WIDE_INT offset = 0; int regno; if (reload_completed && cfun->machine->frame.laid_out) return; #define SLOT_NOT_REQUIRED (-2) #define SLOT_REQUIRED (-1) cfun->machine->frame.wb_candidate1 = FIRST_PSEUDO_REGISTER; cfun->machine->frame.wb_candidate2 = FIRST_PSEUDO_REGISTER; /* First mark all the registers that really need to be saved... */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED; for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED; /* ... that includes the eh data registers (if needed)... */ if (crtl->calls_eh_return) for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++) cfun->machine->frame.reg_offset[EH_RETURN_DATA_REGNO (regno)] = SLOT_REQUIRED; /* ... and any callee saved register that dataflow says is live. */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) if (df_regs_ever_live_p (regno) && (regno == R30_REGNUM || !call_used_regs[regno])) cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED; for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED; if (frame_pointer_needed) { /* FP and LR are placed in the linkage record. */ cfun->machine->frame.reg_offset[R29_REGNUM] = 0; cfun->machine->frame.wb_candidate1 = R29_REGNUM; cfun->machine->frame.reg_offset[R30_REGNUM] = UNITS_PER_WORD; cfun->machine->frame.wb_candidate2 = R30_REGNUM; cfun->machine->frame.hardfp_offset = 2 * UNITS_PER_WORD; offset += 2 * UNITS_PER_WORD; } /* Now assign stack slots for them. */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED) { cfun->machine->frame.reg_offset[regno] = offset; if (cfun->machine->frame.wb_candidate1 == FIRST_PSEUDO_REGISTER) cfun->machine->frame.wb_candidate1 = regno; else if (cfun->machine->frame.wb_candidate2 == FIRST_PSEUDO_REGISTER) cfun->machine->frame.wb_candidate2 = regno; offset += UNITS_PER_WORD; } for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED) { cfun->machine->frame.reg_offset[regno] = offset; if (cfun->machine->frame.wb_candidate1 == FIRST_PSEUDO_REGISTER) cfun->machine->frame.wb_candidate1 = regno; else if (cfun->machine->frame.wb_candidate2 == FIRST_PSEUDO_REGISTER && cfun->machine->frame.wb_candidate1 >= V0_REGNUM) cfun->machine->frame.wb_candidate2 = regno; offset += UNITS_PER_WORD; } cfun->machine->frame.padding0 = (AARCH64_ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT) - offset); offset = AARCH64_ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT); cfun->machine->frame.saved_regs_size = offset; cfun->machine->frame.hard_fp_offset = AARCH64_ROUND_UP (cfun->machine->frame.saved_varargs_size + get_frame_size () + cfun->machine->frame.saved_regs_size, STACK_BOUNDARY / BITS_PER_UNIT); cfun->machine->frame.frame_size = AARCH64_ROUND_UP (cfun->machine->frame.hard_fp_offset + crtl->outgoing_args_size, STACK_BOUNDARY / BITS_PER_UNIT); cfun->machine->frame.laid_out = true; } static bool aarch64_register_saved_on_entry (int regno) { return cfun->machine->frame.reg_offset[regno] >= 0; } static unsigned aarch64_next_callee_save (unsigned regno, unsigned limit) { while (regno <= limit && !aarch64_register_saved_on_entry (regno)) regno ++; return regno; } static void aarch64_pushwb_single_reg (machine_mode mode, unsigned regno, HOST_WIDE_INT adjustment) { rtx base_rtx = stack_pointer_rtx; rtx insn, reg, mem; reg = gen_rtx_REG (mode, regno); mem = gen_rtx_PRE_MODIFY (Pmode, base_rtx, plus_constant (Pmode, base_rtx, -adjustment)); mem = gen_rtx_MEM (mode, mem); insn = emit_move_insn (mem, reg); RTX_FRAME_RELATED_P (insn) = 1; } static rtx aarch64_gen_storewb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2, HOST_WIDE_INT adjustment) { switch (mode) { case DImode: return gen_storewb_pairdi_di (base, base, reg, reg2, GEN_INT (-adjustment), GEN_INT (UNITS_PER_WORD - adjustment)); case DFmode: return gen_storewb_pairdf_di (base, base, reg, reg2, GEN_INT (-adjustment), GEN_INT (UNITS_PER_WORD - adjustment)); default: gcc_unreachable (); } } static void aarch64_pushwb_pair_reg (machine_mode mode, unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment) { rtx_insn *insn; rtx reg1 = gen_rtx_REG (mode, regno1); rtx reg2 = gen_rtx_REG (mode, regno2); insn = emit_insn (aarch64_gen_storewb_pair (mode, stack_pointer_rtx, reg1, reg2, adjustment)); RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 2)) = 1; RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } static rtx aarch64_gen_loadwb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2, HOST_WIDE_INT adjustment) { switch (mode) { case DImode: return gen_loadwb_pairdi_di (base, base, reg, reg2, GEN_INT (adjustment), GEN_INT (UNITS_PER_WORD)); case DFmode: return gen_loadwb_pairdf_di (base, base, reg, reg2, GEN_INT (adjustment), GEN_INT (UNITS_PER_WORD)); default: gcc_unreachable (); } } static rtx aarch64_gen_store_pair (machine_mode mode, rtx mem1, rtx reg1, rtx mem2, rtx reg2) { switch (mode) { case DImode: return gen_store_pairdi (mem1, reg1, mem2, reg2); case DFmode: return gen_store_pairdf (mem1, reg1, mem2, reg2); default: gcc_unreachable (); } } static rtx aarch64_gen_load_pair (machine_mode mode, rtx reg1, rtx mem1, rtx reg2, rtx mem2) { switch (mode) { case DImode: return gen_load_pairdi (reg1, mem1, reg2, mem2); case DFmode: return gen_load_pairdf (reg1, mem1, reg2, mem2); default: gcc_unreachable (); } } static void aarch64_save_callee_saves (machine_mode mode, HOST_WIDE_INT start_offset, unsigned start, unsigned limit, bool skip_wb) { rtx_insn *insn; rtx (*gen_mem_ref) (machine_mode, rtx) = (frame_pointer_needed ? gen_frame_mem : gen_rtx_MEM); unsigned regno; unsigned regno2; for (regno = aarch64_next_callee_save (start, limit); regno <= limit; regno = aarch64_next_callee_save (regno + 1, limit)) { rtx reg, mem; HOST_WIDE_INT offset; if (skip_wb && (regno == cfun->machine->frame.wb_candidate1 || regno == cfun->machine->frame.wb_candidate2)) continue; reg = gen_rtx_REG (mode, regno); offset = start_offset + cfun->machine->frame.reg_offset[regno]; mem = gen_mem_ref (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); regno2 = aarch64_next_callee_save (regno + 1, limit); if (regno2 <= limit && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD) == cfun->machine->frame.reg_offset[regno2])) { rtx reg2 = gen_rtx_REG (mode, regno2); rtx mem2; offset = start_offset + cfun->machine->frame.reg_offset[regno2]; mem2 = gen_mem_ref (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2)); /* The first part of a frame-related parallel insn is always assumed to be relevant to the frame calculations; subsequent parts, are only frame-related if explicitly marked. */ RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1; regno = regno2; } else insn = emit_move_insn (mem, reg); RTX_FRAME_RELATED_P (insn) = 1; } } static void aarch64_restore_callee_saves (machine_mode mode, HOST_WIDE_INT start_offset, unsigned start, unsigned limit, bool skip_wb, rtx *cfi_ops) { rtx base_rtx = stack_pointer_rtx; rtx (*gen_mem_ref) (machine_mode, rtx) = (frame_pointer_needed ? gen_frame_mem : gen_rtx_MEM); unsigned regno; unsigned regno2; HOST_WIDE_INT offset; for (regno = aarch64_next_callee_save (start, limit); regno <= limit; regno = aarch64_next_callee_save (regno + 1, limit)) { rtx reg, mem; if (skip_wb && (regno == cfun->machine->frame.wb_candidate1 || regno == cfun->machine->frame.wb_candidate2)) continue; reg = gen_rtx_REG (mode, regno); offset = start_offset + cfun->machine->frame.reg_offset[regno]; mem = gen_mem_ref (mode, plus_constant (Pmode, base_rtx, offset)); regno2 = aarch64_next_callee_save (regno + 1, limit); if (regno2 <= limit && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD) == cfun->machine->frame.reg_offset[regno2])) { rtx reg2 = gen_rtx_REG (mode, regno2); rtx mem2; offset = start_offset + cfun->machine->frame.reg_offset[regno2]; mem2 = gen_mem_ref (mode, plus_constant (Pmode, base_rtx, offset)); emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2)); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops); regno = regno2; } else emit_move_insn (reg, mem); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg, *cfi_ops); } } /* AArch64 stack frames generated by this compiler look like: +-------------------------------+ | | | incoming stack arguments | | | +-------------------------------+ | | <-- incoming stack pointer (aligned) | callee-allocated save area | | for register varargs | | | +-------------------------------+ | local variables | <-- frame_pointer_rtx | | +-------------------------------+ | padding0 | \ +-------------------------------+ | | callee-saved registers | | frame.saved_regs_size +-------------------------------+ | | LR' | | +-------------------------------+ | | FP' | / <- hard_frame_pointer_rtx (aligned) +-------------------------------+ | dynamic allocation | +-------------------------------+ | padding | +-------------------------------+ | outgoing stack arguments | <-- arg_pointer | | +-------------------------------+ | | <-- stack_pointer_rtx (aligned) Dynamic stack allocations via alloca() decrease stack_pointer_rtx but leave frame_pointer_rtx and hard_frame_pointer_rtx unchanged. */ /* Generate the prologue instructions for entry into a function. Establish the stack frame by decreasing the stack pointer with a properly calculated size and, if necessary, create a frame record filled with the values of LR and previous frame pointer. The current FP is also set up if it is in use. */ void aarch64_expand_prologue (void) { /* sub sp, sp, # stp {fp, lr}, [sp, # - 16] add fp, sp, # - hardfp_offset stp {cs_reg}, [fp, #-16] etc. sub sp, sp, */ HOST_WIDE_INT frame_size, offset; HOST_WIDE_INT fp_offset; /* Offset from hard FP to SP. */ HOST_WIDE_INT hard_fp_offset; rtx_insn *insn; aarch64_layout_frame (); offset = frame_size = cfun->machine->frame.frame_size; hard_fp_offset = cfun->machine->frame.hard_fp_offset; fp_offset = frame_size - hard_fp_offset; if (flag_stack_usage_info) current_function_static_stack_size = frame_size; /* Store pairs and load pairs have a range only -512 to 504. */ if (offset >= 512) { /* When the frame has a large size, an initial decrease is done on the stack pointer to jump over the callee-allocated save area for register varargs, the local variable area and/or the callee-saved register area. This will allow the pre-index write-back store pair instructions to be used for setting up the stack frame efficiently. */ offset = hard_fp_offset; if (offset >= 512) offset = cfun->machine->frame.saved_regs_size; frame_size -= (offset + crtl->outgoing_args_size); fp_offset = 0; if (frame_size >= 0x1000000) { rtx op0 = gen_rtx_REG (Pmode, IP0_REGNUM); emit_move_insn (op0, GEN_INT (-frame_size)); insn = emit_insn (gen_add2_insn (stack_pointer_rtx, op0)); add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -frame_size))); RTX_FRAME_RELATED_P (insn) = 1; } else if (frame_size > 0) { int hi_ofs = frame_size & 0xfff000; int lo_ofs = frame_size & 0x000fff; if (hi_ofs) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (-hi_ofs))); RTX_FRAME_RELATED_P (insn) = 1; } if (lo_ofs) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (-lo_ofs))); RTX_FRAME_RELATED_P (insn) = 1; } } } else frame_size = -1; if (offset > 0) { bool skip_wb = false; if (frame_pointer_needed) { skip_wb = true; if (fp_offset) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (-offset))); RTX_FRAME_RELATED_P (insn) = 1; aarch64_save_callee_saves (DImode, fp_offset, R29_REGNUM, R30_REGNUM, false); } else aarch64_pushwb_pair_reg (DImode, R29_REGNUM, R30_REGNUM, offset); /* Set up frame pointer to point to the location of the previous frame pointer on the stack. */ insn = emit_insn (gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, GEN_INT (fp_offset))); RTX_FRAME_RELATED_P (insn) = 1; emit_insn (gen_stack_tie (stack_pointer_rtx, hard_frame_pointer_rtx)); } else { unsigned reg1 = cfun->machine->frame.wb_candidate1; unsigned reg2 = cfun->machine->frame.wb_candidate2; if (fp_offset || reg1 == FIRST_PSEUDO_REGISTER || (reg2 == FIRST_PSEUDO_REGISTER && offset >= 256)) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (-offset))); RTX_FRAME_RELATED_P (insn) = 1; } else { machine_mode mode1 = (reg1 <= R30_REGNUM) ? DImode : DFmode; skip_wb = true; if (reg2 == FIRST_PSEUDO_REGISTER) aarch64_pushwb_single_reg (mode1, reg1, offset); else aarch64_pushwb_pair_reg (mode1, reg1, reg2, offset); } } aarch64_save_callee_saves (DImode, fp_offset, R0_REGNUM, R30_REGNUM, skip_wb); aarch64_save_callee_saves (DFmode, fp_offset, V0_REGNUM, V31_REGNUM, skip_wb); } /* when offset >= 512, sub sp, sp, # */ if (frame_size > -1) { if (crtl->outgoing_args_size > 0) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (- crtl->outgoing_args_size))); RTX_FRAME_RELATED_P (insn) = 1; } } } /* Return TRUE if we can use a simple_return insn. This function checks whether the callee saved stack is empty, which means no restore actions are need. The pro_and_epilogue will use this to check whether shrink-wrapping opt is feasible. */ bool aarch64_use_return_insn_p (void) { if (!reload_completed) return false; if (crtl->profile) return false; aarch64_layout_frame (); return cfun->machine->frame.frame_size == 0; } /* Generate the epilogue instructions for returning from a function. */ void aarch64_expand_epilogue (bool for_sibcall) { HOST_WIDE_INT frame_size, offset; HOST_WIDE_INT fp_offset; HOST_WIDE_INT hard_fp_offset; rtx_insn *insn; /* We need to add memory barrier to prevent read from deallocated stack. */ bool need_barrier_p = (get_frame_size () != 0 || cfun->machine->frame.saved_varargs_size); aarch64_layout_frame (); offset = frame_size = cfun->machine->frame.frame_size; hard_fp_offset = cfun->machine->frame.hard_fp_offset; fp_offset = frame_size - hard_fp_offset; /* Store pairs and load pairs have a range only -512 to 504. */ if (offset >= 512) { offset = hard_fp_offset; if (offset >= 512) offset = cfun->machine->frame.saved_regs_size; frame_size -= (offset + crtl->outgoing_args_size); fp_offset = 0; if (!frame_pointer_needed && crtl->outgoing_args_size > 0) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (crtl->outgoing_args_size))); RTX_FRAME_RELATED_P (insn) = 1; } } else frame_size = -1; /* If there were outgoing arguments or we've done dynamic stack allocation, then restore the stack pointer from the frame pointer. This is at most one insn and more efficient than using GCC's internal mechanism. */ if (frame_pointer_needed && (crtl->outgoing_args_size || cfun->calls_alloca)) { if (cfun->calls_alloca) emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx)); insn = emit_insn (gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (0))); offset = offset - fp_offset; } if (offset > 0) { unsigned reg1 = cfun->machine->frame.wb_candidate1; unsigned reg2 = cfun->machine->frame.wb_candidate2; bool skip_wb = true; rtx cfi_ops = NULL; if (frame_pointer_needed) fp_offset = 0; else if (fp_offset || reg1 == FIRST_PSEUDO_REGISTER || (reg2 == FIRST_PSEUDO_REGISTER && offset >= 256)) skip_wb = false; aarch64_restore_callee_saves (DImode, fp_offset, R0_REGNUM, R30_REGNUM, skip_wb, &cfi_ops); aarch64_restore_callee_saves (DFmode, fp_offset, V0_REGNUM, V31_REGNUM, skip_wb, &cfi_ops); if (need_barrier_p) emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx)); if (skip_wb) { machine_mode mode1 = (reg1 <= R30_REGNUM) ? DImode : DFmode; rtx rreg1 = gen_rtx_REG (mode1, reg1); cfi_ops = alloc_reg_note (REG_CFA_RESTORE, rreg1, cfi_ops); if (reg2 == FIRST_PSEUDO_REGISTER) { rtx mem = plus_constant (Pmode, stack_pointer_rtx, offset); mem = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx, mem); mem = gen_rtx_MEM (mode1, mem); insn = emit_move_insn (rreg1, mem); } else { rtx rreg2 = gen_rtx_REG (mode1, reg2); cfi_ops = alloc_reg_note (REG_CFA_RESTORE, rreg2, cfi_ops); insn = emit_insn (aarch64_gen_loadwb_pair (mode1, stack_pointer_rtx, rreg1, rreg2, offset)); } } else { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (offset))); } /* Reset the CFA to be SP + FRAME_SIZE. */ rtx new_cfa = stack_pointer_rtx; if (frame_size > 0) new_cfa = plus_constant (Pmode, new_cfa, frame_size); cfi_ops = alloc_reg_note (REG_CFA_DEF_CFA, new_cfa, cfi_ops); REG_NOTES (insn) = cfi_ops; RTX_FRAME_RELATED_P (insn) = 1; } if (frame_size > 0) { if (need_barrier_p) emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx)); if (frame_size >= 0x1000000) { rtx op0 = gen_rtx_REG (Pmode, IP0_REGNUM); emit_move_insn (op0, GEN_INT (frame_size)); insn = emit_insn (gen_add2_insn (stack_pointer_rtx, op0)); } else { int hi_ofs = frame_size & 0xfff000; int lo_ofs = frame_size & 0x000fff; if (hi_ofs && lo_ofs) { insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (hi_ofs))); RTX_FRAME_RELATED_P (insn) = 1; frame_size = lo_ofs; } insn = emit_insn (gen_add2_insn (stack_pointer_rtx, GEN_INT (frame_size))); } /* Reset the CFA to be SP + 0. */ add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* Stack adjustment for exception handler. */ if (crtl->calls_eh_return) { /* We need to unwind the stack by the offset computed by EH_RETURN_STACKADJ_RTX. We have already reset the CFA to be SP; letting the CFA move during this adjustment is just as correct as retaining the CFA from the body of the function. Therefore, do nothing special. */ emit_insn (gen_add2_insn (stack_pointer_rtx, EH_RETURN_STACKADJ_RTX)); } emit_use (gen_rtx_REG (DImode, LR_REGNUM)); if (!for_sibcall) emit_jump_insn (ret_rtx); } /* Return the place to copy the exception unwinding return address to. This will probably be a stack slot, but could (in theory be the return register). */ rtx aarch64_final_eh_return_addr (void) { HOST_WIDE_INT fp_offset; aarch64_layout_frame (); fp_offset = cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset; if (cfun->machine->frame.reg_offset[LR_REGNUM] < 0) return gen_rtx_REG (DImode, LR_REGNUM); /* DSE and CSELIB do not detect an alias between sp+k1 and fp+k2. This can result in a store to save LR introduced by builtin_eh_return () being incorrectly deleted because the alias is not detected. So in the calculation of the address to copy the exception unwinding return address to, we note 2 cases. If FP is needed and the fp_offset is 0, it means that SP = FP and hence we return a SP-relative location since all the addresses are SP-relative in this case. This prevents the store from being optimized away. If the fp_offset is not 0, then the addresses will be FP-relative and therefore we return a FP-relative location. */ if (frame_pointer_needed) { if (fp_offset) return gen_frame_mem (DImode, plus_constant (Pmode, hard_frame_pointer_rtx, UNITS_PER_WORD)); else return gen_frame_mem (DImode, plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD)); } /* If FP is not needed, we calculate the location of LR, which would be at the top of the saved registers block. */ return gen_frame_mem (DImode, plus_constant (Pmode, stack_pointer_rtx, fp_offset + cfun->machine->frame.saved_regs_size - 2 * UNITS_PER_WORD)); } /* Possibly output code to build up a constant in a register. For the benefit of the costs infrastructure, returns the number of instructions which would be emitted. GENERATE inhibits or enables code generation. */ static int aarch64_build_constant (int regnum, HOST_WIDE_INT val, bool generate) { int insns = 0; if (aarch64_bitmask_imm (val, DImode)) { if (generate) emit_move_insn (gen_rtx_REG (Pmode, regnum), GEN_INT (val)); insns = 1; } else { int i; int ncount = 0; int zcount = 0; HOST_WIDE_INT valp = val >> 16; HOST_WIDE_INT valm; HOST_WIDE_INT tval; for (i = 16; i < 64; i += 16) { valm = (valp & 0xffff); if (valm != 0) ++ zcount; if (valm != 0xffff) ++ ncount; valp >>= 16; } /* zcount contains the number of additional MOVK instructions required if the constant is built up with an initial MOVZ instruction, while ncount is the number of MOVK instructions required if starting with a MOVN instruction. Choose the sequence that yields the fewest number of instructions, preferring MOVZ instructions when they are both the same. */ if (ncount < zcount) { if (generate) emit_move_insn (gen_rtx_REG (Pmode, regnum), GEN_INT (val | ~(HOST_WIDE_INT) 0xffff)); tval = 0xffff; insns++; } else { if (generate) emit_move_insn (gen_rtx_REG (Pmode, regnum), GEN_INT (val & 0xffff)); tval = 0; insns++; } val >>= 16; for (i = 16; i < 64; i += 16) { if ((val & 0xffff) != tval) { if (generate) emit_insn (gen_insv_immdi (gen_rtx_REG (Pmode, regnum), GEN_INT (i), GEN_INT (val & 0xffff))); insns++; } val >>= 16; } } return insns; } static void aarch64_add_constant (int regnum, int scratchreg, HOST_WIDE_INT delta) { HOST_WIDE_INT mdelta = delta; rtx this_rtx = gen_rtx_REG (Pmode, regnum); rtx scratch_rtx = gen_rtx_REG (Pmode, scratchreg); if (mdelta < 0) mdelta = -mdelta; if (mdelta >= 4096 * 4096) { (void) aarch64_build_constant (scratchreg, delta, true); emit_insn (gen_add3_insn (this_rtx, this_rtx, scratch_rtx)); } else if (mdelta > 0) { if (mdelta >= 4096) { emit_insn (gen_rtx_SET (scratch_rtx, GEN_INT (mdelta / 4096))); rtx shift = gen_rtx_ASHIFT (Pmode, scratch_rtx, GEN_INT (12)); if (delta < 0) emit_insn (gen_rtx_SET (this_rtx, gen_rtx_MINUS (Pmode, this_rtx, shift))); else emit_insn (gen_rtx_SET (this_rtx, gen_rtx_PLUS (Pmode, this_rtx, shift))); } if (mdelta % 4096 != 0) { scratch_rtx = GEN_INT ((delta < 0 ? -1 : 1) * (mdelta % 4096)); emit_insn (gen_rtx_SET (this_rtx, gen_rtx_PLUS (Pmode, this_rtx, scratch_rtx))); } } } /* Output code to add DELTA to the first argument, and then jump to FUNCTION. Used for C++ multiple inheritance. */ static void aarch64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { /* The this pointer is always in x0. Note that this differs from Arm where the this pointer maybe bumped to r1 if r0 is required to return a pointer to an aggregate. On AArch64 a result value pointer will be in x8. */ int this_regno = R0_REGNUM; rtx this_rtx, temp0, temp1, addr, funexp; rtx_insn *insn; reload_completed = 1; emit_note (NOTE_INSN_PROLOGUE_END); if (vcall_offset == 0) aarch64_add_constant (this_regno, IP1_REGNUM, delta); else { gcc_assert ((vcall_offset & (POINTER_BYTES - 1)) == 0); this_rtx = gen_rtx_REG (Pmode, this_regno); temp0 = gen_rtx_REG (Pmode, IP0_REGNUM); temp1 = gen_rtx_REG (Pmode, IP1_REGNUM); addr = this_rtx; if (delta != 0) { if (delta >= -256 && delta < 256) addr = gen_rtx_PRE_MODIFY (Pmode, this_rtx, plus_constant (Pmode, this_rtx, delta)); else aarch64_add_constant (this_regno, IP1_REGNUM, delta); } if (Pmode == ptr_mode) aarch64_emit_move (temp0, gen_rtx_MEM (ptr_mode, addr)); else aarch64_emit_move (temp0, gen_rtx_ZERO_EXTEND (Pmode, gen_rtx_MEM (ptr_mode, addr))); if (vcall_offset >= -256 && vcall_offset < 4096 * POINTER_BYTES) addr = plus_constant (Pmode, temp0, vcall_offset); else { (void) aarch64_build_constant (IP1_REGNUM, vcall_offset, true); addr = gen_rtx_PLUS (Pmode, temp0, temp1); } if (Pmode == ptr_mode) aarch64_emit_move (temp1, gen_rtx_MEM (ptr_mode,addr)); else aarch64_emit_move (temp1, gen_rtx_SIGN_EXTEND (Pmode, gen_rtx_MEM (ptr_mode, addr))); emit_insn (gen_add2_insn (this_rtx, temp1)); } /* Generate a tail call to the target function. */ if (!TREE_USED (function)) { assemble_external (function); TREE_USED (function) = 1; } funexp = XEXP (DECL_RTL (function), 0); funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); insn = emit_call_insn (gen_sibcall (funexp, const0_rtx, NULL_RTX)); SIBLING_CALL_P (insn) = 1; insn = get_insns (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); /* Stop pretending to be a post-reload pass. */ reload_completed = 0; } static bool aarch64_tls_referenced_p (rtx x) { if (!TARGET_HAVE_TLS) return false; subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) { const_rtx x = *iter; if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0) return true; /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are TLS offsets, not real symbol references. */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS) iter.skip_subrtxes (); } return false; } /* Return true if val can be encoded as a 12-bit unsigned immediate with a left shift of 0 or 12 bits. */ bool aarch64_uimm12_shift (HOST_WIDE_INT val) { return ((val & (((HOST_WIDE_INT) 0xfff) << 0)) == val || (val & (((HOST_WIDE_INT) 0xfff) << 12)) == val ); } /* Return true if val is an immediate that can be loaded into a register by a MOVZ instruction. */ static bool aarch64_movw_imm (HOST_WIDE_INT val, machine_mode mode) { if (GET_MODE_SIZE (mode) > 4) { if ((val & (((HOST_WIDE_INT) 0xffff) << 32)) == val || (val & (((HOST_WIDE_INT) 0xffff) << 48)) == val) return 1; } else { /* Ignore sign extension. */ val &= (HOST_WIDE_INT) 0xffffffff; } return ((val & (((HOST_WIDE_INT) 0xffff) << 0)) == val || (val & (((HOST_WIDE_INT) 0xffff) << 16)) == val); } /* Multipliers for repeating bitmasks of width 32, 16, 8, 4, and 2. */ static const unsigned HOST_WIDE_INT bitmask_imm_mul[] = { 0x0000000100000001ull, 0x0001000100010001ull, 0x0101010101010101ull, 0x1111111111111111ull, 0x5555555555555555ull, }; /* Return true if val is a valid bitmask immediate. */ bool aarch64_bitmask_imm (HOST_WIDE_INT val_in, machine_mode mode) { unsigned HOST_WIDE_INT val, tmp, mask, first_one, next_one; int bits; /* Check for a single sequence of one bits and return quickly if so. The special cases of all ones and all zeroes returns false. */ val = (unsigned HOST_WIDE_INT) val_in; tmp = val + (val & -val); if (tmp == (tmp & -tmp)) return (val + 1) > 1; /* Replicate 32-bit immediates so we can treat them as 64-bit. */ if (mode == SImode) val = (val << 32) | (val & 0xffffffff); /* Invert if the immediate doesn't start with a zero bit - this means we only need to search for sequences of one bits. */ if (val & 1) val = ~val; /* Find the first set bit and set tmp to val with the first sequence of one bits removed. Return success if there is a single sequence of ones. */ first_one = val & -val; tmp = val & (val + first_one); if (tmp == 0) return true; /* Find the next set bit and compute the difference in bit position. */ next_one = tmp & -tmp; bits = clz_hwi (first_one) - clz_hwi (next_one); mask = val ^ tmp; /* Check the bit position difference is a power of 2, and that the first sequence of one bits fits within 'bits' bits. */ if ((mask >> bits) != 0 || bits != (bits & -bits)) return false; /* Check the sequence of one bits is repeated 64/bits times. */ return val == mask * bitmask_imm_mul[__builtin_clz (bits) - 26]; } /* Return true if val is an immediate that can be loaded into a register in a single instruction. */ bool aarch64_move_imm (HOST_WIDE_INT val, machine_mode mode) { if (aarch64_movw_imm (val, mode) || aarch64_movw_imm (~val, mode)) return 1; return aarch64_bitmask_imm (val, mode); } static bool aarch64_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { rtx base, offset; if (GET_CODE (x) == HIGH) return true; split_const (x, &base, &offset); if (GET_CODE (base) == SYMBOL_REF || GET_CODE (base) == LABEL_REF) { if (aarch64_classify_symbol (base, offset) != SYMBOL_FORCE_TO_MEM) return true; else /* Avoid generating a 64-bit relocation in ILP32; leave to aarch64_expand_mov_immediate to handle it properly. */ return mode != ptr_mode; } return aarch64_tls_referenced_p (x); } /* Return true if register REGNO is a valid index register. STRICT_P is true if REG_OK_STRICT is in effect. */ bool aarch64_regno_ok_for_index_p (int regno, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; if (!reg_renumber) return false; regno = reg_renumber[regno]; } return GP_REGNUM_P (regno); } /* Return true if register REGNO is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ bool aarch64_regno_ok_for_base_p (int regno, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; if (!reg_renumber) return false; regno = reg_renumber[regno]; } /* The fake registers will be eliminated to either the stack or hard frame pointer, both of which are usually valid base registers. Reload deals with the cases where the eliminated form isn't valid. */ return (GP_REGNUM_P (regno) || regno == SP_REGNUM || regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM); } /* Return true if X is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool aarch64_base_register_rtx_p (rtx x, bool strict_p) { if (!strict_p && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (REG_P (x) && aarch64_regno_ok_for_base_p (REGNO (x), strict_p)); } /* Return true if address offset is a valid index. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool aarch64_classify_index (struct aarch64_address_info *info, rtx x, machine_mode mode, bool strict_p) { enum aarch64_address_type type; rtx index; int shift; /* (reg:P) */ if ((REG_P (x) || GET_CODE (x) == SUBREG) && GET_MODE (x) == Pmode) { type = ADDRESS_REG_REG; index = x; shift = 0; } /* (sign_extend:DI (reg:SI)) */ else if ((GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) && GET_MODE (x) == DImode && GET_MODE (XEXP (x, 0)) == SImode) { type = (GET_CODE (x) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (x, 0); shift = 0; } /* (mult:DI (sign_extend:DI (reg:SI)) (const_int scale)) */ else if (GET_CODE (x) == MULT && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND) && GET_MODE (XEXP (x, 0)) == DImode && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode && CONST_INT_P (XEXP (x, 1))) { type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = exact_log2 (INTVAL (XEXP (x, 1))); } /* (ashift:DI (sign_extend:DI (reg:SI)) (const_int shift)) */ else if (GET_CODE (x) == ASHIFT && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND) && GET_MODE (XEXP (x, 0)) == DImode && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode && CONST_INT_P (XEXP (x, 1))) { type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = INTVAL (XEXP (x, 1)); } /* (sign_extract:DI (mult:DI (reg:DI) (const_int scale)) 32+shift 0) */ else if ((GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT) && GET_MODE (x) == DImode && GET_CODE (XEXP (x, 0)) == MULT && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode && CONST_INT_P (XEXP (XEXP (x, 0), 1))) { type = (GET_CODE (x) == SIGN_EXTRACT) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1))); if (INTVAL (XEXP (x, 1)) != 32 + shift || INTVAL (XEXP (x, 2)) != 0) shift = -1; } /* (and:DI (mult:DI (reg:DI) (const_int scale)) (const_int 0xffffffff< 0 && shift <= 3 && (1 << shift) == GET_MODE_SIZE (mode))) && REG_P (index) && aarch64_regno_ok_for_index_p (REGNO (index), strict_p)) { info->type = type; info->offset = index; info->shift = shift; return true; } return false; } bool aarch64_offset_7bit_signed_scaled_p (machine_mode mode, HOST_WIDE_INT offset) { return (offset >= -64 * GET_MODE_SIZE (mode) && offset < 64 * GET_MODE_SIZE (mode) && offset % GET_MODE_SIZE (mode) == 0); } static inline bool offset_9bit_signed_unscaled_p (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT offset) { return offset >= -256 && offset < 256; } static inline bool offset_12bit_unsigned_scaled_p (machine_mode mode, HOST_WIDE_INT offset) { return (offset >= 0 && offset < 4096 * GET_MODE_SIZE (mode) && offset % GET_MODE_SIZE (mode) == 0); } /* Return true if X is a valid address for machine mode MODE. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. OUTER_CODE is PARALLEL for a load/store pair. */ static bool aarch64_classify_address (struct aarch64_address_info *info, rtx x, machine_mode mode, RTX_CODE outer_code, bool strict_p) { enum rtx_code code = GET_CODE (x); rtx op0, op1; /* On BE, we use load/store pair for all large int mode load/stores. */ bool load_store_pair_p = (outer_code == PARALLEL || (BYTES_BIG_ENDIAN && aarch64_vect_struct_mode_p (mode))); bool allow_reg_index_p = !load_store_pair_p && (GET_MODE_SIZE (mode) != 16 || aarch64_vector_mode_supported_p (mode)) && !aarch64_vect_struct_mode_p (mode); /* On LE, for AdvSIMD, don't support anything other than POST_INC or REG addressing. */ if (aarch64_vect_struct_mode_p (mode) && !BYTES_BIG_ENDIAN && (code != POST_INC && code != REG)) return false; switch (code) { case REG: case SUBREG: info->type = ADDRESS_REG_IMM; info->base = x; info->offset = const0_rtx; return aarch64_base_register_rtx_p (x, strict_p); case PLUS: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (! strict_p && REG_P (op0) && (op0 == virtual_stack_vars_rtx || op0 == frame_pointer_rtx || op0 == arg_pointer_rtx) && CONST_INT_P (op1)) { info->type = ADDRESS_REG_IMM; info->base = op0; info->offset = op1; return true; } if (GET_MODE_SIZE (mode) != 0 && CONST_INT_P (op1) && aarch64_base_register_rtx_p (op0, strict_p)) { HOST_WIDE_INT offset = INTVAL (op1); info->type = ADDRESS_REG_IMM; info->base = op0; info->offset = op1; /* TImode and TFmode values are allowed in both pairs of X registers and individual Q registers. The available address modes are: X,X: 7-bit signed scaled offset Q: 9-bit signed offset We conservatively require an offset representable in either mode. */ if (mode == TImode || mode == TFmode) return (aarch64_offset_7bit_signed_scaled_p (mode, offset) && offset_9bit_signed_unscaled_p (mode, offset)); /* A 7bit offset check because OImode will emit a ldp/stp instruction (only big endian will get here). For ldp/stp instructions, the offset is scaled for the size of a single element of the pair. */ if (mode == OImode) return aarch64_offset_7bit_signed_scaled_p (TImode, offset); /* Three 9/12 bit offsets checks because CImode will emit three ldr/str instructions (only big endian will get here). */ if (mode == CImode) return (aarch64_offset_7bit_signed_scaled_p (TImode, offset) && (offset_9bit_signed_unscaled_p (V16QImode, offset + 32) || offset_12bit_unsigned_scaled_p (V16QImode, offset + 32))); /* Two 7bit offsets checks because XImode will emit two ldp/stp instructions (only big endian will get here). */ if (mode == XImode) return (aarch64_offset_7bit_signed_scaled_p (TImode, offset) && aarch64_offset_7bit_signed_scaled_p (TImode, offset + 32)); if (load_store_pair_p) return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8) && aarch64_offset_7bit_signed_scaled_p (mode, offset)); else return (offset_9bit_signed_unscaled_p (mode, offset) || offset_12bit_unsigned_scaled_p (mode, offset)); } if (allow_reg_index_p) { /* Look for base + (scaled/extended) index register. */ if (aarch64_base_register_rtx_p (op0, strict_p) && aarch64_classify_index (info, op1, mode, strict_p)) { info->base = op0; return true; } if (aarch64_base_register_rtx_p (op1, strict_p) && aarch64_classify_index (info, op0, mode, strict_p)) { info->base = op1; return true; } } return false; case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC: info->type = ADDRESS_REG_WB; info->base = XEXP (x, 0); info->offset = NULL_RTX; return aarch64_base_register_rtx_p (info->base, strict_p); case POST_MODIFY: case PRE_MODIFY: info->type = ADDRESS_REG_WB; info->base = XEXP (x, 0); if (GET_CODE (XEXP (x, 1)) == PLUS && CONST_INT_P (XEXP (XEXP (x, 1), 1)) && rtx_equal_p (XEXP (XEXP (x, 1), 0), info->base) && aarch64_base_register_rtx_p (info->base, strict_p)) { HOST_WIDE_INT offset; info->offset = XEXP (XEXP (x, 1), 1); offset = INTVAL (info->offset); /* TImode and TFmode values are allowed in both pairs of X registers and individual Q registers. The available address modes are: X,X: 7-bit signed scaled offset Q: 9-bit signed offset We conservatively require an offset representable in either mode. */ if (mode == TImode || mode == TFmode) return (aarch64_offset_7bit_signed_scaled_p (mode, offset) && offset_9bit_signed_unscaled_p (mode, offset)); if (load_store_pair_p) return ((GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8) && aarch64_offset_7bit_signed_scaled_p (mode, offset)); else return offset_9bit_signed_unscaled_p (mode, offset); } return false; case CONST: case SYMBOL_REF: case LABEL_REF: /* load literal: pc-relative constant pool entry. Only supported for SI mode or larger. */ info->type = ADDRESS_SYMBOLIC; if (!load_store_pair_p && GET_MODE_SIZE (mode) >= 4) { rtx sym, addend; split_const (x, &sym, &addend); return ((GET_CODE (sym) == LABEL_REF || (GET_CODE (sym) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (sym) && !nopcrelative_literal_loads))); } return false; case LO_SUM: info->type = ADDRESS_LO_SUM; info->base = XEXP (x, 0); info->offset = XEXP (x, 1); if (allow_reg_index_p && aarch64_base_register_rtx_p (info->base, strict_p)) { rtx sym, offs; split_const (info->offset, &sym, &offs); if (GET_CODE (sym) == SYMBOL_REF && (aarch64_classify_symbol (sym, offs) == SYMBOL_SMALL_ABSOLUTE)) { /* The symbol and offset must be aligned to the access size. */ unsigned int align; unsigned int ref_size; if (CONSTANT_POOL_ADDRESS_P (sym)) align = GET_MODE_ALIGNMENT (get_pool_mode (sym)); else if (TREE_CONSTANT_POOL_ADDRESS_P (sym)) { tree exp = SYMBOL_REF_DECL (sym); align = TYPE_ALIGN (TREE_TYPE (exp)); align = CONSTANT_ALIGNMENT (exp, align); } else if (SYMBOL_REF_DECL (sym)) align = DECL_ALIGN (SYMBOL_REF_DECL (sym)); else if (SYMBOL_REF_HAS_BLOCK_INFO_P (sym) && SYMBOL_REF_BLOCK (sym) != NULL) align = SYMBOL_REF_BLOCK (sym)->alignment; else align = BITS_PER_UNIT; ref_size = GET_MODE_SIZE (mode); if (ref_size == 0) ref_size = GET_MODE_SIZE (DImode); return ((INTVAL (offs) & (ref_size - 1)) == 0 && ((align / BITS_PER_UNIT) & (ref_size - 1)) == 0); } } return false; default: return false; } } bool aarch64_symbolic_address_p (rtx x) { rtx offset; split_const (x, &x, &offset); return GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF; } /* Classify the base of symbolic expression X. */ enum aarch64_symbol_type aarch64_classify_symbolic_expression (rtx x) { rtx offset; split_const (x, &x, &offset); return aarch64_classify_symbol (x, offset); } /* Return TRUE if X is a legitimate address for accessing memory in mode MODE. */ static bool aarch64_legitimate_address_hook_p (machine_mode mode, rtx x, bool strict_p) { struct aarch64_address_info addr; return aarch64_classify_address (&addr, x, mode, MEM, strict_p); } /* Return TRUE if X is a legitimate address for accessing memory in mode MODE. OUTER_CODE will be PARALLEL if this is a load/store pair operation. */ bool aarch64_legitimate_address_p (machine_mode mode, rtx x, RTX_CODE outer_code, bool strict_p) { struct aarch64_address_info addr; return aarch64_classify_address (&addr, x, mode, outer_code, strict_p); } /* Return TRUE if rtx X is immediate constant 0.0 */ bool aarch64_float_const_zero_rtx_p (rtx x) { REAL_VALUE_TYPE r; if (GET_MODE (x) == VOIDmode) return false; REAL_VALUE_FROM_CONST_DOUBLE (r, x); if (REAL_VALUE_MINUS_ZERO (r)) return !HONOR_SIGNED_ZEROS (GET_MODE (x)); return REAL_VALUES_EQUAL (r, dconst0); } /* Return the fixed registers used for condition codes. */ static bool aarch64_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = CC_REGNUM; *p2 = INVALID_REGNUM; return true; } /* Emit call insn with PAT and do aarch64-specific handling. */ void aarch64_emit_call_insn (rtx pat) { rtx insn = emit_call_insn (pat); rtx *fusage = &CALL_INSN_FUNCTION_USAGE (insn); clobber_reg (fusage, gen_rtx_REG (word_mode, IP0_REGNUM)); clobber_reg (fusage, gen_rtx_REG (word_mode, IP1_REGNUM)); } machine_mode aarch64_select_cc_mode (RTX_CODE code, rtx x, rtx y) { /* All floating point compares return CCFP if it is an equality comparison, and CCFPE otherwise. */ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { switch (code) { case EQ: case NE: case UNORDERED: case ORDERED: case UNLT: case UNLE: case UNGT: case UNGE: case UNEQ: case LTGT: return CCFPmode; case LT: case LE: case GT: case GE: return CCFPEmode; default: gcc_unreachable (); } } if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && y == const0_rtx && (code == EQ || code == NE || code == LT || code == GE) && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS || GET_CODE (x) == AND || GET_CODE (x) == NEG)) return CC_NZmode; /* A compare with a shifted operand. Because of canonicalization, the comparison will have to be swapped when we emit the assembly code. */ if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && (REG_P (y) || GET_CODE (y) == SUBREG) && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)) return CC_SWPmode; /* Similarly for a negated operand, but we can only do this for equalities. */ if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && (REG_P (y) || GET_CODE (y) == SUBREG) && (code == EQ || code == NE) && GET_CODE (x) == NEG) return CC_Zmode; /* A compare of a mode narrower than SI mode against zero can be done by extending the value in the comparison. */ if ((GET_MODE (x) == QImode || GET_MODE (x) == HImode) && y == const0_rtx) /* Only use sign-extension if we really need it. */ return ((code == GT || code == GE || code == LE || code == LT) ? CC_SESWPmode : CC_ZESWPmode); /* For everything else, return CCmode. */ return CCmode; } static int aarch64_get_condition_code_1 (enum machine_mode, enum rtx_code); int aarch64_get_condition_code (rtx x) { machine_mode mode = GET_MODE (XEXP (x, 0)); enum rtx_code comp_code = GET_CODE (x); if (GET_MODE_CLASS (mode) != MODE_CC) mode = SELECT_CC_MODE (comp_code, XEXP (x, 0), XEXP (x, 1)); return aarch64_get_condition_code_1 (mode, comp_code); } static int aarch64_get_condition_code_1 (enum machine_mode mode, enum rtx_code comp_code) { int ne = -1, eq = -1; switch (mode) { case CCFPmode: case CCFPEmode: switch (comp_code) { case GE: return AARCH64_GE; case GT: return AARCH64_GT; case LE: return AARCH64_LS; case LT: return AARCH64_MI; case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case ORDERED: return AARCH64_VC; case UNORDERED: return AARCH64_VS; case UNLT: return AARCH64_LT; case UNLE: return AARCH64_LE; case UNGT: return AARCH64_HI; case UNGE: return AARCH64_PL; default: return -1; } break; case CC_DNEmode: ne = AARCH64_NE; eq = AARCH64_EQ; break; case CC_DEQmode: ne = AARCH64_EQ; eq = AARCH64_NE; break; case CC_DGEmode: ne = AARCH64_GE; eq = AARCH64_LT; break; case CC_DLTmode: ne = AARCH64_LT; eq = AARCH64_GE; break; case CC_DGTmode: ne = AARCH64_GT; eq = AARCH64_LE; break; case CC_DLEmode: ne = AARCH64_LE; eq = AARCH64_GT; break; case CC_DGEUmode: ne = AARCH64_CS; eq = AARCH64_CC; break; case CC_DLTUmode: ne = AARCH64_CC; eq = AARCH64_CS; break; case CC_DGTUmode: ne = AARCH64_HI; eq = AARCH64_LS; break; case CC_DLEUmode: ne = AARCH64_LS; eq = AARCH64_HI; break; case CCmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_GE; case GT: return AARCH64_GT; case LE: return AARCH64_LE; case LT: return AARCH64_LT; case GEU: return AARCH64_CS; case GTU: return AARCH64_HI; case LEU: return AARCH64_LS; case LTU: return AARCH64_CC; default: return -1; } break; case CC_SWPmode: case CC_ZESWPmode: case CC_SESWPmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_LE; case GT: return AARCH64_LT; case LE: return AARCH64_GE; case LT: return AARCH64_GT; case GEU: return AARCH64_LS; case GTU: return AARCH64_CC; case LEU: return AARCH64_CS; case LTU: return AARCH64_HI; default: return -1; } break; case CC_NZmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_PL; case LT: return AARCH64_MI; default: return -1; } break; case CC_Zmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; default: return -1; } break; default: return -1; break; } if (comp_code == NE) return ne; if (comp_code == EQ) return eq; return -1; } bool aarch64_const_vec_all_same_in_range_p (rtx x, HOST_WIDE_INT minval, HOST_WIDE_INT maxval) { HOST_WIDE_INT firstval; int count, i; if (GET_CODE (x) != CONST_VECTOR || GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT) return false; firstval = INTVAL (CONST_VECTOR_ELT (x, 0)); if (firstval < minval || firstval > maxval) return false; count = CONST_VECTOR_NUNITS (x); for (i = 1; i < count; i++) if (INTVAL (CONST_VECTOR_ELT (x, i)) != firstval) return false; return true; } bool aarch64_const_vec_all_same_int_p (rtx x, HOST_WIDE_INT val) { return aarch64_const_vec_all_same_in_range_p (x, val, val); } /* N Z C V. */ #define AARCH64_CC_V 1 #define AARCH64_CC_C (1 << 1) #define AARCH64_CC_Z (1 << 2) #define AARCH64_CC_N (1 << 3) /* N Z C V flags for ccmp. The first code is for AND op and the other is for IOR op. Indexed by AARCH64_COND_CODE. */ static const int aarch64_nzcv_codes[][2] = { {AARCH64_CC_Z, 0}, /* EQ, Z == 1. */ {0, AARCH64_CC_Z}, /* NE, Z == 0. */ {AARCH64_CC_C, 0}, /* CS, C == 1. */ {0, AARCH64_CC_C}, /* CC, C == 0. */ {AARCH64_CC_N, 0}, /* MI, N == 1. */ {0, AARCH64_CC_N}, /* PL, N == 0. */ {AARCH64_CC_V, 0}, /* VS, V == 1. */ {0, AARCH64_CC_V}, /* VC, V == 0. */ {AARCH64_CC_C, 0}, /* HI, C ==1 && Z == 0. */ {0, AARCH64_CC_C}, /* LS, !(C == 1 && Z == 0). */ {0, AARCH64_CC_V}, /* GE, N == V. */ {AARCH64_CC_V, 0}, /* LT, N != V. */ {0, AARCH64_CC_Z}, /* GT, Z == 0 && N == V. */ {AARCH64_CC_Z, 0}, /* LE, !(Z == 0 && N == V). */ {0, 0}, /* AL, Any. */ {0, 0}, /* NV, Any. */ }; int aarch64_ccmp_mode_to_code (enum machine_mode mode) { switch (mode) { case CC_DNEmode: return NE; case CC_DEQmode: return EQ; case CC_DLEmode: return LE; case CC_DGTmode: return GT; case CC_DLTmode: return LT; case CC_DGEmode: return GE; case CC_DLEUmode: return LEU; case CC_DGTUmode: return GTU; case CC_DLTUmode: return LTU; case CC_DGEUmode: return GEU; default: gcc_unreachable (); } } void aarch64_print_operand (FILE *f, rtx x, char code) { switch (code) { /* An integer or symbol address without a preceding # sign. */ case 'c': switch (GET_CODE (x)) { case CONST_INT: fprintf (f, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case SYMBOL_REF: output_addr_const (f, x); break; case CONST: if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) { output_addr_const (f, x); break; } /* Fall through. */ default: output_operand_lossage ("Unsupported operand for code '%c'", code); } break; case 'e': /* Print the sign/zero-extend size as a character 8->b, 16->h, 32->w. */ { int n; if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x) & ~7)) <= 0) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } switch (n) { case 3: fputc ('b', f); break; case 4: fputc ('h', f); break; case 5: fputc ('w', f); break; default: output_operand_lossage ("invalid operand for '%%%c'", code); return; } } break; case 'p': { int n; /* Print N such that 2^N == X. */ if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x))) < 0) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%d", n); } break; case 'P': /* Print the number of non-zero bits in X (a const_int). */ if (!CONST_INT_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%u", popcount_hwi (INTVAL (x))); break; case 'H': /* Print the higher numbered register of a pair (TImode) of regs. */ if (!REG_P (x) || !GP_REGNUM_P (REGNO (x) + 1)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%s", reg_names [REGNO (x) + 1]); break; case 'm': { int cond_code; /* Print a condition (eq, ne, etc). */ /* CONST_TRUE_RTX means always -- that's the default. */ if (x == const_true_rtx) return; if (!COMPARISON_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = aarch64_get_condition_code (x); gcc_assert (cond_code >= 0); fputs (aarch64_condition_codes[cond_code], f); } break; case 'M': { int cond_code; /* Print the inverse of a condition (eq <-> ne, etc). */ /* CONST_TRUE_RTX means never -- that's the default. */ if (x == const_true_rtx) { fputs ("nv", f); return; } if (!COMPARISON_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = aarch64_get_condition_code (x); gcc_assert (cond_code >= 0); fputs (aarch64_condition_codes[AARCH64_INVERSE_CONDITION_CODE (cond_code)], f); } break; case 'b': case 'h': case 's': case 'd': case 'q': /* Print a scalar FP/SIMD register name. */ if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "%c%d", code, REGNO (x) - V0_REGNUM); break; case 'S': case 'T': case 'U': case 'V': /* Print the first FP/SIMD register name in a list. */ if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "v%d", REGNO (x) - V0_REGNUM + (code - 'S')); break; case 'R': /* Print a scalar FP/SIMD register name + 1. */ if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "q%d", REGNO (x) - V0_REGNUM + 1); break; case 'X': /* Print bottom 16 bits of integer constant in hex. */ if (!CONST_INT_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "0x%wx", UINTVAL (x) & 0xffff); break; case 'w': case 'x': /* Print a general register name or the zero register (32-bit or 64-bit). */ if (x == const0_rtx || (CONST_DOUBLE_P (x) && aarch64_float_const_zero_rtx_p (x))) { asm_fprintf (f, "%czr", code); break; } if (REG_P (x) && GP_REGNUM_P (REGNO (x))) { asm_fprintf (f, "%c%d", code, REGNO (x) - R0_REGNUM); break; } if (REG_P (x) && REGNO (x) == SP_REGNUM) { asm_fprintf (f, "%ssp", code == 'w' ? "w" : ""); break; } /* Fall through */ case 0: /* Print a normal operand, if it's a general register, then we assume DImode. */ if (x == NULL) { output_operand_lossage ("missing operand"); return; } switch (GET_CODE (x)) { case REG: asm_fprintf (f, "%s", reg_names [REGNO (x)]); break; case MEM: aarch64_memory_reference_mode = GET_MODE (x); output_address (XEXP (x, 0)); break; case CONST: case LABEL_REF: case SYMBOL_REF: output_addr_const (asm_out_file, x); break; case CONST_INT: asm_fprintf (f, "%wd", INTVAL (x)); break; case CONST_VECTOR: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT) { gcc_assert ( aarch64_const_vec_all_same_in_range_p (x, HOST_WIDE_INT_MIN, HOST_WIDE_INT_MAX)); asm_fprintf (f, "%wd", INTVAL (CONST_VECTOR_ELT (x, 0))); } else if (aarch64_simd_imm_zero_p (x, GET_MODE (x))) { fputc ('0', f); } else gcc_unreachable (); break; case CONST_DOUBLE: /* CONST_DOUBLE can represent a double-width integer. In this case, the mode of x is VOIDmode. */ if (GET_MODE (x) == VOIDmode) ; /* Do Nothing. */ else if (aarch64_float_const_zero_rtx_p (x)) { fputc ('0', f); break; } else if (aarch64_float_const_representable_p (x)) { #define buf_size 20 char float_buf[buf_size] = {'\0'}; REAL_VALUE_TYPE r; REAL_VALUE_FROM_CONST_DOUBLE (r, x); real_to_decimal_for_mode (float_buf, &r, buf_size, buf_size, 1, GET_MODE (x)); asm_fprintf (asm_out_file, "%s", float_buf); break; #undef buf_size } output_operand_lossage ("invalid constant"); return; default: output_operand_lossage ("invalid operand"); return; } break; case 'A': if (GET_CODE (x) == HIGH) x = XEXP (x, 0); switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_SMALL_GOT_4G: asm_fprintf (asm_out_file, ":got:"); break; case SYMBOL_SMALL_TLSGD: asm_fprintf (asm_out_file, ":tlsgd:"); break; case SYMBOL_SMALL_TLSDESC: asm_fprintf (asm_out_file, ":tlsdesc:"); break; case SYMBOL_SMALL_TLSIE: asm_fprintf (asm_out_file, ":gottprel:"); break; case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel:"); break; case SYMBOL_TINY_GOT: gcc_unreachable (); break; default: break; } output_addr_const (asm_out_file, x); break; case 'L': switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_SMALL_GOT_4G: asm_fprintf (asm_out_file, ":lo12:"); break; case SYMBOL_SMALL_TLSGD: asm_fprintf (asm_out_file, ":tlsgd_lo12:"); break; case SYMBOL_SMALL_TLSDESC: asm_fprintf (asm_out_file, ":tlsdesc_lo12:"); break; case SYMBOL_SMALL_TLSIE: asm_fprintf (asm_out_file, ":gottprel_lo12:"); break; case SYMBOL_TLSLE12: asm_fprintf (asm_out_file, ":tprel_lo12:"); break; case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel_lo12_nc:"); break; case SYMBOL_TINY_GOT: asm_fprintf (asm_out_file, ":got:"); break; case SYMBOL_TINY_TLSIE: asm_fprintf (asm_out_file, ":gottprel:"); break; default: break; } output_addr_const (asm_out_file, x); break; case 'G': switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel_hi12:"); break; default: break; } output_addr_const (asm_out_file, x); break; case 'K': { int cond_code; /* Print nzcv. */ if (!COMPARISON_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = aarch64_get_condition_code_1 (CCmode, GET_CODE (x)); gcc_assert (cond_code >= 0); asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code][0]); } break; case 'k': { int cond_code; /* Print nzcv. */ if (!COMPARISON_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = aarch64_get_condition_code_1 (CCmode, GET_CODE (x)); gcc_assert (cond_code >= 0); asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code][1]); } break; default: output_operand_lossage ("invalid operand prefix '%%%c'", code); return; } } void aarch64_print_operand_address (FILE *f, rtx x) { struct aarch64_address_info addr; if (aarch64_classify_address (&addr, x, aarch64_memory_reference_mode, MEM, true)) switch (addr.type) { case ADDRESS_REG_IMM: if (addr.offset == const0_rtx) asm_fprintf (f, "[%s]", reg_names [REGNO (addr.base)]); else asm_fprintf (f, "[%s, %wd]", reg_names [REGNO (addr.base)], INTVAL (addr.offset)); return; case ADDRESS_REG_REG: if (addr.shift == 0) asm_fprintf (f, "[%s, %s]", reg_names [REGNO (addr.base)], reg_names [REGNO (addr.offset)]); else asm_fprintf (f, "[%s, %s, lsl %u]", reg_names [REGNO (addr.base)], reg_names [REGNO (addr.offset)], addr.shift); return; case ADDRESS_REG_UXTW: if (addr.shift == 0) asm_fprintf (f, "[%s, w%d, uxtw]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM); else asm_fprintf (f, "[%s, w%d, uxtw %u]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM, addr.shift); return; case ADDRESS_REG_SXTW: if (addr.shift == 0) asm_fprintf (f, "[%s, w%d, sxtw]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM); else asm_fprintf (f, "[%s, w%d, sxtw %u]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM, addr.shift); return; case ADDRESS_REG_WB: switch (GET_CODE (x)) { case PRE_INC: asm_fprintf (f, "[%s, %d]!", reg_names [REGNO (addr.base)], GET_MODE_SIZE (aarch64_memory_reference_mode)); return; case POST_INC: asm_fprintf (f, "[%s], %d", reg_names [REGNO (addr.base)], GET_MODE_SIZE (aarch64_memory_reference_mode)); return; case PRE_DEC: asm_fprintf (f, "[%s, -%d]!", reg_names [REGNO (addr.base)], GET_MODE_SIZE (aarch64_memory_reference_mode)); return; case POST_DEC: asm_fprintf (f, "[%s], -%d", reg_names [REGNO (addr.base)], GET_MODE_SIZE (aarch64_memory_reference_mode)); return; case PRE_MODIFY: asm_fprintf (f, "[%s, %wd]!", reg_names [REGNO (addr.base)], INTVAL (addr.offset)); return; case POST_MODIFY: asm_fprintf (f, "[%s], %wd", reg_names [REGNO (addr.base)], INTVAL (addr.offset)); return; default: break; } break; case ADDRESS_LO_SUM: asm_fprintf (f, "[%s, #:lo12:", reg_names [REGNO (addr.base)]); output_addr_const (f, addr.offset); asm_fprintf (f, "]"); return; case ADDRESS_SYMBOLIC: break; } output_addr_const (f, x); } bool aarch64_label_mentioned_p (rtx x) { const char *fmt; int i; if (GET_CODE (x) == LABEL_REF) return true; /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the referencing instruction, but they are constant offsets, not symbols. */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS) return false; fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (aarch64_label_mentioned_p (XVECEXP (x, i, j))) return 1; } else if (fmt[i] == 'e' && aarch64_label_mentioned_p (XEXP (x, i))) return 1; } return 0; } /* Implement REGNO_REG_CLASS. */ enum reg_class aarch64_regno_regclass (unsigned regno) { if (GP_REGNUM_P (regno)) return GENERAL_REGS; if (regno == SP_REGNUM) return STACK_REG; if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return POINTER_REGS; if (FP_REGNUM_P (regno)) return FP_LO_REGNUM_P (regno) ? FP_LO_REGS : FP_REGS; return NO_REGS; } static rtx aarch64_legitimize_address (rtx x, rtx /* orig_x */, machine_mode mode) { /* Try to split X+CONST into Y=X+(CONST & ~mask), Y+(CONST&mask), where mask is selected by alignment and size of the offset. We try to pick as large a range for the offset as possible to maximize the chance of a CSE. However, for aligned addresses we limit the range to 4k so that structures with different sized elements are likely to use the same base. */ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { HOST_WIDE_INT offset = INTVAL (XEXP (x, 1)); HOST_WIDE_INT base_offset; /* Does it look like we'll need a load/store-pair operation? */ if (GET_MODE_SIZE (mode) > 16 || mode == TImode) base_offset = ((offset + 64 * GET_MODE_SIZE (mode)) & ~((128 * GET_MODE_SIZE (mode)) - 1)); /* For offsets aren't a multiple of the access size, the limit is -256...255. */ else if (offset & (GET_MODE_SIZE (mode) - 1)) base_offset = (offset + 0x100) & ~0x1ff; else base_offset = offset & ~0xfff; if (base_offset == 0) return x; offset -= base_offset; rtx base_reg = gen_reg_rtx (Pmode); rtx val = force_operand (plus_constant (Pmode, XEXP (x, 0), base_offset), NULL_RTX); emit_move_insn (base_reg, val); x = plus_constant (Pmode, base_reg, offset); } return x; } /* Try a machine-dependent way of reloading an illegitimate address operand. If we find one, push the reload and return the new rtx. */ rtx aarch64_legitimize_reload_address (rtx *x_p, machine_mode mode, int opnum, int type, int ind_levels ATTRIBUTE_UNUSED) { rtx x = *x_p; /* Do not allow mem (plus (reg, const)) if vector struct mode. */ if (aarch64_vect_struct_mode_p (mode) && GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))) { rtx orig_rtx = x; x = copy_rtx (x); push_reload (orig_rtx, NULL_RTX, x_p, NULL, BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type) type); return x; } /* We must recognize output that we have already generated ourselves. */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && REG_P (XEXP (XEXP (x, 0), 0)) && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && CONST_INT_P (XEXP (x, 1))) { push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type) type); return x; } /* We wish to handle large displacements off a base register by splitting the addend across an add and the mem insn. This can cut the number of extra insns needed from 3 to 1. It is only useful for load/store of a single register with 12 bit offset field. */ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)) && HARD_REGISTER_P (XEXP (x, 0)) && mode != TImode && mode != TFmode && aarch64_regno_ok_for_base_p (REGNO (XEXP (x, 0)), true)) { HOST_WIDE_INT val = INTVAL (XEXP (x, 1)); HOST_WIDE_INT low = val & 0xfff; HOST_WIDE_INT high = val - low; HOST_WIDE_INT offs; rtx cst; machine_mode xmode = GET_MODE (x); /* In ILP32, xmode can be either DImode or SImode. */ gcc_assert (xmode == DImode || xmode == SImode); /* Reload non-zero BLKmode offsets. This is because we cannot ascertain BLKmode alignment. */ if (GET_MODE_SIZE (mode) == 0) return NULL_RTX; offs = low % GET_MODE_SIZE (mode); /* Align misaligned offset by adjusting high part to compensate. */ if (offs != 0) { if (aarch64_uimm12_shift (high + offs)) { /* Align down. */ low = low - offs; high = high + offs; } else { /* Align up. */ offs = GET_MODE_SIZE (mode) - offs; low = low + offs; high = high + (low & 0x1000) - offs; low &= 0xfff; } } /* Check for overflow. */ if (high + low != val) return NULL_RTX; cst = GEN_INT (high); if (!aarch64_uimm12_shift (high)) cst = force_const_mem (xmode, cst); /* Reload high part into base reg, leaving the low part in the mem instruction. Note that replacing this gen_rtx_PLUS with plus_constant is wrong in this case because we rely on the (plus (plus reg c1) c2) structure being preserved so that XEXP (*p, 0) in push_reload below uses the correct term. */ x = gen_rtx_PLUS (xmode, gen_rtx_PLUS (xmode, XEXP (x, 0), cst), GEN_INT (low)); push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, BASE_REG_CLASS, xmode, VOIDmode, 0, 0, opnum, (enum reload_type) type); return x; } return NULL_RTX; } /* Return the reload icode required for a constant pool in mode. */ static enum insn_code aarch64_constant_pool_reload_icode (machine_mode mode) { switch (mode) { case SFmode: return CODE_FOR_aarch64_reload_movcpsfdi; case DFmode: return CODE_FOR_aarch64_reload_movcpdfdi; case TFmode: return CODE_FOR_aarch64_reload_movcptfdi; case V8QImode: return CODE_FOR_aarch64_reload_movcpv8qidi; case V16QImode: return CODE_FOR_aarch64_reload_movcpv16qidi; case V4HImode: return CODE_FOR_aarch64_reload_movcpv4hidi; case V8HImode: return CODE_FOR_aarch64_reload_movcpv8hidi; case V2SImode: return CODE_FOR_aarch64_reload_movcpv2sidi; case V4SImode: return CODE_FOR_aarch64_reload_movcpv4sidi; case V2DImode: return CODE_FOR_aarch64_reload_movcpv2didi; case V2DFmode: return CODE_FOR_aarch64_reload_movcpv2dfdi; default: gcc_unreachable (); } gcc_unreachable (); } static reg_class_t aarch64_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x, reg_class_t rclass, machine_mode mode, secondary_reload_info *sri) { /* If we have to disable direct literal pool loads and stores because the function is too big, then we need a scratch register. */ if (MEM_P (x) && GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x) && (SCALAR_FLOAT_MODE_P (GET_MODE (x)) || targetm.vector_mode_supported_p (GET_MODE (x))) && nopcrelative_literal_loads) { sri->icode = aarch64_constant_pool_reload_icode (mode); return NO_REGS; } /* Without the TARGET_SIMD instructions we cannot move a Q register to a Q register directly. We need a scratch. */ if (REG_P (x) && (mode == TFmode || mode == TImode) && mode == GET_MODE (x) && FP_REGNUM_P (REGNO (x)) && !TARGET_SIMD && reg_class_subset_p (rclass, FP_REGS)) { if (mode == TFmode) sri->icode = CODE_FOR_aarch64_reload_movtf; else if (mode == TImode) sri->icode = CODE_FOR_aarch64_reload_movti; return NO_REGS; } /* A TFmode or TImode memory access should be handled via an FP_REGS because AArch64 has richer addressing modes for LDR/STR instructions than LDP/STP instructions. */ if (TARGET_FLOAT && rclass == GENERAL_REGS && GET_MODE_SIZE (mode) == 16 && MEM_P (x)) return FP_REGS; if (rclass == FP_REGS && (mode == TImode || mode == TFmode) && CONSTANT_P(x)) return GENERAL_REGS; return NO_REGS; } static bool aarch64_can_eliminate (const int from, const int to) { /* If we need a frame pointer, we must eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */ if (frame_pointer_needed) { if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return true; if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) return false; if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM && !cfun->calls_alloca) return true; if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return true; return false; } else { /* If we decided that we didn't need a leaf frame pointer but then used LR in the function, then we'll want a frame pointer after all, so prevent this elimination to ensure a frame pointer is used. */ if (to == STACK_POINTER_REGNUM && flag_omit_leaf_frame_pointer && df_regs_ever_live_p (LR_REGNUM)) return false; } return true; } HOST_WIDE_INT aarch64_initial_elimination_offset (unsigned from, unsigned to) { aarch64_layout_frame (); if (to == HARD_FRAME_POINTER_REGNUM) { if (from == ARG_POINTER_REGNUM) return cfun->machine->frame.frame_size - crtl->outgoing_args_size; if (from == FRAME_POINTER_REGNUM) return (cfun->machine->frame.hard_fp_offset - cfun->machine->frame.saved_varargs_size); } if (to == STACK_POINTER_REGNUM) { if (from == FRAME_POINTER_REGNUM) return (cfun->machine->frame.frame_size - cfun->machine->frame.saved_varargs_size); } return cfun->machine->frame.frame_size; } /* Implement RETURN_ADDR_RTX. We do not support moving back to a previous frame. */ rtx aarch64_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, LR_REGNUM); } static void aarch64_asm_trampoline_template (FILE *f) { if (TARGET_ILP32) { asm_fprintf (f, "\tldr\tw%d, .+16\n", IP1_REGNUM - R0_REGNUM); asm_fprintf (f, "\tldr\tw%d, .+16\n", STATIC_CHAIN_REGNUM - R0_REGNUM); } else { asm_fprintf (f, "\tldr\t%s, .+16\n", reg_names [IP1_REGNUM]); asm_fprintf (f, "\tldr\t%s, .+20\n", reg_names [STATIC_CHAIN_REGNUM]); } asm_fprintf (f, "\tbr\t%s\n", reg_names [IP1_REGNUM]); assemble_aligned_integer (4, const0_rtx); assemble_aligned_integer (POINTER_BYTES, const0_rtx); assemble_aligned_integer (POINTER_BYTES, const0_rtx); } static void aarch64_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx fnaddr, mem, a_tramp; const int tramp_code_sz = 16; /* Don't need to copy the trailing D-words, we fill those in below. */ emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (tramp_code_sz), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz); fnaddr = XEXP (DECL_RTL (fndecl), 0); if (GET_MODE (fnaddr) != ptr_mode) fnaddr = convert_memory_address (ptr_mode, fnaddr); emit_move_insn (mem, fnaddr); mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz + POINTER_BYTES); emit_move_insn (mem, chain_value); /* XXX We should really define a "clear_cache" pattern and use gen_clear_cache(). */ a_tramp = XEXP (m_tramp, 0); emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), LCT_NORMAL, VOIDmode, 2, a_tramp, ptr_mode, plus_constant (ptr_mode, a_tramp, TRAMPOLINE_SIZE), ptr_mode); } static unsigned char aarch64_class_max_nregs (reg_class_t regclass, machine_mode mode) { switch (regclass) { case CALLER_SAVE_REGS: case POINTER_REGS: case GENERAL_REGS: case ALL_REGS: case FP_REGS: case FP_LO_REGS: return aarch64_vector_mode_p (mode) ? (GET_MODE_SIZE (mode) + UNITS_PER_VREG - 1) / UNITS_PER_VREG : (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; case STACK_REG: return 1; case NO_REGS: return 0; default: break; } gcc_unreachable (); } static reg_class_t aarch64_preferred_reload_class (rtx x, reg_class_t regclass) { if (regclass == POINTER_REGS) return GENERAL_REGS; if (regclass == STACK_REG) { if (REG_P(x) && reg_class_subset_p (REGNO_REG_CLASS (REGNO (x)), POINTER_REGS)) return regclass; return NO_REGS; } /* If it's an integer immediate that MOVI can't handle, then FP_REGS is not an option, so we return NO_REGS instead. */ if (CONST_INT_P (x) && reg_class_subset_p (regclass, FP_REGS) && !aarch64_simd_imm_scalar_p (x, GET_MODE (x))) return NO_REGS; /* Register eliminiation can result in a request for SP+constant->FP_REGS. We cannot support such operations which use SP as source and an FP_REG as destination, so reject out right now. */ if (! reg_class_subset_p (regclass, GENERAL_REGS) && GET_CODE (x) == PLUS) { rtx lhs = XEXP (x, 0); /* Look through a possible SUBREG introduced by ILP32. */ if (GET_CODE (lhs) == SUBREG) lhs = SUBREG_REG (lhs); gcc_assert (REG_P (lhs)); gcc_assert (reg_class_subset_p (REGNO_REG_CLASS (REGNO (lhs)), POINTER_REGS)); return NO_REGS; } return regclass; } void aarch64_asm_output_labelref (FILE* f, const char *name) { asm_fprintf (f, "%U%s", name); } static void aarch64_elf_asm_constructor (rtx symbol, int priority) { if (priority == DEFAULT_INIT_PRIORITY) default_ctor_section_asm_out_constructor (symbol, priority); else { section *s; char buf[18]; snprintf (buf, sizeof (buf), ".init_array.%.5u", priority); s = get_section (buf, SECTION_WRITE, NULL); switch_to_section (s); assemble_align (POINTER_SIZE); assemble_aligned_integer (POINTER_BYTES, symbol); } } static void aarch64_elf_asm_destructor (rtx symbol, int priority) { if (priority == DEFAULT_INIT_PRIORITY) default_dtor_section_asm_out_destructor (symbol, priority); else { section *s; char buf[18]; snprintf (buf, sizeof (buf), ".fini_array.