/* A pass for lowering trees to RTL.
Copyright (C) 2004-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "basic-block.h"
#include "function.h"
#include "expr.h"
#include "langhooks.h"
#include "tree-ssa.h"
#include "tree-pass.h"
#include "except.h"
#include "flags.h"
#include "diagnostic.h"
#include "gimple-pretty-print.h"
#include "toplev.h"
#include "debug.h"
#include "params.h"
#include "tree-inline.h"
#include "value-prof.h"
#include "target.h"
#include "tree-outof-ssa.h"
#include "bitmap.h"
#include "sbitmap.h"
#include "cfgloop.h"
#include "regs.h" /* For reg_renumber. */
#include "insn-attr.h" /* For INSN_SCHEDULING. */
#include "asan.h"
/* This variable holds information helping the rewriting of SSA trees
into RTL. */
struct ssaexpand SA;
/* This variable holds the currently expanded gimple statement for purposes
of comminucating the profile info to the builtin expanders. */
gimple currently_expanding_gimple_stmt;
static rtx expand_debug_expr (tree);
/* Return an expression tree corresponding to the RHS of GIMPLE
statement STMT. */
tree
gimple_assign_rhs_to_tree (gimple stmt)
{
tree t;
enum gimple_rhs_class grhs_class;
grhs_class = get_gimple_rhs_class (gimple_expr_code (stmt));
if (grhs_class == GIMPLE_TERNARY_RHS)
t = build3 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
gimple_assign_rhs3 (stmt));
else if (grhs_class == GIMPLE_BINARY_RHS)
t = build2 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
else if (grhs_class == GIMPLE_UNARY_RHS)
t = build1 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt));
else if (grhs_class == GIMPLE_SINGLE_RHS)
{
t = gimple_assign_rhs1 (stmt);
/* Avoid modifying this tree in place below. */
if ((gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
&& gimple_location (stmt) != EXPR_LOCATION (t))
|| (gimple_block (stmt)
&& currently_expanding_to_rtl
&& EXPR_P (t)))
t = copy_node (t);
}
else
gcc_unreachable ();
if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
SET_EXPR_LOCATION (t, gimple_location (stmt));
return t;
}
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif
#define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
/* Associate declaration T with storage space X. If T is no
SSA name this is exactly SET_DECL_RTL, otherwise make the
partition of T associated with X. */
static inline void
set_rtl (tree t, rtx x)
{
if (TREE_CODE (t) == SSA_NAME)
{
SA.partition_to_pseudo[var_to_partition (SA.map, t)] = x;
if (x && !MEM_P (x))
set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (t), x);
/* For the benefit of debug information at -O0 (where vartracking
doesn't run) record the place also in the base DECL if it's
a normal variable (not a parameter). */
if (x && x != pc_rtx && TREE_CODE (SSA_NAME_VAR (t)) == VAR_DECL)
{
tree var = SSA_NAME_VAR (t);
/* If we don't yet have something recorded, just record it now. */
if (!DECL_RTL_SET_P (var))
SET_DECL_RTL (var, x);
/* If we have it set already to "multiple places" don't
change this. */
else if (DECL_RTL (var) == pc_rtx)
;
/* If we have something recorded and it's not the same place
as we want to record now, we have multiple partitions for the
same base variable, with different places. We can't just
randomly chose one, hence we have to say that we don't know.
This only happens with optimization, and there var-tracking
will figure out the right thing. */
else if (DECL_RTL (var) != x)
SET_DECL_RTL (var, pc_rtx);
}
}
else
SET_DECL_RTL (t, x);
}
/* This structure holds data relevant to one variable that will be
placed in a stack slot. */
struct stack_var
{
/* The Variable. */
tree decl;
/* Initially, the size of the variable. Later, the size of the partition,
if this variable becomes it's partition's representative. */
HOST_WIDE_INT size;
/* The *byte* alignment required for this variable. Or as, with the
size, the alignment for this partition. */
unsigned int alignb;
/* The partition representative. */
size_t representative;
/* The next stack variable in the partition, or EOC. */
size_t next;
/* The numbers of conflicting stack variables. */
bitmap conflicts;
};
#define EOC ((size_t)-1)
/* We have an array of such objects while deciding allocation. */
static struct stack_var *stack_vars;
static size_t stack_vars_alloc;
static size_t stack_vars_num;
static struct pointer_map_t *decl_to_stack_part;
/* Conflict bitmaps go on this obstack. This allows us to destroy
all of them in one big sweep. */
static bitmap_obstack stack_var_bitmap_obstack;
/* An array of indices such that stack_vars[stack_vars_sorted[i]].size
is non-decreasing. */
static size_t *stack_vars_sorted;
/* The phase of the stack frame. This is the known misalignment of
virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
(frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
static int frame_phase;
/* Used during expand_used_vars to remember if we saw any decls for
which we'd like to enable stack smashing protection. */
static bool has_protected_decls;
/* Used during expand_used_vars. Remember if we say a character buffer
smaller than our cutoff threshold. Used for -Wstack-protector. */
static bool has_short_buffer;
/* Compute the byte alignment to use for DECL. Ignore alignment
we can't do with expected alignment of the stack boundary. */
static unsigned int
align_local_variable (tree decl)
{
unsigned int align = LOCAL_DECL_ALIGNMENT (decl);
DECL_ALIGN (decl) = align;
return align / BITS_PER_UNIT;
}
/* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
Return the frame offset. */
static HOST_WIDE_INT
alloc_stack_frame_space (HOST_WIDE_INT size, unsigned HOST_WIDE_INT align)
{
HOST_WIDE_INT offset, new_frame_offset;
new_frame_offset = frame_offset;
if (FRAME_GROWS_DOWNWARD)
{
new_frame_offset -= size + frame_phase;
new_frame_offset &= -align;
new_frame_offset += frame_phase;
offset = new_frame_offset;
}
else
{
new_frame_offset -= frame_phase;
new_frame_offset += align - 1;
new_frame_offset &= -align;
new_frame_offset += frame_phase;
offset = new_frame_offset;
new_frame_offset += size;
}
frame_offset = new_frame_offset;
if (frame_offset_overflow (frame_offset, cfun->decl))
frame_offset = offset = 0;
return offset;
}
/* Accumulate DECL into STACK_VARS. */
static void
add_stack_var (tree decl)
{
struct stack_var *v;
if (stack_vars_num >= stack_vars_alloc)
{
if (stack_vars_alloc)
stack_vars_alloc = stack_vars_alloc * 3 / 2;
else
stack_vars_alloc = 32;
stack_vars
= XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
}
if (!decl_to_stack_part)
decl_to_stack_part = pointer_map_create ();
v = &stack_vars[stack_vars_num];
* (size_t *)pointer_map_insert (decl_to_stack_part, decl) = stack_vars_num;
v->decl = decl;
v->size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (decl)), 1);
/* Ensure that all variables have size, so that &a != &b for any two
variables that are simultaneously live. */
if (v->size == 0)
v->size = 1;
v->alignb = align_local_variable (SSAVAR (decl));
/* An alignment of zero can mightily confuse us later. */
gcc_assert (v->alignb != 0);
/* All variables are initially in their own partition. */
v->representative = stack_vars_num;
v->next = EOC;
/* All variables initially conflict with no other. */
v->conflicts = NULL;
/* Ensure that this decl doesn't get put onto the list twice. */
set_rtl (decl, pc_rtx);
stack_vars_num++;
}
/* Make the decls associated with luid's X and Y conflict. */
static void
add_stack_var_conflict (size_t x, size_t y)
{
struct stack_var *a = &stack_vars[x];
struct stack_var *b = &stack_vars[y];
if (!a->conflicts)
a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
if (!b->conflicts)
b->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
bitmap_set_bit (a->conflicts, y);
bitmap_set_bit (b->conflicts, x);
}
/* Check whether the decls associated with luid's X and Y conflict. */
static bool
stack_var_conflict_p (size_t x, size_t y)
{
struct stack_var *a = &stack_vars[x];
struct stack_var *b = &stack_vars[y];
if (x == y)
return false;
/* Partitions containing an SSA name result from gimple registers
with things like unsupported modes. They are top-level and
hence conflict with everything else. */
if (TREE_CODE (a->decl) == SSA_NAME || TREE_CODE (b->decl) == SSA_NAME)
return true;
if (!a->conflicts || !b->conflicts)
return false;
return bitmap_bit_p (a->conflicts, y);
}
/* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var
enter its partition number into bitmap DATA. */
static bool
visit_op (gimple stmt ATTRIBUTE_UNUSED, tree op, void *data)
{
bitmap active = (bitmap)data;
op = get_base_address (op);
if (op
&& DECL_P (op)
&& DECL_RTL_IF_SET (op) == pc_rtx)
{
size_t *v = (size_t *) pointer_map_contains (decl_to_stack_part, op);
if (v)
bitmap_set_bit (active, *v);
}
return false;
}
/* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var
record conflicts between it and all currently active other partitions
from bitmap DATA. */
static bool
visit_conflict (gimple stmt ATTRIBUTE_UNUSED, tree op, void *data)
{
bitmap active = (bitmap)data;
op = get_base_address (op);
if (op
&& DECL_P (op)
&& DECL_RTL_IF_SET (op) == pc_rtx)
{
size_t *v =
(size_t *) pointer_map_contains (decl_to_stack_part, op);
if (v && bitmap_set_bit (active, *v))
{
size_t num = *v;
bitmap_iterator bi;
unsigned i;
gcc_assert (num < stack_vars_num);
EXECUTE_IF_SET_IN_BITMAP (active, 0, i, bi)
add_stack_var_conflict (num, i);
}
}
return false;
}
/* Helper routine for add_scope_conflicts, calculating the active partitions
at the end of BB, leaving the result in WORK. We're called to generate
conflicts when FOR_CONFLICT is true, otherwise we're just tracking
liveness. */
static void
add_scope_conflicts_1 (basic_block bb, bitmap work, bool for_conflict)
{
edge e;
edge_iterator ei;
gimple_stmt_iterator gsi;
bool (*visit)(gimple, tree, void *);
bitmap_clear (work);
FOR_EACH_EDGE (e, ei, bb->preds)
bitmap_ior_into (work, (bitmap)e->src->aux);
visit = visit_op;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
walk_stmt_load_store_addr_ops (stmt, work, NULL, NULL, visit);
}
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_clobber_p (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
size_t *v;
/* Nested function lowering might introduce LHSs
that are COMPONENT_REFs. */
if (TREE_CODE (lhs) != VAR_DECL)
continue;
if (DECL_RTL_IF_SET (lhs) == pc_rtx
&& (v = (size_t *)
pointer_map_contains (decl_to_stack_part, lhs)))
bitmap_clear_bit (work, *v);
}
else if (!is_gimple_debug (stmt))
{
if (for_conflict
&& visit == visit_op)
{
/* If this is the first real instruction in this BB we need
to add conflicts for everything live at this point now.
Unlike classical liveness for named objects we can't
rely on seeing a def/use of the names we're interested in.
There might merely be indirect loads/stores. We'd not add any
conflicts for such partitions. */
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (work, 0, i, bi)
{
struct stack_var *a = &stack_vars[i];
if (!a->conflicts)
a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
bitmap_ior_into (a->conflicts, work);
}
visit = visit_conflict;
}
walk_stmt_load_store_addr_ops (stmt, work, visit, visit, visit);
}
}
}
/* Generate stack partition conflicts between all partitions that are
simultaneously live. */
static void
add_scope_conflicts (void)
{
basic_block bb;
bool changed;
bitmap work = BITMAP_ALLOC (NULL);
int *rpo;
int n_bbs;
/* We approximate the live range of a stack variable by taking the first
mention of its name as starting point(s), and by the end-of-scope
death clobber added by gimplify as ending point(s) of the range.