%.5u", priority); s = get_section (buf, SECTION_WRITE, NULL); switch_to_section (s); assemble_align (POINTER_SIZE); assemble_aligned_integer (POINTER_BYTES, symbol); } } const char* aarch64_output_casesi (rtx *operands) { char buf[100]; char label[100]; rtx diff_vec = PATTERN (NEXT_INSN (as_a (operands[2]))); int index; static const char *const patterns[4][2] = { { "ldrb\t%w3, [%0,%w1,uxtw]", "add\t%3, %4, %w3, sxtb #2" }, { "ldrh\t%w3, [%0,%w1,uxtw #1]", "add\t%3, %4, %w3, sxth #2" }, { "ldr\t%w3, [%0,%w1,uxtw #2]", "add\t%3, %4, %w3, sxtw #2" }, /* We assume that DImode is only generated when not optimizing and that we don't really need 64-bit address offsets. That would imply an object file with 8GB of code in a single function! */ { "ldr\t%w3, [%0,%w1,uxtw #2]", "add\t%3, %4, %w3, sxtw #2" } }; gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC); index = exact_log2 (GET_MODE_SIZE (GET_MODE (diff_vec))); gcc_assert (index >= 0 && index <= 3); /* Need to implement table size reduction, by chaning the code below. */ output_asm_insn (patterns[index][0], operands); ASM_GENERATE_INTERNAL_LABEL (label, "Lrtx", CODE_LABEL_NUMBER (operands[2])); snprintf (buf, sizeof (buf), "adr\t%%4, %s", targetm.strip_name_encoding (label)); output_asm_insn (buf, operands); output_asm_insn (patterns[index][1], operands); output_asm_insn ("br\t%3", operands); assemble_label (asm_out_file, label); return ""; } /* Return size in bits of an arithmetic operand which is shifted/scaled and masked such that it is suitable for a UXTB, UXTH, or UXTW extend operator. */ int aarch64_uxt_size (int shift, HOST_WIDE_INT mask) { if (shift >= 0 && shift <= 3) { int size; for (size = 8; size <= 32; size *= 2) { HOST_WIDE_INT bits = ((HOST_WIDE_INT)1U << size) - 1; if (mask == bits << shift) return size; } } return 0; } static bool aarch64_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED) { /* We can't use blocks for constants when we're using a per-function constant pool. */ return false; } static section * aarch64_select_rtx_section (machine_mode mode ATTRIBUTE_UNUSED, rtx x ATTRIBUTE_UNUSED, unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED) { /* Force all constant pool entries into the current function section. */ return function_section (current_function_decl); } /* Costs. */ /* Helper function for rtx cost calculation. Strip a shift expression from X. Returns the inner operand if successful, or the original expression on failure. */ static rtx aarch64_strip_shift (rtx x) { rtx op = x; /* We accept both ROTATERT and ROTATE: since the RHS must be a constant we can convert both to ROR during final output. */ if ((GET_CODE (op) == ASHIFT || GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ROTATERT || GET_CODE (op) == ROTATE) && CONST_INT_P (XEXP (op, 1))) return XEXP (op, 0); if (GET_CODE (op) == MULT && CONST_INT_P (XEXP (op, 1)) && ((unsigned) exact_log2 (INTVAL (XEXP (op, 1)))) < 64) return XEXP (op, 0); return x; } /* Helper function for rtx cost calculation. Strip an extend expression from X. Returns the inner operand if successful, or the original expression on failure. We deal with a number of possible canonicalization variations here. */ static rtx aarch64_strip_extend (rtx x) { rtx op = x; /* Zero and sign extraction of a widened value. */ if ((GET_CODE (op) == ZERO_EXTRACT || GET_CODE (op) == SIGN_EXTRACT) && XEXP (op, 2) == const0_rtx && GET_CODE (XEXP (op, 0)) == MULT && aarch64_is_extend_from_extract (GET_MODE (op), XEXP (XEXP (op, 0), 1), XEXP (op, 1))) return XEXP (XEXP (op, 0), 0); /* It can also be represented (for zero-extend) as an AND with an immediate. */ if (GET_CODE (op) == AND && GET_CODE (XEXP (op, 0)) == MULT && CONST_INT_P (XEXP (XEXP (op, 0), 1)) && CONST_INT_P (XEXP (op, 1)) && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (XEXP (op, 0), 1))), INTVAL (XEXP (op, 1))) != 0) return XEXP (XEXP (op, 0), 0); /* Now handle extended register, as this may also have an optional left shift by 1..4. */ if (GET_CODE (op) == ASHIFT && CONST_INT_P (XEXP (op, 1)) && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op, 1))) <= 4) op = XEXP (op, 0); if (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND) op = XEXP (op, 0); if (op != x) return op; return x; } /* Return true iff CODE is a shift supported in combination with arithmetic instructions. */ static bool aarch64_shift_p (enum rtx_code code) { return code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT; } /* Helper function for rtx cost calculation. Calculate the cost of a MULT or ASHIFT, which may be part of a compound PLUS/MINUS rtx. Return the calculated cost of the expression, recursing manually in to operands where needed. */ static int aarch64_rtx_mult_cost (rtx x, enum rtx_code code, int outer, bool speed) { rtx op0, op1; const struct cpu_cost_table *extra_cost = aarch64_tune_params.insn_extra_cost; int cost = 0; bool compound_p = (outer == PLUS || outer == MINUS); machine_mode mode = GET_MODE (x); gcc_checking_assert (code == MULT); op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (VECTOR_MODE_P (mode)) mode = GET_MODE_INNER (mode); /* Integer multiply/fma. */ if (GET_MODE_CLASS (mode) == MODE_INT) { /* The multiply will be canonicalized as a shift, cost it as such. */ if (aarch64_shift_p (GET_CODE (x)) || (CONST_INT_P (op1) && exact_log2 (INTVAL (op1)) > 0)) { bool is_extend = GET_CODE (op0) == ZERO_EXTEND || GET_CODE (op0) == SIGN_EXTEND; if (speed) { if (compound_p) { if (REG_P (op1)) /* ARITH + shift-by-register. */ cost += extra_cost->alu.arith_shift_reg; else if (is_extend) /* ARITH + extended register. We don't have a cost field for ARITH+EXTEND+SHIFT, so use extend_arith here. */ cost += extra_cost->alu.extend_arith; else /* ARITH + shift-by-immediate. */ cost += extra_cost->alu.arith_shift; } else /* LSL (immediate). */ cost += extra_cost->alu.shift; } /* Strip extends as we will have costed them in the case above. */ if (is_extend) op0 = aarch64_strip_extend (op0); cost += rtx_cost (op0, VOIDmode, code, 0, speed); return cost; } /* MNEG or [US]MNEGL. Extract the NEG operand and indicate that it's a compound and let the below cases handle it. After all, MNEG is a special-case alias of MSUB. */ if (GET_CODE (op0) == NEG) { op0 = XEXP (op0, 0); compound_p = true; } /* Integer multiplies or FMAs have zero/sign extending variants. */ if ((GET_CODE (op0) == ZERO_EXTEND && GET_CODE (op1) == ZERO_EXTEND) || (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == SIGN_EXTEND)) { cost += rtx_cost (XEXP (op0, 0), VOIDmode, MULT, 0, speed); cost += rtx_cost (XEXP (op1, 0), VOIDmode, MULT, 1, speed); if (speed) { if (compound_p) /* SMADDL/UMADDL/UMSUBL/SMSUBL. */ cost += extra_cost->mult[0].extend_add; else /* MUL/SMULL/UMULL. */ cost += extra_cost->mult[0].extend; } return cost; } /* This is either an integer multiply or a MADD. In both cases we want to recurse and cost the operands. */ cost += rtx_cost (op0, mode, MULT, 0, speed); cost += rtx_cost (op1, mode, MULT, 1, speed); if (speed) { if (compound_p) /* MADD/MSUB. */ cost += extra_cost->mult[mode == DImode].add; else /* MUL. */ cost += extra_cost->mult[mode == DImode].simple; } return cost; } else { if (speed) { /* Floating-point FMA/FMUL can also support negations of the operands, unless the rounding mode is upward or downward in which case FNMUL is different than FMUL with operand negation. */ bool neg0 = GET_CODE (op0) == NEG; bool neg1 = GET_CODE (op1) == NEG; if (compound_p || !flag_rounding_math || (neg0 && neg1)) { if (neg0) op0 = XEXP (op0, 0); if (neg1) op1 = XEXP (op1, 0); } if (compound_p) /* FMADD/FNMADD/FNMSUB/FMSUB. */ cost += extra_cost->fp[mode == DFmode].fma; else /* FMUL/FNMUL. */ cost += extra_cost->fp[mode == DFmode].mult; } cost += rtx_cost (op0, mode, MULT, 0, speed); cost += rtx_cost (op1, mode, MULT, 1, speed); return cost; } } static int aarch64_address_cost (rtx x, machine_mode mode, addr_space_t as ATTRIBUTE_UNUSED, bool speed) { enum rtx_code c = GET_CODE (x); const struct cpu_addrcost_table *addr_cost = aarch64_tune_params.addr_cost; struct aarch64_address_info info; int cost = 0; info.shift = 0; if (!aarch64_classify_address (&info, x, mode, c, false)) { if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF) { /* This is a CONST or SYMBOL ref which will be split in a different way depending on the code model in use. Cost it through the generic infrastructure. */ int cost_symbol_ref = rtx_cost (x, Pmode, MEM, 1, speed); /* Divide through by the cost of one instruction to bring it to the same units as the address costs. */ cost_symbol_ref /= COSTS_N_INSNS (1); /* The cost is then the cost of preparing the address, followed by an immediate (possibly 0) offset. */ return cost_symbol_ref + addr_cost->imm_offset; } else { /* This is most likely a jump table from a case statement. */ return addr_cost->register_offset; } } switch (info.type) { case ADDRESS_LO_SUM: case ADDRESS_SYMBOLIC: case ADDRESS_REG_IMM: cost += addr_cost->imm_offset; break; case ADDRESS_REG_WB: if (c == PRE_INC || c == PRE_DEC || c == PRE_MODIFY) cost += addr_cost->pre_modify; else if (c == POST_INC || c == POST_DEC || c == POST_MODIFY) cost += addr_cost->post_modify; else gcc_unreachable (); break; case ADDRESS_REG_REG: cost += addr_cost->register_offset; break; case ADDRESS_REG_UXTW: case ADDRESS_REG_SXTW: cost += addr_cost->register_extend; break; default: gcc_unreachable (); } if (info.shift > 0) { /* For the sake of calculating the cost of the shifted register component, we can treat same sized modes in the same way. */ switch (GET_MODE_BITSIZE (mode)) { case 16: cost += addr_cost->addr_scale_costs.hi; break; case 32: cost += addr_cost->addr_scale_costs.si; break; case 64: cost += addr_cost->addr_scale_costs.di; break; /* We can't tell, or this is a 128-bit vector. */ default: cost += addr_cost->addr_scale_costs.ti; break; } } return cost; } /* Return the cost of a branch. If SPEED_P is true then the compiler is optimizing for speed. If PREDICTABLE_P is true then the branch is predicted to be taken. */ int aarch64_branch_cost (bool speed_p, bool predictable_p) { /* When optimizing for speed, use the cost of unpredictable branches. */ const struct cpu_branch_cost *branch_costs = aarch64_tune_params.branch_costs; if (!speed_p || predictable_p) return branch_costs->predictable; else return branch_costs->unpredictable; } /* Return true if the RTX X in mode MODE is a zero or sign extract usable in an ADD or SUB (extended register) instruction. */ static bool aarch64_rtx_arith_op_extract_p (rtx x, machine_mode mode) { /* Catch add with a sign extract. This is add__multp2. */ if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT) { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); rtx op2 = XEXP (x, 2); if (GET_CODE (op0) == MULT && CONST_INT_P (op1) && op2 == const0_rtx && CONST_INT_P (XEXP (op0, 1)) && aarch64_is_extend_from_extract (mode, XEXP (op0, 1), op1)) { return true; } } /* The simple case , XD, XN, XM, [us]xt. No shift. */ else if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) return REG_P (XEXP (x, 0)); return false; } static bool aarch64_frint_unspec_p (unsigned int u) { switch (u) { case UNSPEC_FRINTZ: case UNSPEC_FRINTP: case UNSPEC_FRINTM: case UNSPEC_FRINTA: case UNSPEC_FRINTN: case UNSPEC_FRINTX: case UNSPEC_FRINTI: return true; default: return false; } } /* Return true iff X is an rtx that will match an extr instruction i.e. as described in the *extr5_insn family of patterns. OP0 and OP1 will be set to the operands of the shifts involved on success and will be NULL_RTX otherwise. */ static bool aarch64_extr_rtx_p (rtx x, rtx *res_op0, rtx *res_op1) { rtx op0, op1; machine_mode mode = GET_MODE (x); *res_op0 = NULL_RTX; *res_op1 = NULL_RTX; if (GET_CODE (x) != IOR) return false; op0 = XEXP (x, 0); op1 = XEXP (x, 1); if ((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT) || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT)) { /* Canonicalise locally to ashift in op0, lshiftrt in op1. */ if (GET_CODE (op1) == ASHIFT) std::swap (op0, op1); if (!CONST_INT_P (XEXP (op0, 1)) || !CONST_INT_P (XEXP (op1, 1))) return false; unsigned HOST_WIDE_INT shft_amnt_0 = UINTVAL (XEXP (op0, 1)); unsigned HOST_WIDE_INT shft_amnt_1 = UINTVAL (XEXP (op1, 1)); if (shft_amnt_0 < GET_MODE_BITSIZE (mode) && shft_amnt_0 + shft_amnt_1 == GET_MODE_BITSIZE (mode)) { *res_op0 = XEXP (op0, 0); *res_op1 = XEXP (op1, 0); return true; } } return false; } /* Calculate the cost of calculating (if_then_else (OP0) (OP1) (OP2)), storing it in *COST. Result is true if the total cost of the operation has now been calculated. */ static bool aarch64_if_then_else_costs (rtx op0, rtx op1, rtx op2, int *cost, bool speed) { rtx inner; rtx comparator; enum rtx_code cmpcode; if (COMPARISON_P (op0)) { inner = XEXP (op0, 0); comparator = XEXP (op0, 1); cmpcode = GET_CODE (op0); } else { inner = op0; comparator = const0_rtx; cmpcode = NE; } if (GET_CODE (op1) == PC || GET_CODE (op2) == PC) { /* Conditional branch. */ if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC) return true; else { if (cmpcode == NE || cmpcode == EQ) { if (comparator == const0_rtx) { /* TBZ/TBNZ/CBZ/CBNZ. */ if (GET_CODE (inner) == ZERO_EXTRACT) /* TBZ/TBNZ. */ *cost += rtx_cost (XEXP (inner, 0), VOIDmode, ZERO_EXTRACT, 0, speed); else /* CBZ/CBNZ. */ *cost += rtx_cost (inner, VOIDmode, cmpcode, 0, speed); return true; } } else if (cmpcode == LT || cmpcode == GE) { /* TBZ/TBNZ. */ if (comparator == const0_rtx) return true; } } } else if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC) { /* It's a conditional operation based on the status flags, so it must be some flavor of CSEL. */ /* CSNEG, CSINV, and CSINC are handled for free as part of CSEL. */ if (GET_CODE (op1) == NEG || GET_CODE (op1) == NOT || (GET_CODE (op1) == PLUS && XEXP (op1, 1) == const1_rtx)) op1 = XEXP (op1, 0); *cost += rtx_cost (op1, VOIDmode, IF_THEN_ELSE, 1, speed); *cost += rtx_cost (op2, VOIDmode, IF_THEN_ELSE, 2, speed); return true; } /* We don't know what this is, cost all operands. */ return false; } /* Calculate the cost of calculating X, storing it in *COST. Result is true if the total cost of the operation has now been calculated. */ static bool aarch64_rtx_costs (rtx x, machine_mode mode, int outer ATTRIBUTE_UNUSED, int param ATTRIBUTE_UNUSED, int *cost, bool speed) { rtx op0, op1, op2; const struct cpu_cost_table *extra_cost = aarch64_tune_params.insn_extra_cost; int code = GET_CODE (x); /* By default, assume that everything has equivalent cost to the cheapest instruction. Any additional costs are applied as a delta above this default. */ *cost = COSTS_N_INSNS (1); switch (code) { case SET: /* The cost depends entirely on the operands to SET. */ *cost = 0; op0 = SET_DEST (x); op1 = SET_SRC (x); switch (GET_CODE (op0)) { case MEM: if (speed) { rtx address = XEXP (op0, 0); if (VECTOR_MODE_P (mode)) *cost += extra_cost->ldst.storev; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += extra_cost->ldst.store; else if (mode == SFmode) *cost += extra_cost->ldst.storef; else if (mode == DFmode) *cost += extra_cost->ldst.stored; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } *cost += rtx_cost (op1, mode, SET, 1, speed); return true; case SUBREG: if (! REG_P (SUBREG_REG (op0))) *cost += rtx_cost (SUBREG_REG (op0), VOIDmode, SET, 0, speed); /* Fall through. */ case REG: /* The cost is one per vector-register copied. */ if (VECTOR_MODE_P (GET_MODE (op0)) && REG_P (op1)) { int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1) / GET_MODE_SIZE (V4SImode); *cost = COSTS_N_INSNS (n_minus_1 + 1); } /* const0_rtx is in general free, but we will use an instruction to set a register to 0. */ else if (REG_P (op1) || op1 == const0_rtx) { /* The cost is 1 per register copied. */ int n_minus_1 = (GET_MODE_SIZE (GET_MODE (op0)) - 1) / UNITS_PER_WORD; *cost = COSTS_N_INSNS (n_minus_1 + 1); } else /* Cost is just the cost of the RHS of the set. */ *cost += rtx_cost (op1, mode, SET, 1, speed); return true; case ZERO_EXTRACT: case SIGN_EXTRACT: /* Bit-field insertion. Strip any redundant widening of the RHS to meet the width of the target. */ if (GET_CODE (op1) == SUBREG) op1 = SUBREG_REG (op1); if ((GET_CODE (op1) == ZERO_EXTEND || GET_CODE (op1) == SIGN_EXTEND) && CONST_INT_P (XEXP (op0, 1)) && (GET_MODE_BITSIZE (GET_MODE (XEXP (op1, 0))) >= INTVAL (XEXP (op0, 1)))) op1 = XEXP (op1, 0); if (CONST_INT_P (op1)) { /* MOV immediate is assumed to always be cheap. */ *cost = COSTS_N_INSNS (1); } else { /* BFM. */ if (speed) *cost += extra_cost->alu.bfi; *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) code, 1, speed); } return true; default: /* We can't make sense of this, assume default cost. */ *cost = COSTS_N_INSNS (1); return false; } return false; case CONST_INT: /* If an instruction can incorporate a constant within the instruction, the instruction's expression avoids calling rtx_cost() on the constant. If rtx_cost() is called on a constant, then it is usually because the constant must be moved into a register by one or more instructions. The exception is constant 0, which can be expressed as XZR/WZR and is therefore free. The exception to this is if we have (set (reg) (const0_rtx)) in which case we must cost the move. However, we can catch that when we cost the SET, so we don't need to consider that here. */ if (x == const0_rtx) *cost = 0; else { /* To an approximation, building any other constant is proportionally expensive to the number of instructions required to build that constant. This is true whether we are compiling for SPEED or otherwise. */ *cost = COSTS_N_INSNS (aarch64_internal_mov_immediate (NULL_RTX, x, false, mode)); } return true; case CONST_DOUBLE: if (speed) { /* mov[df,sf]_aarch64. */ if (aarch64_float_const_representable_p (x)) /* FMOV (scalar immediate). */ *cost += extra_cost->fp[mode == DFmode].fpconst; else if (!aarch64_float_const_zero_rtx_p (x)) { /* This will be a load from memory. */ if (mode == DFmode) *cost += extra_cost->ldst.loadd; else *cost += extra_cost->ldst.loadf; } else /* Otherwise this is +0.0. We get this using MOVI d0, #0 or MOV v0.s[0], wzr - neither of which are modeled by the cost tables. Just use the default cost. */ { } } return true; case MEM: if (speed) { /* For loads we want the base cost of a load, plus an approximation for the additional cost of the addressing mode. */ rtx address = XEXP (x, 0); if (VECTOR_MODE_P (mode)) *cost += extra_cost->ldst.loadv; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += extra_cost->ldst.load; else if (mode == SFmode) *cost += extra_cost->ldst.loadf; else if (mode == DFmode) *cost += extra_cost->ldst.loadd; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } return true; case NEG: op0 = XEXP (x, 0); if (VECTOR_MODE_P (mode)) { if (speed) { /* FNEG. */ *cost += extra_cost->vect.alu; } return false; } if (GET_MODE_CLASS (mode) == MODE_INT) { if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE) { /* CSETM. */ *cost += rtx_cost (XEXP (op0, 0), VOIDmode, NEG, 0, speed); return true; } /* Cost this as SUB wzr, X. */ op0 = CONST0_RTX (mode); op1 = XEXP (x, 0); goto cost_minus; } if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* Support (neg(fma...)) as a single instruction only if sign of zeros is unimportant. This matches the decision making in aarch64.md. */ if (GET_CODE (op0) == FMA && !HONOR_SIGNED_ZEROS (GET_MODE (op0))) { /* FNMADD. */ *cost = rtx_cost (op0, mode, NEG, 0, speed); return true; } if (GET_CODE (op0) == MULT) { /* FNMUL. */ *cost = rtx_cost (op0, mode, NEG, 0, speed); return true; } if (speed) /* FNEG. */ *cost += extra_cost->fp[mode == DFmode].neg; return false; } return false; case CLRSB: case CLZ: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.clz; } return false; case COMPARE: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (op1 == const0_rtx && GET_CODE (op0) == AND) { x = op0; mode = GET_MODE (op0); goto cost_logic; } if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) { /* TODO: A write to the CC flags possibly costs extra, this needs encoding in the cost tables. */ /* CC_ZESWPmode supports zero extend for free. */ if (mode == CC_ZESWPmode && GET_CODE (op0) == ZERO_EXTEND) op0 = XEXP (op0, 0); mode = GET_MODE (op0); /* ANDS. */ if (GET_CODE (op0) == AND) { x = op0; goto cost_logic; } if (GET_CODE (op0) == PLUS) { /* ADDS (and CMN alias). */ x = op0; goto cost_plus; } if (GET_CODE (op0) == MINUS) { /* SUBS. */ x = op0; goto cost_minus; } if (GET_CODE (op1) == NEG) { /* CMN. */ if (speed) *cost += extra_cost->alu.arith; *cost += rtx_cost (op0, mode, COMPARE, 0, speed); *cost += rtx_cost (XEXP (op1, 0), mode, NEG, 1, speed); return true; } /* CMP. Compare can freely swap the order of operands, and canonicalization puts the more complex operation first. But the integer MINUS logic expects the shift/extend operation in op1. */ if (! (REG_P (op0) || (GET_CODE (op0) == SUBREG && REG_P (SUBREG_REG (op0))))) { op0 = XEXP (x, 1); op1 = XEXP (x, 0); } goto cost_minus; } if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT) { /* FCMP. */ if (speed) *cost += extra_cost->fp[mode == DFmode].compare; if (CONST_DOUBLE_P (op1) && aarch64_float_const_zero_rtx_p (op1)) { *cost += rtx_cost (op0, VOIDmode, COMPARE, 0, speed); /* FCMP supports constant 0.0 for no extra cost. */ return true; } return false; } if (VECTOR_MODE_P (mode)) { /* Vector compare. */ if (speed) *cost += extra_cost->vect.alu; if (aarch64_float_const_zero_rtx_p (op1)) { /* Vector cm (eq|ge|gt|lt|le) supports constant 0.0 for no extra cost. */ return true; } return false; } return false; case MINUS: { op0 = XEXP (x, 0); op1 = XEXP (x, 1); cost_minus: *cost += rtx_cost (op0, mode, MINUS, 0, speed); /* Detect valid immediates. */ if ((GET_MODE_CLASS (mode) == MODE_INT || (GET_MODE_CLASS (mode) == MODE_CC && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)) && CONST_INT_P (op1) && aarch64_uimm12_shift (INTVAL (op1))) { if (speed) /* SUB(S) (immediate). */ *cost += extra_cost->alu.arith; return true; } /* Look for SUB (extended register). */ if (aarch64_rtx_arith_op_extract_p (op1, mode)) { if (speed) *cost += extra_cost->alu.extend_arith; op1 = aarch64_strip_extend (op1); *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) GET_CODE (op1), 0, speed); return true; } rtx new_op1 = aarch64_strip_extend (op1); /* Cost this as an FMA-alike operation. */ if ((GET_CODE (new_op1) == MULT || aarch64_shift_p (GET_CODE (new_op1))) && code != COMPARE) { *cost += aarch64_rtx_mult_cost (new_op1, MULT, (enum rtx_code) code, speed); return true; } *cost += rtx_cost (new_op1, VOIDmode, MINUS, 1, speed); if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector SUB. */ *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_INT) { /* SUB(S). */ *cost += extra_cost->alu.arith; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* FSUB. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return true; } case PLUS: { rtx new_op0; op0 = XEXP (x, 0); op1 = XEXP (x, 1); cost_plus: if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE) { /* CSINC. */ *cost += rtx_cost (XEXP (op0, 0), mode, PLUS, 0, speed); *cost += rtx_cost (op1, mode, PLUS, 1, speed); return true; } if (GET_MODE_CLASS (mode) == MODE_INT && CONST_INT_P (op1) && aarch64_uimm12_shift (INTVAL (op1))) { *cost += rtx_cost (op0, mode, PLUS, 0, speed); if (speed) /* ADD (immediate). */ *cost += extra_cost->alu.arith; return true; } *cost += rtx_cost (op1, mode, PLUS, 1, speed); /* Look for ADD (extended register). */ if (aarch64_rtx_arith_op_extract_p (op0, mode)) { if (speed) *cost += extra_cost->alu.extend_arith; op0 = aarch64_strip_extend (op0); *cost += rtx_cost (op0, VOIDmode, (enum rtx_code) GET_CODE (op0), 0, speed); return true; } /* Strip any extend, leave shifts behind as we will cost them through mult_cost. */ new_op0 = aarch64_strip_extend (op0); if (GET_CODE (new_op0) == MULT || aarch64_shift_p (GET_CODE (new_op0))) { *cost += aarch64_rtx_mult_cost (new_op0, MULT, PLUS, speed); return true; } *cost += rtx_cost (new_op0, VOIDmode, PLUS, 0, speed); if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector ADD. */ *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_INT) { /* ADD. */ *cost += extra_cost->alu.arith; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* FADD. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return true; } case BSWAP: *cost = COSTS_N_INSNS (1); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.rev; } return false; case IOR: if (aarch_rev16_p (x)) { *cost = COSTS_N_INSNS (1); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.rev; } return true; } if (aarch64_extr_rtx_p (x, &op0, &op1)) { *cost += rtx_cost (op0, mode, IOR, 0, speed); *cost += rtx_cost (op1, mode, IOR, 1, speed); if (speed) *cost += extra_cost->alu.shift; return true; } /* Fall through. */ case XOR: case AND: cost_logic: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (VECTOR_MODE_P (mode)) { if (speed) *cost += extra_cost->vect.alu; return true; } if (code == AND && GET_CODE (op0) == MULT && CONST_INT_P (XEXP (op0, 1)) && CONST_INT_P (op1) && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (op0, 1))), INTVAL (op1)) != 0) { /* This is a UBFM/SBFM. */ *cost += rtx_cost (XEXP (op0, 0), mode, ZERO_EXTRACT, 0, speed); if (speed) *cost += extra_cost->alu.bfx; return true; } if (GET_MODE_CLASS (mode) == MODE_INT) { /* We possibly get the immediate for free, this is not modelled. */ if (CONST_INT_P (op1) && aarch64_bitmask_imm (INTVAL (op1), mode)) { *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed); if (speed) *cost += extra_cost->alu.logical; return true; } else { rtx new_op0 = op0; /* Handle ORN, EON, or BIC. */ if (GET_CODE (op0) == NOT) op0 = XEXP (op0, 0); new_op0 = aarch64_strip_shift (op0); /* If we had a shift on op0 then this is a logical-shift- by-register/immediate operation. Otherwise, this is just a logical operation. */ if (speed) { if (new_op0 != op0) { /* Shift by immediate. */ if (CONST_INT_P (XEXP (op0, 1))) *cost += extra_cost->alu.log_shift; else *cost += extra_cost->alu.log_shift_reg; } else *cost += extra_cost->alu.logical; } /* In both cases we want to cost both operands. */ *cost += rtx_cost (new_op0, mode, (enum rtx_code) code, 0, speed); *cost += rtx_cost (op1, mode, (enum rtx_code) code, 1, speed); return true; } } return false; case NOT: x = XEXP (x, 0); op0 = aarch64_strip_shift (x); if (VECTOR_MODE_P (mode)) { /* Vector NOT. */ *cost += extra_cost->vect.alu; return false; } /* MVN-shifted-reg. */ if (op0 != x) { *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed); if (speed) *cost += extra_cost->alu.log_shift; return true; } /* EON can have two forms: (xor (not a) b) but also (not (xor a b)). Handle the second form here taking care that 'a' in the above can be a shift. */ else if (GET_CODE (op0) == XOR) { rtx newop0 = XEXP (op0, 0); rtx newop1 = XEXP (op0, 1); rtx op0_stripped = aarch64_strip_shift (newop0); *cost += rtx_cost (newop1, mode, (enum rtx_code) code, 1, speed); *cost += rtx_cost (op0_stripped, mode, XOR, 0, speed); if (speed) { if (op0_stripped != newop0) *cost += extra_cost->alu.log_shift; else *cost += extra_cost->alu.logical; } return true; } /* MVN. */ if (speed) *cost += extra_cost->alu.logical; return false; case ZERO_EXTEND: op0 = XEXP (x, 0); /* If a value is written in SI mode, then zero extended to DI mode, the operation will in general be free as a write to a 'w' register implicitly zeroes the upper bits of an 'x' register. However, if this is (set (reg) (zero_extend (reg))) we must cost the explicit register move. */ if (mode == DImode && GET_MODE (op0) == SImode && outer == SET) { int op_cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, 0, speed); if (!op_cost && speed) /* MOV. */ *cost += extra_cost->alu.extend; else /* Free, the cost is that of the SI mode operation. */ *cost = op_cost; return true; } else if (MEM_P (op0)) { /* All loads can zero extend to any size for free. */ *cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, param, speed); return true; } if (speed) { if (VECTOR_MODE_P (mode)) { /* UMOV. */ *cost += extra_cost->vect.alu; } else { /* UXTB/UXTH. */ *cost += extra_cost->alu.extend; } } return false; case SIGN_EXTEND: if (MEM_P (XEXP (x, 0))) { /* LDRSH. */ if (speed) { rtx address = XEXP (XEXP (x, 0), 0); *cost += extra_cost->ldst.load_sign_extend; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } return true; } if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.extend; } return false; case ASHIFT: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (CONST_INT_P (op1)) { if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector shift (immediate). */ *cost += extra_cost->vect.alu; } else { /* LSL (immediate), UBMF, UBFIZ and friends. These are all aliases. */ *cost += extra_cost->alu.shift; } } /* We can incorporate zero/sign extend for free. */ if (GET_CODE (op0) == ZERO_EXTEND || GET_CODE (op0) == SIGN_EXTEND) op0 = XEXP (op0, 0); *cost += rtx_cost (op0, VOIDmode, ASHIFT, 0, speed); return true; } else { if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector shift (register). */ *cost += extra_cost->vect.alu; } else { /* LSLV. */ *cost += extra_cost->alu.shift_reg; } } return false; /* All arguments need to be in registers. */ } case ROTATE: case ROTATERT: case LSHIFTRT: case ASHIFTRT: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (CONST_INT_P (op1)) { /* ASR (immediate) and friends. */ if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.shift; } *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed); return true; } else { /* ASR (register) and friends. */ if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.shift_reg; } return false; /* All arguments need to be in registers. */ } case SYMBOL_REF: if (aarch64_cmodel == AARCH64_CMODEL_LARGE || aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC) { /* LDR. */ if (speed) *cost += extra_cost->ldst.load; } else if (aarch64_cmodel == AARCH64_CMODEL_SMALL || aarch64_cmodel == AARCH64_CMODEL_SMALL_PIC) { /* ADRP, followed by ADD. */ *cost += COSTS_N_INSNS (1); if (speed) *cost += 2 * extra_cost->alu.arith; } else if (aarch64_cmodel == AARCH64_CMODEL_TINY || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC) { /* ADR. */ if (speed) *cost += extra_cost->alu.arith; } if (flag_pic) { /* One extra load instruction, after accessing the GOT. */ *cost += COSTS_N_INSNS (1); if (speed) *cost += extra_cost->ldst.load; } return true; case HIGH: case LO_SUM: /* ADRP/ADD (immediate). */ if (speed) *cost += extra_cost->alu.arith; return true; case ZERO_EXTRACT: case SIGN_EXTRACT: /* UBFX/SBFX. */ if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.bfx; } /* We can trust that the immediates used will be correct (there are no by-register forms), so we need only cost op0. */ *cost += rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) code, 0, speed); return true; case MULT: *cost += aarch64_rtx_mult_cost (x, MULT, 0, speed); /* aarch64_rtx_mult_cost always handles recursion to its operands. */ return true; case MOD: /* We can expand signed mod by power of 2 using a NEGS, two parallel ANDs and a CSNEG. Assume here that CSNEG is the same as the cost of an unconditional negate. This case should only ever be reached through the set_smod_pow2_cheap check in expmed.c. */ if (CONST_INT_P (XEXP (x, 1)) && exact_log2 (INTVAL (XEXP (x, 1))) > 0 && (mode == SImode || mode == DImode)) { /* We expand to 4 instructions. Reset the baseline. */ *cost = COSTS_N_INSNS (4); if (speed) *cost += 2 * extra_cost->alu.logical + 2 * extra_cost->alu.arith; return true; } /* Fall-through. */ case UMOD: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += (extra_cost->mult[mode == DImode].add + extra_cost->mult[mode == DImode].idiv); else if (mode == DFmode) *cost += (extra_cost->fp[1].mult + extra_cost->fp[1].div); else if (mode == SFmode) *cost += (extra_cost->fp[0].mult + extra_cost->fp[0].div); } return false; /* All arguments need to be in registers. */ case DIV: case UDIV: case SQRT: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else if (GET_MODE_CLASS (mode) == MODE_INT) /* There is no integer SQRT, so only DIV and UDIV can get here. */ *cost += extra_cost->mult[mode == DImode].idiv; else *cost += extra_cost->fp[mode == DFmode].div; } return false; /* All arguments need to be in registers. */ case IF_THEN_ELSE: return aarch64_if_then_else_costs (XEXP (x, 0), XEXP (x, 1), XEXP (x, 2), cost, speed); case EQ: case NE: case GT: case GTU: case LT: case LTU: case GE: case GEU: case LE: case LEU: return false; /* All arguments must be in registers. */ case FMA: op0 = XEXP (x, 0); op1 = XEXP (x, 1); op2 = XEXP (x, 2); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->fp[mode == DFmode].fma; } /* FMSUB, FNMADD, and FNMSUB are free. */ if (GET_CODE (op0) == NEG) op0 = XEXP (op0, 0); if (GET_CODE (op2) == NEG) op2 = XEXP (op2, 0); /* aarch64_fnma4_elt_to_64v2df has the NEG as operand 1, and the by-element operand as operand 0. */ if (GET_CODE (op1) == NEG) op1 = XEXP (op1, 0); /* Catch vector-by-element operations. The by-element operand can either be (vec_duplicate (vec_select (x))) or just (vec_select (x)), depending on whether we are multiplying by a vector or a scalar. Canonicalization is not very good in these cases, FMA4 will put the by-element operand as operand 0, FNMA4 will have it as operand 1. */ if (GET_CODE (op0) == VEC_DUPLICATE) op0 = XEXP (op0, 0); else if (GET_CODE (op1) == VEC_DUPLICATE) op1 = XEXP (op1, 0); if (GET_CODE (op0) == VEC_SELECT) op0 = XEXP (op0, 0); else if (GET_CODE (op1) == VEC_SELECT) op1 = XEXP (op1, 0); /* If the remaining parameters are not registers, get the cost to put them into registers. */ *cost += rtx_cost (op0, mode, FMA, 0, speed); *cost += rtx_cost (op1, mode, FMA, 1, speed); *cost += rtx_cost (op2, mode, FMA, 2, speed); return true; case FLOAT: case UNSIGNED_FLOAT: if (speed) *cost += extra_cost->fp[mode == DFmode].fromint; return false; case FLOAT_EXTEND: if (speed) { if (VECTOR_MODE_P (mode)) { /*Vector truncate. */ *cost += extra_cost->vect.alu; } else *cost += extra_cost->fp[mode == DFmode].widen; } return false; case FLOAT_TRUNCATE: if (speed) { if (VECTOR_MODE_P (mode)) { /*Vector conversion. */ *cost += extra_cost->vect.alu; } else *cost += extra_cost->fp[mode == DFmode].narrow; } return false; case FIX: case UNSIGNED_FIX: x = XEXP (x, 0); /* Strip the rounding part. They will all be implemented by the fcvt* family of instructions anyway. */ if (GET_CODE (x) == UNSPEC) { unsigned int uns_code = XINT (x, 1); if (uns_code == UNSPEC_FRINTA || uns_code == UNSPEC_FRINTM || uns_code == UNSPEC_FRINTN || uns_code == UNSPEC_FRINTP || uns_code == UNSPEC_FRINTZ) x = XVECEXP (x, 0, 0); } if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->fp[GET_MODE (x) == DFmode].toint; } *cost += rtx_cost (x, VOIDmode, (enum rtx_code) code, 0, speed); return true; case ABS: if (VECTOR_MODE_P (mode)) { /* ABS (vector). */ if (speed) *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { op0 = XEXP (x, 0); /* FABD, which is analogous to FADD. */ if (GET_CODE (op0) == MINUS) { *cost += rtx_cost (XEXP (op0, 0), mode, MINUS, 0, speed); *cost += rtx_cost (XEXP (op0, 1), mode, MINUS, 1, speed); if (speed) *cost += extra_cost->fp[mode == DFmode].addsub; return true; } /* Simple FABS is analogous to FNEG. */ if (speed) *cost += extra_cost->fp[mode == DFmode].neg; } else { /* Integer ABS will either be split to two arithmetic instructions, or will be an ABS (scalar), which we don't model. */ *cost = COSTS_N_INSNS (2); if (speed) *cost += 2 * extra_cost->alu.arith; } return false; case SMAX: case SMIN: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else { /* FMAXNM/FMINNM/FMAX/FMIN. TODO: This may not be accurate for all implementations, but we do not model this in the cost tables. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return false; case UNSPEC: /* The floating point round to integer frint* instructions. */ if (aarch64_frint_unspec_p (XINT (x, 1))) { if (speed) *cost += extra_cost->fp[mode == DFmode].roundint; return false; } if (XINT (x, 1) == UNSPEC_RBIT) { if (speed) *cost += extra_cost->alu.rev; return false; } break; case TRUNCATE: /* Decompose muldi3_highpart. */ if (/* (truncate:DI */ mode == DImode /* (lshiftrt:TI */ && GET_MODE (XEXP (x, 0)) == TImode && GET_CODE (XEXP (x, 0)) == LSHIFTRT /* (mult:TI */ && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT /* (ANY_EXTEND:TI (reg:DI)) (ANY_EXTEND:TI (reg:DI))) */ && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND) || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)) && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0)) == DImode && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0)) == DImode /* (const_int 64) */ && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && UINTVAL (XEXP (XEXP (x, 0), 1)) == 64) { /* UMULH/SMULH. */ if (speed) *cost += extra_cost->mult[mode == DImode].extend; *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0), mode, MULT, 0, speed); *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0), mode, MULT, 1, speed); return true; } /* Fall through. */ default: break; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nFailed to cost RTX. Assuming default cost.\n"); return true; } /* Wrapper around aarch64_rtx_costs, dumps the partial, or total cost calculated for X. This cost is stored in *COST. Returns true if the total cost of X was calculated. */ static bool aarch64_rtx_costs_wrapper (rtx x, machine_mode mode, int outer, int param, int *cost, bool speed) { bool result = aarch64_rtx_costs (x, mode, outer, param, cost, speed); if (dump_file && (dump_flags & TDF_DETAILS)) { print_rtl_single (dump_file, x); fprintf (dump_file, "\n%s cost: %d (%s)\n", speed ? "Hot" : "Cold", *cost, result ? "final" : "partial"); } return result; } static int aarch64_register_move_cost (machine_mode mode, reg_class_t from_i, reg_class_t to_i) { enum reg_class from = (enum reg_class) from_i; enum reg_class to = (enum reg_class) to_i; const struct cpu_regmove_cost *regmove_cost = aarch64_tune_params.regmove_cost; /* Caller save and pointer regs are equivalent to GENERAL_REGS. */ if (to == CALLER_SAVE_REGS || to == POINTER_REGS) to = GENERAL_REGS; if (from == CALLER_SAVE_REGS || from == POINTER_REGS) from = GENERAL_REGS; /* Moving between GPR and stack cost is the same as GP2GP. */ if ((from == GENERAL_REGS && to == STACK_REG) || (to == GENERAL_REGS && from == STACK_REG)) return regmove_cost->GP2GP; /* To/From the stack register, we move via the gprs. */ if (to == STACK_REG || from == STACK_REG) return aarch64_register_move_cost (mode, from, GENERAL_REGS) + aarch64_register_move_cost (mode, GENERAL_REGS, to); if (GET_MODE_SIZE (mode) == 16) { /* 128-bit operations on general registers require 2 instructions. */ if (from == GENERAL_REGS && to == GENERAL_REGS) return regmove_cost->GP2GP * 2; else if (from == GENERAL_REGS) return regmove_cost->GP2FP * 2; else if (to == GENERAL_REGS) return regmove_cost->FP2GP * 2; /* When AdvSIMD instructions are disabled it is not possible to move a 128-bit value directly between Q registers. This is handled in secondary reload. A general register is used as a scratch to move the upper DI value and the lower DI value is moved directly, hence the cost is the sum of three moves. */ if (! TARGET_SIMD) return regmove_cost->GP2FP + regmove_cost->FP2GP + regmove_cost->FP2FP; return regmove_cost->FP2FP; } if (from == GENERAL_REGS && to == GENERAL_REGS) return regmove_cost->GP2GP; else if (from == GENERAL_REGS) return regmove_cost->GP2FP; else if (to == GENERAL_REGS) return regmove_cost->FP2GP; return regmove_cost->FP2FP; } static int aarch64_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED, reg_class_t rclass ATTRIBUTE_UNUSED, bool in ATTRIBUTE_UNUSED) { return aarch64_tune_params.memmov_cost; } /* Return the number of instructions that can be issued per cycle. */ static int aarch64_sched_issue_rate (void) { return aarch64_tune_params.issue_rate; } static int aarch64_sched_first_cycle_multipass_dfa_lookahead (void) { int issue_rate = aarch64_sched_issue_rate (); return issue_rate > 1 && !sched_fusion ? issue_rate : 0; } /* Vectorizer cost model target hooks. */ /* Implement targetm.vectorize.builtin_vectorization_cost. */ static int aarch64_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, tree vectype, int misalign ATTRIBUTE_UNUSED) { unsigned elements; switch (type_of_cost) { case scalar_stmt: return aarch64_tune_params.vec_costs->scalar_stmt_cost; case scalar_load: return aarch64_tune_params.vec_costs->scalar_load_cost; case scalar_store: return aarch64_tune_params.vec_costs->scalar_store_cost; case vector_stmt: return aarch64_tune_params.vec_costs->vec_stmt_cost; case vector_load: return aarch64_tune_params.vec_costs->vec_align_load_cost; case vector_store: return aarch64_tune_params.vec_costs->vec_store_cost; case vec_to_scalar: return aarch64_tune_params.vec_costs->vec_to_scalar_cost; case scalar_to_vec: return aarch64_tune_params.vec_costs->scalar_to_vec_cost; case unaligned_load: return aarch64_tune_params.vec_costs->vec_unalign_load_cost; case unaligned_store: return aarch64_tune_params.vec_costs->vec_unalign_store_cost; case cond_branch_taken: return aarch64_tune_params.vec_costs->cond_taken_branch_cost; case cond_branch_not_taken: return aarch64_tune_params.vec_costs->cond_not_taken_branch_cost; case vec_perm: case vec_promote_demote: return aarch64_tune_params.vec_costs->vec_stmt_cost; case vec_construct: elements = TYPE_VECTOR_SUBPARTS (vectype); return elements / 2 + 1; default: gcc_unreachable (); } } /* Implement targetm.vectorize.add_stmt_cost. */ static unsigned aarch64_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, struct _stmt_vec_info *stmt_info, int misalign, enum vect_cost_model_location where) { unsigned *cost = (unsigned *) data; unsigned retval = 0; if (flag_vect_cost_model) { tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE; int stmt_cost = aarch64_builtin_vectorization_cost (kind, vectype, misalign); /* Statements in an inner loop relative to the loop being vectorized are weighted more heavily. The value here is arbitrary and could potentially be improved with analysis. */ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info)) count *= 50; /* FIXME */ retval = (unsigned) (count * stmt_cost); cost[where] += retval; } return retval; } static void initialize_aarch64_code_model (struct gcc_options *); /* Enum describing the various ways that the aarch64_parse_{arch,tune,cpu,extension} functions can fail. This way their callers can choose what kind of error to give. */ enum aarch64_parse_opt_result { AARCH64_PARSE_OK, /* Parsing was successful. */ AARCH64_PARSE_MISSING_ARG, /* Missing argument. */ AARCH64_PARSE_INVALID_FEATURE, /* Invalid feature modifier. */ AARCH64_PARSE_INVALID_ARG /* Invalid arch, tune, cpu arg. */ }; /* Parse the architecture extension string STR and update ISA_FLAGS with the architecture features turned on or off. Return a aarch64_parse_opt_result describing the result. */ static enum aarch64_parse_opt_result aarch64_parse_extension (char *str, unsigned long *isa_flags) { /* The extension string is parsed left to right. */ const struct aarch64_option_extension *opt = NULL; /* Flag to say whether we are adding or removing an extension. */ int adding_ext = -1; while (str != NULL && *str != 0) { char *ext; size_t len; str++; ext = strchr (str, '+'); if (ext != NULL) len = ext - str; else len = strlen (str); if (len >= 2 && strncmp (str, "no", 2) == 0) { adding_ext = 0; len -= 2; str += 2; } else if (len > 0) adding_ext = 1; if (len == 0) return AARCH64_PARSE_MISSING_ARG; /* Scan over the extensions table trying to find an exact match. */ for (opt = all_extensions; opt->name != NULL; opt++) { if (strlen (opt->name) == len && strncmp (opt->name, str, len) == 0) { /* Add or remove the extension. */ if (adding_ext) *isa_flags |= opt->flags_on; else *isa_flags &= ~(opt->flags_off); break; } } if (opt->name == NULL) { /* Extension not found in list. */ return AARCH64_PARSE_INVALID_FEATURE; } str = ext; }; return AARCH64_PARSE_OK; } /* Parse the TO_PARSE string and put the architecture struct that it selects into RES and the architectural features into ISA_FLAGS. Return an aarch64_parse_opt_result describing the parse result. If there is an error parsing, RES and ISA_FLAGS are left unchanged. */ static enum aarch64_parse_opt_result aarch64_parse_arch (const char *to_parse, const struct processor **res, unsigned long *isa_flags) { char *ext; const struct processor *arch; char *str = (char *) alloca (strlen (to_parse) + 1); size_t len; strcpy (str, to_parse); ext = strchr (str, '+'); if (ext != NULL) len = ext - str; else len = strlen (str); if (len == 0) return AARCH64_PARSE_MISSING_ARG; /* Loop through the list of supported ARCHes to find a match. */ for (arch = all_architectures; arch->name != NULL; arch++) { if (strlen (arch->name) == len && strncmp (arch->name, str, len) == 0) { unsigned long isa_temp = arch->flags; if (ext != NULL) { /* TO_PARSE string contains at least one extension. */ enum aarch64_parse_opt_result ext_res = aarch64_parse_extension (ext, &isa_temp); if (ext_res != AARCH64_PARSE_OK) return ext_res; } /* Extension parsing was successful. Confirm the result arch and ISA flags. */ *res = arch; *isa_flags = isa_temp; return AARCH64_PARSE_OK; } } /* ARCH name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse the TO_PARSE string and put the result tuning in RES and the architecture flags in ISA_FLAGS. Return an aarch64_parse_opt_result describing the parse result. If there is an error parsing, RES and ISA_FLAGS are left unchanged. */ static enum aarch64_parse_opt_result aarch64_parse_cpu (const char *to_parse, const struct processor **res, unsigned long *isa_flags) { char *ext; const struct processor *cpu; char *str = (char *) alloca (strlen (to_parse) + 1); size_t len; strcpy (str, to_parse); ext = strchr (str, '+'); if (ext != NULL) len = ext - str; else len = strlen (str); if (len == 0) return AARCH64_PARSE_MISSING_ARG; /* Loop through the list of supported CPUs to find a match. */ for (cpu = all_cores; cpu->name != NULL; cpu++) { if (strlen (cpu->name) == len && strncmp (cpu->name, str, len) == 0) { unsigned long isa_temp = cpu->flags; if (ext != NULL) { /* TO_PARSE string contains at least one extension. */ enum aarch64_parse_opt_result ext_res = aarch64_parse_extension (ext, &isa_temp); if (ext_res != AARCH64_PARSE_OK) return ext_res; } /* Extension parsing was successfull. Confirm the result cpu and ISA flags. */ *res = cpu; *isa_flags = isa_temp; return AARCH64_PARSE_OK; } } /* CPU name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse the TO_PARSE string and put the cpu it selects into RES. Return an aarch64_parse_opt_result describing the parse result. If the parsing fails the RES does not change. */ static enum aarch64_parse_opt_result aarch64_parse_tune (const char *to_parse, const struct processor **res) { const struct processor *cpu; char *str = (char *) alloca (strlen (to_parse) + 1); strcpy (str, to_parse); /* Loop through the list of supported CPUs to find a match. */ for (cpu = all_cores; cpu->name != NULL; cpu++) { if (strcmp (cpu->name, str) == 0) { *res = cpu; return AARCH64_PARSE_OK; } } /* CPU name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse TOKEN, which has length LENGTH to see if it is an option described in FLAG. If it is, return the index bit for that fusion type. If not, error (printing OPTION_NAME) and return zero. */ static unsigned int aarch64_parse_one_option_token (const char *token, size_t length, const struct aarch64_flag_desc *flag, const char *option_name) { for (; flag->name != NULL; flag++) { if (length == strlen (flag->name) && !strncmp (flag->name, token, length)) return flag->flag; } error ("unknown flag passed in -moverride=%s (%s)", option_name, token); return 0; } /* Parse OPTION which is a comma-separated list of flags to enable. FLAGS gives the list of flags we understand, INITIAL_STATE gives any default state we inherit from the CPU tuning structures. OPTION_NAME gives the top-level option we are parsing in the -moverride string, for use in error messages. */ static unsigned int aarch64_parse_boolean_options (const char *option, const struct aarch64_flag_desc *flags, unsigned int initial_state, const char *option_name) { const char separator = '.'; const char* specs = option; const char* ntoken = option; unsigned int found_flags = initial_state; while ((ntoken = strchr (specs, separator))) { size_t token_length = ntoken - specs; unsigned token_ops = aarch64_parse_one_option_token (specs, token_length, flags, option_name); /* If we find "none" (or, for simplicity's sake, an error) anywhere in the token stream, reset the supported operations. So: adrp+add.cmp+branch.none.adrp+add would have the result of turning on only adrp+add fusion. */ if (!token_ops) found_flags = 0; found_flags |= token_ops; specs = ++ntoken; } /* We ended with a comma, print something. */ if (!(*specs)) { error ("%s string ill-formed\n", option_name); return 0; } /* We still have one more token to parse. */ size_t token_length = strlen (specs); unsigned token_ops = aarch64_parse_one_option_token (specs, token_length, flags, option_name); if (!token_ops) found_flags = 0; found_flags |= token_ops; return found_flags; } /* Support for overriding instruction fusion. */ static void aarch64_parse_fuse_string (const char *fuse_string, struct tune_params *tune) { tune->fusible_ops = aarch64_parse_boolean_options (fuse_string, aarch64_fusible_pairs, tune->fusible_ops, "fuse="); } /* Support for overriding other tuning flags. */ static void aarch64_parse_tune_string (const char *tune_string, struct tune_params *tune) { tune->extra_tuning_flags = aarch64_parse_boolean_options (tune_string, aarch64_tuning_flags, tune->extra_tuning_flags, "tune="); } /* Parse TOKEN, which has length LENGTH to see if it is a tuning option we understand. If it is, extract the option string and handoff to the appropriate function. */ void aarch64_parse_one_override_token (const char* token, size_t length, struct tune_params *tune) { const struct aarch64_tuning_override_function *fn = aarch64_tuning_override_functions; const char *option_part = strchr (token, '='); if (!option_part) { error ("tuning string missing in option (%s)", token); return; } /* Get the length of the option name. */ length = option_part - token; /* Skip the '=' to get to the option string. */ option_part++; for (; fn->name != NULL; fn++) { if (!strncmp (fn->name, token, length)) { fn->parse_override (option_part, tune); return; } } error ("unknown tuning option (%s)",token); return; } /* A checking mechanism for the implementation of the tls size. */ static void initialize_aarch64_tls_size (struct gcc_options *opts) { if (aarch64_tls_size == 0) aarch64_tls_size = 24; switch (opts->x_aarch64_cmodel_var) { case AARCH64_CMODEL_TINY: /* Both the default and maximum TLS size allowed under tiny is 1M which needs two instructions to address, so we clamp the size to 24. */ if (aarch64_tls_size > 24) aarch64_tls_size = 24; break; case AARCH64_CMODEL_SMALL: /* The maximum TLS size allowed under small is 4G. */ if (aarch64_tls_size > 32) aarch64_tls_size = 32; break; case AARCH64_CMODEL_LARGE: /* The maximum TLS size allowed under large is 16E. FIXME: 16E should be 64bit, we only support 48bit offset now. */ if (aarch64_tls_size > 48) aarch64_tls_size = 48; break; default: gcc_unreachable (); } return; } /* Parse STRING looking for options in the format: string :: option:string option :: name=substring name :: {a-z} substring :: defined by option. */ static void aarch64_parse_override_string (const char* input_string, struct tune_params* tune) { const char separator = ':'; size_t string_length = strlen (input_string) + 1; char *string_root = (char *) xmalloc (sizeof (*string_root) * string_length); char *string = string_root; strncpy (string, input_string, string_length); string[string_length - 1] = '\0'; char* ntoken = string; while ((ntoken = strchr (string, separator))) { size_t token_length = ntoken - string; /* Make this substring look like a string. */ *ntoken = '\0'; aarch64_parse_one_override_token (string, token_length, tune); string = ++ntoken; } /* One last option to parse. */ aarch64_parse_one_override_token (string, strlen (string), tune); free (string_root); } static void aarch64_override_options_after_change_1 (struct gcc_options *opts) { if (opts->x_flag_omit_frame_pointer) opts->x_flag_omit_leaf_frame_pointer = false; else if (opts->x_flag_omit_leaf_frame_pointer) opts->x_flag_omit_frame_pointer = true; /* If not opzimizing for size, set the default alignment to what the target wants. */ if (!opts->x_optimize_size) { if (opts->x_align_loops <= 0) opts->x_align_loops = aarch64_tune_params.loop_align; if (opts->x_align_jumps <= 0) opts->x_align_jumps = aarch64_tune_params.jump_align; if (opts->x_align_functions <= 0) opts->x_align_functions = aarch64_tune_params.function_align; } /* If nopcrelative_literal_loads is set on the command line, this implies that the user asked for PC relative literal loads. */ if (nopcrelative_literal_loads == 1) nopcrelative_literal_loads = 0; /* If it is not set on the command line, we default to no pc relative literal loads. */ if (nopcrelative_literal_loads == 2) nopcrelative_literal_loads = 1; /* In the tiny memory model it makes no sense to disallow non PC relative literal pool loads as many other things will break anyway. */ if (nopcrelative_literal_loads && (aarch64_cmodel == AARCH64_CMODEL_TINY || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)) nopcrelative_literal_loads = 0; } /* 'Unpack' up the internal tuning structs and update the options in OPTS. The caller must have set up selected_tune and selected_arch as all the other target-specific codegen decisions are derived from them. */ void aarch64_override_options_internal (struct gcc_options *opts) { aarch64_tune_flags = selected_tune->flags; aarch64_tune = selected_tune->sched_core; /* Make a copy of the tuning parameters attached to the core, which we may later overwrite. */ aarch64_tune_params = *(selected_tune->tune); aarch64_architecture_version = selected_arch->architecture_version; if (opts->x_aarch64_override_tune_string) aarch64_parse_override_string (opts->x_aarch64_override_tune_string, &aarch64_tune_params); /* This target defaults to strict volatile bitfields. */ if (opts->x_flag_strict_volatile_bitfields < 0 && abi_version_at_least (2)) opts->x_flag_strict_volatile_bitfields = 1; /* -mgeneral-regs-only sets a mask in target_flags, make sure that aarch64_isa_flags does not contain the FP/SIMD/Crypto feature flags in case some code tries reading aarch64_isa_flags directly to check if FP is available. Reuse the aarch64_parse_extension machinery since it knows how to disable any other flags that fp implies. */ if (TARGET_GENERAL_REGS_ONLY_P (opts->x_target_flags)) { /* aarch64_parse_extension takes char* rather than const char* because it is usually called from within other parsing functions. */ char tmp_str[] = "+nofp"; aarch64_parse_extension (tmp_str, &opts->x_aarch64_isa_flags); } initialize_aarch64_code_model (opts); initialize_aarch64_tls_size (opts); aarch64_override_options_after_change_1 (opts); } /* Validate a command-line -mcpu option. Parse the cpu and extensions (if any) specified in STR and throw errors if appropriate. Put the results if they are valid in RES and ISA_FLAGS. Return whether the option is valid. */ static bool aarch64_validate_mcpu (const char *str, const struct processor **res, unsigned long *isa_flags) { enum aarch64_parse_opt_result parse_res = aarch64_parse_cpu (str, res, isa_flags); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing cpu name in -mcpu=%qs", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -mcpu", str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier in -mcpu=%qs", str); break; default: gcc_unreachable (); } return false; } /* Validate a command-line -march option. Parse the arch and extensions (if any) specified in STR and throw errors if appropriate. Put the results, if they are valid, in RES and ISA_FLAGS. Return whether the option is valid. */ static bool aarch64_validate_march (const char *str, const struct processor **res, unsigned long *isa_flags) { enum aarch64_parse_opt_result parse_res = aarch64_parse_arch (str, res, isa_flags); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing arch name in -march=%qs", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -march", str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier in -march=%qs", str); break; default: gcc_unreachable (); } return false; } /* Validate a command-line -mtune option. Parse the cpu specified in STR and throw errors if appropriate. Put the result, if it is valid, in RES. Return whether the option is valid. */ static bool aarch64_validate_mtune (const char *str, const struct processor **res) { enum aarch64_parse_opt_result parse_res = aarch64_parse_tune (str, res); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing cpu name in -mtune=%qs", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -mtune", str); break; default: gcc_unreachable (); } return false; } /* Return the CPU corresponding to the enum CPU. If it doesn't specify a cpu, return the default. */ static const struct processor * aarch64_get_tune_cpu (enum aarch64_processor cpu) { if (cpu != aarch64_none) return &all_cores[cpu]; /* The & 0x3f is to extract the bottom 6 bits that encode the default cpu as selected by the --with-cpu GCC configure option in config.gcc. ???: The whole TARGET_CPU_DEFAULT and AARCH64_CPU_DEFAULT_FLAGS flags mechanism should be reworked to make it more sane. */ return &all_cores[TARGET_CPU_DEFAULT & 0x3f]; } /* Return the architecture corresponding to the enum ARCH. If it doesn't specify a valid architecture, return the default. */ static const struct processor * aarch64_get_arch (enum aarch64_arch arch) { if (arch != aarch64_no_arch) return &all_architectures[arch]; const struct processor *cpu = &all_cores[TARGET_CPU_DEFAULT & 0x3f]; return &all_architectures[cpu->arch]; } /* Implement TARGET_OPTION_OVERRIDE. This is called once in the beginning and is used to parse the -m{cpu,tune,arch} strings and setup the initial tuning structs. In particular it must set selected_tune and aarch64_isa_flags that define the available ISA features and tuning decisions. It must also set selected_arch as this will be used to output the .arch asm tags for each function. */ static void aarch64_override_options (void) { unsigned long cpu_isa = 0; unsigned long arch_isa = 0; aarch64_isa_flags = 0; bool valid_cpu = true; bool valid_tune = true; bool valid_arch = true; selected_cpu = NULL; selected_arch = NULL; selected_tune = NULL; /* -mcpu=CPU is shorthand for -march=ARCH_FOR_CPU, -mtune=CPU. If either of -march or -mtune is given, they override their respective component of -mcpu. */ if (aarch64_cpu_string) valid_cpu = aarch64_validate_mcpu (aarch64_cpu_string, &selected_cpu, &cpu_isa); if (aarch64_arch_string) valid_arch = aarch64_validate_march (aarch64_arch_string, &selected_arch, &arch_isa); if (aarch64_tune_string) valid_tune = aarch64_validate_mtune (aarch64_tune_string, &selected_tune); /* If the user did not specify a processor, choose the default one for them. This will be the CPU set during configuration using --with-cpu, otherwise it is "generic". */ if (!selected_cpu) { if (selected_arch) { selected_cpu = &all_cores[selected_arch->ident]; aarch64_isa_flags = arch_isa; explicit_arch = selected_arch->arch; } else { /* Get default configure-time CPU. */ selected_cpu = aarch64_get_tune_cpu (aarch64_none); aarch64_isa_flags = TARGET_CPU_DEFAULT >> 6; } if (selected_tune) explicit_tune_core = selected_tune->ident; } /* If both -mcpu and -march are specified check that they are architecturally compatible, warn if they're not and prefer the -march ISA flags. */ else if (selected_arch) { if (selected_arch->arch != selected_cpu->arch) { warning (0, "switch -mcpu=%s conflicts with -march=%s switch", all_architectures[selected_cpu->arch].name, selected_arch->name); } aarch64_isa_flags = arch_isa; explicit_arch = selected_arch->arch; explicit_tune_core = selected_tune ? selected_tune->ident : selected_cpu->ident; } else { /* -mcpu but no -march. */ aarch64_isa_flags = cpu_isa; explicit_tune_core = selected_tune ? selected_tune->ident : selected_cpu->ident; gcc_assert (selected_cpu); selected_arch = &all_architectures[selected_cpu->arch]; explicit_arch = selected_arch->arch; } /* Set the arch as well as we will need it when outputing the .arch directive in assembly. */ if (!selected_arch) { gcc_assert (selected_cpu); selected_arch = &all_architectures[selected_cpu->arch]; } if (!selected_tune) selected_tune = selected_cpu; #ifndef HAVE_AS_MABI_OPTION /* The compiler may have been configured with 2.23.* binutils, which does not have support for ILP32. */ if (TARGET_ILP32) error ("Assembler does not support -mabi=ilp32"); #endif /* Make sure we properly set up the explicit options. */ if ((aarch64_cpu_string && valid_cpu) || (aarch64_tune_string && valid_tune)) gcc_assert (explicit_tune_core != aarch64_none); if ((aarch64_cpu_string && valid_cpu) || (aarch64_arch_string && valid_arch)) gcc_assert (explicit_arch != aarch64_no_arch); aarch64_override_options_internal (&global_options); /* Save these options as the default ones in case we push and pop them later while processing functions with potential target attributes. */ target_option_default_node = target_option_current_node = build_target_option_node (&global_options); aarch64_register_fma_steering (); } /* Implement targetm.override_options_after_change. */ static void aarch64_override_options_after_change (void) { aarch64_override_options_after_change_1 (&global_options); } static struct machine_function * aarch64_init_machine_status (void) { struct machine_function *machine; machine = ggc_cleared_alloc (); return machine; } void aarch64_init_expanders (void) { init_machine_status = aarch64_init_machine_status; } /* A checking mechanism for the implementation of the various code models. */ static void initialize_aarch64_code_model (struct gcc_options *opts) { if (opts->x_flag_pic) { switch (opts->x_aarch64_cmodel_var) { case AARCH64_CMODEL_TINY: aarch64_cmodel = AARCH64_CMODEL_TINY_PIC; break; case AARCH64_CMODEL_SMALL: #ifdef HAVE_AS_SMALL_PIC_RELOCS aarch64_cmodel = (flag_pic == 2 ? AARCH64_CMODEL_SMALL_PIC : AARCH64_CMODEL_SMALL_SPIC); #else aarch64_cmodel = AARCH64_CMODEL_SMALL_PIC; #endif break; case AARCH64_CMODEL_LARGE: sorry ("code model %qs with -f%s", "large", opts->x_flag_pic > 1 ? "PIC" : "pic"); break; default: gcc_unreachable (); } } else aarch64_cmodel = opts->x_aarch64_cmodel_var; } /* Implement TARGET_OPTION_SAVE. */ static void aarch64_option_save (struct cl_target_option *ptr, struct gcc_options *opts) { ptr->x_aarch64_override_tune_string = opts->x_aarch64_override_tune_string; } /* Implements TARGET_OPTION_RESTORE. Restore the backend codegen decisions using the information saved in PTR. */ static void aarch64_option_restore (struct gcc_options *opts, struct cl_target_option *ptr) { opts->x_explicit_tune_core = ptr->x_explicit_tune_core; selected_tune = aarch64_get_tune_cpu (ptr->x_explicit_tune_core); opts->x_explicit_arch = ptr->x_explicit_arch; selected_arch = aarch64_get_arch (ptr->x_explicit_arch); opts->x_aarch64_override_tune_string = ptr->x_aarch64_override_tune_string; aarch64_override_options_internal (opts); } /* Implement TARGET_OPTION_PRINT. */ static void aarch64_option_print (FILE *file, int indent, struct cl_target_option *ptr) { const struct processor *cpu = aarch64_get_tune_cpu (ptr->x_explicit_tune_core); unsigned long isa_flags = ptr->x_aarch64_isa_flags; const struct processor *arch = aarch64_get_arch (ptr->x_explicit_arch); std::string extension = aarch64_get_extension_string_for_isa_flags (isa_flags); fprintf (file, "%*sselected tune = %s\n", indent, "", cpu->name); fprintf (file, "%*sselected arch = %s%s\n", indent, "", arch->name, extension.c_str ()); } static GTY(()) tree aarch64_previous_fndecl; void aarch64_reset_previous_fndecl (void) { aarch64_previous_fndecl = NULL; } /* Implement TARGET_SET_CURRENT_FUNCTION. Unpack the codegen decisions like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET of the function, if such exists. This function may be called multiple times on a single function so use aarch64_previous_fndecl to avoid setting up identical state. */ static void aarch64_set_current_function (tree fndecl) { tree old_tree = (aarch64_previous_fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (aarch64_previous_fndecl) : NULL_TREE); tree new_tree = (fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (fndecl) : NULL_TREE); if (fndecl && fndecl != aarch64_previous_fndecl) { aarch64_previous_fndecl = fndecl; if (old_tree == new_tree) ; else if (new_tree && new_tree != target_option_default_node) { cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree)); if (TREE_TARGET_GLOBALS (new_tree)) restore_target_globals (TREE_TARGET_GLOBALS (new_tree)); else TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts (); } else if (old_tree && old_tree != target_option_default_node) { new_tree = target_option_current_node; cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree)); if (TREE_TARGET_GLOBALS (new_tree)) restore_target_globals (TREE_TARGET_GLOBALS (new_tree)); else if (new_tree == target_option_default_node) restore_target_globals (&default_target_globals); else TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts (); } } if (!fndecl) return; /* If we turned on SIMD make sure that any vector parameters are re-laid out so that they use proper vector modes. */ if (TARGET_SIMD) { tree parms = DECL_ARGUMENTS (fndecl); for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms)) { if (TREE_CODE (parms) == PARM_DECL && VECTOR_TYPE_P (TREE_TYPE (parms)) && DECL_MODE (parms) != TYPE_MODE (TREE_TYPE (parms))) relayout_decl (parms); } } } /* Enum describing the various ways we can handle attributes. In many cases we can reuse the generic option handling machinery. */ enum aarch64_attr_opt_type { aarch64_attr_mask, /* Attribute should set a bit in target_flags. */ aarch64_attr_bool, /* Attribute sets or unsets a boolean variable. */ aarch64_attr_enum, /* Attribute sets an enum variable. */ aarch64_attr_custom /* Attribute requires a custom handling function. */ }; /* All the information needed to handle a target attribute. NAME is the name of the attribute. ATTR_TYPE specifies the type of behaviour of the attribute as described in the definition of enum aarch64_attr_opt_type. ALLOW_NEG is true if the attribute supports a "no-" form. HANDLER is the function that takes the attribute string and whether it is a pragma or attribute and handles the option. It is needed only when the ATTR_TYPE is aarch64_attr_custom. OPT_NUM is the enum specifying the option that the attribute modifies. This is needed for attributes that mirror the behaviour of a command-line option, that is it has ATTR_TYPE aarch64_attr_mask, aarch64_attr_bool or aarch64_attr_enum. */ struct aarch64_attribute_info { const char *name; enum aarch64_attr_opt_type attr_type; bool allow_neg; bool (*handler) (const char *, const char *); enum opt_code opt_num; }; /* Handle the ARCH_STR argument to the arch= target attribute. PRAGMA_OR_ATTR is used in potential error messages. */ static bool aarch64_handle_attr_arch (const char *str, const char *pragma_or_attr) { const struct processor *tmp_arch = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_arch (str, &tmp_arch, &aarch64_isa_flags); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_arch); selected_arch = tmp_arch; explicit_arch = selected_arch->arch; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing architecture name in 'arch' target %s", pragma_or_attr); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for 'arch' target %s", str, pragma_or_attr); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier %qs for 'arch' target %s", str, pragma_or_attr); break; default: gcc_unreachable (); } return false; } /* Handle the argument CPU_STR to the cpu= target attribute. PRAGMA_OR_ATTR is used in potential error messages. */ static bool aarch64_handle_attr_cpu (const char *str, const char *pragma_or_attr) { const struct processor *tmp_cpu = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_cpu (str, &tmp_cpu, &aarch64_isa_flags); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_cpu); selected_tune = tmp_cpu; explicit_tune_core = selected_tune->ident; selected_arch = &all_architectures[tmp_cpu->arch]; explicit_arch = selected_arch->arch; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing cpu name in 'cpu' target %s", pragma_or_attr); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for 'cpu' target %s", str, pragma_or_attr); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier %qs for 'cpu' target %s", str, pragma_or_attr); break; default: gcc_unreachable (); } return false; } /* Handle the argument STR to the tune= target attribute. PRAGMA_OR_ATTR is used in potential error messages. */ static bool aarch64_handle_attr_tune (const char *str, const char *pragma_or_attr) { const struct processor *tmp_tune = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_tune (str, &tmp_tune); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_tune); selected_tune = tmp_tune; explicit_tune_core = selected_tune->ident; return true; } switch (parse_res) { case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for 'tune' target %s", str, pragma_or_attr); break; default: gcc_unreachable (); } return false; } /* Parse an architecture extensions target attribute string specified in STR. For example "+fp+nosimd". Show any errors if needed. Return TRUE if successful. Update aarch64_isa_flags to reflect the ISA features modified. PRAGMA_OR_ATTR is used in potential error messages. */ static bool aarch64_handle_attr_isa_flags (char *str, const char *pragma_or_attr) { enum aarch64_parse_opt_result parse_res; unsigned long isa_flags = aarch64_isa_flags; /* We allow "+nothing" in the beginning to clear out all architectural features if the user wants to handpick specific features. */ if (strncmp ("+nothing", str, 8) == 0) { isa_flags = 0; str += 8; } parse_res = aarch64_parse_extension (str, &isa_flags); if (parse_res == AARCH64_PARSE_OK) { aarch64_isa_flags = isa_flags; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing feature modifier in target %s %qs", pragma_or_attr, str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier in target %s %qs", pragma_or_attr, str); break; default: gcc_unreachable (); } return false; } /* The target attributes that we support. On top of these we also support just ISA extensions, like __attribute__ ((target ("+crc"))), but that case is handled explicitly in aarch64_process_one_target_attr. */ static const struct aarch64_attribute_info aarch64_attributes[] = { { "general-regs-only", aarch64_attr_mask, false, NULL, OPT_mgeneral_regs_only }, { "fix-cortex-a53-835769", aarch64_attr_bool, true, NULL, OPT_mfix_cortex_a53_835769 }, { "cmodel", aarch64_attr_enum, false, NULL, OPT_mcmodel_ }, { "strict-align", aarch64_attr_mask, false, NULL, OPT_mstrict_align }, { "omit-leaf-frame-pointer", aarch64_attr_bool, true, NULL, OPT_momit_leaf_frame_pointer }, { "tls-dialect", aarch64_attr_enum, false, NULL, OPT_mtls_dialect_ }, { "arch", aarch64_attr_custom, false, aarch64_handle_attr_arch, OPT_march_ }, { "cpu", aarch64_attr_custom, false, aarch64_handle_attr_cpu, OPT_mcpu_ }, { "tune", aarch64_attr_custom, false, aarch64_handle_attr_tune, OPT_mtune_ }, { NULL, aarch64_attr_custom, false, NULL, OPT____ } }; /* Parse ARG_STR which contains the definition of one target attribute. Show appropriate errors if any or return true if the attribute is valid. PRAGMA_OR_ATTR holds the string to use in error messages about whether we're processing a target attribute or pragma. */ static bool aarch64_process_one_target_attr (char *arg_str, const char* pragma_or_attr) { bool invert = false; size_t len = strlen (arg_str); if (len == 0) { error ("malformed target %s", pragma_or_attr); return false; } char *str_to_check = (char *) alloca (len + 1); strcpy (str_to_check, arg_str); /* Skip leading whitespace. */ while (*str_to_check == ' ' || *str_to_check == '\t') str_to_check++; /* We have something like __attribute__ ((target ("+fp+nosimd"))). It is easier to detect and handle it explicitly here rather than going through the machinery for the rest of the target attributes in this function. */ if (*str_to_check == '+') return aarch64_handle_attr_isa_flags (str_to_check, pragma_or_attr); if (len > 3 && strncmp (str_to_check, "no-", 3) == 0) { invert = true; str_to_check += 3; } char *arg = strchr (str_to_check, '='); /* If we found opt=foo then terminate STR_TO_CHECK at the '=' and point ARG to "foo". */ if (arg) { *arg = '\0'; arg++; } const struct aarch64_attribute_info *p_attr; for (p_attr = aarch64_attributes; p_attr->name; p_attr++) { /* If the names don't match up, or the user has given an argument to an attribute that doesn't accept one, or didn't give an argument to an attribute that expects one, fail to match. */ if (strcmp (str_to_check, p_attr->name) != 0) continue; bool attr_need_arg_p = p_attr->attr_type == aarch64_attr_custom || p_attr->attr_type == aarch64_attr_enum; if (attr_need_arg_p ^ (arg != NULL)) { error ("target %s %qs does not accept an argument", pragma_or_attr, str_to_check); return false; } /* If the name matches but the attribute does not allow "no-" versions then we can't match. */ if (invert && !p_attr->allow_neg) { error ("target %s %qs does not allow a negated form", pragma_or_attr, str_to_check); return false; } switch (p_attr->attr_type) { /* Has a custom handler registered. For example, cpu=, arch=, tune=. */ case aarch64_attr_custom: gcc_assert (p_attr->handler); if (!p_attr->handler (arg, pragma_or_attr)) return false; break; /* Either set or unset a boolean option. */ case aarch64_attr_bool: { struct cl_decoded_option decoded; generate_option (p_attr->opt_num, NULL, !invert, CL_TARGET, &decoded); aarch64_handle_option (&global_options, &global_options_set, &decoded, input_location); break; } /* Set or unset a bit in the target_flags. aarch64_handle_option should know what mask to apply given the option number. */ case aarch64_attr_mask: { struct cl_decoded_option decoded; /* We only need to specify the option number. aarch64_handle_option will know which mask to apply. */ decoded.opt_index = p_attr->opt_num; decoded.value = !invert; aarch64_handle_option (&global_options, &global_options_set, &decoded, input_location); break; } /* Use the option setting machinery to set an option to an enum. */ case aarch64_attr_enum: { gcc_assert (arg); bool valid; int value; valid = opt_enum_arg_to_value (p_attr->opt_num, arg, &value, CL_TARGET); if (valid) { set_option (&global_options, NULL, p_attr->opt_num, value, NULL, DK_UNSPECIFIED, input_location, global_dc); } else { error ("target %s %s=%s is not valid", pragma_or_attr, str_to_check, arg); } break; } default: gcc_unreachable (); } } return true; } /* Count how many times the character C appears in NULL-terminated string STR. */ static unsigned int num_occurences_in_str (char c, char *str) { unsigned int res = 0; while (*str != '\0') { if (*str == c) res++; str++; } return res; } /* Parse the tree in ARGS that contains the target attribute information and update the global target options space. PRAGMA_OR_ATTR is a string to be used in error messages, specifying whether this is processing a target attribute or a target pragma. */ bool aarch64_process_target_attr (tree args, const char* pragma_or_attr) { if (TREE_CODE (args) == TREE_LIST) { do { tree head = TREE_VALUE (args); if (head) { if (!aarch64_process_target_attr (head, pragma_or_attr)) return false; } args = TREE_CHAIN (args); } while (args); return true; } /* We expect to find a string to parse. */ gcc_assert (TREE_CODE (args) == STRING_CST); size_t len = strlen (TREE_STRING_POINTER (args)); char *str_to_check = (char *) alloca (len + 1); strcpy (str_to_check, TREE_STRING_POINTER (args)); if (len == 0) { error ("malformed target %s value", pragma_or_attr); return false; } /* Used to catch empty spaces between commas i.e. attribute ((target ("attr1,,attr2"))). */ unsigned int num_commas = num_occurences_in_str (',', str_to_check); /* Handle multiple target attributes separated by ','. */ char *token = strtok (str_to_check, ","); unsigned int num_attrs = 0; while (token) { num_attrs++; if (!aarch64_process_one_target_attr (token, pragma_or_attr)) { error ("target %s %qs is invalid", pragma_or_attr, token); return false; } token = strtok (NULL, ","); } if (num_attrs != num_commas + 1) { error ("malformed target %s list %qs", pragma_or_attr, TREE_STRING_POINTER (args)); return false; } return true; } /* Implement TARGET_OPTION_VALID_ATTRIBUTE_P. This is used to process attribute ((target ("..."))). */ static bool aarch64_option_valid_attribute_p (tree fndecl, tree, tree args, int) { struct cl_target_option cur_target; bool ret; tree old_optimize; tree new_target, new_optimize; tree existing_target = DECL_FUNCTION_SPECIFIC_TARGET (fndecl); /* If what we're processing is the current pragma string then the target option node is already stored in target_option_current_node by aarch64_pragma_target_parse in aarch64-c.c. Use that to avoid having to re-parse the string. This is especially useful to keep arm_neon.h compile times down since that header contains a lot of intrinsics enclosed in pragmas. */ if (!existing_target && args == current_target_pragma) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = target_option_current_node; return true; } tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); old_optimize = build_optimization_node (&global_options); func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); /* If the function changed the optimization levels as well as setting target options, start with the optimizations specified. */ if (func_optimize && func_optimize != old_optimize) cl_optimization_restore (&global_options, TREE_OPTIMIZATION (func_optimize)); /* Save the current target options to restore at the end. */ cl_target_option_save (&cur_target, &global_options); /* If fndecl already has some target attributes applied to it, unpack them so that we add this attribute on top of them, rather than overwriting them. */ if (existing_target) { struct cl_target_option *existing_options = TREE_TARGET_OPTION (existing_target); if (existing_options) cl_target_option_restore (&global_options, existing_options); } else cl_target_option_restore (&global_options, TREE_TARGET_OPTION (target_option_current_node)); ret = aarch64_process_target_attr (args, "attribute"); /* Set up any additional state. */ if (ret) { aarch64_override_options_internal (&global_options); /* Initialize SIMD builtins if we haven't already. Set current_target_pragma to NULL for the duration so that the builtin initialization code doesn't try to tag the functions being built with the attributes specified by any current pragma, thus going into an infinite recursion. */ if (TARGET_SIMD) { tree saved_current_target_pragma = current_target_pragma; current_target_pragma = NULL; aarch64_init_simd_builtins (); current_target_pragma = saved_current_target_pragma; } new_target = build_target_option_node (&global_options); } else new_target = NULL; new_optimize = build_optimization_node (&global_options); if (fndecl && ret) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target; if (old_optimize != new_optimize) DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize; } cl_target_option_restore (&global_options, &cur_target); if (old_optimize != new_optimize) cl_optimization_restore (&global_options, TREE_OPTIMIZATION (old_optimize)); return ret; } /* Helper for aarch64_can_inline_p. In the case where CALLER and CALLEE are tri-bool options (yes, no, don't care) and the default value is DEF, determine whether to reject inlining. */ static bool aarch64_tribools_ok_for_inlining_p (int caller, int callee, int dont_care, int def) { /* If the callee doesn't care, always allow inlining. */ if (callee == dont_care) return true; /* If the caller doesn't care, always allow inlining. */ if (caller == dont_care) return true; /* Otherwise, allow inlining if either the callee and caller values agree, or if the callee is using the default value. */ return (callee == caller || callee == def); } /* Implement TARGET_CAN_INLINE_P. Decide whether it is valid to inline CALLEE into CALLER based on target-specific info. Make sure that the caller and callee have compatible architectural features. Then go through the other possible target attributes and see if they can block inlining. Try not to reject always_inline callees unless they are incompatible architecturally. */ static bool aarch64_can_inline_p (tree caller, tree callee) { tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); /* If callee has no option attributes, then it is ok to inline. */ if (!callee_tree) return true; struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree ? caller_tree : target_option_default_node); struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree); /* Callee's ISA flags should be a subset of the caller's. */ if ((caller_opts->x_aarch64_isa_flags & callee_opts->x_aarch64_isa_flags) != callee_opts->x_aarch64_isa_flags) return false; /* Allow non-strict aligned functions inlining into strict aligned ones. */ if ((TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags) != TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags)) && !(!TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags) && TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags))) return false; bool always_inline = lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)); /* If the architectural features match up and the callee is always_inline then the other attributes don't matter. */ if (always_inline) return true; if (caller_opts->x_aarch64_cmodel_var != callee_opts->x_aarch64_cmodel_var) return false; if (caller_opts->x_aarch64_tls_dialect != callee_opts->x_aarch64_tls_dialect) return false; /* Honour explicit requests to workaround errata. */ if (!aarch64_tribools_ok_for_inlining_p ( caller_opts->x_aarch64_fix_a53_err835769, callee_opts->x_aarch64_fix_a53_err835769, 2, TARGET_FIX_ERR_A53_835769_DEFAULT)) return false; /* If the user explicitly specified -momit-leaf-frame-pointer for the caller and calle and they don't match up, reject inlining. */ if (!aarch64_tribools_ok_for_inlining_p ( caller_opts->x_flag_omit_leaf_frame_pointer, callee_opts->x_flag_omit_leaf_frame_pointer, 2, 1)) return false; /* If the callee has specific tuning overrides, respect them. */ if (callee_opts->x_aarch64_override_tune_string != NULL && caller_opts->x_aarch64_override_tune_string == NULL) return false; /* If the user specified tuning override strings for the caller and callee and they don't match up, reject inlining. We just do a string compare here, we don't analyze the meaning of the string, as it would be too costly for little gain. */ if (callee_opts->x_aarch64_override_tune_string && caller_opts->x_aarch64_override_tune_string && (strcmp (callee_opts->x_aarch64_override_tune_string, caller_opts->x_aarch64_override_tune_string) != 0)) return false; return true; } /* Return true if SYMBOL_REF X binds locally. */ static bool aarch64_symbol_binds_local_p (const_rtx x) { return (SYMBOL_REF_DECL (x) ? targetm.binds_local_p (SYMBOL_REF_DECL (x)) : SYMBOL_REF_LOCAL_P (x)); } /* Return true if SYMBOL_REF X is thread local */ static bool aarch64_tls_symbol_p (rtx x) { if (! TARGET_HAVE_TLS) return false; if (GET_CODE (x) != SYMBOL_REF) return false; return SYMBOL_REF_TLS_MODEL (x) != 0; } /* Classify a TLS symbol into one of the TLS kinds. */ enum aarch64_symbol_type aarch64_classify_tls_symbol (rtx x) { enum tls_model tls_kind = tls_symbolic_operand_type (x); switch (tls_kind) { case TLS_MODEL_GLOBAL_DYNAMIC: case TLS_MODEL_LOCAL_DYNAMIC: return TARGET_TLS_DESC ? SYMBOL_SMALL_TLSDESC : SYMBOL_SMALL_TLSGD; case TLS_MODEL_INITIAL_EXEC: switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: case AARCH64_CMODEL_TINY_PIC: return SYMBOL_TINY_TLSIE; default: return SYMBOL_SMALL_TLSIE; } case TLS_MODEL_LOCAL_EXEC: if (aarch64_tls_size == 12) return SYMBOL_TLSLE12; else if (aarch64_tls_size == 24) return SYMBOL_TLSLE24; else if (aarch64_tls_size == 32) return SYMBOL_TLSLE32; else if (aarch64_tls_size == 48) return SYMBOL_TLSLE48; else gcc_unreachable (); case TLS_MODEL_EMULATED: case TLS_MODEL_NONE: return SYMBOL_FORCE_TO_MEM; default: gcc_unreachable (); } } /* Return the method that should be used to access SYMBOL_REF or LABEL_REF X. */ enum aarch64_symbol_type aarch64_classify_symbol (rtx x, rtx offset) { if (GET_CODE (x) == LABEL_REF) { switch (aarch64_cmodel) { case AARCH64_CMODEL_LARGE: return SYMBOL_FORCE_TO_MEM; case AARCH64_CMODEL_TINY_PIC: case AARCH64_CMODEL_TINY: return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL_SPIC: case AARCH64_CMODEL_SMALL_PIC: case AARCH64_CMODEL_SMALL: return SYMBOL_SMALL_ABSOLUTE; default: gcc_unreachable (); } } if (GET_CODE (x) == SYMBOL_REF) { if (aarch64_cmodel == AARCH64_CMODEL_LARGE) { /* This is alright even in PIC code as the constant pool reference is always PC relative and within the same translation unit. */ if (nopcrelative_literal_loads && CONSTANT_POOL_ADDRESS_P (x)) return SYMBOL_SMALL_ABSOLUTE; else return SYMBOL_FORCE_TO_MEM; } if (aarch64_tls_symbol_p (x)) return aarch64_classify_tls_symbol (x); switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: /* When we retreive symbol + offset address, we have to make sure the offset does not cause overflow of the final address. But we have no way of knowing the address of symbol at compile time so we can't accurately say if the distance between the PC and symbol + offset is outside the addressible range of +/-1M in the TINY code model. So we rely on images not being greater than 1M and cap the offset at 1M and anything beyond 1M will have to be loaded using an alternative mechanism. */ if (SYMBOL_REF_WEAK (x) || INTVAL (offset) < -1048575 || INTVAL (offset) > 1048575) return SYMBOL_FORCE_TO_MEM; return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL: /* Same reasoning as the tiny code model, but the offset cap here is 4G. */ if (SYMBOL_REF_WEAK (x) || !IN_RANGE (INTVAL (offset), HOST_WIDE_INT_C (-4294967263), HOST_WIDE_INT_C (4294967264))) return SYMBOL_FORCE_TO_MEM; return SYMBOL_SMALL_ABSOLUTE; case AARCH64_CMODEL_TINY_PIC: if (!aarch64_symbol_binds_local_p (x)) return SYMBOL_TINY_GOT; return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL_SPIC: case AARCH64_CMODEL_SMALL_PIC: if (!aarch64_symbol_binds_local_p (x)) return (aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC ? SYMBOL_SMALL_GOT_28K : SYMBOL_SMALL_GOT_4G); return SYMBOL_SMALL_ABSOLUTE; default: gcc_unreachable (); } } /* By default push everything into the constant pool. */ return SYMBOL_FORCE_TO_MEM; } bool aarch64_constant_address_p (rtx x) { return (CONSTANT_P (x) && memory_address_p (DImode, x)); } bool aarch64_legitimate_pic_operand_p (rtx x) { if (GET_CODE (x) == SYMBOL_REF || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)) return false; return true; } /* Return true if X holds either a quarter-precision or floating-point +0.0 constant. */ static bool aarch64_valid_floating_const (machine_mode mode, rtx x) { if (!CONST_DOUBLE_P (x)) return false; if (aarch64_float_const_zero_rtx_p (x)) return true; /* We only handle moving 0.0 to a TFmode register. */ if (!(mode == SFmode || mode == DFmode)) return false; return aarch64_float_const_representable_p (x); } static bool aarch64_legitimate_constant_p (machine_mode mode, rtx x) { /* Do not allow vector struct mode constants. We could support 0 and -1 easily, but they need support in aarch64-simd.md. */ if (TARGET_SIMD && aarch64_vect_struct_mode_p (mode)) return false; /* This could probably go away because we now decompose CONST_INTs according to expand_mov_immediate. */ if ((GET_CODE (x) == CONST_VECTOR && aarch64_simd_valid_immediate (x, mode, false, NULL)) || CONST_INT_P (x) || aarch64_valid_floating_const (mode, x)) return !targetm.cannot_force_const_mem (mode, x); if (GET_CODE (x) == HIGH && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0)))) return true; return aarch64_constant_address_p (x); } rtx aarch64_load_tp (rtx target) { if (!target || GET_MODE (target) != Pmode || !register_operand (target, Pmode)) target = gen_reg_rtx (Pmode); /* Can return in any reg. */ emit_insn (gen_aarch64_load_tp_hard (target)); return target; } /* On AAPCS systems, this is the "struct __va_list". */ static GTY(()) tree va_list_type; /* Implement TARGET_BUILD_BUILTIN_VA_LIST. Return the type to use as __builtin_va_list. AAPCS64 \S 7.1.4 requires that va_list be a typedef for a type defined as: struct __va_list { void *__stack; void *__gr_top; void *__vr_top; int __gr_offs; int __vr_offs; }; */ static tree aarch64_build_builtin_va_list (void) { tree va_list_name; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; /* Create the type. */ va_list_type = lang_hooks.types.make_type (RECORD_TYPE); /* Give it the required name. */ va_list_name = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list"), va_list_type); DECL_ARTIFICIAL (va_list_name) = 1; TYPE_NAME (va_list_type) = va_list_name; TYPE_STUB_DECL (va_list_type) = va_list_name; /* Create the fields. */ f_stack = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__stack"), ptr_type_node); f_grtop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gr_top"), ptr_type_node); f_vrtop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__vr_top"), ptr_type_node); f_groff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gr_offs"), integer_type_node); f_vroff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__vr_offs"), integer_type_node); DECL_ARTIFICIAL (f_stack) = 1; DECL_ARTIFICIAL (f_grtop) = 1; DECL_ARTIFICIAL (f_vrtop) = 1; DECL_ARTIFICIAL (f_groff) = 1; DECL_ARTIFICIAL (f_vroff) = 1; DECL_FIELD_CONTEXT (f_stack) = va_list_type; DECL_FIELD_CONTEXT (f_grtop) = va_list_type; DECL_FIELD_CONTEXT (f_vrtop) = va_list_type; DECL_FIELD_CONTEXT (f_groff) = va_list_type; DECL_FIELD_CONTEXT (f_vroff) = va_list_type; TYPE_FIELDS (va_list_type) = f_stack; DECL_CHAIN (f_stack) = f_grtop; DECL_CHAIN (f_grtop) = f_vrtop; DECL_CHAIN (f_vrtop) = f_groff; DECL_CHAIN (f_groff) = f_vroff; /* Compute its layout. */ layout_type (va_list_type); return va_list_type; } /* Implement TARGET_EXPAND_BUILTIN_VA_START. */ static void aarch64_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED) { const CUMULATIVE_ARGS *cum; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; tree stack, grtop, vrtop, groff, vroff; tree t; int gr_save_area_size; int vr_save_area_size; int vr_offset; cum = &crtl->args.info; gr_save_area_size = (NUM_ARG_REGS - cum->aapcs_ncrn) * UNITS_PER_WORD; vr_save_area_size = (NUM_FP_ARG_REGS - cum->aapcs_nvrn) * UNITS_PER_VREG; if (!TARGET_FLOAT) { gcc_assert (cum->aapcs_nvrn == 0); vr_save_area_size = 0; } f_stack = TYPE_FIELDS (va_list_type_node); f_grtop = DECL_CHAIN (f_stack); f_vrtop = DECL_CHAIN (f_grtop); f_groff = DECL_CHAIN (f_vrtop); f_vroff = DECL_CHAIN (f_groff); stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), valist, f_stack, NULL_TREE); grtop = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), valist, f_grtop, NULL_TREE); vrtop = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), valist, f_vrtop, NULL_TREE); groff = build3 (COMPONENT_REF, TREE_TYPE (f_groff), valist, f_groff, NULL_TREE); vroff = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), valist, f_vroff, NULL_TREE); /* Emit code to initialize STACK, which points to the next varargs stack argument. CUM->AAPCS_STACK_SIZE gives the number of stack words used by named arguments. STACK is 8-byte aligned. */ t = make_tree (TREE_TYPE (stack), virtual_incoming_args_rtx); if (cum->aapcs_stack_size > 0) t = fold_build_pointer_plus_hwi (t, cum->aapcs_stack_size * UNITS_PER_WORD); t = build2 (MODIFY_EXPR, TREE_TYPE (stack), stack, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GRTOP, the top of the GR save area. virtual_incoming_args_rtx should have been 16 byte aligned. */ t = make_tree (TREE_TYPE (grtop), virtual_incoming_args_rtx); t = build2 (MODIFY_EXPR, TREE_TYPE (grtop), grtop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize VRTOP, the top of the VR save area. This address is gr_save_area_bytes below GRTOP, rounded down to the next 16-byte boundary. */ t = make_tree (TREE_TYPE (vrtop), virtual_incoming_args_rtx); vr_offset = AARCH64_ROUND_UP (gr_save_area_size, STACK_BOUNDARY / BITS_PER_UNIT); if (vr_offset) t = fold_build_pointer_plus_hwi (t, -vr_offset); t = build2 (MODIFY_EXPR, TREE_TYPE (vrtop), vrtop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GROFF, the offset from GRTOP of the next GPR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (groff), groff, build_int_cst (TREE_TYPE (groff), -gr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Likewise emit code to initialize VROFF, the offset from FTOP of the next VR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (vroff), vroff, build_int_cst (TREE_TYPE (vroff), -vr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */ static tree aarch64_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p ATTRIBUTE_UNUSED) { tree addr; bool indirect_p; bool is_ha; /* is HFA or HVA. */ bool dw_align; /* double-word align. */ machine_mode ag_mode = VOIDmode; int nregs; machine_mode mode; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; tree stack, f_top, f_off, off, arg, roundup, on_stack; HOST_WIDE_INT size, rsize, adjust, align; tree t, u, cond1, cond2; indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect_p) type = build_pointer_type (type); mode = TYPE_MODE (type); f_stack = TYPE_FIELDS (va_list_type_node); f_grtop = DECL_CHAIN (f_stack); f_vrtop = DECL_CHAIN (f_grtop); f_groff = DECL_CHAIN (f_vrtop); f_vroff = DECL_CHAIN (f_groff); stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), unshare_expr (valist), f_stack, NULL_TREE); size = int_size_in_bytes (type); align = aarch64_function_arg_alignment (mode, type) / BITS_PER_UNIT; dw_align = false; adjust = 0; if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &nregs, &is_ha)) { /* TYPE passed in fp/simd registers. */ if (!TARGET_FLOAT) aarch64_err_no_fpadvsimd (mode, "varargs"); f_top = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), unshare_expr (valist), f_vrtop, NULL_TREE); f_off = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), unshare_expr (valist), f_vroff, NULL_TREE); rsize = nregs * UNITS_PER_VREG; if (is_ha) { if (BYTES_BIG_ENDIAN && GET_MODE_SIZE (ag_mode) < UNITS_PER_VREG) adjust = UNITS_PER_VREG - GET_MODE_SIZE (ag_mode); } else if (BLOCK_REG_PADDING (mode, type, 1) == downward && size < UNITS_PER_VREG) { adjust = UNITS_PER_VREG - size; } } else { /* TYPE passed in general registers. */ f_top = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), unshare_expr (valist), f_grtop, NULL_TREE); f_off = build3 (COMPONENT_REF, TREE_TYPE (f_groff), unshare_expr (valist), f_groff, NULL_TREE); rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; nregs = rsize / UNITS_PER_WORD; if (align > 8) dw_align = true; if (BLOCK_REG_PADDING (mode, type, 1) == downward && size < UNITS_PER_WORD) { adjust = UNITS_PER_WORD - size; } } /* Get a local temporary for the field value. */ off = get_initialized_tmp_var (f_off, pre_p, NULL); /* Emit code to branch if off >= 0. */ t = build2 (GE_EXPR, boolean_type_node, off, build_int_cst (TREE_TYPE (off), 0)); cond1 = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE); if (dw_align) { /* Emit: offs = (offs + 15) & -16. */ t = build2 (PLUS_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), 15)); t = build2 (BIT_AND_EXPR, TREE_TYPE (off), t, build_int_cst (TREE_TYPE (off), -16)); roundup = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t); } else roundup = NULL; /* Update ap.__[g|v]r_offs */ t = build2 (PLUS_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), rsize)); t = build2 (MODIFY_EXPR, TREE_TYPE (f_off), unshare_expr (f_off), t); /* String up. */ if (roundup) t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t); /* [cond2] if (ap.__[g|v]r_offs > 0) */ u = build2 (GT_EXPR, boolean_type_node, unshare_expr (f_off), build_int_cst (TREE_TYPE (f_off), 0)); cond2 = build3 (COND_EXPR, ptr_type_node, u, NULL_TREE, NULL_TREE); /* String up: make sure the assignment happens before the use. */ t = build2 (COMPOUND_EXPR, TREE_TYPE (cond2), t, cond2); COND_EXPR_ELSE (cond1) = t; /* Prepare the trees handling the argument that is passed on the stack; the top level node will store in ON_STACK. */ arg = get_initialized_tmp_var (stack, pre_p, NULL); if (align > 8) { /* if (alignof(type) > 8) (arg = arg + 15) & -16; */ t = fold_convert (intDI_type_node, arg); t = build2 (PLUS_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), 15)); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -16)); t = fold_convert (TREE_TYPE (arg), t); roundup = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, t); } else roundup = NULL; /* Advance ap.__stack */ t = fold_convert (intDI_type_node, arg); t = build2 (PLUS_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), size + 7)); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -8)); t = fold_convert (TREE_TYPE (arg), t); t = build2 (MODIFY_EXPR, TREE_TYPE (stack), unshare_expr (stack), t); /* String up roundup and advance. */ if (roundup) t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t); /* String up with arg */ on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), t, arg); /* Big-endianness related address adjustment. */ if (BLOCK_REG_PADDING (mode, type, 1) == downward && size < UNITS_PER_WORD) { t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (arg), arg, size_int (UNITS_PER_WORD - size)); on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), on_stack, t); } COND_EXPR_THEN (cond1) = unshare_expr (on_stack); COND_EXPR_THEN (cond2) = unshare_expr (on_stack); /* Adjustment to OFFSET in the case of BIG_ENDIAN. */ t = off; if (adjust) t = build2 (PREINCREMENT_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), adjust)); t = fold_convert (sizetype, t); t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (f_top), f_top, t); if (is_ha) { /* type ha; // treat as "struct {ftype field[n];}" ... [computing offs] for (i = 0; i 0) { rtx ptr, mem; /* virtual_incoming_args_rtx should have been 16-byte aligned. */ ptr = plus_constant (Pmode, virtual_incoming_args_rtx, - gr_saved * UNITS_PER_WORD); mem = gen_frame_mem (BLKmode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); move_block_from_reg (local_cum.aapcs_ncrn + R0_REGNUM, mem, gr_saved); } if (vr_saved > 0) { /* We can't use move_block_from_reg, because it will use the wrong mode, storing D regs only. */ machine_mode mode = TImode; int off, i; /* Set OFF to the offset from virtual_incoming_args_rtx of the first vector register. The VR save area lies below the GR one, and is aligned to 16 bytes. */ off = -AARCH64_ROUND_UP (gr_saved * UNITS_PER_WORD, STACK_BOUNDARY / BITS_PER_UNIT); off -= vr_saved * UNITS_PER_VREG; for (i = local_cum.aapcs_nvrn; i < NUM_FP_ARG_REGS; ++i) { rtx ptr, mem; ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off); mem = gen_frame_mem (mode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); aarch64_emit_move (mem, gen_rtx_REG (mode, V0_REGNUM + i)); off += UNITS_PER_VREG; } } } /* We don't save the size into *PRETEND_SIZE because we want to avoid any complication of having crtl->args.pretend_args_size changed. */ cfun->machine->frame.saved_varargs_size = (AARCH64_ROUND_UP (gr_saved * UNITS_PER_WORD, STACK_BOUNDARY / BITS_PER_UNIT) + vr_saved * UNITS_PER_VREG); } static void aarch64_conditional_register_usage (void) { int i; if (!TARGET_FLOAT) { for (i = V0_REGNUM; i <= V31_REGNUM; i++) { fixed_regs[i] = 1; call_used_regs[i] = 1; } } } /* Walk down the type tree of TYPE counting consecutive base elements. If *MODEP is VOIDmode, then set it to the first valid floating point type. If a non-floating point type is found, or if a floating point type that doesn't match a non-VOIDmode *MODEP is found, then return -1, otherwise return the count in the sub-tree. */ static int aapcs_vfp_sub_candidate (const_tree type, machine_mode *modep) { machine_mode mode; HOST_WIDE_INT size; switch (TREE_CODE (type)) { case REAL_TYPE: mode = TYPE_MODE (type); if (mode != DFmode && mode != SFmode && mode != TFmode) return -1; if (*modep == VOIDmode) *modep = mode; if (*modep == mode) return 1; break; case COMPLEX_TYPE: mode = TYPE_MODE (TREE_TYPE (type)); if (mode != DFmode && mode != SFmode && mode != TFmode) return -1; if (*modep == VOIDmode) *modep = mode; if (*modep == mode) return 2; break; case VECTOR_TYPE: /* Use V2SImode and V4SImode as representatives of all 64-bit and 128-bit vector types. */ size = int_size_in_bytes (type); switch (size) { case 8: mode = V2SImode; break; case 16: mode = V4SImode; break; default: return -1; } if (*modep == VOIDmode) *modep = mode; /* Vector modes are considered to be opaque: two vectors are equivalent for the purposes of being homogeneous aggregates if they are the same size. */ if (*modep == mode) return 1; break; case ARRAY_TYPE: { int count; tree index = TYPE_DOMAIN (type); /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep); if (count == -1 || !index || !TYPE_MAX_VALUE (index) || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index)) || !TYPE_MIN_VALUE (index) || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index)) || count < 0) return -1; count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index)) - tree_to_uhwi (TYPE_MIN_VALUE (index))); /* There must be no padding. */ if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } case RECORD_TYPE: { int count = 0; int sub_count; tree field; /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep); if (sub_count < 0) return -1; count += sub_count; } /* There must be no padding. */ if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } case UNION_TYPE: case QUAL_UNION_TYPE: { /* These aren't very interesting except in a degenerate case. */ int count = 0; int sub_count; tree field; /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep); if (sub_count < 0) return -1; count = count > sub_count ? count : sub_count; } /* There must be no padding. */ if (wi::ne_p (TYPE_SIZE (type), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } default: break; } return -1; } /* Return TRUE if the type, as described by TYPE and MODE, is a short vector type as described in AAPCS64 \S 4.1.2. See the comment above aarch64_composite_type_p for the notes on MODE. */ static bool aarch64_short_vector_p (const_tree type, machine_mode mode) { HOST_WIDE_INT size = -1; if (type && TREE_CODE (type) == VECTOR_TYPE) size = int_size_in_bytes (type); else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT) size = GET_MODE_SIZE (mode); return (size == 8 || size == 16); } /* Return TRUE if the type, as described by TYPE and MODE, is a composite type as described in AAPCS64 \S 4.3. This includes aggregate, union and array types. The C99 floating-point complex types are also considered as composite types, according to AAPCS64 \S 7.1.1. The complex integer types, which are GCC extensions and out of the scope of AAPCS64, are treated as composite types here as well. Note that MODE itself is not sufficient in determining whether a type is such a composite type or not. This is because stor-layout.c:compute_record_mode may have already changed the MODE (BLKmode) of a RECORD_TYPE TYPE to some other mode. For example, a structure with only one field may have its MODE set to the mode of the field. Also an integer mode whose size matches the size of the RECORD_TYPE type may be used to substitute the original mode (i.e. BLKmode) in certain circumstances. In other words, MODE cannot be solely relied on. */ static bool aarch64_composite_type_p (const_tree type, machine_mode mode) { if (aarch64_short_vector_p (type, mode)) return false; if (type && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)) return true; if (mode == BLKmode || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return true; return false; } /* Return TRUE if an argument, whose type is described by TYPE and MODE, shall be passed or returned in simd/fp register(s) (providing these parameter passing registers are available). Upon successful return, *COUNT returns the number of needed registers, *BASE_MODE returns the mode of the individual register and when IS_HAF is not NULL, *IS_HA indicates whether or not the argument is a homogeneous floating-point aggregate or a homogeneous short-vector aggregate. */ static bool aarch64_vfp_is_call_or_return_candidate (machine_mode mode, const_tree type, machine_mode *base_mode, int *count, bool *is_ha) { machine_mode new_mode = VOIDmode; bool composite_p = aarch64_composite_type_p (type, mode); if (is_ha != NULL) *is_ha = false; if ((!composite_p && GET_MODE_CLASS (mode) == MODE_FLOAT) || aarch64_short_vector_p (type, mode)) { *count = 1; new_mode = mode; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { if (is_ha != NULL) *is_ha = true; *count = 2; new_mode = GET_MODE_INNER (mode); } else if (type && composite_p) { int ag_count = aapcs_vfp_sub_candidate (type, &new_mode); if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS) { if (is_ha != NULL) *is_ha = true; *count = ag_count; } else return false; } else return false; *base_mode = new_mode; return true; } /* Implement TARGET_STRUCT_VALUE_RTX. */ static rtx aarch64_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, AARCH64_STRUCT_VALUE_REGNUM); } /* Implements target hook vector_mode_supported_p. */ static bool aarch64_vector_mode_supported_p (machine_mode mode) { if (TARGET_SIMD && (mode == V4SImode || mode == V8HImode || mode == V16QImode || mode == V2DImode || mode == V2SImode || mode == V4HImode || mode == V8QImode || mode == V2SFmode || mode == V4SFmode || mode == V2DFmode || mode == V4HFmode || mode == V8HFmode || mode == V1DFmode)) return true; return false; } /* Return appropriate SIMD container for MODE within a vector of WIDTH bits. */ static machine_mode aarch64_simd_container_mode (machine_mode mode, unsigned width) { gcc_assert (width == 64 || width == 128); if (TARGET_SIMD) { if (width == 128) switch (mode) { case DFmode: return V2DFmode; case SFmode: return V4SFmode; case SImode: return V4SImode; case HImode: return V8HImode; case QImode: return V16QImode; case DImode: return V2DImode; default: break; } else switch (mode) { case SFmode: return V2SFmode; case SImode: return V2SImode; case HImode: return V4HImode; case QImode: return V8QImode; default: break; } } return word_mode; } /* Return 128-bit container as the preferred SIMD mode for MODE. */ static machine_mode aarch64_preferred_simd_mode (machine_mode mode) { return aarch64_simd_container_mode (mode, 128); } /* Return the bitmask of possible vector sizes for the vectorizer to iterate over. */ static unsigned int aarch64_autovectorize_vector_sizes (void) { return (16 | 8); } /* Implement TARGET_MANGLE_TYPE. */ static const char * aarch64_mangle_type (const_tree type) { /* The AArch64 ABI documents say that "__va_list" has to be managled as if it is in the "std" namespace. */ if (lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type)) return "St9__va_list"; /* Half-precision float. */ if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16) return "Dh"; /* Mangle AArch64-specific internal types. TYPE_NAME is non-NULL_TREE for builtin types. */ if (TYPE_NAME (type) != NULL) return aarch64_mangle_builtin_type (type); /* Use the default mangling. */ return NULL; } /* Return true if the rtx_insn contains a MEM RTX somewhere in it. */ static bool has_memory_op (rtx_insn *mem_insn) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, PATTERN (mem_insn), ALL) if (MEM_P (*iter)) return true; return false; } /* Find the first rtx_insn before insn that will generate an assembly instruction. */ static rtx_insn * aarch64_prev_real_insn (rtx_insn *insn) { if (!insn) return NULL; do { insn = prev_real_insn (insn); } while (insn && recog_memoized (insn) < 0); return insn; } static bool is_madd_op (enum attr_type t1) { unsigned int i; /* A number of these may be AArch32 only. */ enum attr_type mlatypes[] = { TYPE_MLA, TYPE_MLAS, TYPE_SMLAD, TYPE_SMLADX, TYPE_SMLAL, TYPE_SMLALD, TYPE_SMLALS, TYPE_SMLALXY, TYPE_SMLAWX, TYPE_SMLAWY, TYPE_SMLAXY, TYPE_SMMLA, TYPE_UMLAL, TYPE_UMLALS,TYPE_SMLSD, TYPE_SMLSDX, TYPE_SMLSLD }; for (i = 0; i < sizeof (mlatypes) / sizeof (enum attr_type); i++) { if (t1 == mlatypes[i]) return true; } return false; } /* Check if there is a register dependency between a load and the insn for which we hold recog_data. */ static bool dep_between_memop_and_curr (rtx memop) { rtx load_reg; int opno; gcc_assert (GET_CODE (memop) == SET); if (!REG_P (SET_DEST (memop))) return false; load_reg = SET_DEST (memop); for (opno = 1; opno < recog_data.n_operands; opno++) { rtx operand = recog_data.operand[opno]; if (REG_P (operand) && reg_overlap_mentioned_p (load_reg, operand)) return true; } return false; } /* When working around the Cortex-A53 erratum 835769, given rtx_insn INSN, return true if it is a 64-bit multiply-accumulate instruction and has a preceding memory instruction such that a NOP should be inserted between them. */ bool aarch64_madd_needs_nop (rtx_insn* insn) { enum attr_type attr_type; rtx_insn *prev; rtx body; if (!TARGET_FIX_ERR_A53_835769) return false; if (recog_memoized (insn) < 0) return false; attr_type = get_attr_type (insn); if (!is_madd_op (attr_type)) return false; prev = aarch64_prev_real_insn (insn); /* aarch64_prev_real_insn can call recog_memoized on insns other than INSN. Restore recog state to INSN to avoid state corruption. */ extract_constrain_insn_cached (insn); if (!prev || !has_memory_op (prev)) return false; body = single_set (prev); /* If the previous insn is a memory op and there is no dependency between it and the DImode madd, emit a NOP between them. If body is NULL then we have a complex memory operation, probably a load/store pair. Be conservative for now and emit a NOP. */ if (GET_MODE (recog_data.operand[0]) == DImode && (!body || !dep_between_memop_and_curr (body))) return true; return false; } /* Implement FINAL_PRESCAN_INSN. */ void aarch64_final_prescan_insn (rtx_insn *insn) { if (aarch64_madd_needs_nop (insn)) fprintf (asm_out_file, "\tnop // between mem op and mult-accumulate\n"); } /* Return the equivalent letter for size. */ static char sizetochar (int size) { switch (size) { case 64: return 'd'; case 32: return 's'; case 16: return 'h'; case 8 : return 'b'; default: gcc_unreachable (); } } /* Return true iff x is a uniform vector of floating-point constants, and the constant can be represented in quarter-precision form. Note, as aarch64_float_const_representable rejects both +0.0 and -0.0, we will also reject +0.0 and -0.0. */ static bool aarch64_vect_float_const_representable_p (rtx x) { rtx elt; return (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT && const_vec_duplicate_p (x, &elt) && aarch64_float_const_representable_p (elt)); } /* Return true for valid and false for invalid. */ bool aarch64_simd_valid_immediate (rtx op, machine_mode mode, bool inverse, struct simd_immediate_info *info) { #define CHECK(STRIDE, ELSIZE, CLASS, TEST, SHIFT, NEG) \ matches = 1; \ for (i = 0; i < idx; i += (STRIDE)) \ if (!(TEST)) \ matches = 0; \ if (matches) \ { \ immtype = (CLASS); \ elsize = (ELSIZE); \ eshift = (SHIFT); \ emvn = (NEG); \ break; \ } unsigned int i, elsize = 0, idx = 0, n_elts = CONST_VECTOR_NUNITS (op); unsigned int innersize = GET_MODE_UNIT_SIZE (mode); unsigned char bytes[16]; int immtype = -1, matches; unsigned int invmask = inverse ? 0xff : 0; int eshift, emvn; if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT) { if (! (aarch64_simd_imm_zero_p (op, mode) || aarch64_vect_float_const_representable_p (op))) return false; if (info) { info->value = CONST_VECTOR_ELT (op, 0); info->element_width = GET_MODE_BITSIZE (GET_MODE (info->value)); info->mvn = false; info->shift = 0; } return true; } /* Splat vector constant out into a byte vector. */ for (i = 0; i < n_elts; i++) { /* The vector is provided in gcc endian-neutral fashion. For aarch64_be, it must be laid out in the vector register in reverse order. */ rtx el = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? (n_elts - 1 - i) : i); unsigned HOST_WIDE_INT elpart; unsigned int part, parts; if (CONST_INT_P (el)) { elpart = INTVAL (el); parts = 1; } else if (GET_CODE (el) == CONST_DOUBLE) { elpart = CONST_DOUBLE_LOW (el); parts = 2; } else gcc_unreachable (); for (part = 0; part < parts; part++) { unsigned int byte; for (byte = 0; byte < innersize; byte++) { bytes[idx++] = (elpart & 0xff) ^ invmask; elpart >>= BITS_PER_UNIT; } if (GET_CODE (el) == CONST_DOUBLE) elpart = CONST_DOUBLE_HIGH (el); } } /* Sanity check. */ gcc_assert (idx == GET_MODE_SIZE (mode)); do { CHECK (4, 32, 0, bytes[i] == bytes[0] && bytes[i + 1] == 0 && bytes[i + 2] == 0 && bytes[i + 3] == 0, 0, 0); CHECK (4, 32, 1, bytes[i] == 0 && bytes[i + 1] == bytes[1] && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0); CHECK (4, 32, 2, bytes[i] == 0 && bytes[i + 1] == 0 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0); CHECK (4, 32, 3, bytes[i] == 0 && bytes[i + 1] == 0 && bytes[i + 2] == 0 && bytes[i + 3] == bytes[3], 24, 0); CHECK (2, 16, 4, bytes[i] == bytes[0] && bytes[i + 1] == 0, 0, 0); CHECK (2, 16, 5, bytes[i] == 0 && bytes[i + 1] == bytes[1], 8, 0); CHECK (4, 32, 6, bytes[i] == bytes[0] && bytes[i + 1] == 0xff && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 0, 1); CHECK (4, 32, 7, bytes[i] == 0xff && bytes[i + 1] == bytes[1] && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1); CHECK (4, 32, 8, bytes[i] == 0xff && bytes[i + 1] == 0xff && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1); CHECK (4, 32, 9, bytes[i] == 0xff && bytes[i + 1] == 0xff && bytes[i + 2] == 0xff && bytes[i + 3] == bytes[3], 24, 1); CHECK (2, 16, 10, bytes[i] == bytes[0] && bytes[i + 1] == 0xff, 0, 1); CHECK (2, 16, 11, bytes[i] == 0xff && bytes[i + 1] == bytes[1], 8, 1); CHECK (4, 32, 12, bytes[i] == 0xff && bytes[i + 1] == bytes[1] && bytes[i + 2] == 0 && bytes[i + 3] == 0, 8, 0); CHECK (4, 32, 13, bytes[i] == 0 && bytes[i + 1] == bytes[1] && bytes[i + 2] == 0xff && bytes[i + 3] == 0xff, 8, 1); CHECK (4, 32, 14, bytes[i] == 0xff && bytes[i + 1] == 0xff && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0, 16, 0); CHECK (4, 32, 15, bytes[i] == 0 && bytes[i + 1] == 0 && bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff, 16, 1); CHECK (1, 8, 16, bytes[i] == bytes[0], 0, 0); CHECK (1, 64, 17, (bytes[i] == 0 || bytes[i] == 0xff) && bytes[i] == bytes[(i + 8) % idx], 0, 0); } while (0); if (immtype == -1) return false; if (info) { info->element_width = elsize; info->mvn = emvn != 0; info->shift = eshift; unsigned HOST_WIDE_INT imm = 0; if (immtype >= 12 && immtype <= 15) info->msl = true; /* Un-invert bytes of recognized vector, if necessary. */ if (invmask != 0) for (i = 0; i < idx; i++) bytes[i] ^= invmask; if (immtype == 17) { /* FIXME: Broken on 32-bit H_W_I hosts. */ gcc_assert (sizeof (HOST_WIDE_INT) == 8); for (i = 0; i < 8; i++) imm |= (unsigned HOST_WIDE_INT) (bytes[i] ? 0xff : 0) << (i * BITS_PER_UNIT); info->value = GEN_INT (imm); } else { for (i = 0; i < elsize / BITS_PER_UNIT; i++) imm |= (unsigned HOST_WIDE_INT) bytes[i] << (i * BITS_PER_UNIT); /* Construct 'abcdefgh' because the assembler cannot handle generic constants. */ if (info->mvn) imm = ~imm; imm = (imm >> info->shift) & 0xff; info->value = GEN_INT (imm); } } return true; #undef CHECK } /* Check of immediate shift constants are within range. */ bool aarch64_simd_shift_imm_p (rtx x, machine_mode mode, bool left) { int bit_width = GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT; if (left) return aarch64_const_vec_all_same_in_range_p (x, 0, bit_width - 1); else return aarch64_const_vec_all_same_in_range_p (x, 1, bit_width); } /* Return true if X is a uniform vector where all elements are either the floating-point constant 0.0 or the integer constant 0. */ bool aarch64_simd_imm_zero_p (rtx x, machine_mode mode) { return x == CONST0_RTX (mode); } bool aarch64_simd_imm_scalar_p (rtx x, machine_mode mode ATTRIBUTE_UNUSED) { HOST_WIDE_INT imm = INTVAL (x); int i; for (i = 0; i < 8; i++) { unsigned int byte = imm & 0xff; if (byte != 0xff && byte != 0) return false; imm >>= 8; } return true; } bool aarch64_mov_operand_p (rtx x, machine_mode mode) { if (GET_CODE (x) == HIGH && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0)))) return true; if (CONST_INT_P (x)) return true; if (GET_CODE (x) == SYMBOL_REF && mode == DImode && CONSTANT_ADDRESS_P (x)) return true; return aarch64_classify_symbolic_expression (x) == SYMBOL_TINY_ABSOLUTE; } /* Return a const_int vector of VAL. */ rtx aarch64_simd_gen_const_vector_dup (machine_mode mode, int val) { int nunits = GET_MODE_NUNITS (mode); rtvec v = rtvec_alloc (nunits); int i; for (i=0; i < nunits; i++) RTVEC_ELT (v, i) = GEN_INT (val); return gen_rtx_CONST_VECTOR (mode, v); } /* Check OP is a legal scalar immediate for the MOVI instruction. */ bool aarch64_simd_scalar_immediate_valid_for_move (rtx op, machine_mode mode) { machine_mode vmode; gcc_assert (!VECTOR_MODE_P (mode)); vmode = aarch64_preferred_simd_mode (mode); rtx op_v = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (op)); return aarch64_simd_valid_immediate (op_v, vmode, false, NULL); } /* Construct and return a PARALLEL RTX vector with elements numbering the lanes of either the high (HIGH == TRUE) or low (HIGH == FALSE) half of the vector - from the perspective of the architecture. This does not line up with GCC's perspective on lane numbers, so we end up with different masks depending on our target endian-ness. The diagram below may help. We must draw the distinction when building masks which select one half of the vector. An instruction selecting architectural low-lanes for a big-endian target, must be described using a mask selecting GCC high-lanes. Big-Endian Little-Endian GCC 0 1 2 3 3 2 1 0 | x | x | x | x | | x | x | x | x | Architecture 3 2 1 0 3 2 1 0 Low Mask: { 2, 3 } { 0, 1 } High Mask: { 0, 1 } { 2, 3 } */ rtx aarch64_simd_vect_par_cnst_half (machine_mode mode, bool high) { int nunits = GET_MODE_NUNITS (mode); rtvec v = rtvec_alloc (nunits / 2); int high_base = nunits / 2; int low_base = 0; int base; rtx t1; int i; if (BYTES_BIG_ENDIAN) base = high ? low_base : high_base; else base = high ? high_base : low_base; for (i = 0; i < nunits / 2; i++) RTVEC_ELT (v, i) = GEN_INT (base + i); t1 = gen_rtx_PARALLEL (mode, v); return t1; } /* Check OP for validity as a PARALLEL RTX vector with elements numbering the lanes of either the high (HIGH == TRUE) or low lanes, from the perspective of the architecture. See the diagram above aarch64_simd_vect_par_cnst_half for more details. */ bool aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode, bool high) { rtx ideal = aarch64_simd_vect_par_cnst_half (mode, high); HOST_WIDE_INT count_op = XVECLEN (op, 0); HOST_WIDE_INT count_ideal = XVECLEN (ideal, 0); int i = 0; if (!VECTOR_MODE_P (mode)) return false; if (count_op != count_ideal) return false; for (i = 0; i < count_ideal; i++) { rtx elt_op = XVECEXP (op, 0, i); rtx elt_ideal = XVECEXP (ideal, 0, i); if (!CONST_INT_P (elt_op) || INTVAL (elt_ideal) != INTVAL (elt_op)) return false; } return true; } /* Bounds-check lanes. Ensure OPERAND lies between LOW (inclusive) and HIGH (exclusive). */ void aarch64_simd_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high, const_tree exp) { HOST_WIDE_INT lane; gcc_assert (CONST_INT_P (operand)); lane = INTVAL (operand); if (lane < low || lane >= high) { if (exp) error ("%Klane %wd out of range %wd - %wd", exp, lane, low, high - 1); else error ("lane %wd out of range %wd - %wd", lane, low, high - 1); } } /* Return TRUE if OP is a valid vector addressing mode. */ bool aarch64_simd_mem_operand_p (rtx op) { return MEM_P (op) && (GET_CODE (XEXP (op, 0)) == POST_INC || REG_P (XEXP (op, 0))); } /* Emit a register copy from operand to operand, taking care not to early-clobber source registers in the process. COUNT is the number of components into which the copy needs to be decomposed. */ void aarch64_simd_emit_reg_reg_move (rtx *operands, enum machine_mode mode, unsigned int count) { unsigned int i; int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); if (!reg_overlap_mentioned_p (operands[0], operands[1]) || rdest < rsrc) for (i = 0; i < count; i++) emit_move_insn (gen_rtx_REG (mode, rdest + i), gen_rtx_REG (mode, rsrc + i)); else for (i = 0; i < count; i++) emit_move_insn (gen_rtx_REG (mode, rdest + count - i - 1), gen_rtx_REG (mode, rsrc + count - i - 1)); } /* Compute and return the length of aarch64_simd_mov, where is one of VSTRUCT modes: OI, CI or XI. */ int aarch64_simd_attr_length_move (rtx_insn *insn) { machine_mode mode; extract_insn_cached (insn); if (REG_P (recog_data.operand[0]) && REG_P (recog_data.operand[1])) { mode = GET_MODE (recog_data.operand[0]); switch (mode) { case OImode: return 8; case CImode: return 12; case XImode: return 16; default: gcc_unreachable (); } } return 4; } /* Compute and return the length of aarch64_simd_reglist, where is one of VSTRUCT modes: OI, CI, or XI. */ int aarch64_simd_attr_length_rglist (enum machine_mode mode) { return (GET_MODE_SIZE (mode) / UNITS_PER_VREG) * 4; } /* Implement target hook TARGET_VECTOR_ALIGNMENT. The AAPCS64 sets the maximum alignment of a vector to 128 bits. */ static HOST_WIDE_INT aarch64_simd_vector_alignment (const_tree type) { HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type)); return MIN (align, 128); } /* Implement target hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE. */ static bool aarch64_simd_vector_alignment_reachable (const_tree type, bool is_packed) { if (is_packed) return false; /* We guarantee alignment for vectors up to 128-bits. */ if (tree_int_cst_compare (TYPE_SIZE (type), bitsize_int (BIGGEST_ALIGNMENT)) > 0) return false; /* Vectors whose size is <= BIGGEST_ALIGNMENT are naturally aligned. */ return true; } /* If VALS is a vector constant that can be loaded into a register using DUP, generate instructions to do so and return an RTX to assign to the register. Otherwise return NULL_RTX. */ static rtx aarch64_simd_dup_constant (rtx vals) { machine_mode mode = GET_MODE (vals); machine_mode inner_mode = GET_MODE_INNER (mode); rtx x; if (!const_vec_duplicate_p (vals, &x)) return NULL_RTX; /* We can load this constant by using DUP and a constant in a single ARM register. This will be cheaper than a vector load. */ x = copy_to_mode_reg (inner_mode, x); return gen_rtx_VEC_DUPLICATE (mode, x); } /* Generate code to load VALS, which is a PARALLEL containing only constants (for vec_init) or CONST_VECTOR, efficiently into a register. Returns an RTX to copy into the register, or NULL_RTX for a PARALLEL that can not be converted into a CONST_VECTOR. */ static rtx aarch64_simd_make_constant (rtx vals) { machine_mode mode = GET_MODE (vals); rtx const_dup; rtx const_vec = NULL_RTX; int n_elts = GET_MODE_NUNITS (mode); int n_const = 0; int i; if (GET_CODE (vals) == CONST_VECTOR) const_vec = vals; else if (GET_CODE (vals) == PARALLEL) { /* A CONST_VECTOR must contain only CONST_INTs and CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF). Only store valid constants in a CONST_VECTOR. */ for (i = 0; i < n_elts; ++i) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) n_const++; } if (n_const == n_elts) const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)); } else gcc_unreachable (); if (const_vec != NULL_RTX && aarch64_simd_valid_immediate (const_vec, mode, false, NULL)) /* Load using MOVI/MVNI. */ return const_vec; else if ((const_dup = aarch64_simd_dup_constant (vals)) != NULL_RTX) /* Loaded using DUP. */ return const_dup; else if (const_vec != NULL_RTX) /* Load from constant pool. We can not take advantage of single-cycle LD1 because we need a PC-relative addressing mode. */ return const_vec; else /* A PARALLEL containing something not valid inside CONST_VECTOR. We can not construct an initializer. */ return NULL_RTX; } void aarch64_expand_vector_init (rtx target, rtx vals) { machine_mode mode = GET_MODE (target); machine_mode inner_mode = GET_MODE_INNER (mode); int n_elts = GET_MODE_NUNITS (mode); int n_var = 0; rtx any_const = NULL_RTX; bool all_same = true; for (int i = 0; i < n_elts; ++i) { rtx x = XVECEXP (vals, 0, i); if (!CONST_INT_P (x) && !CONST_DOUBLE_P (x)) ++n_var; else any_const = x; if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) all_same = false; } if (n_var == 0) { rtx constant = aarch64_simd_make_constant (vals); if (constant != NULL_RTX) { emit_move_insn (target, constant); return; } } /* Splat a single non-constant element if we can. */ if (all_same) { rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, 0)); aarch64_emit_move (target, gen_rtx_VEC_DUPLICATE (mode, x)); return; } /* Half the fields (or less) are non-constant. Load constant then overwrite varying fields. Hope that this is more efficient than using the stack. */ if (n_var <= n_elts/2) { rtx copy = copy_rtx (vals); /* Load constant part of vector. We really don't care what goes into the parts we will overwrite, but we're more likely to be able to load the constant efficiently if it has fewer, larger, repeating parts (see aarch64_simd_valid_immediate). */ for (int i = 0; i < n_elts; i++) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) continue; rtx subst = any_const; for (int bit = n_elts / 2; bit > 0; bit /= 2) { /* Look in the copied vector, as more elements are const. */ rtx test = XVECEXP (copy, 0, i ^ bit); if (CONST_INT_P (test) || CONST_DOUBLE_P (test)) { subst = test; break; } } XVECEXP (copy, 0, i) = subst; } aarch64_expand_vector_init (target, copy); /* Insert variables. */ enum insn_code icode = optab_handler (vec_set_optab, mode); gcc_assert (icode != CODE_FOR_nothing); for (int i = 0; i < n_elts; i++) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) continue; x = copy_to_mode_reg (inner_mode, x); emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i))); } return; } /* Construct the vector in memory one field at a time and load the whole vector. */ rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode)); for (int i = 0; i < n_elts; i++) emit_move_insn (adjust_address_nv (mem, inner_mode, i * GET_MODE_SIZE (inner_mode)), XVECEXP (vals, 0, i)); emit_move_insn (target, mem); } static unsigned HOST_WIDE_INT aarch64_shift_truncation_mask (machine_mode mode) { return (aarch64_vector_mode_supported_p (mode) || aarch64_vect_struct_mode_p (mode)) ? 0 : (GET_MODE_BITSIZE (mode) - 1); } #ifndef TLS_SECTION_ASM_FLAG #define TLS_SECTION_ASM_FLAG 'T' #endif void aarch64_elf_asm_named_section (const char *name, unsigned int flags, tree decl ATTRIBUTE_UNUSED) { char flagchars[10], *f = flagchars; /* If we have already declared this section, we can use an abbreviated form to switch back to it -- unless this section is part of a COMDAT groups, in which case GAS requires the full declaration every time. */ if (!(HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) && (flags & SECTION_DECLARED)) { fprintf (asm_out_file, "\t.section\t%s\n", name); return; } if (!(flags & SECTION_DEBUG)) *f++ = 'a'; if (flags & SECTION_WRITE) *f++ = 'w'; if (flags & SECTION_CODE) *f++ = 'x'; if (flags & SECTION_SMALL) *f++ = 's'; if (flags & SECTION_MERGE) *f++ = 'M'; if (flags & SECTION_STRINGS) *f++ = 'S'; if (flags & SECTION_TLS) *f++ = TLS_SECTION_ASM_FLAG; if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) *f++ = 'G'; *f = '\0'; fprintf (asm_out_file, "\t.section\t%s,\"%s\"", name, flagchars); if (!(flags & SECTION_NOTYPE)) { const char *type; const char *format; if (flags & SECTION_BSS) type = "nobits"; else type = "progbits"; #ifdef TYPE_OPERAND_FMT format = "," TYPE_OPERAND_FMT; #else format = ",@%s"; #endif fprintf (asm_out_file, format, type); if (flags & SECTION_ENTSIZE) fprintf (asm_out_file, ",%d", flags & SECTION_ENTSIZE); if (HAVE_COMDAT_GROUP && (flags & SECTION_LINKONCE)) { if (TREE_CODE (decl) == IDENTIFIER_NODE) fprintf (asm_out_file, ",%s,comdat", IDENTIFIER_POINTER (decl)); else fprintf (asm_out_file, ",%s,comdat", IDENTIFIER_POINTER (DECL_COMDAT_GROUP (decl))); } } putc ('\n', asm_out_file); } /* Select a format to encode pointers in exception handling data. */ int aarch64_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global) { int type; switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: case AARCH64_CMODEL_TINY_PIC: case AARCH64_CMODEL_SMALL: case AARCH64_CMODEL_SMALL_PIC: case AARCH64_CMODEL_SMALL_SPIC: /* text+got+data < 4Gb. 4-byte signed relocs are sufficient for everything. */ type = DW_EH_PE_sdata4; break; default: /* No assumptions here. 8-byte relocs required. */ type = DW_EH_PE_sdata8; break; } return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } /* Implement ASM_DECLARE_FUNCTION_NAME. Output the ISA features used by the function fndecl. */ void aarch64_declare_function_name (FILE *stream, const char* name, tree fndecl) { tree target_parts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl); struct cl_target_option *targ_options; if (target_parts) targ_options = TREE_TARGET_OPTION (target_parts); else targ_options = TREE_TARGET_OPTION (target_option_current_node); gcc_assert (targ_options); const struct processor *this_arch = aarch64_get_arch (targ_options->x_explicit_arch); unsigned long isa_flags = targ_options->x_aarch64_isa_flags; std::string extension = aarch64_get_extension_string_for_isa_flags (isa_flags); asm_fprintf (asm_out_file, "\t.arch %s%s\n", this_arch->name, extension.c_str ()); /* Print the cpu name we're tuning for in the comments, might be useful to readers of the generated asm. */ const struct processor *this_tune = aarch64_get_tune_cpu (targ_options->x_explicit_tune_core); asm_fprintf (asm_out_file, "\t" ASM_COMMENT_START ".tune %s\n", this_tune->name); /* Don't forget the type directive for ELF. */ ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function"); ASM_OUTPUT_LABEL (stream, name); } /* Emit load exclusive. */ static void aarch64_emit_load_exclusive (machine_mode mode, rtx rval, rtx mem, rtx model_rtx) { rtx (*gen) (rtx, rtx, rtx); switch (mode) { case QImode: gen = gen_aarch64_load_exclusiveqi; break; case HImode: gen = gen_aarch64_load_exclusivehi; break; case SImode: gen = gen_aarch64_load_exclusivesi; break; case DImode: gen = gen_aarch64_load_exclusivedi; break; default: gcc_unreachable (); } emit_insn (gen (rval, mem, model_rtx)); } /* Emit store exclusive. */ static void aarch64_emit_store_exclusive (machine_mode mode, rtx bval, rtx rval, rtx mem, rtx model_rtx) { rtx (*gen) (rtx, rtx, rtx, rtx); switch (mode) { case QImode: gen = gen_aarch64_store_exclusiveqi; break; case HImode: gen = gen_aarch64_store_exclusivehi; break; case SImode: gen = gen_aarch64_store_exclusivesi; break; case DImode: gen = gen_aarch64_store_exclusivedi; break; default: gcc_unreachable (); } emit_insn (gen (bval, rval, mem, model_rtx)); } /* Mark the previous jump instruction as unlikely. */ static void aarch64_emit_unlikely_jump (rtx insn) { int very_unlikely = REG_BR_PROB_BASE / 100 - 1; insn = emit_jump_insn (insn); add_int_reg_note (insn, REG_BR_PROB, very_unlikely); } /* Expand a compare and swap pattern. */ void aarch64_expand_compare_and_swap (rtx operands[]) { rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x; machine_mode mode, cmp_mode; typedef rtx (*gen_cas_fn) (rtx, rtx, rtx, rtx, rtx, rtx, rtx); int idx; gen_cas_fn gen; const gen_cas_fn split_cas[] = { gen_aarch64_compare_and_swapqi, gen_aarch64_compare_and_swaphi, gen_aarch64_compare_and_swapsi, gen_aarch64_compare_and_swapdi }; const gen_cas_fn atomic_cas[] = { gen_aarch64_compare_and_swapqi_lse, gen_aarch64_compare_and_swaphi_lse, gen_aarch64_compare_and_swapsi_lse, gen_aarch64_compare_and_swapdi_lse }; bval = operands[0]; rval = operands[1]; mem = operands[2]; oldval = operands[3]; newval = operands[4]; is_weak = operands[5]; mod_s = operands[6]; mod_f = operands[7]; mode = GET_MODE (mem); cmp_mode = mode; /* Normally the succ memory model must be stronger than fail, but in the unlikely event of fail being ACQUIRE and succ being RELEASE we need to promote succ to ACQ_REL so that we don't lose the acquire semantics. */ if (is_mm_acquire (memmodel_from_int (INTVAL (mod_f))) && is_mm_release (memmodel_from_int (INTVAL (mod_s)))) mod_s = GEN_INT (MEMMODEL_ACQ_REL); switch (mode) { case QImode: case HImode: /* For short modes, we're going to perform the comparison in SImode, so do the zero-extension now. */ cmp_mode = SImode; rval = gen_reg_rtx (SImode); oldval = convert_modes (SImode, mode, oldval, true); /* Fall through. */ case SImode: case DImode: /* Force the value into a register if needed. */ if (!aarch64_plus_operand (oldval, mode)) oldval = force_reg (cmp_mode, oldval); break; default: gcc_unreachable (); } switch (mode) { case QImode: idx = 0; break; case HImode: idx = 1; break; case SImode: idx = 2; break; case DImode: idx = 3; break; default: gcc_unreachable (); } if (TARGET_LSE) gen = atomic_cas[idx]; else gen = split_cas[idx]; emit_insn (gen (rval, mem, oldval, newval, is_weak, mod_s, mod_f)); if (mode == QImode || mode == HImode) emit_move_insn (operands[1], gen_lowpart (mode, rval)); x = gen_rtx_REG (CCmode, CC_REGNUM); x = gen_rtx_EQ (SImode, x, const0_rtx); emit_insn (gen_rtx_SET (bval, x)); } /* Test whether the target supports using a atomic load-operate instruction. CODE is the operation and AFTER is TRUE if the data in memory after the operation should be returned and FALSE if the data before the operation should be returned. Returns FALSE if the operation isn't supported by the architecture. */ bool aarch64_atomic_ldop_supported_p (enum rtx_code code) { if (!TARGET_LSE) return false; switch (code) { case SET: case AND: case IOR: case XOR: case MINUS: case PLUS: return true; default: return false; } } /* Emit a barrier, that is appropriate for memory model MODEL, at the end of a sequence implementing an atomic operation. */ static void aarch64_emit_post_barrier (enum memmodel model) { const enum memmodel base_model = memmodel_base (model); if (is_mm_sync (model) && (base_model == MEMMODEL_ACQUIRE || base_model == MEMMODEL_ACQ_REL || base_model == MEMMODEL_SEQ_CST)) { emit_insn (gen_mem_thread_fence (GEN_INT (MEMMODEL_SEQ_CST))); } } /* Emit an atomic compare-and-swap operation. RVAL is the destination register for the data in memory. EXPECTED is the value expected to be in memory. DESIRED is the value to store to memory. MEM is the memory location. MODEL is the memory ordering to use. */ void aarch64_gen_atomic_cas (rtx rval, rtx mem, rtx expected, rtx desired, rtx model) { rtx (*gen) (rtx, rtx, rtx, rtx); machine_mode mode; mode = GET_MODE (mem); switch (mode) { case QImode: gen = gen_aarch64_atomic_casqi; break; case HImode: gen = gen_aarch64_atomic_cashi; break; case SImode: gen = gen_aarch64_atomic_cassi; break; case DImode: gen = gen_aarch64_atomic_casdi; break; default: gcc_unreachable (); } /* Move the expected value into the CAS destination register. */ emit_insn (gen_rtx_SET (rval, expected)); /* Emit the CAS. */ emit_insn (gen (rval, mem, desired, model)); /* Compare the expected value