This overapproximates in the case we for instance moved an address-taken
operation upward, without also moving a dereference to it upwards.
But it's conservatively correct as a variable never can hold values
before its name is mentioned at least once.
We then do a mostly classical bitmap liveness algorithm. */
FOR_ALL_BB (bb)
bb->aux = BITMAP_ALLOC (&stack_var_bitmap_obstack);
rpo = XNEWVEC (int, last_basic_block);
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
changed = true;
while (changed)
{
int i;
changed = false;
for (i = 0; i < n_bbs; i++)
{
bitmap active;
bb = BASIC_BLOCK (rpo[i]);
active = (bitmap)bb->aux;
add_scope_conflicts_1 (bb, work, false);
if (bitmap_ior_into (active, work))
changed = true;
}
}
FOR_EACH_BB (bb)
add_scope_conflicts_1 (bb, work, true);
free (rpo);
BITMAP_FREE (work);
FOR_ALL_BB (bb)
BITMAP_FREE (bb->aux);
}
/* A subroutine of partition_stack_vars. A comparison function for qsort,
sorting an array of indices by the properties of the object. */
static int
stack_var_cmp (const void *a, const void *b)
{
size_t ia = *(const size_t *)a;
size_t ib = *(const size_t *)b;
unsigned int aligna = stack_vars[ia].alignb;
unsigned int alignb = stack_vars[ib].alignb;
HOST_WIDE_INT sizea = stack_vars[ia].size;
HOST_WIDE_INT sizeb = stack_vars[ib].size;
tree decla = stack_vars[ia].decl;
tree declb = stack_vars[ib].decl;
bool largea, largeb;
unsigned int uida, uidb;
/* Primary compare on "large" alignment. Large comes first. */
largea = (aligna * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
largeb = (alignb * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
if (largea != largeb)
return (int)largeb - (int)largea;
/* Secondary compare on size, decreasing */
if (sizea > sizeb)
return -1;
if (sizea < sizeb)
return 1;
/* Tertiary compare on true alignment, decreasing. */
if (aligna < alignb)
return -1;
if (aligna > alignb)
return 1;
/* Final compare on ID for sort stability, increasing.
Two SSA names are compared by their version, SSA names come before
non-SSA names, and two normal decls are compared by their DECL_UID. */
if (TREE_CODE (decla) == SSA_NAME)
{
if (TREE_CODE (declb) == SSA_NAME)
uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
else
return -1;
}
else if (TREE_CODE (declb) == SSA_NAME)
return 1;
else
uida = DECL_UID (decla), uidb = DECL_UID (declb);
if (uida < uidb)
return 1;
if (uida > uidb)
return -1;
return 0;
}
/* If the points-to solution *PI points to variables that are in a partition
together with other variables add all partition members to the pointed-to
variables bitmap. */
static void
add_partitioned_vars_to_ptset (struct pt_solution *pt,
struct pointer_map_t *decls_to_partitions,
struct pointer_set_t *visited, bitmap temp)
{
bitmap_iterator bi;
unsigned i;
bitmap *part;
if (pt->anything
|| pt->vars == NULL
/* The pointed-to vars bitmap is shared, it is enough to
visit it once. */
|| pointer_set_insert (visited, pt->vars))
return;
bitmap_clear (temp);
/* By using a temporary bitmap to store all members of the partitions
we have to add we make sure to visit each of the partitions only
once. */
EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
if ((!temp
|| !bitmap_bit_p (temp, i))
&& (part = (bitmap *) pointer_map_contains (decls_to_partitions,
(void *)(size_t) i)))
bitmap_ior_into (temp, *part);
if (!bitmap_empty_p (temp))
bitmap_ior_into (pt->vars, temp);
}
/* Update points-to sets based on partition info, so we can use them on RTL.
The bitmaps representing stack partitions will be saved until expand,
where partitioned decls used as bases in memory expressions will be
rewritten. */
static void
update_alias_info_with_stack_vars (void)
{
struct pointer_map_t *decls_to_partitions = NULL;
size_t i, j;
tree var = NULL_TREE;
for (i = 0; i < stack_vars_num; i++)
{
bitmap part = NULL;
tree name;
struct ptr_info_def *pi;
/* Not interested in partitions with single variable. */
if (stack_vars[i].representative != i
|| stack_vars[i].next == EOC)
continue;
if (!decls_to_partitions)
{
decls_to_partitions = pointer_map_create ();
cfun->gimple_df->decls_to_pointers = pointer_map_create ();
}
/* Create an SSA_NAME that points to the partition for use
as base during alias-oracle queries on RTL for bases that
have been partitioned. */
if (var == NULL_TREE)
var = create_tmp_var (ptr_type_node, NULL);
name = make_ssa_name (var, NULL);
/* Create bitmaps representing partitions. They will be used for
points-to sets later, so use GGC alloc. */
part = BITMAP_GGC_ALLOC ();
for (j = i; j != EOC; j = stack_vars[j].next)
{
tree decl = stack_vars[j].decl;
unsigned int uid = DECL_PT_UID (decl);
bitmap_set_bit (part, uid);
*((bitmap *) pointer_map_insert (decls_to_partitions,
(void *)(size_t) uid)) = part;
*((tree *) pointer_map_insert (cfun->gimple_df->decls_to_pointers,
decl)) = name;
if (TREE_ADDRESSABLE (decl))
TREE_ADDRESSABLE (name) = 1;
}
/* Make the SSA name point to all partition members. */
pi = get_ptr_info (name);
pt_solution_set (&pi->pt, part, false);
}
/* Make all points-to sets that contain one member of a partition
contain all members of the partition. */
if (decls_to_partitions)
{
unsigned i;
struct pointer_set_t *visited = pointer_set_create ();
bitmap temp = BITMAP_ALLOC (&stack_var_bitmap_obstack);
for (i = 1; i < num_ssa_names; i++)
{
tree name = ssa_name (i);
struct ptr_info_def *pi;
if (name
&& POINTER_TYPE_P (TREE_TYPE (name))
&& ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
visited, temp);
}
add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
decls_to_partitions, visited, temp);
pointer_set_destroy (visited);
pointer_map_destroy (decls_to_partitions);
BITMAP_FREE (temp);
}
}
/* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
partitioning algorithm. Partitions A and B are known to be non-conflicting.
Merge them into a single partition A. */
static void
union_stack_vars (size_t a, size_t b)
{
struct stack_var *vb = &stack_vars[b];
bitmap_iterator bi;
unsigned u;
gcc_assert (stack_vars[b].next == EOC);
/* Add B to A's partition. */
stack_vars[b].next = stack_vars[a].next;
stack_vars[b].representative = a;
stack_vars[a].next = b;
/* Update the required alignment of partition A to account for B. */
if (stack_vars[a].alignb < stack_vars[b].alignb)
stack_vars[a].alignb = stack_vars[b].alignb;
/* Update the interference graph and merge the conflicts. */
if (vb->conflicts)
{
EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi)
add_stack_var_conflict (a, stack_vars[u].representative);
BITMAP_FREE (vb->conflicts);
}
}
/* A subroutine of expand_used_vars. Binpack the variables into
partitions constrained by the interference graph. The overall
algorithm used is as follows:
Sort the objects by size in descending order.
For each object A {
S = size(A)
O = 0
loop {
Look for the largest non-conflicting object B with size <= S.
UNION (A, B)
}
}
*/
static void
partition_stack_vars (void)
{
size_t si, sj, n = stack_vars_num;
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
for (si = 0; si < n; ++si)
stack_vars_sorted[si] = si;
if (n == 1)
return;
qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_cmp);
for (si = 0; si < n; ++si)
{
size_t i = stack_vars_sorted[si];
unsigned int ialign = stack_vars[i].alignb;
HOST_WIDE_INT isize = stack_vars[i].size;
/* Ignore objects that aren't partition representatives. If we
see a var that is not a partition representative, it must
have been merged earlier. */
if (stack_vars[i].representative != i)
continue;
for (sj = si + 1; sj < n; ++sj)
{
size_t j = stack_vars_sorted[sj];
unsigned int jalign = stack_vars[j].alignb;
HOST_WIDE_INT jsize = stack_vars[j].size;
/* Ignore objects that aren't partition representatives. */
if (stack_vars[j].representative != j)
continue;
/* Do not mix objects of "small" (supported) alignment
and "large" (unsupported) alignment. */
if ((ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
!= (jalign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT))
break;
/* For Address Sanitizer do not mix objects with different
sizes, as the shorter vars wouldn't be adequately protected.
Don't do that for "large" (unsupported) alignment objects,
those aren't protected anyway. */
if ((flag_sanitize & SANITIZE_ADDRESS) && isize != jsize
&& ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
break;
/* Ignore conflicting objects. */
if (stack_var_conflict_p (i, j))
continue;
/* UNION the objects, placing J at OFFSET. */
union_stack_vars (i, j);
}
}
update_alias_info_with_stack_vars ();
}
/* A debugging aid for expand_used_vars. Dump the generated partitions. */
static void
dump_stack_var_partition (void)
{
size_t si, i, j, n = stack_vars_num;
for (si = 0; si < n; ++si)
{
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
" align %u\n", (unsigned long) i, stack_vars[i].size,
stack_vars[i].alignb);
for (j = i; j != EOC; j = stack_vars[j].next)
{
fputc ('\t', dump_file);
print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
}
fputc ('\n', dump_file);
}
}
/* Assign rtl to DECL at BASE + OFFSET. */
static void
expand_one_stack_var_at (tree decl, rtx base, unsigned base_align,
HOST_WIDE_INT offset)
{
unsigned align;
rtx x;
/* If this fails, we've overflowed the stack frame. Error nicely? */
gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
x = plus_constant (Pmode, base, offset);
x = gen_rtx_MEM (DECL_MODE (SSAVAR (decl)), x);
if (TREE_CODE (decl) != SSA_NAME)
{
/* Set alignment we actually gave this decl if it isn't an SSA name.
If it is we generate stack slots only accidentally so it isn't as
important, we'll simply use the alignment that is already set. */
if (base == virtual_stack_vars_rtx)
offset -= frame_phase;
align = offset & -offset;
align *= BITS_PER_UNIT;
if (align == 0 || align > base_align)
align = base_align;
/* One would think that we could assert that we're not decreasing
alignment here, but (at least) the i386 port does exactly this
via the MINIMUM_ALIGNMENT hook. */
DECL_ALIGN (decl) = align;
DECL_USER_ALIGN (decl) = 0;
}
set_mem_attributes (x, SSAVAR (decl), true);
set_rtl (decl, x);
}
struct stack_vars_data
{
/* Vector of offset pairs, always end of some padding followed
by start of the padding that needs Address Sanitizer protection.
The vector is in reversed, highest offset pairs come first. */
vec asan_vec;
/* Vector of partition representative decls in between the paddings. */
vec asan_decl_vec;
};
/* A subroutine of expand_used_vars. Give each partition representative
a unique location within the stack frame. Update each partition member
with that location. */
static void
expand_stack_vars (bool (*pred) (size_t), struct stack_vars_data *data)
{
size_t si, i, j, n = stack_vars_num;
HOST_WIDE_INT large_size = 0, large_alloc = 0;
rtx large_base = NULL;
unsigned large_align = 0;
tree decl;
/* Determine if there are any variables requiring "large" alignment.