with the value loaded by the CAS, to establish whether the swap was made. */ aarch64_gen_compare_reg (EQ, rval, expected); } /* Split a compare and swap pattern. */ void aarch64_split_compare_and_swap (rtx operands[]) { rtx rval, mem, oldval, newval, scratch; machine_mode mode; bool is_weak; rtx_code_label *label1, *label2; rtx x, cond; enum memmodel model; rtx model_rtx; rval = operands[0]; mem = operands[1]; oldval = operands[2]; newval = operands[3]; is_weak = (operands[4] != const0_rtx); model_rtx = operands[5]; scratch = operands[7]; mode = GET_MODE (mem); model = memmodel_from_int (INTVAL (model_rtx)); label1 = NULL; if (!is_weak) { label1 = gen_label_rtx (); emit_label (label1); } label2 = gen_label_rtx (); /* The initial load can be relaxed for a __sync operation since a final barrier will be emitted to stop code hoisting. */ if (is_mm_sync (model)) aarch64_emit_load_exclusive (mode, rval, mem, GEN_INT (MEMMODEL_RELAXED)); else aarch64_emit_load_exclusive (mode, rval, mem, model_rtx); cond = aarch64_gen_compare_reg (NE, rval, oldval); x = gen_rtx_NE (VOIDmode, cond, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label2), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); aarch64_emit_store_exclusive (mode, scratch, mem, newval, model_rtx); if (!is_weak) { x = gen_rtx_NE (VOIDmode, scratch, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label1), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); } else { cond = gen_rtx_REG (CCmode, CC_REGNUM); x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx); emit_insn (gen_rtx_SET (cond, x)); } emit_label (label2); /* Emit any final barrier needed for a __sync operation. */ if (is_mm_sync (model)) aarch64_emit_post_barrier (model); } /* Emit a BIC instruction. */ static void aarch64_emit_bic (machine_mode mode, rtx dst, rtx s1, rtx s2, int shift) { rtx shift_rtx = GEN_INT (shift); rtx (*gen) (rtx, rtx, rtx, rtx); switch (mode) { case SImode: gen = gen_and_one_cmpl_lshrsi3; break; case DImode: gen = gen_and_one_cmpl_lshrdi3; break; default: gcc_unreachable (); } emit_insn (gen (dst, s2, shift_rtx, s1)); } /* Emit an atomic swap. */ static void aarch64_emit_atomic_swap (machine_mode mode, rtx dst, rtx value, rtx mem, rtx model) { rtx (*gen) (rtx, rtx, rtx, rtx); switch (mode) { case QImode: gen = gen_aarch64_atomic_swpqi; break; case HImode: gen = gen_aarch64_atomic_swphi; break; case SImode: gen = gen_aarch64_atomic_swpsi; break; case DImode: gen = gen_aarch64_atomic_swpdi; break; default: gcc_unreachable (); } emit_insn (gen (dst, mem, value, model)); } /* Operations supported by aarch64_emit_atomic_load_op. */ enum aarch64_atomic_load_op_code { AARCH64_LDOP_PLUS, /* A + B */ AARCH64_LDOP_XOR, /* A ^ B */ AARCH64_LDOP_OR, /* A | B */ AARCH64_LDOP_BIC /* A & ~B */ }; /* Emit an atomic load-operate. */ static void aarch64_emit_atomic_load_op (enum aarch64_atomic_load_op_code code, machine_mode mode, rtx dst, rtx src, rtx mem, rtx model) { typedef rtx (*aarch64_atomic_load_op_fn) (rtx, rtx, rtx, rtx); const aarch64_atomic_load_op_fn plus[] = { gen_aarch64_atomic_loadaddqi, gen_aarch64_atomic_loadaddhi, gen_aarch64_atomic_loadaddsi, gen_aarch64_atomic_loadadddi }; const aarch64_atomic_load_op_fn eor[] = { gen_aarch64_atomic_loadeorqi, gen_aarch64_atomic_loadeorhi, gen_aarch64_atomic_loadeorsi, gen_aarch64_atomic_loadeordi }; const aarch64_atomic_load_op_fn ior[] = { gen_aarch64_atomic_loadsetqi, gen_aarch64_atomic_loadsethi, gen_aarch64_atomic_loadsetsi, gen_aarch64_atomic_loadsetdi }; const aarch64_atomic_load_op_fn bic[] = { gen_aarch64_atomic_loadclrqi, gen_aarch64_atomic_loadclrhi, gen_aarch64_atomic_loadclrsi, gen_aarch64_atomic_loadclrdi }; aarch64_atomic_load_op_fn gen; int idx = 0; switch (mode) { case QImode: idx = 0; break; case HImode: idx = 1; break; case SImode: idx = 2; break; case DImode: idx = 3; break; default: gcc_unreachable (); } switch (code) { case AARCH64_LDOP_PLUS: gen = plus[idx]; break; case AARCH64_LDOP_XOR: gen = eor[idx]; break; case AARCH64_LDOP_OR: gen = ior[idx]; break; case AARCH64_LDOP_BIC: gen = bic[idx]; break; default: gcc_unreachable (); } emit_insn (gen (dst, mem, src, model)); } /* Emit an atomic load+operate. CODE is the operation. OUT_DATA is the location to store the data read from memory. OUT_RESULT is the location to store the result of the operation. MEM is the memory location to read and modify. MODEL_RTX is the memory ordering to use. VALUE is the second operand for the operation. Either OUT_DATA or OUT_RESULT, but not both, can be NULL. */ void aarch64_gen_atomic_ldop (enum rtx_code code, rtx out_data, rtx out_result, rtx mem, rtx value, rtx model_rtx) { machine_mode mode = GET_MODE (mem); machine_mode wmode = (mode == DImode ? DImode : SImode); const bool short_mode = (mode < SImode); aarch64_atomic_load_op_code ldop_code; rtx src; rtx x; if (out_data) out_data = gen_lowpart (mode, out_data); if (out_result) out_result = gen_lowpart (mode, out_result); /* Make sure the value is in a register, putting it into a destination register if it needs to be manipulated. */ if (!register_operand (value, mode) || code == AND || code == MINUS) { src = out_result ? out_result : out_data; emit_move_insn (src, gen_lowpart (mode, value)); } else src = value; gcc_assert (register_operand (src, mode)); /* Preprocess the data for the operation as necessary. If the operation is a SET then emit a swap instruction and finish. */ switch (code) { case SET: aarch64_emit_atomic_swap (mode, out_data, src, mem, model_rtx); return; case MINUS: /* Negate the value and treat it as a PLUS. */ { rtx neg_src; /* Resize the value if necessary. */ if (short_mode) src = gen_lowpart (wmode, src); neg_src = gen_rtx_NEG (wmode, src); emit_insn (gen_rtx_SET (src, neg_src)); if (short_mode) src = gen_lowpart (mode, src); } /* Fall-through. */ case PLUS: ldop_code = AARCH64_LDOP_PLUS; break; case IOR: ldop_code = AARCH64_LDOP_OR; break; case XOR: ldop_code = AARCH64_LDOP_XOR; break; case AND: { rtx not_src; /* Resize the value if necessary. */ if (short_mode) src = gen_lowpart (wmode, src); not_src = gen_rtx_NOT (wmode, src); emit_insn (gen_rtx_SET (src, not_src)); if (short_mode) src = gen_lowpart (mode, src); } ldop_code = AARCH64_LDOP_BIC; break; default: /* The operation can't be done with atomic instructions. */ gcc_unreachable (); } aarch64_emit_atomic_load_op (ldop_code, mode, out_data, src, mem, model_rtx); /* If necessary, calculate the data in memory after the update by redoing the operation from values in registers. */ if (!out_result) return; if (short_mode) { src = gen_lowpart (wmode, src); out_data = gen_lowpart (wmode, out_data); out_result = gen_lowpart (wmode, out_result); } x = NULL_RTX; switch (code) { case MINUS: case PLUS: x = gen_rtx_PLUS (wmode, out_data, src); break; case IOR: x = gen_rtx_IOR (wmode, out_data, src); break; case XOR: x = gen_rtx_XOR (wmode, out_data, src); break; case AND: aarch64_emit_bic (wmode, out_result, out_data, src, 0); return; default: gcc_unreachable (); } emit_set_insn (out_result, x); return; } /* Split an atomic operation. */ void aarch64_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem, rtx value, rtx model_rtx, rtx cond) { machine_mode mode = GET_MODE (mem); machine_mode wmode = (mode == DImode ? DImode : SImode); const enum memmodel model = memmodel_from_int (INTVAL (model_rtx)); const bool is_sync = is_mm_sync (model); rtx_code_label *label; rtx x; /* Split the atomic operation into a sequence. */ label = gen_label_rtx (); emit_label (label); if (new_out) new_out = gen_lowpart (wmode, new_out); if (old_out) old_out = gen_lowpart (wmode, old_out); else old_out = new_out; value = simplify_gen_subreg (wmode, value, mode, 0); /* The initial load can be relaxed for a __sync operation since a final barrier will be emitted to stop code hoisting. */ if (is_sync) aarch64_emit_load_exclusive (mode, old_out, mem, GEN_INT (MEMMODEL_RELAXED)); else aarch64_emit_load_exclusive (mode, old_out, mem, model_rtx); switch (code) { case SET: new_out = value; break; case NOT: x = gen_rtx_AND (wmode, old_out, value); emit_insn (gen_rtx_SET (new_out, x)); x = gen_rtx_NOT (wmode, new_out); emit_insn (gen_rtx_SET (new_out, x)); break; case MINUS: if (CONST_INT_P (value)) { value = GEN_INT (-INTVAL (value)); code = PLUS; } /* Fall through. */ default: x = gen_rtx_fmt_ee (code, wmode, old_out, value); emit_insn (gen_rtx_SET (new_out, x)); break; } aarch64_emit_store_exclusive (mode, cond, mem, gen_lowpart (mode, new_out), model_rtx); x = gen_rtx_NE (VOIDmode, cond, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); /* Emit any final barrier needed for a __sync operation. */ if (is_sync) aarch64_emit_post_barrier (model); } static void aarch64_init_libfuncs (void) { /* Half-precision float operations. The compiler handles all operations with NULL libfuncs by converting to SFmode. */ /* Conversions. */ set_conv_libfunc (trunc_optab, HFmode, SFmode, "__gnu_f2h_ieee"); set_conv_libfunc (sext_optab, SFmode, HFmode, "__gnu_h2f_ieee"); /* Arithmetic. */ set_optab_libfunc (add_optab, HFmode, NULL); set_optab_libfunc (sdiv_optab, HFmode, NULL); set_optab_libfunc (smul_optab, HFmode, NULL); set_optab_libfunc (neg_optab, HFmode, NULL); set_optab_libfunc (sub_optab, HFmode, NULL); /* Comparisons. */ set_optab_libfunc (eq_optab, HFmode, NULL); set_optab_libfunc (ne_optab, HFmode, NULL); set_optab_libfunc (lt_optab, HFmode, NULL); set_optab_libfunc (le_optab, HFmode, NULL); set_optab_libfunc (ge_optab, HFmode, NULL); set_optab_libfunc (gt_optab, HFmode, NULL); set_optab_libfunc (unord_optab, HFmode, NULL); } /* Target hook for c_mode_for_suffix. */ static machine_mode aarch64_c_mode_for_suffix (char suffix) { if (suffix == 'q') return TFmode; return VOIDmode; } /* We can only represent floating point constants which will fit in "quarter-precision" values. These values are characterised by a sign bit, a 4-bit mantissa and a 3-bit exponent. And are given by: (-1)^s * (n/16) * 2^r Where: 's' is the sign bit. 'n' is an integer in the range 16 <= n <= 31. 'r' is an integer in the range -3 <= r <= 4. */ /* Return true iff X can be represented by a quarter-precision floating point immediate operand X. Note, we cannot represent 0.0. */ bool aarch64_float_const_representable_p (rtx x) { /* This represents our current view of how many bits make up the mantissa. */ int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1; int exponent; unsigned HOST_WIDE_INT mantissa, mask; REAL_VALUE_TYPE r, m; bool fail; if (!CONST_DOUBLE_P (x)) return false; /* We don't support HFmode constants yet. */ if (GET_MODE (x) == VOIDmode || GET_MODE (x) == HFmode) return false; REAL_VALUE_FROM_CONST_DOUBLE (r, x); /* We cannot represent infinities, NaNs or +/-zero. We won't know if we have +zero until we analyse the mantissa, but we can reject the other invalid values. */ if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r) || REAL_VALUE_MINUS_ZERO (r)) return false; /* Extract exponent. */ r = real_value_abs (&r); exponent = REAL_EXP (&r); /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the highest (sign) bit, with a fixed binary point at bit point_pos. m1 holds the low part of the mantissa, m2 the high part. WARNING: If we ever have a representation using more than 2 * H_W_I - 1 bits for the mantissa, this can fail (low bits will be lost). */ real_ldexp (&m, &r, point_pos - exponent); wide_int w = real_to_integer (&m, &fail, HOST_BITS_PER_WIDE_INT * 2); /* If the low part of the mantissa has bits set we cannot represent the value. */ if (w.elt (0) != 0) return false; /* We have rejected the lower HOST_WIDE_INT, so update our understanding of how many bits lie in the mantissa and look only at the high HOST_WIDE_INT. */ mantissa = w.elt (1); point_pos -= HOST_BITS_PER_WIDE_INT; /* We can only represent values with a mantissa of the form 1.xxxx. */ mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1; if ((mantissa & mask) != 0) return false; /* Having filtered unrepresentable values, we may now remove all but the highest 5 bits. */ mantissa >>= point_pos - 5; /* We cannot represent the value 0.0, so reject it. This is handled elsewhere. */ if (mantissa == 0) return false; /* Then, as bit 4 is always set, we can mask it off, leaving the mantissa in the range [0, 15]. */ mantissa &= ~(1 << 4); gcc_assert (mantissa <= 15); /* GCC internally does not use IEEE754-like encoding (where normalized significands are in the range [1, 2). GCC uses [0.5, 1) (see real.c). Our mantissa values are shifted 4 places to the left relative to normalized IEEE754 so we must modify the exponent returned by REAL_EXP by 5 places to correct for GCC's representation. */ exponent = 5 - exponent; return (exponent >= 0 && exponent <= 7); } char* aarch64_output_simd_mov_immediate (rtx const_vector, machine_mode mode, unsigned width) { bool is_valid; static char templ[40]; const char *mnemonic; const char *shift_op; unsigned int lane_count = 0; char element_char; struct simd_immediate_info info = { NULL_RTX, 0, 0, false, false }; /* This will return true to show const_vector is legal for use as either a AdvSIMD MOVI instruction (or, implicitly, MVNI) immediate. It will also update INFO to show how the immediate should be generated. */ is_valid = aarch64_simd_valid_immediate (const_vector, mode, false, &info); gcc_assert (is_valid); element_char = sizetochar (info.element_width); lane_count = width / info.element_width; mode = GET_MODE_INNER (mode); if (mode == SFmode || mode == DFmode) { gcc_assert (info.shift == 0 && ! info.mvn); if (aarch64_float_const_zero_rtx_p (info.value)) info.value = GEN_INT (0); else { #define buf_size 20 REAL_VALUE_TYPE r; REAL_VALUE_FROM_CONST_DOUBLE (r, info.value); char float_buf[buf_size] = {'\0'}; real_to_decimal_for_mode (float_buf, &r, buf_size, buf_size, 1, mode); #undef buf_size if (lane_count == 1) snprintf (templ, sizeof (templ), "fmov\t%%d0, %s", float_buf); else snprintf (templ, sizeof (templ), "fmov\t%%0.%d%c, %s", lane_count, element_char, float_buf); return templ; } } mnemonic = info.mvn ? "mvni" : "movi"; shift_op = info.msl ? "msl" : "lsl"; if (lane_count == 1) snprintf (templ, sizeof (templ), "%s\t%%d0, " HOST_WIDE_INT_PRINT_HEX, mnemonic, UINTVAL (info.value)); else if (info.shift) snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX ", %s %d", mnemonic, lane_count, element_char, UINTVAL (info.value), shift_op, info.shift); else snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX, mnemonic, lane_count, element_char, UINTVAL (info.value)); return templ; } char* aarch64_output_scalar_simd_mov_immediate (rtx immediate, machine_mode mode) { machine_mode vmode; gcc_assert (!VECTOR_MODE_P (mode)); vmode = aarch64_simd_container_mode (mode, 64); rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (immediate)); return aarch64_output_simd_mov_immediate (v_op, vmode, 64); } /* Split operands into moves from op[1] + op[2] into op[0]. */ void aarch64_split_combinev16qi (rtx operands[3]) { unsigned int dest = REGNO (operands[0]); unsigned int src1 = REGNO (operands[1]); unsigned int src2 = REGNO (operands[2]); machine_mode halfmode = GET_MODE (operands[1]); unsigned int halfregs = HARD_REGNO_NREGS (src1, halfmode); rtx destlo, desthi; gcc_assert (halfmode == V16QImode); if (src1 == dest && src2 == dest + halfregs) { /* No-op move. Can't split to nothing; emit something. */ emit_note (NOTE_INSN_DELETED); return; } /* Preserve register attributes for variable tracking. */ destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0); desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs, GET_MODE_SIZE (halfmode)); /* Special case of reversed high/low parts. */ if (reg_overlap_mentioned_p (operands[2], destlo) && reg_overlap_mentioned_p (operands[1], desthi)) { emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2])); emit_insn (gen_xorv16qi3 (operands[2], operands[1], operands[2])); emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2])); } else if (!reg_overlap_mentioned_p (operands[2], destlo)) { /* Try to avoid unnecessary moves if part of the result is in the right place already. */ if (src1 != dest) emit_move_insn (destlo, operands[1]); if (src2 != dest + halfregs) emit_move_insn (desthi, operands[2]); } else { if (src2 != dest + halfregs) emit_move_insn (desthi, operands[2]); if (src1 != dest) emit_move_insn (destlo, operands[1]); } } /* vec_perm support. */ #define MAX_VECT_LEN 16 struct expand_vec_perm_d { rtx target, op0, op1; unsigned char perm[MAX_VECT_LEN]; machine_mode vmode; unsigned char nelt; bool one_vector_p; bool testing_p; }; /* Generate a variable permutation. */ static void aarch64_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel) { machine_mode vmode = GET_MODE (target); bool one_vector_p = rtx_equal_p (op0, op1); gcc_checking_assert (vmode == V8QImode || vmode == V16QImode); gcc_checking_assert (GET_MODE (op0) == vmode); gcc_checking_assert (GET_MODE (op1) == vmode); gcc_checking_assert (GET_MODE (sel) == vmode); gcc_checking_assert (TARGET_SIMD); if (one_vector_p) { if (vmode == V8QImode) { /* Expand the argument to a V16QI mode by duplicating it. */ rtx pair = gen_reg_rtx (V16QImode); emit_insn (gen_aarch64_combinev8qi (pair, op0, op0)); emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel)); } else { emit_insn (gen_aarch64_tbl1v16qi (target, op0, sel)); } } else { rtx pair; if (vmode == V8QImode) { pair = gen_reg_rtx (V16QImode); emit_insn (gen_aarch64_combinev8qi (pair, op0, op1)); emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel)); } else { pair = gen_reg_rtx (OImode); emit_insn (gen_aarch64_combinev16qi (pair, op0, op1)); emit_insn (gen_aarch64_tbl2v16qi (target, pair, sel)); } } } void aarch64_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel) { machine_mode vmode = GET_MODE (target); unsigned int nelt = GET_MODE_NUNITS (vmode); bool one_vector_p = rtx_equal_p (op0, op1); rtx mask; /* The TBL instruction does not use a modulo index, so we must take care of that ourselves. */ mask = aarch64_simd_gen_const_vector_dup (vmode, one_vector_p ? nelt - 1 : 2 * nelt - 1); sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN); /* For big-endian, we also need to reverse the index within the vector (but not which vector). */ if (BYTES_BIG_ENDIAN) { /* If one_vector_p, mask is a vector of (nelt - 1)'s already. */ if (!one_vector_p) mask = aarch64_simd_gen_const_vector_dup (vmode, nelt - 1); sel = expand_simple_binop (vmode, XOR, sel, mask, NULL, 0, OPTAB_LIB_WIDEN); } aarch64_expand_vec_perm_1 (target, op0, op1, sel); } /* Recognize patterns suitable for the TRN instructions. */ static bool aarch64_evpc_trn (struct expand_vec_perm_d *d) { unsigned int i, odd, mask, nelt = d->nelt; rtx out, in0, in1, x; rtx (*gen) (rtx, rtx, rtx); machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ if (d->perm[0] == 0) odd = 0; else if (d->perm[0] == 1) odd = 1; else return false; mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1); for (i = 0; i < nelt; i += 2) { if (d->perm[i] != i + odd) return false; if (d->perm[i + 1] != ((i + nelt + odd) & mask)) return false; } /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; if (BYTES_BIG_ENDIAN) { x = in0, in0 = in1, in1 = x; odd = !odd; } out = d->target; if (odd) { switch (vmode) { case V16QImode: gen = gen_aarch64_trn2v16qi; break; case V8QImode: gen = gen_aarch64_trn2v8qi; break; case V8HImode: gen = gen_aarch64_trn2v8hi; break; case V4HImode: gen = gen_aarch64_trn2v4hi; break; case V4SImode: gen = gen_aarch64_trn2v4si; break; case V2SImode: gen = gen_aarch64_trn2v2si; break; case V2DImode: gen = gen_aarch64_trn2v2di; break; case V4SFmode: gen = gen_aarch64_trn2v4sf; break; case V2SFmode: gen = gen_aarch64_trn2v2sf; break; case V2DFmode: gen = gen_aarch64_trn2v2df; break; default: return false; } } else { switch (vmode) { case V16QImode: gen = gen_aarch64_trn1v16qi; break; case V8QImode: gen = gen_aarch64_trn1v8qi; break; case V8HImode: gen = gen_aarch64_trn1v8hi; break; case V4HImode: gen = gen_aarch64_trn1v4hi; break; case V4SImode: gen = gen_aarch64_trn1v4si; break; case V2SImode: gen = gen_aarch64_trn1v2si; break; case V2DImode: gen = gen_aarch64_trn1v2di; break; case V4SFmode: gen = gen_aarch64_trn1v4sf; break; case V2SFmode: gen = gen_aarch64_trn1v2sf; break; case V2DFmode: gen = gen_aarch64_trn1v2df; break; default: return false; } } emit_insn (gen (out, in0, in1)); return true; } /* Recognize patterns suitable for the UZP instructions. */ static bool aarch64_evpc_uzp (struct expand_vec_perm_d *d) { unsigned int i, odd, mask, nelt = d->nelt; rtx out, in0, in1, x; rtx (*gen) (rtx, rtx, rtx); machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ if (d->perm[0] == 0) odd = 0; else if (d->perm[0] == 1) odd = 1; else return false; mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1); for (i = 0; i < nelt; i++) { unsigned elt = (i * 2 + odd) & mask; if (d->perm[i] != elt) return false; } /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; if (BYTES_BIG_ENDIAN) { x = in0, in0 = in1, in1 = x; odd = !odd; } out = d->target; if (odd) { switch (vmode) { case V16QImode: gen = gen_aarch64_uzp2v16qi; break; case V8QImode: gen = gen_aarch64_uzp2v8qi; break; case V8HImode: gen = gen_aarch64_uzp2v8hi; break; case V4HImode: gen = gen_aarch64_uzp2v4hi; break; case V4SImode: gen = gen_aarch64_uzp2v4si; break; case V2SImode: gen = gen_aarch64_uzp2v2si; break; case V2DImode: gen = gen_aarch64_uzp2v2di; break; case V4SFmode: gen = gen_aarch64_uzp2v4sf; break; case V2SFmode: gen = gen_aarch64_uzp2v2sf; break; case V2DFmode: gen = gen_aarch64_uzp2v2df; break; default: return false; } } else { switch (vmode) { case V16QImode: gen = gen_aarch64_uzp1v16qi; break; case V8QImode: gen = gen_aarch64_uzp1v8qi; break; case V8HImode: gen = gen_aarch64_uzp1v8hi; break; case V4HImode: gen = gen_aarch64_uzp1v4hi; break; case V4SImode: gen = gen_aarch64_uzp1v4si; break; case V2SImode: gen = gen_aarch64_uzp1v2si; break; case V2DImode: gen = gen_aarch64_uzp1v2di; break; case V4SFmode: gen = gen_aarch64_uzp1v4sf; break; case V2SFmode: gen = gen_aarch64_uzp1v2sf; break; case V2DFmode: gen = gen_aarch64_uzp1v2df; break; default: return false; } } emit_insn (gen (out, in0, in1)); return true; } /* Recognize patterns suitable for the ZIP instructions. */ static bool aarch64_evpc_zip (struct expand_vec_perm_d *d) { unsigned int i, high, mask, nelt = d->nelt; rtx out, in0, in1, x; rtx (*gen) (rtx, rtx, rtx); machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ high = nelt / 2; if (d->perm[0] == high) /* Do Nothing. */ ; else if (d->perm[0] == 0) high = 0; else return false; mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1); for (i = 0; i < nelt / 2; i++) { unsigned elt = (i + high) & mask; if (d->perm[i * 2] != elt) return false; elt = (elt + nelt) & mask; if (d->perm[i * 2 + 1] != elt) return false; } /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; if (BYTES_BIG_ENDIAN) { x = in0, in0 = in1, in1 = x; high = !high; } out = d->target; if (high) { switch (vmode) { case V16QImode: gen = gen_aarch64_zip2v16qi; break; case V8QImode: gen = gen_aarch64_zip2v8qi; break; case V8HImode: gen = gen_aarch64_zip2v8hi; break; case V4HImode: gen = gen_aarch64_zip2v4hi; break; case V4SImode: gen = gen_aarch64_zip2v4si; break; case V2SImode: gen = gen_aarch64_zip2v2si; break; case V2DImode: gen = gen_aarch64_zip2v2di; break; case V4SFmode: gen = gen_aarch64_zip2v4sf; break; case V2SFmode: gen = gen_aarch64_zip2v2sf; break; case V2DFmode: gen = gen_aarch64_zip2v2df; break; default: return false; } } else { switch (vmode) { case V16QImode: gen = gen_aarch64_zip1v16qi; break; case V8QImode: gen = gen_aarch64_zip1v8qi; break; case V8HImode: gen = gen_aarch64_zip1v8hi; break; case V4HImode: gen = gen_aarch64_zip1v4hi; break; case V4SImode: gen = gen_aarch64_zip1v4si; break; case V2SImode: gen = gen_aarch64_zip1v2si; break; case V2DImode: gen = gen_aarch64_zip1v2di; break; case V4SFmode: gen = gen_aarch64_zip1v4sf; break; case V2SFmode: gen = gen_aarch64_zip1v2sf; break; case V2DFmode: gen = gen_aarch64_zip1v2df; break; default: return false; } } emit_insn (gen (out, in0, in1)); return true; } /* Recognize patterns for the EXT insn. */ static bool aarch64_evpc_ext (struct expand_vec_perm_d *d) { unsigned int i, nelt = d->nelt; rtx (*gen) (rtx, rtx, rtx, rtx); rtx offset; unsigned int location = d->perm[0]; /* Always < nelt. */ /* Check if the extracted indices are increasing by one. */ for (i = 1; i < nelt; i++) { unsigned int required = location + i; if (d->one_vector_p) { /* We'll pass the same vector in twice, so allow indices to wrap. */ required &= (nelt - 1); } if (d->perm[i] != required) return false; } switch (d->vmode) { case V16QImode: gen = gen_aarch64_extv16qi; break; case V8QImode: gen = gen_aarch64_extv8qi; break; case V4HImode: gen = gen_aarch64_extv4hi; break; case V8HImode: gen = gen_aarch64_extv8hi; break; case V2SImode: gen = gen_aarch64_extv2si; break; case V4SImode: gen = gen_aarch64_extv4si; break; case V2SFmode: gen = gen_aarch64_extv2sf; break; case V4SFmode: gen = gen_aarch64_extv4sf; break; case V2DImode: gen = gen_aarch64_extv2di; break; case V2DFmode: gen = gen_aarch64_extv2df; break; default: return false; } /* Success! */ if (d->testing_p) return true; /* The case where (location == 0) is a no-op for both big- and little-endian, and is removed by the mid-end at optimization levels -O1 and higher. */ if (BYTES_BIG_ENDIAN && (location != 0)) { /* After setup, we want the high elements of the first vector (stored at the LSB end of the register), and the low elements of the second vector (stored at the MSB end of the register). So swap. */ std::swap (d->op0, d->op1); /* location != 0 (above), so safe to assume (nelt - location) < nelt. */ location = nelt - location; } offset = GEN_INT (location); emit_insn (gen (d->target, d->op0, d->op1, offset)); return true; } /* Recognize patterns for the REV insns. */ static bool aarch64_evpc_rev (struct expand_vec_perm_d *d) { unsigned int i, j, diff, nelt = d->nelt; rtx (*gen) (rtx, rtx); if (!d->one_vector_p) return false; diff = d->perm[0]; switch (diff) { case 7: switch (d->vmode) { case V16QImode: gen = gen_aarch64_rev64v16qi; break; case V8QImode: gen = gen_aarch64_rev64v8qi; break; default: return false; } break; case 3: switch (d->vmode) { case V16QImode: gen = gen_aarch64_rev32v16qi; break; case V8QImode: gen = gen_aarch64_rev32v8qi; break; case V8HImode: gen = gen_aarch64_rev64v8hi; break; case V4HImode: gen = gen_aarch64_rev64v4hi; break; default: return false; } break; case 1: switch (d->vmode) { case V16QImode: gen = gen_aarch64_rev16v16qi; break; case V8QImode: gen = gen_aarch64_rev16v8qi; break; case V8HImode: gen = gen_aarch64_rev32v8hi; break; case V4HImode: gen = gen_aarch64_rev32v4hi; break; case V4SImode: gen = gen_aarch64_rev64v4si; break; case V2SImode: gen = gen_aarch64_rev64v2si; break; case V4SFmode: gen = gen_aarch64_rev64v4sf; break; case V2SFmode: gen = gen_aarch64_rev64v2sf; break; default: return false; } break; default: return false; } for (i = 0; i < nelt ; i += diff + 1) for (j = 0; j <= diff; j += 1) { /* This is guaranteed to be true as the value of diff is 7, 3, 1 and we should have enough elements in the queue to generate this. Getting a vector mask with a value of diff other than these values implies that something is wrong by the time we get here. */ gcc_assert (i + j < nelt); if (d->perm[i + j] != i + diff - j) return false; } /* Success! */ if (d->testing_p) return true; emit_insn (gen (d->target, d->op0)); return true; } static bool aarch64_evpc_dup (struct expand_vec_perm_d *d) { rtx (*gen) (rtx, rtx, rtx); rtx out = d->target; rtx in0; machine_mode vmode = d->vmode; unsigned int i, elt, nelt = d->nelt; rtx lane; elt = d->perm[0]; for (i = 1; i < nelt; i++) { if (elt != d->perm[i]) return false; } /* The generic preparation in aarch64_expand_vec_perm_const_1 swaps the operand order and the permute indices if it finds d->perm[0] to be in the second operand. Thus, we can always use d->op0 and need not do any extra arithmetic to get the correct lane number. */ in0 = d->op0; lane = GEN_INT (elt); /* The pattern corrects for big-endian. */ switch (vmode) { case V16QImode: gen = gen_aarch64_dup_lanev16qi; break; case V8QImode: gen = gen_aarch64_dup_lanev8qi; break; case V8HImode: gen = gen_aarch64_dup_lanev8hi; break; case V4HImode: gen = gen_aarch64_dup_lanev4hi; break; case V4SImode: gen = gen_aarch64_dup_lanev4si; break; case V2SImode: gen = gen_aarch64_dup_lanev2si; break; case V2DImode: gen = gen_aarch64_dup_lanev2di; break; case V8HFmode: gen = gen_aarch64_dup_lanev8hf; break; case V4HFmode: gen = gen_aarch64_dup_lanev4hf; break; case V4SFmode: gen = gen_aarch64_dup_lanev4sf; break; case V2SFmode: gen = gen_aarch64_dup_lanev2sf; break; case V2DFmode: gen = gen_aarch64_dup_lanev2df; break; default: return false; } emit_insn (gen (out, in0, lane)); return true; } static bool aarch64_evpc_tbl (struct expand_vec_perm_d *d) { rtx rperm[MAX_VECT_LEN], sel; machine_mode vmode = d->vmode; unsigned int i, nelt = d->nelt; if (d->testing_p) return true; /* Generic code will try constant permutation twice. Once with the original mode and again with the elements lowered to QImode. So wait and don't do the selector expansion ourselves. */ if (vmode != V8QImode && vmode != V16QImode) return false; for (i = 0; i < nelt; ++i) { int nunits = GET_MODE_NUNITS (vmode); /* If big-endian and two vectors we end up with a weird mixed-endian mode on NEON. Reverse the index within each word but not the word itself. */ rperm[i] = GEN_INT (BYTES_BIG_ENDIAN ? d->perm[i] ^ (nunits - 1) : d->perm[i]); } sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm)); sel = force_reg (vmode, sel); aarch64_expand_vec_perm_1 (d->target, d->op0, d->op1, sel); return true; } static bool aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d) { /* The pattern matching functions above are written to look for a small number to begin the sequence (0, 1, N/2). If we begin with an index from the second operand, we can swap the operands. */ if (d->perm[0] >= d->nelt) { unsigned i, nelt = d->nelt; gcc_assert (nelt == (nelt & -nelt)); for (i = 0; i < nelt; ++i) d->perm[i] ^= nelt; /* Keep the same index, but in the other vector. */ std::swap (d->op0, d->op1); } if (TARGET_SIMD) { if (aarch64_evpc_rev (d)) return true; else if (aarch64_evpc_ext (d)) return true; else if (aarch64_evpc_dup (d)) return true; else if (aarch64_evpc_zip (d)) return true; else if (aarch64_evpc_uzp (d)) return true; else if (aarch64_evpc_trn (d)) return true; return aarch64_evpc_tbl (d); } return false; } /* Expand a vec_perm_const pattern. */ bool aarch64_expand_vec_perm_const (rtx target, rtx op0, rtx op1, rtx sel) { struct expand_vec_perm_d d; int i, nelt, which; d.target = target; d.op0 = op0; d.op1 = op1; d.vmode = GET_MODE (target); gcc_assert (VECTOR_MODE_P (d.vmode)); d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = false; for (i = which = 0; i < nelt; ++i) { rtx e = XVECEXP (sel, 0, i); int ei = INTVAL (e) & (2 * nelt - 1); which |= (ei < nelt ? 1 : 2); d.perm[i] = ei; } switch (which) { default: gcc_unreachable (); case 3: d.one_vector_p = false; if (!rtx_equal_p (op0, op1)) break; /* The elements of PERM do not suggest that only the first operand is used, but both operands are identical. Allow easier matching of the permutation by folding the permutation into the single input vector. */ /* Fall Through. */ case 2: for (i = 0; i < nelt; ++i) d.perm[i] &= nelt - 1; d.op0 = op1; d.one_vector_p = true; break; case 1: d.op1 = op0; d.one_vector_p = true; break; } return aarch64_expand_vec_perm_const_1 (&d); } static bool aarch64_vectorize_vec_perm_const_ok (machine_mode vmode, const unsigned char *sel) { struct expand_vec_perm_d d; unsigned int i, nelt, which; bool ret; d.vmode = vmode; d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = true; memcpy (d.perm, sel, nelt); /* Calculate whether all elements are in one vector. */ for (i = which = 0; i < nelt; ++i) { unsigned char e = d.perm[i]; gcc_assert (e < 2 * nelt); which |= (e < nelt ? 1 : 2); } /* If all elements are from the second vector, reindex as if from the first vector. */ if (which == 2) for (i = 0; i < nelt; ++i) d.perm[i] -= nelt; /* Check whether the mask can be applied to a single vector. */ d.one_vector_p = (which != 3); d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1); d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2); if (!d.one_vector_p) d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3); start_sequence (); ret = aarch64_expand_vec_perm_const_1 (&d); end_sequence (); return ret; } rtx aarch64_reverse_mask (enum machine_mode mode) { /* We have to reverse each vector because we dont have a permuted load that can reverse-load according to ABI rules. */ rtx mask; rtvec v = rtvec_alloc (16); int i, j; int nunits = GET_MODE_NUNITS (mode); int usize = GET_MODE_UNIT_SIZE (mode); gcc_assert (BYTES_BIG_ENDIAN); gcc_assert (AARCH64_VALID_SIMD_QREG_MODE (mode)); for (i = 0; i < nunits; i++) for (j = 0; j < usize; j++) RTVEC_ELT (v, i * usize + j) = GEN_INT ((i + 1) * usize - 1 - j); mask = gen_rtx_CONST_VECTOR (V16QImode, v); return force_reg (V16QImode, mask); } /* Implement MODES_TIEABLE_P. */ bool aarch64_modes_tieable_p (machine_mode mode1, machine_mode mode2) { if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2)) return true; /* We specifically want to allow elements of "structure" modes to be tieable to the structure. This more general condition allows other rarer situations too. */ if (TARGET_SIMD && aarch64_vector_mode_p (mode1) && aarch64_vector_mode_p (mode2)) return true; return false; } /* Return a new RTX holding the result of moving POINTER forward by AMOUNT bytes. */ static rtx aarch64_move_pointer (rtx pointer, int amount) { rtx next = plus_constant (Pmode, XEXP (pointer, 0), amount); return adjust_automodify_address (pointer, GET_MODE (pointer), next, amount); } /* Return a new RTX holding the result of moving POINTER forward by the size of the mode it points to. */ static rtx aarch64_progress_pointer (rtx pointer) { HOST_WIDE_INT amount = GET_MODE_SIZE (GET_MODE (pointer)); return aarch64_move_pointer (pointer, amount); } /* Copy one MODE sized block from SRC to DST, then progress SRC and DST by MODE bytes. */ static void aarch64_copy_one_block_and_progress_pointers (rtx *src, rtx *dst, machine_mode mode) { rtx reg = gen_reg_rtx (mode); /* "Cast" the pointers to the correct mode. */ *src = adjust_address (*src, mode, 0); *dst = adjust_address (*dst, mode, 0); /* Emit the memcpy. */ emit_move_insn (reg, *src); emit_move_insn (*dst, reg); /* Move the pointers forward. */ *src = aarch64_progress_pointer (*src); *dst = aarch64_progress_pointer (*dst); } /* Expand movmem, as if from a __builtin_memcpy. Return true if we succeed, otherwise return false. */ bool aarch64_expand_movmem (rtx *operands) { unsigned int n; rtx dst = operands[0]; rtx src = operands[1]; rtx base; bool speed_p = !optimize_function_for_size_p (cfun); /* When optimizing for size, give a better estimate of the length of a memcpy call, but use the default otherwise. */ unsigned int max_instructions = (speed_p ? 