Since these are dynamically allocated, we only process these if
no predicate involved. */
large_align = stack_vars[stack_vars_sorted[0]].alignb * BITS_PER_UNIT;
if (pred == NULL && large_align > MAX_SUPPORTED_STACK_ALIGNMENT)
{
/* Find the total size of these variables. */
for (si = 0; si < n; ++si)
{
unsigned alignb;
i = stack_vars_sorted[si];
alignb = stack_vars[i].alignb;
/* Stop when we get to the first decl with "small" alignment. */
if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
break;
/* Skip variables that aren't partition representatives. */
if (stack_vars[i].representative != i)
continue;
/* Skip variables that have already had rtl assigned. See also
add_stack_var where we perpetrate this pc_rtx hack. */
decl = stack_vars[i].decl;
if ((TREE_CODE (decl) == SSA_NAME
? SA.partition_to_pseudo[var_to_partition (SA.map, decl)]
: DECL_RTL (decl)) != pc_rtx)
continue;
large_size += alignb - 1;
large_size &= -(HOST_WIDE_INT)alignb;
large_size += stack_vars[i].size;
}
/* If there were any, allocate space. */
if (large_size > 0)
large_base = allocate_dynamic_stack_space (GEN_INT (large_size), 0,
large_align, true);
}
for (si = 0; si < n; ++si)
{
rtx base;
unsigned base_align, alignb;
HOST_WIDE_INT offset;
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
/* Skip variables that have already had rtl assigned. See also
add_stack_var where we perpetrate this pc_rtx hack. */
decl = stack_vars[i].decl;
if ((TREE_CODE (decl) == SSA_NAME
? SA.partition_to_pseudo[var_to_partition (SA.map, decl)]
: DECL_RTL (decl)) != pc_rtx)
continue;
/* Check the predicate to see whether this variable should be
allocated in this pass. */
if (pred && !pred (i))
continue;
alignb = stack_vars[i].alignb;
if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
{
if ((flag_sanitize & SANITIZE_ADDRESS) && pred)
{
HOST_WIDE_INT prev_offset = frame_offset;
tree repr_decl = NULL_TREE;
offset
= alloc_stack_frame_space (stack_vars[i].size
+ ASAN_RED_ZONE_SIZE,
MAX (alignb, ASAN_RED_ZONE_SIZE));
data->asan_vec.safe_push (prev_offset);
data->asan_vec.safe_push (offset + stack_vars[i].size);
/* Find best representative of the partition.
Prefer those with DECL_NAME, even better
satisfying asan_protect_stack_decl predicate. */
for (j = i; j != EOC; j = stack_vars[j].next)
if (asan_protect_stack_decl (stack_vars[j].decl)
&& DECL_NAME (stack_vars[j].decl))
{
repr_decl = stack_vars[j].decl;
break;
}
else if (repr_decl == NULL_TREE
&& DECL_P (stack_vars[j].decl)
&& DECL_NAME (stack_vars[j].decl))
repr_decl = stack_vars[j].decl;
if (repr_decl == NULL_TREE)
repr_decl = stack_vars[i].decl;
data->asan_decl_vec.safe_push (repr_decl);
}
else
offset = alloc_stack_frame_space (stack_vars[i].size, alignb);
base = virtual_stack_vars_rtx;
base_align = crtl->max_used_stack_slot_alignment;
}
else
{
/* Large alignment is only processed in the last pass. */
if (pred)
continue;
gcc_assert (large_base != NULL);
large_alloc += alignb - 1;
large_alloc &= -(HOST_WIDE_INT)alignb;
offset = large_alloc;
large_alloc += stack_vars[i].size;
base = large_base;
base_align = large_align;
}
/* Create rtl for each variable based on their location within the
partition. */
for (j = i; j != EOC; j = stack_vars[j].next)
{
expand_one_stack_var_at (stack_vars[j].decl,
base, base_align,
offset);
}
}
gcc_assert (large_alloc == large_size);
}
/* Take into account all sizes of partitions and reset DECL_RTLs. */
static HOST_WIDE_INT
account_stack_vars (void)
{
size_t si, j, i, n = stack_vars_num;
HOST_WIDE_INT size = 0;
for (si = 0; si < n; ++si)
{
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
size += stack_vars[i].size;
for (j = i; j != EOC; j = stack_vars[j].next)
set_rtl (stack_vars[j].decl, NULL);
}
return size;
}
/* A subroutine of expand_one_var. Called to immediately assign rtl
to a variable to be allocated in the stack frame. */
static void
expand_one_stack_var (tree var)
{
HOST_WIDE_INT size, offset;
unsigned byte_align;
size = tree_low_cst (DECL_SIZE_UNIT (SSAVAR (var)), 1);
byte_align = align_local_variable (SSAVAR (var));
/* We handle highly aligned variables in expand_stack_vars. */
gcc_assert (byte_align * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT);
offset = alloc_stack_frame_space (size, byte_align);
expand_one_stack_var_at (var, virtual_stack_vars_rtx,
crtl->max_used_stack_slot_alignment, offset);
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
that will reside in a hard register. */
static void
expand_one_hard_reg_var (tree var)
{
rest_of_decl_compilation (var, 0, 0);
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
that will reside in a pseudo register. */
static void
expand_one_register_var (tree var)
{
tree decl = SSAVAR (var);
tree type = TREE_TYPE (decl);
enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
rtx x = gen_reg_rtx (reg_mode);
set_rtl (var, x);
/* Note if the object is a user variable. */
if (!DECL_ARTIFICIAL (decl))
mark_user_reg (x);
if (POINTER_TYPE_P (type))
mark_reg_pointer (x, get_pointer_alignment (var));
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
has some associated error, e.g. its type is error-mark. We just need
to pick something that won't crash the rest of the compiler. */
static void
expand_one_error_var (tree var)
{
enum machine_mode mode = DECL_MODE (var);
rtx x;
if (mode == BLKmode)
x = gen_rtx_MEM (BLKmode, const0_rtx);
else if (mode == VOIDmode)
x = const0_rtx;
else
x = gen_reg_rtx (mode);
SET_DECL_RTL (var, x);
}
/* A subroutine of expand_one_var. VAR is a variable that will be
allocated to the local stack frame. Return true if we wish to
add VAR to STACK_VARS so that it will be coalesced with other
variables. Return false to allocate VAR immediately.
This function is used to reduce the number of variables considered
for coalescing, which reduces the size of the quadratic problem. */
static bool
defer_stack_allocation (tree var, bool toplevel)
{
/* If stack protection is enabled, *all* stack variables must be deferred,
so that we can re-order the strings to the top of the frame.
Similarly for Address Sanitizer. */
if (flag_stack_protect || (flag_sanitize & SANITIZE_ADDRESS))
return true;
/* We handle "large" alignment via dynamic allocation. We want to handle
this extra complication in only one place, so defer them. */
if (DECL_ALIGN (var) > MAX_SUPPORTED_STACK_ALIGNMENT)
return true;
/* Variables in the outermost scope automatically conflict with
every other variable. The only reason to want to defer them
at all is that, after sorting, we can more efficiently pack
small variables in the stack frame. Continue to defer at -O2. */
if (toplevel && optimize < 2)
return false;
/* Without optimization, *most* variables are allocated from the
stack, which makes the quadratic problem large exactly when we
want compilation to proceed as quickly as possible. On the
other hand, we don't want the function's stack frame size to
get completely out of hand. So we avoid adding scalars and
"small" aggregates to the list at all. */
if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
return false;
return true;
}
/* A subroutine of expand_used_vars. Expand one variable according to
its flavor. Variables to be placed on the stack are not actually
expanded yet, merely recorded.
When REALLY_EXPAND is false, only add stack values to be allocated.
Return stack usage this variable is supposed to take.
*/
static HOST_WIDE_INT
expand_one_var (tree var, bool toplevel, bool really_expand)
{
unsigned int align = BITS_PER_UNIT;
tree origvar = var;
var = SSAVAR (var);
if (TREE_TYPE (var) != error_mark_node && TREE_CODE (var) == VAR_DECL)
{
/* Because we don't know if VAR will be in register or on stack,
we conservatively assume it will be on stack even if VAR is
eventually put into register after RA pass. For non-automatic
variables, which won't be on stack, we collect alignment of
type and ignore user specified alignment. */
if (TREE_STATIC (var) || DECL_EXTERNAL (var))
align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
TYPE_MODE (TREE_TYPE (var)),
TYPE_ALIGN (TREE_TYPE (var)));
else if (DECL_HAS_VALUE_EXPR_P (var)
|| (DECL_RTL_SET_P (var) && MEM_P (DECL_RTL (var))))
/* Don't consider debug only variables with DECL_HAS_VALUE_EXPR_P set
or variables which were assigned a stack slot already by
expand_one_stack_var_at - in the latter case DECL_ALIGN has been
changed from the offset chosen to it. */
align = crtl->stack_alignment_estimated;
else
align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
/* If the variable alignment is very large we'll dynamicaly allocate
it, which means that in-frame portion is just a pointer. */
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
align = POINTER_SIZE;
}
if (SUPPORTS_STACK_ALIGNMENT
&& crtl->stack_alignment_estimated < align)
{
/* stack_alignment_estimated shouldn't change after stack
realign decision made */
gcc_assert (!crtl->stack_realign_processed);
crtl->stack_alignment_estimated = align;
}
/* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
So here we only make sure stack_alignment_needed >= align. */
if (crtl->stack_alignment_needed < align)
crtl->stack_alignment_needed = align;
if (crtl->max_used_stack_slot_alignment < align)
crtl->max_used_stack_slot_alignment = align;
if (TREE_CODE (origvar) == SSA_NAME)
{
gcc_assert (TREE_CODE (var) != VAR_DECL
|| (!DECL_EXTERNAL (var)
&& !DECL_HAS_VALUE_EXPR_P (var)
&& !TREE_STATIC (var)
&& TREE_TYPE (var) != error_mark_node
&& !DECL_HARD_REGISTER (var)
&& really_expand));
}
if (TREE_CODE (var) != VAR_DECL && TREE_CODE (origvar) != SSA_NAME)
;
else if (DECL_EXTERNAL (var))
;
else if (DECL_HAS_VALUE_EXPR_P (var))
;
else if (TREE_STATIC (var))
;
else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
;
else if (TREE_TYPE (var) == error_mark_node)
{
if (really_expand)
expand_one_error_var (var);
}
else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
{
if (really_expand)
expand_one_hard_reg_var (var);
}
else if (use_register_for_decl (var))
{
if (really_expand)
expand_one_register_var (origvar);
}
else if (! valid_constant_size_p (DECL_SIZE_UNIT (var)))
{
/* Reject variables which cover more than half of the address-space. */
if (really_expand)
{
error ("size of variable %q+D is too large", var);
expand_one_error_var (var);
}
}
else if (defer_stack_allocation (var, toplevel))
add_stack_var (origvar);
else
{
if (really_expand)
expand_one_stack_var (origvar);
return tree_low_cst (DECL_SIZE_UNIT (var), 1);
}
return 0;
}
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
expanding variables. Those variables that can be put into registers
are allocated pseudos; those that can't are put on the stack.
TOPLEVEL is true if this is the outermost BLOCK. */
static void
expand_used_vars_for_block (tree block, bool toplevel)
{
tree t;
/* Expand all variables at this level. */
for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
if (TREE_USED (t)
&& ((TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != RESULT_DECL)
|| !DECL_NONSHAREABLE (t)))
expand_one_var (t, toplevel, true);
/* Expand all variables at containing levels. */
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
expand_used_vars_for_block (t, false);
}
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
and clear TREE_USED on all local variables. */
static void
clear_tree_used (tree block)
{
tree t;
for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
/* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
if ((TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != RESULT_DECL)
|| !DECL_NONSHAREABLE (t))
TREE_USED (t) = 0;
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
clear_tree_used (t);
}
enum {
SPCT_FLAG_DEFAULT = 1,
SPCT_FLAG_ALL = 2,
SPCT_FLAG_STRONG = 3
};
/* Examine TYPE and determine a bit mask of the following features. */
#define SPCT_HAS_LARGE_CHAR_ARRAY 1
#define SPCT_HAS_SMALL_CHAR_ARRAY 2
#define SPCT_HAS_ARRAY 4
#define SPCT_HAS_AGGREGATE 8
static unsigned int
stack_protect_classify_type (tree type)
{
unsigned int ret = 0;
tree t;
switch (TREE_CODE (type))
{
case ARRAY_TYPE:
t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if (t == char_type_node
|| t == signed_char_type_node
|| t == unsigned_char_type_node)
{
unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
unsigned HOST_WIDE_INT len;
if (!TYPE_SIZE_UNIT (type)
|| !host_integerp (TYPE_SIZE_UNIT (type), 1))
len = max;
else
len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
if (len < max)
ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
else
ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
}
else
ret = SPCT_HAS_ARRAY;
break;
case UNION_TYPE:
case QUAL_UNION_TYPE:
case RECORD_TYPE:
ret = SPCT_HAS_AGGREGATE;
for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
if (TREE_CODE (t) == FIELD_DECL)
ret |= stack_protect_classify_type (TREE_TYPE (t));
break;
default:
break;
}
return ret;
}
/* Return nonzero if DECL should be segregated into the "vulnerable" upper
part of the local stack frame. Remember if we ever return nonzero for
any variable in this function. The return value is the phase number in
which the variable should be allocated. */
static int
stack_protect_decl_phase (tree decl)
{
unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
int ret = 0;
if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
has_short_buffer = true;
if (flag_stack_protect == SPCT_FLAG_ALL
|| flag_stack_protect == SPCT_FLAG_STRONG)
{
if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
&& !(bits & SPCT_HAS_AGGREGATE))
ret = 1;
else if (bits & SPCT_HAS_ARRAY)
ret = 2;
}
else
ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
if (ret)
has_protected_decls = true;
return ret;
}
/* Two helper routines that check for phase 1 and phase 2. These are used
as callbacks for expand_stack_vars. */
static bool
stack_protect_decl_phase_1 (size_t i)
{
return stack_protect_decl_phase (stack_vars[i].decl) == 1;
}
static bool
stack_protect_decl_phase_2 (size_t i)
{
return stack_protect_decl_phase (stack_vars[i].decl) == 2;
}
/* And helper function that checks for asan phase (with stack protector
it is phase 3). This is used as callback for expand_stack_vars.
Returns true if any of the vars in the partition need to be protected. */
static bool
asan_decl_phase_3 (size_t i)
{
while (i != EOC)
{
if (asan_protect_stack_decl (stack_vars[i].decl))
return true;
i = stack_vars[i].next;
}
return false;
}
/* Ensure that variables in different stack protection phases conflict
so that they are not merged and share the same stack slot. */
static void
add_stack_protection_conflicts (void)
{
size_t i, j, n = stack_vars_num;
unsigned char *phase;
phase = XNEWVEC (unsigned char, n);
for (i = 0; i < n; ++i)
phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
for (i = 0; i < n; ++i)
{
unsigned char ph_i = phase[i];
for (j = i + 1; j < n; ++j)
if (ph_i != phase[j])
add_stack_var_conflict (i, j);
}
XDELETEVEC (phase);
}
/* Create a decl for the guard at the top of the stack frame. */
static void
create_stack_guard (void)
{
tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
VAR_DECL, NULL, ptr_type_node);
TREE_THIS_VOLATILE (guard) = 1;
TREE_USED (guard) = 1;
expand_one_stack_var (guard);
crtl->stack_protect_guard = guard;
}
/* Prepare for expanding variables. */
static void
init_vars_expansion (void)
{
/* Conflict bitmaps, and a few related temporary bitmaps, go here. */
bitmap_obstack_initialize (&stack_var_bitmap_obstack);
/* A map from decl to stack partition. */
decl_to_stack_part = pointer_map_create ();
/* Initialize local stack smashing state. */
has_protected_decls = false;
has_short_buffer = false;
}
/* Free up stack variable graph data. */
static void
fini_vars_expansion (void)
{
bitmap_obstack_release (&stack_var_bitmap_obstack);
if (stack_vars)
XDELETEVEC (stack_vars);
if (stack_vars_sorted)
XDELETEVEC (stack_vars_sorted);
stack_vars = NULL;
stack_vars_sorted = NULL;
stack_vars_alloc = stack_vars_num = 0;
pointer_map_destroy (decl_to_stack_part);
decl_to_stack_part = NULL;
}
/* Make a fair guess for the size of the stack frame of the function
in NODE. This doesn't have to be exact, the result is only used in
the inline heuristics. So we don't want to run the full stack var
packing algorithm (which is quadratic in the number of stack vars).
Instead, we calculate the total size of all stack vars. This turns
out to be a pretty fair estimate -- packing of stack vars doesn't
happen very often. */
HOST_WIDE_INT
estimated_stack_frame_size (struct cgraph_node *node)
{
HOST_WIDE_INT size = 0;
size_t i;
tree var;
struct function *fn = DECL_STRUCT_FUNCTION (node->symbol.decl);
push_cfun (fn);
init_vars_expansion ();
FOR_EACH_LOCAL_DECL (fn, i, var)
if (auto_var_in_fn_p (var, fn->decl))
size += expand_one_var (var, true, false);
if (stack_vars_num > 0)
{
/* Fake sorting the stack vars for account_stack_vars (). */
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
for (i = 0; i < stack_vars_num; ++i)
stack_vars_sorted[i] = i;
size += account_stack_vars ();
}
fini_vars_expansion ();
pop_cfun ();
return size;
}
/* Helper routine to check if a record or union contains an array field. */
static int
record_or_union_type_has_array_p (const_tree tree_type)
{
tree fields = TYPE_FIELDS (tree_type);
tree f;
for (f = fields; f; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
tree field_type = TREE_TYPE (f);
if (RECORD_OR_UNION_TYPE_P (field_type)
&& record_or_union_type_has_array_p (field_type))
return 1;
if (TREE_CODE (field_type) == ARRAY_TYPE)
return 1;
}
return 0;
}
/* Expand all variables used in the function. */
static rtx
expand_used_vars (void)
{
tree var, outer_block = DECL_INITIAL (current_function_decl);
vec maybe_local_decls = vNULL;
rtx var_end_seq = NULL_RTX;
struct pointer_map_t *ssa_name_decls;
unsigned i;
unsigned len;
bool gen_stack_protect_signal = false;
/* Compute the phase of the stack frame for this function. */
{
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
int off = STARTING_FRAME_OFFSET % align;
frame_phase = off ? align - off : 0;
}
/* Set TREE_USED on all variables in the local_decls. */
FOR_EACH_LOCAL_DECL (cfun, i, var)
TREE_USED (var) = 1;
/* Clear TREE_USED on all variables associated with a block scope. */
clear_tree_used (DECL_INITIAL (current_function_decl));
init_vars_expansion ();
ssa_name_decls = pointer_map_create ();
for (i = 0; i < SA.map->num_partitions; i++)
{
tree var = partition_to_var (SA.map, i);
gcc_assert (!virtual_operand_p (var));
/* Assign decls to each SSA name partition, share decls for partitions
we could have coalesced (those with the same type). */
if (SSA_NAME_VAR (var) == NULL_TREE)
{
void **slot = pointer_map_insert (ssa_name_decls, TREE_TYPE (var));
if (!*slot)
*slot = (void *) create_tmp_reg (TREE_TYPE (var), NULL);
replace_ssa_name_symbol (var, (tree) *slot);
}
if (TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
expand_one_var (var, true, true);
else
{
/* This is a PARM_DECL or RESULT_DECL. For those partitions that
contain the default def (representing the parm or result itself)
we don't do anything here. But those which don't contain the
default def (representing a temporary based on the parm/result)
we need to allocate space just like for normal VAR_DECLs. */
if (!bitmap_bit_p (SA.partition_has_default_def, i))
{
expand_one_var (var, true, true);
gcc_assert (SA.partition_to_pseudo[i]);
}
}
}
pointer_map_destroy (ssa_name_decls);
if (flag_stack_protect == SPCT_FLAG_STRONG)
FOR_EACH_LOCAL_DECL (cfun, i, var)
if (!is_global_var (var))
{
tree var_type = TREE_TYPE (var);
/* Examine local referenced variables that have their addresses taken,
contain an array, or are arrays. */
if (TREE_CODE (var) == VAR_DECL
&& (TREE_CODE (var_type) == ARRAY_TYPE
|| TREE_ADDRESSABLE (var)
|| (RECORD_OR_UNION_TYPE_P (var_type)
&& record_or_union_type_has_array_p (var_type))))
{
gen_stack_protect_signal = true;
break;
}
}
/* At this point all variables on the local_decls with TREE_USED
set are not associated with any block scope. Lay them out. */
len = vec_safe_length (cfun->local_decls);
FOR_EACH_LOCAL_DECL (cfun, i, var)
{
bool expand_now = false;
/* Expanded above already. */
if (is_gimple_reg (var))
{
TREE_USED (var) = 0;
goto next;
}
/* We didn't set a block for static or extern because it's hard
to tell the difference between a global variable (re)declared
in a local scope, and one that's really declared there to
begin with. And it doesn't really matter much, since we're
not giving them stack space. Expand them now. */
else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
expand_now = true;
/* If the variable is not associated with any block, then it
was created by the optimizers, and could be live anywhere
in the function. */
else if (TREE_USED (var))
expand_now = true;
/* Finally, mark all variables on the list as used. We'll use
this in a moment when we expand those associated with scopes. */
TREE_USED (var) = 1;
if (expand_now)
expand_one_var (var, true, true);
next:
if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
{
rtx rtl = DECL_RTL_IF_SET (var);
/* Keep artificial non-ignored vars in cfun->local_decls
chain until instantiate_decls. */
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
add_local_decl (cfun, var);
else if (rtl == NULL_RTX)
/* If rtl isn't set yet, which can happen e.g. with
-fstack-protector, retry before returning from this
function. */
maybe_local_decls.safe_push (var);
}
}
/* We duplicated some of the decls in CFUN->LOCAL_DECLS.
+-----------------+-----------------+
| ...processed... | ...duplicates...|
+-----------------+-----------------+
^
+-- LEN points here.
We just want the duplicates, as those are the artificial
non-ignored vars that we want to keep until instantiate_decls.