15 : AARCH64_CALL_RATIO) / 2; /* We can't do anything smart if the amount to copy is not constant. */ if (!CONST_INT_P (operands[2])) return false; n = UINTVAL (operands[2]); /* Try to keep the number of instructions low. For cases below 16 bytes we need to make at most two moves. For cases above 16 bytes it will be one move for each 16 byte chunk, then at most two additional moves. */ if (((n / 16) + (n % 16 ? 2 : 0)) > max_instructions) return false; base = copy_to_mode_reg (Pmode, XEXP (dst, 0)); dst = adjust_automodify_address (dst, VOIDmode, base, 0); base = copy_to_mode_reg (Pmode, XEXP (src, 0)); src = adjust_automodify_address (src, VOIDmode, base, 0); /* Simple cases. Copy 0-3 bytes, as (if applicable) a 2-byte, then a 1-byte chunk. */ if (n < 4) { if (n >= 2) { aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode); n -= 2; } if (n == 1) aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode); return true; } /* Copy 4-8 bytes. First a 4-byte chunk, then (if applicable) a second 4-byte chunk, partially overlapping with the previously copied chunk. */ if (n < 8) { aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode); n -= 4; if (n > 0) { int move = n - 4; src = aarch64_move_pointer (src, move); dst = aarch64_move_pointer (dst, move); aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode); } return true; } /* Copy more than 8 bytes. Copy chunks of 16 bytes until we run out of them, then (if applicable) an 8-byte chunk. */ while (n >= 8) { if (n / 16) { aarch64_copy_one_block_and_progress_pointers (&src, &dst, TImode); n -= 16; } else { aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode); n -= 8; } } /* Finish the final bytes of the copy. We can always do this in one instruction. We either copy the exact amount we need, or partially overlap with the previous chunk we copied and copy 8-bytes. */ if (n == 0) return true; else if (n == 1) aarch64_copy_one_block_and_progress_pointers (&src, &dst, QImode); else if (n == 2) aarch64_copy_one_block_and_progress_pointers (&src, &dst, HImode); else if (n == 4) aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode); else { if (n == 3) { src = aarch64_move_pointer (src, -1); dst = aarch64_move_pointer (dst, -1); aarch64_copy_one_block_and_progress_pointers (&src, &dst, SImode); } else { int move = n - 8; src = aarch64_move_pointer (src, move); dst = aarch64_move_pointer (dst, move); aarch64_copy_one_block_and_progress_pointers (&src, &dst, DImode); } } return true; } /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ static unsigned HOST_WIDE_INT aarch64_asan_shadow_offset (void) { return (HOST_WIDE_INT_1 << 36); } static bool aarch64_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size, unsigned int align, enum by_pieces_operation op, bool speed_p) { /* STORE_BY_PIECES can be used when copying a constant string, but in that case each 64-bit chunk takes 5 insns instead of 2 (LDR/STR). For now we always fail this and let the move_by_pieces code copy the string from read-only memory. */ if (op == STORE_BY_PIECES) return false; return default_use_by_pieces_infrastructure_p (size, align, op, speed_p); } static enum machine_mode aarch64_code_to_ccmode (enum rtx_code code) { switch (code) { case NE: return CC_DNEmode; case EQ: return CC_DEQmode; case LE: return CC_DLEmode; case LT: return CC_DLTmode; case GE: return CC_DGEmode; case GT: return CC_DGTmode; case LEU: return CC_DLEUmode; case LTU: return CC_DLTUmode; case GEU: return CC_DGEUmode; case GTU: return CC_DGTUmode; default: return CCmode; } } static rtx aarch64_gen_ccmp_first (rtx *prep_seq, rtx *gen_seq, int code, tree treeop0, tree treeop1) { enum machine_mode op_mode, cmp_mode, cc_mode; rtx op0, op1, cmp, target; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0)); enum insn_code icode; struct expand_operand ops[4]; cc_mode = aarch64_code_to_ccmode ((enum rtx_code) code); if (cc_mode == CCmode) return NULL_RTX; start_sequence (); expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op_mode = GET_MODE (op0); if (op_mode == VOIDmode) op_mode = GET_MODE (op1); switch (op_mode) { case QImode: case HImode: case SImode: cmp_mode = SImode; icode = CODE_FOR_cmpsi; break; case DImode: cmp_mode = DImode; icode = CODE_FOR_cmpdi; break; default: end_sequence (); return NULL_RTX; } op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp); op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp); if (!op0 || !op1) { end_sequence (); return NULL_RTX; } *prep_seq = get_insns (); end_sequence (); cmp = gen_rtx_fmt_ee ((enum rtx_code) code, cmp_mode, op0, op1); target = gen_rtx_REG (CCmode, CC_REGNUM); create_output_operand (&ops[0], target, CCmode); create_fixed_operand (&ops[1], cmp); create_fixed_operand (&ops[2], op0); create_fixed_operand (&ops[3], op1); start_sequence (); if (!maybe_expand_insn (icode, 4, ops)) { end_sequence (); return NULL_RTX; } *gen_seq = get_insns (); end_sequence (); return gen_rtx_REG (cc_mode, CC_REGNUM); } static rtx aarch64_gen_ccmp_next (rtx *prep_seq, rtx *gen_seq, rtx prev, int cmp_code, tree treeop0, tree treeop1, int bit_code) { rtx op0, op1, cmp0, cmp1, target; enum machine_mode op_mode, cmp_mode, cc_mode; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0)); enum insn_code icode = CODE_FOR_ccmp_andsi; struct expand_operand ops[6]; cc_mode = aarch64_code_to_ccmode ((enum rtx_code) cmp_code); if (cc_mode == CCmode) return NULL_RTX; push_to_sequence ((rtx_insn*) *prep_seq); expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op_mode = GET_MODE (op0); if (op_mode == VOIDmode) op_mode = GET_MODE (op1); switch (op_mode) { case QImode: case HImode: case SImode: cmp_mode = SImode; icode = (enum rtx_code) bit_code == AND ? CODE_FOR_ccmp_andsi : CODE_FOR_ccmp_iorsi; break; case DImode: cmp_mode = DImode; icode = (enum rtx_code) bit_code == AND ? CODE_FOR_ccmp_anddi : CODE_FOR_ccmp_iordi; break; default: end_sequence (); return NULL_RTX; } op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp); op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp); if (!op0 || !op1) { end_sequence (); return NULL_RTX; } *prep_seq = get_insns (); end_sequence (); target = gen_rtx_REG (cc_mode, CC_REGNUM); cmp1 = gen_rtx_fmt_ee ((enum rtx_code) cmp_code, cmp_mode, op0, op1); cmp0 = gen_rtx_fmt_ee (NE, cmp_mode, prev, const0_rtx); create_fixed_operand (&ops[0], prev); create_fixed_operand (&ops[1], target); create_fixed_operand (&ops[2], op0); create_fixed_operand (&ops[3], op1); create_fixed_operand (&ops[4], cmp0); create_fixed_operand (&ops[5], cmp1); push_to_sequence ((rtx_insn*) *gen_seq); if (!maybe_expand_insn (icode, 6, ops)) { end_sequence (); return NULL_RTX; } *gen_seq = get_insns (); end_sequence (); return target; } #undef TARGET_GEN_CCMP_FIRST #define TARGET_GEN_CCMP_FIRST aarch64_gen_ccmp_first #undef TARGET_GEN_CCMP_NEXT #define TARGET_GEN_CCMP_NEXT aarch64_gen_ccmp_next /* Implement TARGET_SCHED_MACRO_FUSION_P. Return true if target supports instruction fusion of some sort. */ static bool aarch64_macro_fusion_p (void) { return aarch64_tune_params.fusible_ops != AARCH64_FUSE_NOTHING; } /* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P. Return true if PREV and CURR should be kept together during scheduling. */ static bool aarch_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr) { rtx set_dest; rtx prev_set = single_set (prev); rtx curr_set = single_set (curr); /* prev and curr are simple SET insns i.e. no flag setting or branching. */ bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr); if (!aarch64_macro_fusion_p ()) return false; if (simple_sets_p && (aarch64_tune_params.fusible_ops & AARCH64_FUSE_MOV_MOVK)) { /* We are trying to match: prev (mov) == (set (reg r0) (const_int imm16)) curr (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 16)) (const_int imm16_1)) */ set_dest = SET_DEST (curr_set); if (GET_CODE (set_dest) == ZERO_EXTRACT && CONST_INT_P (SET_SRC (curr_set)) && CONST_INT_P (SET_SRC (prev_set)) && CONST_INT_P (XEXP (set_dest, 2)) && INTVAL (XEXP (set_dest, 2)) == 16 && REG_P (XEXP (set_dest, 0)) && REG_P (SET_DEST (prev_set)) && REGNO (XEXP (set_dest, 0)) == REGNO (SET_DEST (prev_set))) { return true; } } if (simple_sets_p && (aarch64_tune_params.fusible_ops & AARCH64_FUSE_ADRP_ADD)) { /* We're trying to match: prev (adrp) == (set (reg r1) (high (symbol_ref ("SYM")))) curr (add) == (set (reg r0) (lo_sum (reg r1) (symbol_ref ("SYM")))) Note that r0 need not necessarily be the same as r1, especially during pre-regalloc scheduling. */ if (satisfies_constraint_Ush (SET_SRC (prev_set)) && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set))) { if (GET_CODE (SET_SRC (curr_set)) == LO_SUM && REG_P (XEXP (SET_SRC (curr_set), 0)) && REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO (SET_DEST (prev_set)) && rtx_equal_p (XEXP (SET_SRC (prev_set), 0), XEXP (SET_SRC (curr_set), 1))) return true; } } if (simple_sets_p && (aarch64_tune_params.fusible_ops & AARCH64_FUSE_MOVK_MOVK)) { /* We're trying to match: prev (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 32)) (const_int imm16_1)) curr (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 48)) (const_int imm16_2)) */ if (GET_CODE (SET_DEST (prev_set)) == ZERO_EXTRACT && GET_CODE (SET_DEST (curr_set)) == ZERO_EXTRACT && REG_P (XEXP (SET_DEST (prev_set), 0)) && REG_P (XEXP (SET_DEST (curr_set), 0)) && REGNO (XEXP (SET_DEST (prev_set), 0)) == REGNO (XEXP (SET_DEST (curr_set), 0)) && CONST_INT_P (XEXP (SET_DEST (prev_set), 2)) && CONST_INT_P (XEXP (SET_DEST (curr_set), 2)) && INTVAL (XEXP (SET_DEST (prev_set), 2)) == 32 && INTVAL (XEXP (SET_DEST (curr_set), 2)) == 48 && CONST_INT_P (SET_SRC (prev_set)) && CONST_INT_P (SET_SRC (curr_set))) return true; } if (simple_sets_p && (aarch64_tune_params.fusible_ops & AARCH64_FUSE_ADRP_LDR)) { /* We're trying to match: prev (adrp) == (set (reg r0) (high (symbol_ref ("SYM")))) curr (ldr) == (set (reg r1) (mem (lo_sum (reg r0) (symbol_ref ("SYM"))))) or curr (ldr) == (set (reg r1) (zero_extend (mem (lo_sum (reg r0) (symbol_ref ("SYM")))))) */ if (satisfies_constraint_Ush (SET_SRC (prev_set)) && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set))) { rtx curr_src = SET_SRC (curr_set); if (GET_CODE (curr_src) == ZERO_EXTEND) curr_src = XEXP (curr_src, 0); if (MEM_P (curr_src) && GET_CODE (XEXP (curr_src, 0)) == LO_SUM && REG_P (XEXP (XEXP (curr_src, 0), 0)) && REGNO (XEXP (XEXP (curr_src, 0), 0)) == REGNO (SET_DEST (prev_set)) && rtx_equal_p (XEXP (XEXP (curr_src, 0), 1), XEXP (SET_SRC (prev_set), 0))) return true; } } if ((aarch64_tune_params.fusible_ops & AARCH64_FUSE_CMP_BRANCH) && any_condjump_p (curr)) { enum attr_type prev_type = get_attr_type (prev); /* FIXME: this misses some which is considered simple arthematic instructions for ThunderX. Simple shifts are missed here. */ if (prev_type == TYPE_ALUS_SREG || prev_type == TYPE_ALUS_IMM || prev_type == TYPE_LOGICS_REG || prev_type == TYPE_LOGICS_IMM) return true; } return false; } /* If MEM is in the form of [base+offset], extract the two parts of address and set to BASE and OFFSET, otherwise return false after clearing BASE and OFFSET. */ bool extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset) { rtx addr; gcc_assert (MEM_P (mem)); addr = XEXP (mem, 0); if (REG_P (addr)) { *base = addr; *offset = const0_rtx; return true; } if (GET_CODE (addr) == PLUS && REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1))) { *base = XEXP (addr, 0); *offset = XEXP (addr, 1); return true; } *base = NULL_RTX; *offset = NULL_RTX; return false; } /* Types for scheduling fusion. */ enum sched_fusion_type { SCHED_FUSION_NONE = 0, SCHED_FUSION_LD_SIGN_EXTEND, SCHED_FUSION_LD_ZERO_EXTEND, SCHED_FUSION_LD, SCHED_FUSION_ST, SCHED_FUSION_NUM }; /* If INSN is a load or store of address in the form of [base+offset], extract the two parts and set to BASE and OFFSET. Return scheduling fusion type this INSN is. */ static enum sched_fusion_type fusion_load_store (rtx_insn *insn, rtx *base, rtx *offset) { rtx x, dest, src; enum sched_fusion_type fusion = SCHED_FUSION_LD; gcc_assert (INSN_P (insn)); x = PATTERN (insn); if (GET_CODE (x) != SET) return SCHED_FUSION_NONE; src = SET_SRC (x); dest = SET_DEST (x); if (GET_MODE (dest) != SImode && GET_MODE (dest) != DImode && GET_MODE (dest) != SFmode && GET_MODE (dest) != DFmode) return SCHED_FUSION_NONE; if (GET_CODE (src) == SIGN_EXTEND) { fusion = SCHED_FUSION_LD_SIGN_EXTEND; src = XEXP (src, 0); if (GET_CODE (src) != MEM || GET_MODE (src) != SImode) return SCHED_FUSION_NONE; } else if (GET_CODE (src) == ZERO_EXTEND) { fusion = SCHED_FUSION_LD_ZERO_EXTEND; src = XEXP (src, 0); if (GET_CODE (src) != MEM || GET_MODE (src) != SImode) return SCHED_FUSION_NONE; } if (GET_CODE (src) == MEM && REG_P (dest)) extract_base_offset_in_addr (src, base, offset); else if (GET_CODE (dest) == MEM && (REG_P (src) || src == const0_rtx)) { fusion = SCHED_FUSION_ST; extract_base_offset_in_addr (dest, base, offset); } else return SCHED_FUSION_NONE; if (*base == NULL_RTX || *offset == NULL_RTX) fusion = SCHED_FUSION_NONE; return fusion; } /* Implement the TARGET_SCHED_FUSION_PRIORITY hook. Currently we only support to fuse ldr or str instructions, so FUSION_PRI and PRI are only calculated for these instructions. For other instruction, FUSION_PRI and PRI are simply set to MAX_PRI - 1. In the future, other type instruction fusion can be added by returning different priorities. It's important that irrelevant instructions get the largest FUSION_PRI. */ static void aarch64_sched_fusion_priority (rtx_insn *insn, int max_pri, int *fusion_pri, int *pri) { int tmp, off_val; rtx base, offset; enum sched_fusion_type fusion; gcc_assert (INSN_P (insn)); tmp = max_pri - 1; fusion = fusion_load_store (insn, &base, &offset); if (fusion == SCHED_FUSION_NONE) { *pri = tmp; *fusion_pri = tmp; return; } /* Set FUSION_PRI according to fusion type and base register. */ *fusion_pri = tmp - fusion * FIRST_PSEUDO_REGISTER - REGNO (base); /* Calculate PRI. */ tmp /= 2; /* INSN with smaller offset goes first. */ off_val = (int)(INTVAL (offset)); if (off_val >= 0) tmp -= (off_val & 0xfffff); else tmp += ((- off_val) & 0xfffff); *pri = tmp; return; } /* Given OPERANDS of consecutive load/store, check if we can merge them into ldp/stp. LOAD is true if they are load instructions. MODE is the mode of memory operands. */ bool aarch64_operands_ok_for_ldpstp (rtx *operands, bool load, enum machine_mode mode) { HOST_WIDE_INT offval_1, offval_2, msize; enum reg_class rclass_1, rclass_2; rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2; if (load) { mem_1 = operands[1]; mem_2 = operands[3]; reg_1 = operands[0]; reg_2 = operands[2]; gcc_assert (REG_P (reg_1) && REG_P (reg_2)); if (REGNO (reg_1) == REGNO (reg_2)) return false; } else { mem_1 = operands[0]; mem_2 = operands[2]; reg_1 = operands[1]; reg_2 = operands[3]; } /* The mems cannot be volatile. */ if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2)) return false; /* Check if the addresses are in the form of [base+offset]. */ extract_base_offset_in_addr (mem_1, &base_1, &offset_1); if (base_1 == NULL_RTX || offset_1 == NULL_RTX) return false; extract_base_offset_in_addr (mem_2, &base_2, &offset_2); if (base_2 == NULL_RTX || offset_2 == NULL_RTX) return false; /* Check if the bases are same. */ if (!rtx_equal_p (base_1, base_2)) return false; offval_1 = INTVAL (offset_1); offval_2 = INTVAL (offset_2); msize = GET_MODE_SIZE (mode); /* Check if the offsets are consecutive. */ if (offval_1 != (offval_2 + msize) && offval_2 != (offval_1 + msize)) return false; /* Check if the addresses are clobbered by load. */ if (load) { if (reg_mentioned_p (reg_1, mem_1)) return false; /* In increasing order, the last load can clobber the address. */ if (offval_1 > offval_2 && reg_mentioned_p (reg_2, mem_2)) return false; } if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1))) rclass_1 = FP_REGS; else rclass_1 = GENERAL_REGS; if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2))) rclass_2 = FP_REGS; else rclass_2 = GENERAL_REGS; /* Check if the registers are of same class. */ if (rclass_1 != rclass_2) return false; return true; } /* Given OPERANDS of consecutive load/store, check if we can merge them into ldp/stp by adjusting the offset. LOAD is true if they are load instructions. MODE is the mode of memory operands. Given below consecutive stores: str w1, [xb, 0x100] str w1, [xb, 0x104] str w1, [xb, 0x108] str w1, [xb, 0x10c] Though the offsets are out of the range supported by stp, we can still pair them after adjusting the offset, like: add scratch, xb, 0x100 stp w1, w1, [scratch] stp w1, w1, [scratch, 0x8] The peephole patterns detecting this opportunity should guarantee the scratch register is avaliable. */ bool aarch64_operands_adjust_ok_for_ldpstp (rtx *operands, bool load, enum machine_mode mode) { enum reg_class rclass_1, rclass_2, rclass_3, rclass_4; HOST_WIDE_INT offval_1, offval_2, offval_3, offval_4, msize; rtx mem_1, mem_2, mem_3, mem_4, reg_1, reg_2, reg_3, reg_4; rtx base_1, base_2, base_3, base_4, offset_1, offset_2, offset_3, offset_4; if (load) { reg_1 = operands[0]; mem_1 = operands[1]; reg_2 = operands[2]; mem_2 = operands[3]; reg_3 = operands[4]; mem_3 = operands[5]; reg_4 = operands[6]; mem_4 = operands[7]; gcc_assert (REG_P (reg_1) && REG_P (reg_2) && REG_P (reg_3) && REG_P (reg_4)); if (REGNO (reg_1) == REGNO (reg_2) || REGNO (reg_3) == REGNO (reg_4)) return false; } else { mem_1 = operands[0]; reg_1 = operands[1]; mem_2 = operands[2]; reg_2 = operands[3]; mem_3 = operands[4]; reg_3 = operands[5]; mem_4 = operands[6]; reg_4 = operands[7]; } /* Skip if memory operand is by itslef valid for ldp/stp. */ if (!MEM_P (mem_1) || aarch64_mem_pair_operand (mem_1, mode)) return false; /* The mems cannot be volatile. */ if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2) || MEM_VOLATILE_P (mem_3) ||MEM_VOLATILE_P (mem_4)) return false; /* Check if the addresses are in the form of [base+offset]. */ extract_base_offset_in_addr (mem_1, &base_1, &offset_1); if (base_1 == NULL_RTX || offset_1 == NULL_RTX) return false; extract_base_offset_in_addr (mem_2, &base_2, &offset_2); if (base_2 == NULL_RTX || offset_2 == NULL_RTX) return false; extract_base_offset_in_addr (mem_3, &base_3, &offset_3); if (base_3 == NULL_RTX || offset_3 == NULL_RTX) return false; extract_base_offset_in_addr (mem_4, &base_4, &offset_4); if (base_4 == NULL_RTX || offset_4 == NULL_RTX) return false; /* Check if the bases are same. */ if (!rtx_equal_p (base_1, base_2) || !rtx_equal_p (base_2, base_3) || !rtx_equal_p (base_3, base_4)) return false; offval_1 = INTVAL (offset_1); offval_2 = INTVAL (offset_2); offval_3 = INTVAL (offset_3); offval_4 = INTVAL (offset_4); msize = GET_MODE_SIZE (mode); /* Check if the offsets are consecutive. */ if ((offval_1 != (offval_2 + msize) || offval_1 != (offval_3 + msize * 2) || offval_1 != (offval_4 + msize * 3)) && (offval_4 != (offval_3 + msize) || offval_4 != (offval_2 + msize * 2) || offval_4 != (offval_1 + msize * 3))) return false; /* Check if the addresses are clobbered by load. */ if (load) { if (reg_mentioned_p (reg_1, mem_1) || reg_mentioned_p (reg_2, mem_2) || reg_mentioned_p (reg_3, mem_3)) return false; /* In increasing order, the last load can clobber the address. */ if (offval_1 > offval_2 && reg_mentioned_p (reg_4, mem_4)) return false; } if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1))) rclass_1 = FP_REGS; else rclass_1 = GENERAL_REGS; if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2))) rclass_2 = FP_REGS; else rclass_2 = GENERAL_REGS; if (REG_P (reg_3) && FP_REGNUM_P (REGNO (reg_3))) rclass_3 = FP_REGS; else rclass_3 = GENERAL_REGS; if (REG_P (reg_4) && FP_REGNUM_P (REGNO (reg_4))) rclass_4 = FP_REGS; else rclass_4 = GENERAL_REGS; /* Check if the registers are of same class. */ if (rclass_1 != rclass_2 || rclass_2 != rclass_3 || rclass_3 != rclass_4) return false; return true; } /* Given OPERANDS of consecutive load/store, this function pairs them into ldp/stp after adjusting the offset. It depends on the fact that addresses of load/store instructions are in increasing order. MODE is the mode of memory operands. CODE is the rtl operator which should be applied to all memory operands, it's SIGN_EXTEND, ZERO_EXTEND or UNKNOWN. */ bool aarch64_gen_adjusted_ldpstp (rtx *operands, bool load, enum machine_mode mode, RTX_CODE code) { rtx base, offset, t1, t2; rtx mem_1, mem_2, mem_3, mem_4; HOST_WIDE_INT off_val, abs_off, adj_off, new_off, stp_off_limit, msize; if (load) { mem_1 = operands[1]; mem_2 = operands[3]; mem_3 = operands[5]; mem_4 = operands[7]; } else { mem_1 = operands[0]; mem_2 = operands[2]; mem_3 = operands[4]; mem_4 = operands[6]; gcc_assert (code == UNKNOWN); } extract_base_offset_in_addr (mem_1, &base, &offset); gcc_assert (base != NULL_RTX && offset != NULL_RTX); /* Adjust offset thus it can fit in ldp/stp instruction. */ msize = GET_MODE_SIZE (mode); stp_off_limit = msize * 0x40; off_val = INTVAL (offset); abs_off = (off_val < 0) ? -off_val : off_val; new_off = abs_off % stp_off_limit; adj_off = abs_off - new_off; /* Further adjust to make sure all offsets are OK. */ if ((new_off + msize * 2) >= stp_off_limit) { adj_off += stp_off_limit; new_off -= stp_off_limit; } /* Make sure the adjustment can be done with ADD/SUB instructions. */ if (adj_off >= 0x1000) return false; if (off_val < 0) { adj_off = -adj_off; new_off = -new_off; } /* Create new memory references. */ mem_1 = change_address (mem_1, VOIDmode, plus_constant (DImode, operands[8], new_off)); /* Check if the adjusted address is OK for ldp/stp. */ if (!aarch64_mem_pair_operand (mem_1, mode)) return false; msize = GET_MODE_SIZE (mode); mem_2 = change_address (mem_2, VOIDmode, plus_constant (DImode, operands[8], new_off + msize)); mem_3 = change_address (mem_3, VOIDmode, plus_constant (DImode, operands[8], new_off + msize * 2)); mem_4 = change_address (mem_4, VOIDmode, plus_constant (DImode, operands[8], new_off + msize * 3)); if (code == ZERO_EXTEND) { mem_1 = gen_rtx_ZERO_EXTEND (DImode, mem_1); mem_2 = gen_rtx_ZERO_EXTEND (DImode, mem_2); mem_3 = gen_rtx_ZERO_EXTEND (DImode, mem_3); mem_4 = gen_rtx_ZERO_EXTEND (DImode, mem_4); } else if (code == SIGN_EXTEND) { mem_1 = gen_rtx_SIGN_EXTEND (DImode, mem_1); mem_2 = gen_rtx_SIGN_EXTEND (DImode, mem_2); mem_3 = gen_rtx_SIGN_EXTEND (DImode, mem_3); mem_4 = gen_rtx_SIGN_EXTEND (DImode, mem_4); } if (load) { operands[1] = mem_1; operands[3] = mem_2; operands[5] = mem_3; operands[7] = mem_4; } else { operands[0] = mem_1; operands[2] = mem_2; operands[4] = mem_3; operands[6] = mem_4; } /* Emit adjusting instruction. */ emit_insn (gen_rtx_SET (operands[8], plus_constant (DImode, base, adj_off))); /* Emit ldp/stp instructions. */ t1 = gen_rtx_SET (operands[0], operands[1]); t2 = gen_rtx_SET (operands[2], operands[3]); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2))); t1 = gen_rtx_SET (operands[4], operands[5]); t2 = gen_rtx_SET (operands[6], operands[7]); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2))); return true; } /* Return 1 if pseudo register should be created and used to hold GOT address for PIC code. */ bool aarch64_use_pseudo_pic_reg (void) { return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC; } /* Implement TARGET_UNSPEC_MAY_TRAP_P. */ static int aarch64_unspec_may_trap_p (const_rtx x, unsigned flags) { switch (XINT (x, 1)) { case UNSPEC_GOTSMALLPIC: case UNSPEC_GOTSMALLPIC28K: case UNSPEC_GOTTINYPIC: return 0; default: break; } return default_unspec_may_trap_p (x, flags); } /* Implement TARGET_PROMOTED_TYPE to promote __fp16 to float. */ static tree aarch64_promoted_type (const_tree t) { if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16) return float_type_node; return NULL_TREE; } #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST aarch64_address_cost /* This hook will determines whether unnamed bitfields affect the alignment of the containing structure. The hook returns true if the structure should inherit the alignment requirements of an unnamed bitfield's type. */ #undef TARGET_ALIGN_ANON_BITFIELD #define TARGET_ALIGN_ANON_BITFIELD hook_bool_void_true #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.xword\t" #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK \ hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK aarch64_output_mi_thunk #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION aarch64_select_rtx_section #undef TARGET_ASM_TRAMPOLINE_TEMPLATE #define TARGET_ASM_TRAMPOLINE_TEMPLATE aarch64_asm_trampoline_template #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST aarch64_build_builtin_va_list #undef TARGET_CALLEE_COPIES #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_false #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE aarch64_can_eliminate #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P aarch64_can_inline_p #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM aarch64_cannot_force_const_mem #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE aarch64_conditional_register_usage /* Only the least significant bit is used for initialization guard variables. */ #undef TARGET_CXX_GUARD_MASK_BIT #define TARGET_CXX_GUARD_MASK_BIT hook_bool_void_true #undef TARGET_C_MODE_FOR_SUFFIX #define TARGET_C_MODE_FOR_SUFFIX aarch64_c_mode_for_suffix #ifdef TARGET_BIG_ENDIAN_DEFAULT #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_END) #endif #undef TARGET_CLASS_MAX_NREGS #define TARGET_CLASS_MAX_NREGS aarch64_class_max_nregs #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL aarch64_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN aarch64_expand_builtin #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START aarch64_expand_builtin_va_start #undef TARGET_FOLD_BUILTIN #define TARGET_FOLD_BUILTIN aarch64_fold_builtin #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG aarch64_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE aarch64_function_arg_advance #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY aarch64_function_arg_boundary #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL aarch64_function_ok_for_sibcall #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE aarch64_function_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P aarch64_function_value_regno_p #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED aarch64_frame_pointer_required #undef TARGET_GIMPLE_FOLD_BUILTIN #define TARGET_GIMPLE_FOLD_BUILTIN aarch64_gimple_fold_builtin #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR aarch64_gimplify_va_arg_expr #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS aarch64_init_builtins #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P aarch64_legitimate_address_hook_p #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P aarch64_legitimate_constant_p #undef TARGET_LIBGCC_CMP_RETURN_MODE #define TARGET_LIBGCC_CMP_RETURN_MODE aarch64_libgcc_cmp_return_mode #undef TARGET_LRA_P #define TARGET_LRA_P hook_bool_void_true #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE aarch64_mangle_type #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST aarch64_memory_move_cost #undef TARGET_MIN_DIVISIONS_FOR_RECIP_MUL #define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL aarch64_min_divisions_for_recip_mul #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size /* This target hook should return true if accesses to volatile bitfields should use the narrowest mode possible. It should return false if these accesses should use the bitfield container type. */ #undef TARGET_NARROW_VOLATILE_BITFIELD #define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE aarch64_override_options #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \ aarch64_override_options_after_change #undef TARGET_OPTION_SAVE #define TARGET_OPTION_SAVE aarch64_option_save #undef TARGET_OPTION_RESTORE #define TARGET_OPTION_RESTORE aarch64_option_restore #undef TARGET_OPTION_PRINT #define TARGET_OPTION_PRINT aarch64_option_print #undef TARGET_OPTION_VALID_ATTRIBUTE_P #define TARGET_OPTION_VALID_ATTRIBUTE_P aarch64_option_valid_attribute_p #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION aarch64_set_current_function #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE aarch64_pass_by_reference #undef TARGET_PREFERRED_RELOAD_CLASS #define TARGET_PREFERRED_RELOAD_CLASS aarch64_preferred_reload_class #undef TARGET_SCHED_REASSOCIATION_WIDTH #define TARGET_SCHED_REASSOCIATION_WIDTH aarch64_reassociation_width #undef TARGET_PROMOTED_TYPE #define TARGET_PROMOTED_TYPE aarch64_promoted_type #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD aarch64_secondary_reload #undef TARGET_SHIFT_TRUNCATION_MASK #define TARGET_SHIFT_TRUNCATION_MASK aarch64_shift_truncation_mask #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS aarch64_setup_incoming_varargs #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX aarch64_struct_value_rtx #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST aarch64_register_move_cost #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY aarch64_return_in_memory #undef TARGET_RETURN_IN_MSB #define TARGET_RETURN_IN_MSB aarch64_return_in_msb #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS aarch64_rtx_costs_wrapper #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE aarch64_sched_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ aarch64_sched_first_cycle_multipass_dfa_lookahead #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT aarch64_trampoline_init #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P aarch64_use_blocks_for_constant_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P aarch64_vector_mode_supported_p #undef TARGET_ARRAY_MODE_SUPPORTED_P #define TARGET_ARRAY_MODE_SUPPORTED_P aarch64_array_mode_supported_p #undef TARGET_VECTORIZE_ADD_STMT_COST #define TARGET_VECTORIZE_ADD_STMT_COST aarch64_add_stmt_cost #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ aarch64_builtin_vectorization_cost #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE aarch64_preferred_simd_mode #undef TARGET_VECTORIZE_BUILTINS #define TARGET_VECTORIZE_BUILTINS #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ aarch64_builtin_vectorized_function #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \ aarch64_autovectorize_vector_sizes #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV \ aarch64_atomic_assign_expand_fenv /* Section anchor support. */ #undef TARGET_MIN_ANCHOR_OFFSET #define TARGET_MIN_ANCHOR_OFFSET -256 /* Limit the maximum anchor offset to 4k-1, since that's the limit for a byte offset; we can do much more for larger data types, but have no way to determine the size of the access. We assume accesses are aligned. */ #undef TARGET_MAX_ANCHOR_OFFSET #define TARGET_MAX_ANCHOR_OFFSET 4095 #undef TARGET_VECTOR_ALIGNMENT #define TARGET_VECTOR_ALIGNMENT aarch64_simd_vector_alignment #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \ aarch64_simd_vector_alignment_reachable /* vec_perm support. */ #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK #define TARGET_VECTORIZE_VEC_PERM_CONST_OK \ aarch64_vectorize_vec_perm_const_ok #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS aarch64_init_libfuncs #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS aarch64_fixed_condition_code_regs #undef TARGET_FLAGS_REGNUM #define TARGET_FLAGS_REGNUM CC_REGNUM #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET aarch64_asan_shadow_offset #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS aarch64_legitimize_address #undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P #define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \ aarch64_use_by_pieces_infrastructure_p #undef TARGET_CAN_USE_DOLOOP_P #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost #undef TARGET_SCHED_MACRO_FUSION_P #define TARGET_SCHED_MACRO_FUSION_P aarch64_macro_fusion_p #undef TARGET_SCHED_MACRO_FUSION_PAIR_P #define TARGET_SCHED_MACRO_FUSION_PAIR_P aarch_macro_fusion_pair_p #undef TARGET_SCHED_FUSION_PRIORITY #define TARGET_SCHED_FUSION_PRIORITY aarch64_sched_fusion_priority #undef TARGET_UNSPEC_MAY_TRAP_P #define TARGET_UNSPEC_MAY_TRAP_P aarch64_unspec_may_trap_p #undef TARGET_USE_PSEUDO_PIC_REG #define TARGET_USE_PSEUDO_PIC_REG aarch64_use_pseudo_pic_reg struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-aarch64.h"