Move them down and truncate the array. */
if (!vec_safe_is_empty (cfun->local_decls))
cfun->local_decls->block_remove (0, len);
/* At this point, all variables within the block tree with TREE_USED
set are actually used by the optimized function. Lay them out. */
expand_used_vars_for_block (outer_block, true);
if (stack_vars_num > 0)
{
add_scope_conflicts ();
/* If stack protection is enabled, we don't share space between
vulnerable data and non-vulnerable data. */
if (flag_stack_protect)
add_stack_protection_conflicts ();
/* Now that we have collected all stack variables, and have computed a
minimal interference graph, attempt to save some stack space. */
partition_stack_vars ();
if (dump_file)
dump_stack_var_partition ();
}
switch (flag_stack_protect)
{
case SPCT_FLAG_ALL:
create_stack_guard ();
break;
case SPCT_FLAG_STRONG:
if (gen_stack_protect_signal
|| cfun->calls_alloca || has_protected_decls)
create_stack_guard ();
break;
case SPCT_FLAG_DEFAULT:
if (cfun->calls_alloca || has_protected_decls)
create_stack_guard ();
break;
default:
;
}
/* Assign rtl to each variable based on these partitions. */
if (stack_vars_num > 0)
{
struct stack_vars_data data;
data.asan_vec = vNULL;
data.asan_decl_vec = vNULL;
/* Reorder decls to be protected by iterating over the variables
array multiple times, and allocating out of each phase in turn. */
/* ??? We could probably integrate this into the qsort we did
earlier, such that we naturally see these variables first,
and thus naturally allocate things in the right order. */
if (has_protected_decls)
{
/* Phase 1 contains only character arrays. */
expand_stack_vars (stack_protect_decl_phase_1, &data);
/* Phase 2 contains other kinds of arrays. */
if (flag_stack_protect == 2)
expand_stack_vars (stack_protect_decl_phase_2, &data);
}
if (flag_sanitize & SANITIZE_ADDRESS)
/* Phase 3, any partitions that need asan protection
in addition to phase 1 and 2. */
expand_stack_vars (asan_decl_phase_3, &data);
if (!data.asan_vec.is_empty ())
{
HOST_WIDE_INT prev_offset = frame_offset;
HOST_WIDE_INT offset
= alloc_stack_frame_space (ASAN_RED_ZONE_SIZE,
ASAN_RED_ZONE_SIZE);
data.asan_vec.safe_push (prev_offset);
data.asan_vec.safe_push (offset);
var_end_seq
= asan_emit_stack_protection (virtual_stack_vars_rtx,
data.asan_vec.address (),
data.asan_decl_vec. address (),
data.asan_vec.length ());
}
expand_stack_vars (NULL, &data);
data.asan_vec.release ();
data.asan_decl_vec.release ();
}
fini_vars_expansion ();
/* If there were any artificial non-ignored vars without rtl
found earlier, see if deferred stack allocation hasn't assigned
rtl to them. */
FOR_EACH_VEC_ELT_REVERSE (maybe_local_decls, i, var)
{
rtx rtl = DECL_RTL_IF_SET (var);
/* Keep artificial non-ignored vars in cfun->local_decls
chain until instantiate_decls. */
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
add_local_decl (cfun, var);
}
maybe_local_decls.release ();
/* If the target requires that FRAME_OFFSET be aligned, do it. */
if (STACK_ALIGNMENT_NEEDED)
{
HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
if (!FRAME_GROWS_DOWNWARD)
frame_offset += align - 1;
frame_offset &= -align;
}
return var_end_seq;
}
/* If we need to produce a detailed dump, print the tree representation
for STMT to the dump file. SINCE is the last RTX after which the RTL
generated for STMT should have been appended. */
static void
maybe_dump_rtl_for_gimple_stmt (gimple stmt, rtx since)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n;; ");
print_gimple_stmt (dump_file, stmt, 0,
TDF_SLIM | (dump_flags & TDF_LINENO));
fprintf (dump_file, "\n");
print_rtl (dump_file, since ? NEXT_INSN (since) : since);
}
}
/* Maps the blocks that do not contain tree labels to rtx labels. */
static struct pointer_map_t *lab_rtx_for_bb;
/* Returns the label_rtx expression for a label starting basic block BB. */
static rtx
label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
{
gimple_stmt_iterator gsi;
tree lab;
gimple lab_stmt;
void **elt;
if (bb->flags & BB_RTL)
return block_label (bb);
elt = pointer_map_contains (lab_rtx_for_bb, bb);
if (elt)
return (rtx) *elt;
/* Find the tree label if it is present. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
lab_stmt = gsi_stmt (gsi);
if (gimple_code (lab_stmt) != GIMPLE_LABEL)
break;
lab = gimple_label_label (lab_stmt);
if (DECL_NONLOCAL (lab))
break;
return label_rtx (lab);
}
elt = pointer_map_insert (lab_rtx_for_bb, bb);
*elt = gen_label_rtx ();
return (rtx) *elt;
}
/* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
of a basic block where we just expanded the conditional at the end,
possibly clean up the CFG and instruction sequence. LAST is the
last instruction before the just emitted jump sequence. */
static void
maybe_cleanup_end_of_block (edge e, rtx last)
{
/* Special case: when jumpif decides that the condition is
trivial it emits an unconditional jump (and the necessary
barrier). But we still have two edges, the fallthru one is
wrong. purge_dead_edges would clean this up later. Unfortunately
we have to insert insns (and split edges) before
find_many_sub_basic_blocks and hence before purge_dead_edges.
But splitting edges might create new blocks which depend on the
fact that if there are two edges there's no barrier. So the
barrier would get lost and verify_flow_info would ICE. Instead
of auditing all edge splitters to care for the barrier (which
normally isn't there in a cleaned CFG), fix it here. */
if (BARRIER_P (get_last_insn ()))
{
rtx insn;
remove_edge (e);
/* Now, we have a single successor block, if we have insns to
insert on the remaining edge we potentially will insert
it at the end of this block (if the dest block isn't feasible)
in order to avoid splitting the edge. This insertion will take
place in front of the last jump. But we might have emitted
multiple jumps (conditional and one unconditional) to the
same destination. Inserting in front of the last one then
is a problem. See PR 40021. We fix this by deleting all
jumps except the last unconditional one. */
insn = PREV_INSN (get_last_insn ());
/* Make sure we have an unconditional jump. Otherwise we're
confused. */
gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
for (insn = PREV_INSN (insn); insn != last;)
{
insn = PREV_INSN (insn);
if (JUMP_P (NEXT_INSN (insn)))
{
if (!any_condjump_p (NEXT_INSN (insn)))
{
gcc_assert (BARRIER_P (NEXT_INSN (NEXT_INSN (insn))));
delete_insn (NEXT_INSN (NEXT_INSN (insn)));
}
delete_insn (NEXT_INSN (insn));
}
}
}
}
/* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
Returns a new basic block if we've terminated the current basic
block and created a new one. */
static basic_block
expand_gimple_cond (basic_block bb, gimple stmt)
{
basic_block new_bb, dest;
edge new_edge;
edge true_edge;
edge false_edge;
rtx last2, last;
enum tree_code code;
tree op0, op1;
code = gimple_cond_code (stmt);
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
/* We're sometimes presented with such code:
D.123_1 = x < y;
if (D.123_1 != 0)
...
This would expand to two comparisons which then later might
be cleaned up by combine. But some pattern matchers like if-conversion
work better when there's only one compare, so make up for this
here as special exception if TER would have made the same change. */
if (SA.values
&& TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
&& TREE_CODE (op1) == INTEGER_CST
&& ((gimple_cond_code (stmt) == NE_EXPR
&& integer_zerop (op1))
|| (gimple_cond_code (stmt) == EQ_EXPR
&& integer_onep (op1)))
&& bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
{
gimple second = SSA_NAME_DEF_STMT (op0);
if (gimple_code (second) == GIMPLE_ASSIGN)
{
enum tree_code code2 = gimple_assign_rhs_code (second);
if (TREE_CODE_CLASS (code2) == tcc_comparison)
{
code = code2;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
/* If jumps are cheap turn some more codes into
jumpy sequences. */
else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4)
{
if ((code2 == BIT_AND_EXPR
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
&& TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST)
|| code2 == TRUTH_AND_EXPR)
{
code = TRUTH_ANDIF_EXPR;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR)
{
code = TRUTH_ORIF_EXPR;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
}
}
}
last2 = last = get_last_insn ();
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
set_curr_insn_location (gimple_location (stmt));
/* These flags have no purpose in RTL land. */
true_edge->flags &= ~EDGE_TRUE_VALUE;
false_edge->flags &= ~EDGE_FALSE_VALUE;
/* We can either have a pure conditional jump with one fallthru edge or
two-way jump that needs to be decomposed into two basic blocks. */
if (false_edge->dest == bb->next_bb)
{
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
true_edge->probability);
maybe_dump_rtl_for_gimple_stmt (stmt, last);
if (true_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (true_edge->goto_locus);
false_edge->flags |= EDGE_FALLTHRU;
maybe_cleanup_end_of_block (false_edge, last);
return NULL;
}
if (true_edge->dest == bb->next_bb)
{
jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest),
false_edge->probability);
maybe_dump_rtl_for_gimple_stmt (stmt, last);
if (false_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (false_edge->goto_locus);
true_edge->flags |= EDGE_FALLTHRU;
maybe_cleanup_end_of_block (true_edge, last);
return NULL;
}
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
true_edge->probability);
last = get_last_insn ();
if (false_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (false_edge->goto_locus);
emit_jump (label_rtx_for_bb (false_edge->dest));
BB_END (bb) = last;
if (BARRIER_P (BB_END (bb)))
BB_END (bb) = PREV_INSN (BB_END (bb));
update_bb_for_insn (bb);
new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
dest = false_edge->dest;
redirect_edge_succ (false_edge, new_bb);
false_edge->flags |= EDGE_FALLTHRU;
new_bb->count = false_edge->count;
new_bb->frequency = EDGE_FREQUENCY (false_edge);
if (current_loops && bb->loop_father)
add_bb_to_loop (new_bb, bb->loop_father);
new_edge = make_edge (new_bb, dest, 0);
new_edge->probability = REG_BR_PROB_BASE;
new_edge->count = new_bb->count;
if (BARRIER_P (BB_END (new_bb)))
BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
update_bb_for_insn (new_bb);
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
if (true_edge->goto_locus != UNKNOWN_LOCATION)
{
set_curr_insn_location (true_edge->goto_locus);
true_edge->goto_locus = curr_insn_location ();
}
return new_bb;
}
/* Mark all calls that can have a transaction restart. */
static void
mark_transaction_restart_calls (gimple stmt)
{
struct tm_restart_node dummy;
void **slot;
if (!cfun->gimple_df->tm_restart)
return;
dummy.stmt = stmt;
slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, NO_INSERT);
if (slot)
{
struct tm_restart_node *n = (struct tm_restart_node *) *slot;
tree list = n->label_or_list;
rtx insn;
for (insn = next_real_insn (get_last_insn ());
!CALL_P (insn);
insn = next_real_insn (insn))
continue;
if (TREE_CODE (list) == LABEL_DECL)
add_reg_note (insn, REG_TM, label_rtx (list));
else
for (; list ; list = TREE_CHAIN (list))
add_reg_note (insn, REG_TM, label_rtx (TREE_VALUE (list)));
}
}
/* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
statement STMT. */
static void
expand_call_stmt (gimple stmt)
{
tree exp, decl, lhs;
bool builtin_p;
size_t i;
if (gimple_call_internal_p (stmt))
{
expand_internal_call (stmt);
return;
}
exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
decl = gimple_call_fndecl (stmt);
builtin_p = decl && DECL_BUILT_IN (decl);
/* If this is not a builtin function, the function type through which the
call is made may be different from the type of the function. */
if (!builtin_p)
CALL_EXPR_FN (exp)
= fold_convert (build_pointer_type (gimple_call_fntype (stmt)),
CALL_EXPR_FN (exp));
TREE_TYPE (exp) = gimple_call_return_type (stmt);
CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
for (i = 0; i < gimple_call_num_args (stmt); i++)
{
tree arg = gimple_call_arg (stmt, i);
gimple def;
/* TER addresses into arguments of builtin functions so we have a
chance to infer more correct alignment information. See PR39954. */
if (builtin_p
&& TREE_CODE (arg) == SSA_NAME
&& (def = get_gimple_for_ssa_name (arg))
&& gimple_assign_rhs_code (def) == ADDR_EXPR)
arg = gimple_assign_rhs1 (def);
CALL_EXPR_ARG (exp, i) = arg;
}
if (gimple_has_side_effects (stmt))
TREE_SIDE_EFFECTS (exp) = 1;
if (gimple_call_nothrow_p (stmt))
TREE_NOTHROW (exp) = 1;
CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
if (decl
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
&& (DECL_FUNCTION_CODE (decl) == BUILT_IN_ALLOCA
|| DECL_FUNCTION_CODE (decl) == BUILT_IN_ALLOCA_WITH_ALIGN))
CALL_ALLOCA_FOR_VAR_P (exp) = gimple_call_alloca_for_var_p (stmt);
else
CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
SET_EXPR_LOCATION (exp, gimple_location (stmt));
/* Ensure RTL is created for debug args. */
if (decl && DECL_HAS_DEBUG_ARGS_P (decl))
{
vec **debug_args = decl_debug_args_lookup (decl);
unsigned int ix;
tree dtemp;
if (debug_args)
for (ix = 1; (*debug_args)->iterate (ix, &dtemp); ix += 2)
{
gcc_assert (TREE_CODE (dtemp) == DEBUG_EXPR_DECL);
expand_debug_expr (dtemp);
}
}
lhs = gimple_call_lhs (stmt);
if (lhs)
expand_assignment (lhs, exp, false);
else
expand_expr_real_1 (exp, const0_rtx, VOIDmode, EXPAND_NORMAL, NULL);
mark_transaction_restart_calls (stmt);
}
/* A subroutine of expand_gimple_stmt, expanding one gimple statement
STMT that doesn't require special handling for outgoing edges. That
is no tailcalls and no GIMPLE_COND. */
static void
expand_gimple_stmt_1 (gimple stmt)
{
tree op0;
set_curr_insn_location (gimple_location (stmt));
switch (gimple_code (stmt))
{
case GIMPLE_GOTO:
op0 = gimple_goto_dest (stmt);
if (TREE_CODE (op0) == LABEL_DECL)
expand_goto (op0);
else
expand_computed_goto (op0);
break;
case GIMPLE_LABEL:
expand_label (gimple_label_label (stmt));
break;
case GIMPLE_NOP:
case GIMPLE_PREDICT:
break;
case GIMPLE_SWITCH:
expand_case (stmt);
break;
case GIMPLE_ASM:
expand_asm_stmt (stmt);
break;
case GIMPLE_CALL:
expand_call_stmt (stmt);
break;
case GIMPLE_RETURN:
op0 = gimple_return_retval (stmt);
if (op0 && op0 != error_mark_node)
{
tree result = DECL_RESULT (current_function_decl);
/* If we are not returning the current function's RESULT_DECL,
build an assignment to it. */
if (op0 != result)
{
/* I believe that a function's RESULT_DECL is unique. */
gcc_assert (TREE_CODE (op0) != RESULT_DECL);
/* ??? We'd like to use simply expand_assignment here,
but this fails if the value is of BLKmode but the return
decl is a register. expand_return has special handling
for this combination, which eventually should move
to common code. See comments there. Until then, let's
build a modify expression :-/ */
op0 = build2 (MODIFY_EXPR, TREE_TYPE (result),
result, op0);
}
}
if (!op0)
expand_null_return ();
else
expand_return (op0);
break;
case GIMPLE_ASSIGN:
{
tree lhs = gimple_assign_lhs (stmt);
/* Tree expand used to fiddle with |= and &= of two bitfield
COMPONENT_REFs here. This can't happen with gimple, the LHS
of binary assigns must be a gimple reg. */
if (TREE_CODE (lhs) != SSA_NAME
|| get_gimple_rhs_class (gimple_expr_code (stmt))
== GIMPLE_SINGLE_RHS)
{
tree rhs = gimple_assign_rhs1 (stmt);
gcc_assert (get_gimple_rhs_class (gimple_expr_code (stmt))
== GIMPLE_SINGLE_RHS);
if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs))
SET_EXPR_LOCATION (rhs, gimple_location (stmt));
if (TREE_CLOBBER_P (rhs))
/* This is a clobber to mark the going out of scope for
this LHS. */
;
else
expand_assignment (lhs, rhs,
gimple_assign_nontemporal_move_p (stmt));
}
else
{
rtx target, temp;
bool nontemporal = gimple_assign_nontemporal_move_p (stmt);
struct separate_ops ops;
bool promoted = false;
target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
promoted = true;
ops.code = gimple_assign_rhs_code (stmt);
ops.type = TREE_TYPE (lhs);
switch (get_gimple_rhs_class (gimple_expr_code (stmt)))
{
case GIMPLE_TERNARY_RHS:
ops.op2 = gimple_assign_rhs3 (stmt);
/* Fallthru */
case GIMPLE_BINARY_RHS:
ops.op1 = gimple_assign_rhs2 (stmt);
/* Fallthru */
case GIMPLE_UNARY_RHS:
ops.op0 = gimple_assign_rhs1 (stmt);
break;
default:
gcc_unreachable ();
}
ops.location = gimple_location (stmt);
/* If we want to use a nontemporal store, force the value to
register first. If we store into a promoted register,
don't directly expand to target. */
temp = nontemporal || promoted ? NULL_RTX : target;
temp = expand_expr_real_2 (&ops, temp, GET_MODE (target),
EXPAND_NORMAL);
if (temp == target)
;
else if (promoted)
{
int unsignedp = SUBREG_PROMOTED_UNSIGNED_P (target);
/* If TEMP is a VOIDmode constant, use convert_modes to make
sure that we properly convert it. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
{
temp = convert_modes (GET_MODE (target),
TYPE_MODE (ops.type),
temp, unsignedp);
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
GET_MODE (target), temp, unsignedp);
}
convert_move (SUBREG_REG (target), temp, unsignedp);
}
else if (nontemporal && emit_storent_insn (target, temp))
;
else
{
temp = force_operand (temp, target);
if (temp != target)
emit_move_insn (target, temp);
}
}
}
break;
default:
gcc_unreachable ();
}
}
/* Expand one gimple statement STMT and return the last RTL instruction
before any of the newly generated ones.
In addition to generating the necessary RTL instructions this also
sets REG_EH_REGION notes if necessary and sets the current source
location for diagnostics. */
static rtx
expand_gimple_stmt (gimple stmt)
{
location_t saved_location = input_location;
rtx last = get_last_insn ();
int lp_nr;
gcc_assert (cfun);
/* We need to save and restore the current source location so that errors
discovered during expansion are emitted with the right location. But
it would be better if the diagnostic routines used the source location
embedded in the tree nodes rather than globals. */
if (gimple_has_location (stmt))
input_location = gimple_location (stmt);
expand_gimple_stmt_1 (stmt);
/* Free any temporaries used to evaluate this statement. */
free_temp_slots ();
input_location = saved_location;
/* Mark all insns that may trap. */
lp_nr = lookup_stmt_eh_lp (stmt);
if (lp_nr)
{
rtx insn;
for (insn = next_real_insn (last); insn;
insn = next_real_insn (insn))
{
if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
/* If we want exceptions for non-call insns, any
may_trap_p instruction may throw. */
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& GET_CODE (PATTERN (insn)) != USE
&& insn_could_throw_p (insn))
make_reg_eh_region_note (insn, 0, lp_nr);
}
}
return last;
}
/* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL
that has CALL_EXPR_TAILCALL set. Returns non-null if we actually
generated a tail call (something that might be denied by the ABI
rules governing the call; see calls.c).
Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
can still reach the rest of BB. The case here is __builtin_sqrt,
where the NaN result goes through the external function (with a
tailcall) and the normal result happens via a sqrt instruction. */
static basic_block
expand_gimple_tailcall (basic_block bb, gimple stmt, bool *can_fallthru)
{
rtx last2, last;
edge e;
edge_iterator ei;
int probability;
gcov_type count;
last2 = last = expand_gimple_stmt (stmt);
for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
if (CALL_P (last) && SIBLING_CALL_P (last))
goto found;
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
*can_fallthru = true;
return NULL;
found:
/* ??? Wouldn't it be better to just reset any pending stack adjust?
Any instructions emitted here are about to be deleted. */
do_pending_stack_adjust ();
/* Remove any non-eh, non-abnormal edges that don't go to exit. */
/* ??? I.e. the fallthrough edge. HOWEVER! If there were to be
EH or abnormal edges, we shouldn't have created a tail call in
the first place. So it seems to me we should just be removing
all edges here, or redirecting the existing fallthru edge to
the exit block. */
probability = 0;
count = 0;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
{
if (e->dest != EXIT_BLOCK_PTR)
{
e->dest->count -= e->count;
e->dest->frequency -= EDGE_FREQUENCY (e);
if (e->dest->count < 0)
e->dest->count = 0;
if (e->dest->frequency < 0)
e->dest->frequency = 0;
}
count += e->count;
probability += e->probability;
remove_edge (e);
}
else
ei_next (&ei);
}
/* This is somewhat ugly: the call_expr expander often emits instructions
after the sibcall (to perform the function return). These confuse the
find_many_sub_basic_blocks code, so we need to get rid of these. */
last = NEXT_INSN (last);
gcc_assert (BARRIER_P (last));
*can_fallthru = false;
while (NEXT_INSN (last))
{
/* For instance an sqrt builtin expander expands if with
sibcall in the then and label for `else`. */
if (LABEL_P (NEXT_INSN (last)))
{
*can_fallthru = true;
break;
}
delete_insn (NEXT_INSN (last));
}
e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
e->probability += probability;
e->count += count;
BB_END (bb) = last;
update_bb_for_insn (bb);
if (NEXT_INSN (last))
{
bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
last = BB_END (bb);
if (BARRIER_P (last))
BB_END (bb) = PREV_INSN (last);
}
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
return bb;
}
/* Return the difference between the floor and the truncated result of
a signed division by OP1 with remainder MOD. */
static rtx
floor_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
{
/* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */
return gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_LT (BImode,
gen_rtx_DIV (mode, op1, mod),
const0_rtx),
constm1_rtx, const0_rtx),
const0_rtx);
}
/* Return the difference between the ceil and the truncated result of
a signed division by OP1 with remainder MOD. */
static rtx
ceil_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
{
/* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */
return gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_GT (BImode,
gen_rtx_DIV (mode, op1, mod),
const0_rtx),
const1_rtx, const0_rtx),
const0_rtx);
}
/* Return the difference between the ceil and the truncated result of
an unsigned division by OP1 with remainder MOD. */
static rtx
ceil_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED)
{
/* (mod != 0 ? 1 : 0) */
return gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_NE (BImode, mod, const0_rtx),
const1_rtx, const0_rtx);
}
/* Return the difference between the rounded and the truncated result
of a signed division by OP1 with remainder MOD. Halfway cases are
rounded away from zero, rather than to the nearest even number. */
static rtx
round_sdiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
{
/* (abs (mod) >= abs (op1) - abs (mod)
? (op1 / mod > 0 ? 1 : -1)
: 0) */
return gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod),
gen_rtx_MINUS (mode,
gen_rtx_ABS (mode, op1),
gen_rtx_ABS (mode, mod))),
gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_GT (BImode,
gen_rtx_DIV (mode, op1, mod),
const0_rtx),
const1_rtx, constm1_rtx),
const0_rtx);
}
/* Return the difference between the rounded and the truncated result
of a unsigned division by OP1 with remainder MOD. Halfway cases
are rounded away from zero, rather than to the nearest even
number. */
static rtx
round_udiv_adjust (enum machine_mode mode, rtx mod, rtx op1)
{
/* (mod >= op1 - mod ? 1 : 0) */
return gen_rtx_IF_THEN_ELSE
(mode, gen_rtx_GE (BImode, mod,
gen_rtx_MINUS (mode, op1, mod)),
const1_rtx, const0_rtx);
}
/* Convert X to MODE, that must be Pmode or ptr_mode, without emitting
any rtl. */
static rtx
convert_debug_memory_address (enum machine_mode mode, rtx x,
addr_space_t as)
{
enum machine_mode xmode = GET_MODE (x);
#ifndef POINTERS_EXTEND_UNSIGNED
gcc_assert (mode == Pmode
|| mode == targetm.addr_space.address_mode (as));
gcc_assert (xmode == mode || xmode == VOIDmode);
#else
rtx temp;
gcc_assert (targetm.addr_space.valid_pointer_mode (mode, as));
if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode)
return x;
if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (xmode))
x = simplify_gen_subreg (mode, x, xmode,
subreg_lowpart_offset
(mode, xmode));
else if (POINTERS_EXTEND_UNSIGNED > 0)
x = gen_rtx_ZERO_EXTEND (mode, x);
else if (!POINTERS_EXTEND_UNSIGNED)
x = gen_rtx_SIGN_EXTEND (mode, x);
else
{
switch (GET_CODE (x))
{
case SUBREG:
if ((SUBREG_PROMOTED_VAR_P (x)
|| (REG_P (SUBREG_REG (x)) && REG_POINTER (SUBREG_REG (x)))
|| (GET_CODE (SUBREG_REG (x)) == PLUS
&& REG_P (XEXP (SUBREG_REG (x), 0))
&& REG_POINTER (XEXP (SUBREG_REG (x), 0))
&& CONST_INT_P (XEXP (SUBREG_REG (x), 1))))
&& GET_MODE (SUBREG_REG (x)) == mode)
return SUBREG_REG (x);
break;
case LABEL_REF:
temp = gen_rtx_LABEL_REF (mode, XEXP (x, 0));
LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
return temp;
case SYMBOL_REF:
temp = shallow_copy_rtx (x);
PUT_MODE (temp, mode);
return temp;
case CONST:
temp = convert_debug_memory_address (mode, XEXP (x, 0), as);
if (temp)
temp = gen_rtx_CONST (mode, temp);
return temp;
case PLUS:
case MINUS:
if (CONST_INT_P (XEXP (x, 1)))
{
temp = convert_debug_memory_address (mode, XEXP (x, 0), as);
if (temp)
return gen_rtx_fmt_ee (GET_CODE (x), mode, temp, XEXP (x, 1));
}
break;
default:
break;
}
/* Don't know how to express ptr_extend as operation in debug info. */
return NULL;
}
#endif /* POINTERS_EXTEND_UNSIGNED */
return x;
}
/* Return an RTX equivalent to the value of the parameter DECL. */
static rtx
expand_debug_parm_decl (tree decl)
{
rtx incoming = DECL_INCOMING_RTL (decl);
if (incoming
&& GET_MODE (incoming) != BLKmode
&& ((REG_P (incoming) && HARD_REGISTER_P (incoming))
|| (MEM_P (incoming)
&& REG_P (XEXP (incoming, 0))
&& HARD_REGISTER_P (XEXP (incoming, 0)))))
{
rtx rtl = gen_rtx_ENTRY_VALUE (GET_MODE (incoming));
#ifdef HAVE_window_save
/* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
If the target machine has an explicit window save instruction, the
actual entry value is the corresponding OUTGOING_REGNO instead. */
if (REG_P (incoming)
&& OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
incoming
= gen_rtx_REG_offset (incoming, GET_MODE (incoming),
OUTGOING_REGNO (REGNO (incoming)), 0);
else if (MEM_P (incoming))
{
rtx reg = XEXP (incoming, 0);
if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
{
reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
incoming = replace_equiv_address_nv (incoming, reg);
}
else
incoming = copy_rtx (incoming);
}
#endif
ENTRY_VALUE_EXP (rtl) = incoming;
return rtl;
}
if (incoming
&& GET_MODE (incoming) != BLKmode
&& !TREE_ADDRESSABLE (decl)
&& MEM_P (incoming)
&& (XEXP (incoming, 0) == virtual_incoming_args_rtx
|| (GET_CODE (XEXP (incoming, 0)) == PLUS
&& XEXP (XEXP (incoming, 0), 0) == virtual_incoming_args_rtx
&& CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
return copy_rtx (incoming);
return NULL_RTX;
}
/* Return an RTX equivalent to the value of the tree expression EXP. */
static rtx
expand_debug_expr (tree exp)
{
rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX;
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
enum machine_mode inner_mode = VOIDmode;
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
addr_space_t as;
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
{
case tcc_expression:
switch (TREE_CODE (exp))
{
case COND_EXPR:
case DOT_PROD_EXPR:
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
case FMA_EXPR:
goto ternary;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
goto binary;
case TRUTH_NOT_EXPR:
goto unary;
default:
break;
}
break;
ternary:
op2 = expand_debug_expr (TREE_OPERAND (exp, 2));
if (!op2)
return NULL_RTX;
/* Fall through. */
binary:
case tcc_binary:
case tcc_comparison:
op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
if (!op1)
return NULL_RTX;
/* Fall through. */
unary:
case tcc_unary:
inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
if (!op0)
return NULL_RTX;
break;
case tcc_type:
case tcc_statement:
gcc_unreachable ();
case tcc_constant:
case tcc_exceptional:
case tcc_declaration:
case tcc_reference:
case tcc_vl_exp:
break;
}
switch (TREE_CODE (exp))
{
case STRING_CST:
if (!lookup_constant_def (exp))
{
if (strlen (TREE_STRING_POINTER (exp)) + 1
!= (size_t) TREE_STRING_LENGTH (exp))
return NULL_RTX;
op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp));
op0 = gen_rtx_MEM (BLKmode, op0);
set_mem_attributes (op0, exp, 0);
return op0;
}
/* Fall through... */
case INTEGER_CST:
case REAL_CST:
case FIXED_CST:
op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER);
return op0;
case COMPLEX_CST:
gcc_assert (COMPLEX_MODE_P (mode));
op0 = expand_debug_expr (TREE_REALPART (exp));
op1 = expand_debug_expr (TREE_IMAGPART (exp));
return gen_rtx_CONCAT (mode, op0, op1);
case DEBUG_EXPR_DECL:
op0 = DECL_RTL_IF_SET (exp);
if (op0)
return op0;
op0 = gen_rtx_DEBUG_EXPR (mode);
DEBUG_EXPR_TREE_DECL (op0) = exp;
SET_DECL_RTL (exp, op0);
return op0;
case VAR_DECL:
case PARM_DECL:
case FUNCTION_DECL:
case LABEL_DECL:
case CONST_DECL:
case RESULT_DECL:
op0 = DECL_RTL_IF_SET (exp);
/* This decl was probably optimized away. */
if (!op0)
{
if (TREE_CODE (exp) != VAR_DECL
|| DECL_EXTERNAL (exp)
|| !TREE_STATIC (exp)
|| !DECL_NAME (exp)
|| DECL_HARD_REGISTER (exp)
|| DECL_IN_CONSTANT_POOL (exp)
|| mode == VOIDmode)
return NULL;
op0 = make_decl_rtl_for_debug (exp);
if (!MEM_P (op0)
|| GET_CODE (XEXP (op0, 0)) != SYMBOL_REF
|| SYMBOL_REF_DECL (XEXP (op0, 0)) != exp)
return NULL;
}
else
op0 = copy_rtx (op0);
if (GET_MODE (op0) == BLKmode
/* If op0 is not BLKmode, but BLKmode is, adjust_mode
below would ICE. While it is likely a FE bug,
try to be robust here. See PR43166. */
|| mode == BLKmode
|| (mode == VOIDmode && GET_MODE (op0) != VOIDmode))
{
gcc_assert (MEM_P (op0));
op0 = adjust_address_nv (op0, mode, 0);
return op0;
}
/* Fall through. */
adjust_mode:
case PAREN_EXPR:
case NOP_EXPR:
case CONVERT_EXPR:
{
inner_mode = GET_MODE (op0);
if (mode == inner_mode)
return op0;
if (inner_mode == VOIDmode)
{
if (TREE_CODE (exp) == SSA_NAME)
inner_mode = TYPE_MODE (TREE_TYPE (exp));
else
inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
if (mode == inner_mode)
return op0;
}
if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
{
if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
}
else if (FLOAT_MODE_P (mode))
{
gcc_assert (TREE_CODE (exp) != SSA_NAME);
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode);
}
else if (FLOAT_MODE_P (inner_mode))
{
if (unsignedp)
op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
}
else if (CONSTANT_P (op0)
|| GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (inner_mode))
op0 = simplify_gen_subreg (mode, op0, inner_mode,
subreg_lowpart_offset (mode,
inner_mode));
else if (TREE_CODE_CLASS (TREE_CODE (exp)) == tcc_unary
? TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))
: unsignedp)
op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode);
return op0;
}
case MEM_REF:
if (!is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0)))
{
tree newexp = fold_binary (MEM_REF, TREE_TYPE (exp),
TREE_OPERAND (exp, 0),
TREE_OPERAND (exp, 1));
if (newexp)
return expand_debug_expr (newexp);
}
/* FALLTHROUGH */
case INDIRECT_REF:
inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
if (!op0)
return NULL;
if (TREE_CODE (exp) == MEM_REF)
{
if (GET_CODE (op0) == DEBUG_IMPLICIT_PTR
|| (GET_CODE (op0) == PLUS
&& GET_CODE (XEXP (op0, 0)) == DEBUG_IMPLICIT_PTR))
/* (mem (debug_implicit_ptr)) might confuse aliasing.
Instead just use get_inner_reference. */
goto component_ref;
op1 = expand_debug_expr (TREE_OPERAND (exp, 1));
if (!op1 || !CONST_INT_P (op1))
return NULL;
op0 = plus_constant (inner_mode, op0, INTVAL (op1));
}
if (POINTER_TYPE_P (TREE_TYPE (exp)))
as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
else
as = ADDR_SPACE_GENERIC;
op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as),
op0, as);
if (op0 == NULL_RTX)
return NULL;
op0 = gen_rtx_MEM (mode, op0);
set_mem_attributes (op0, exp, 0);
if (TREE_CODE (exp) == MEM_REF
&& !is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0)))
set_mem_expr (op0, NULL_TREE);
set_mem_addr_space (op0, as);
return op0;
case TARGET_MEM_REF:
if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
&& !DECL_RTL_SET_P (TREE_OPERAND (TMR_BASE (exp), 0)))
return NULL;
op0 = expand_debug_expr
(tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)), exp));
if (!op0)
return NULL;
if (POINTER_TYPE_P (TREE_TYPE (exp)))
as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
else
as = ADDR_SPACE_GENERIC;
op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as),
op0, as);
if (op0 == NULL_RTX)
return NULL;
op0 = gen_rtx_MEM (mode, op0);
set_mem_attributes (op0, exp, 0);
set_mem_addr_space (op0, as);
return op0;
component_ref:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case COMPONENT_REF:
case BIT_FIELD_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case VIEW_CONVERT_EXPR:
{
enum machine_mode mode1;
HOST_WIDE_INT bitsize, bitpos;
tree offset;
int volatilep = 0;
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep, false);
rtx orig_op0;
if (bitsize == 0)
return NULL;
orig_op0 = op0 = expand_debug_expr (tem);
if (!op0)
return NULL;
if (offset)
{
enum machine_mode addrmode, offmode;
if (!MEM_P (op0))
return NULL;
op0 = XEXP (op0, 0);
addrmode = GET_MODE (op0);
if (addrmode == VOIDmode)
addrmode = Pmode;
op1 = expand_debug_expr (offset);
if (!op1)
return NULL;
offmode = GET_MODE (op1);
if (offmode == VOIDmode)
offmode = TYPE_MODE (TREE_TYPE (offset));
if (addrmode != offmode)
op1 = simplify_gen_subreg (addrmode, op1, offmode,
subreg_lowpart_offset (addrmode,
offmode));
/* Don't use offset_address here, we don't need a
recognizable address, and we don't want to generate
code. */
op0 = gen_rtx_MEM (mode, simplify_gen_binary (PLUS, addrmode,
op0, op1));
}
if (MEM_P (op0))
{
if (mode1 == VOIDmode)
/* Bitfield. */
mode1 = smallest_mode_for_size (bitsize, MODE_INT);
if (bitpos >= BITS_PER_UNIT)
{
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
bitpos %= BITS_PER_UNIT;
}
else if (bitpos < 0)
{
HOST_WIDE_INT units
= (-bitpos + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
op0 = adjust_address_nv (op0, mode1, units);
bitpos += units * BITS_PER_UNIT;
}
else if (bitpos == 0 && bitsize == GET_MODE_BITSIZE (mode))
op0 = adjust_address_nv (op0, mode, 0);
else if (GET_MODE (op0) != mode1)
op0 = adjust_address_nv (op0, mode1, 0);
else
op0 = copy_rtx (op0);
if (op0 == orig_op0)
op0 = shallow_copy_rtx (op0);
set_mem_attributes (op0, exp, 0);
}
if (bitpos == 0 && mode == GET_MODE (op0))
return op0;
if (bitpos < 0)
return NULL;
if (GET_MODE (op0) == BLKmode)
return NULL;
if ((bitpos % BITS_PER_UNIT) == 0
&& bitsize == GET_MODE_BITSIZE (mode1))
{
enum machine_mode opmode = GET_MODE (op0);
if (opmode == VOIDmode)
opmode = TYPE_MODE (TREE_TYPE (tem));
/* This condition may hold if we're expanding the address
right past the end of an array that turned out not to
be addressable (i.e., the address was only computed in
debug stmts). The gen_subreg below would rightfully
crash, and the address doesn't really exist, so just
drop it. */
if (bitpos >= GET_MODE_BITSIZE (opmode))
return NULL;
if ((bitpos % GET_MODE_BITSIZE (mode)) == 0)
return simplify_gen_subreg (mode, op0, opmode,
bitpos / BITS_PER_UNIT);
}
return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0))
&& TYPE_UNSIGNED (TREE_TYPE (exp))
? SIGN_EXTRACT
: ZERO_EXTRACT, mode,
GET_MODE (op0) != VOIDmode
? GET_MODE (op0)
: TYPE_MODE (TREE_TYPE (tem)),
op0, GEN_INT (bitsize), GEN_INT (bitpos));
}
case ABS_EXPR:
return simplify_gen_unary (ABS, mode, op0, mode);
case NEGATE_EXPR:
return simplify_gen_unary (NEG, mode, op0, mode);
case BIT_NOT_EXPR:
return simplify_gen_unary (NOT, mode, op0, mode);
case FLOAT_EXPR:
return simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp,
0)))
? UNSIGNED_FLOAT : FLOAT, mode, op0,
inner_mode);
case FIX_TRUNC_EXPR:
return simplify_gen_unary (unsignedp ? UNSIGNED_FIX : FIX, mode, op0,
inner_mode);
case POINTER_PLUS_EXPR:
/* For the rare target where pointers are not the same size as
size_t, we need to check for mis-matched modes and correct
the addend. */
if (op0 && op1
&& GET_MODE (op0) != VOIDmode && GET_MODE (op1) != VOIDmode
&& GET_MODE (op0) != GET_MODE (op1))
{
if (GET_MODE_BITSIZE (GET_MODE (op0)) < GET_MODE_BITSIZE (GET_MODE (op1))
/* If OP0 is a partial mode, then we must truncate, even if it has
the same bitsize as OP1 as GCC's representation of partial modes
is opaque. */
|| (GET_MODE_CLASS (GET_MODE (op0)) == MODE_PARTIAL_INT
&& GET_MODE_BITSIZE (GET_MODE (op0)) == GET_MODE_BITSIZE (GET_MODE (op1))))
op1 = simplify_gen_unary (TRUNCATE, GET_MODE (op0), op1,
GET_MODE (op1));
else
/* We always sign-extend, regardless of the signedness of
the operand, because the operand is always unsigned
here even if the original C expression is signed. */
op1 = simplify_gen_unary (SIGN_EXTEND, GET_MODE (op0), op1,
GET_MODE (op1));
}
/* Fall through. */
case PLUS_EXPR:
return simplify_gen_binary (PLUS, mode, op0, op1);
case MINUS_EXPR:
return simplify_gen_binary (MINUS, mode, op0, op1);
case MULT_EXPR:
return simplify_gen_binary (MULT, mode, op0, op1);
case RDIV_EXPR:
case TRUNC_DIV_EXPR:
case EXACT_DIV_EXPR:
if (unsignedp)
return simplify_gen_binary (UDIV, mode, op0, op1);
else
return simplify_gen_binary (DIV, mode, op0, op1);
case TRUNC_MOD_EXPR:
return simplify_gen_binary (unsignedp ? UMOD : MOD, mode, op0, op1);
case FLOOR_DIV_EXPR:
if (unsignedp)
return simplify_gen_binary (UDIV, mode, op0, op1);
else
{
rtx div = simplify_gen_binary (DIV, mode, op0, op1);
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = floor_sdiv_adjust (mode, mod, op1);
return simplify_gen_binary (PLUS, mode, div, adj);
}
case FLOOR_MOD_EXPR:
if (unsignedp)
return simplify_gen_binary (UMOD, mode, op0, op1);
else
{
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = floor_sdiv_adjust (mode, mod, op1);
adj = simplify_gen_unary (NEG, mode,
simplify_gen_binary (MULT, mode, adj, op1),
mode);
return simplify_gen_binary (PLUS, mode, mod, adj);
}
case CEIL_DIV_EXPR:
if (unsignedp)
{
rtx div = simplify_gen_binary (UDIV, mode, op0, op1);
rtx mod = simplify_gen_binary (UMOD, mode, op0, op1);
rtx adj = ceil_udiv_adjust (mode, mod, op1);
return simplify_gen_binary (PLUS, mode, div, adj);
}
else
{
rtx div = simplify_gen_binary (DIV, mode, op0, op1);
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = ceil_sdiv_adjust (mode, mod, op1);
return simplify_gen_binary (PLUS, mode, div, adj);
}
case CEIL_MOD_EXPR:
if (unsignedp)
{
rtx mod = simplify_gen_binary (UMOD, mode, op0, op1);
rtx adj = ceil_udiv_adjust (mode, mod, op1);
adj = simplify_gen_unary (NEG, mode,
simplify_gen_binary (MULT, mode, adj, op1),
mode);
return simplify_gen_binary (PLUS, mode, mod, adj);
}
else
{
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = ceil_sdiv_adjust (mode, mod, op1);
adj = simplify_gen_unary (NEG, mode,
simplify_gen_binary (MULT, mode, adj, op1),
mode);
return simplify_gen_binary (PLUS, mode, mod, adj);
}
case ROUND_DIV_EXPR:
if (unsignedp)
{
rtx div = simplify_gen_binary (UDIV, mode, op0, op1);
rtx mod = simplify_gen_binary (UMOD, mode, op0, op1);
rtx adj = round_udiv_adjust (mode, mod, op1);
return simplify_gen_binary (PLUS, mode, div, adj);
}
else
{
rtx div = simplify_gen_binary (DIV, mode, op0, op1);
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = round_sdiv_adjust (mode, mod, op1);
return simplify_gen_binary (PLUS, mode, div, adj);
}
case ROUND_MOD_EXPR:
if (unsignedp)
{
rtx mod = simplify_gen_binary (UMOD, mode, op0, op1);
rtx adj = round_udiv_adjust (mode, mod, op1);
adj = simplify_gen_unary (NEG, mode,
simplify_gen_binary (MULT, mode, adj, op1),
mode);
return simplify_gen_binary (PLUS, mode, mod, adj);
}
else
{
rtx mod = simplify_gen_binary (MOD, mode, op0, op1);
rtx adj = round_sdiv_adjust (mode, mod, op1);
adj = simplify_gen_unary (NEG, mode,
simplify_gen_binary (MULT, mode, adj, op1),
mode);
return simplify_gen_binary (PLUS, mode, mod, adj);
}
case LSHIFT_EXPR:
return simplify_gen_binary (ASHIFT, mode, op0, op1);
case RSHIFT_EXPR:
if (unsignedp)
return simplify_gen_binary (LSHIFTRT, mode, op0, op1);
else
return simplify_gen_binary (ASHIFTRT, mode, op0, op1);
case LROTATE_EXPR:
return simplify_gen_binary (ROTATE, mode, op0, op1);
case RROTATE_EXPR:
return simplify_gen_binary (ROTATERT, mode, op0, op1);
case MIN_EXPR:
return simplify_gen_binary (unsignedp ? UMIN : SMIN, mode, op0, op1);
case MAX_EXPR:
return simplify_gen_binary (unsignedp ? UMAX : SMAX, mode, op0, op1);
case BIT_AND_EXPR:
case TRUTH_AND_EXPR:
return simplify_gen_binary (AND, mode, op0, op1);
case BIT_IOR_EXPR:
case TRUTH_OR_EXPR:
return simplify_gen_binary (IOR, mode, op0, op1);
case BIT_XOR_EXPR:
case TRUTH_XOR_EXPR:
return simplify_gen_binary (XOR, mode, op0, op1);
case TRUTH_ANDIF_EXPR:
return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx);
case TRUTH_ORIF_EXPR:
return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1);
case TRUTH_NOT_EXPR:
return simplify_gen_relational (EQ, mode, inner_mode, op0, const0_rtx);
case LT_EXPR:
return simplify_gen_relational (unsignedp ? LTU : LT, mode, inner_mode,
op0, op1);
case LE_EXPR:
return simplify_gen_relational (unsignedp ? LEU : LE, mode, inner_mode,
op0, op1);
case GT_EXPR:
return simplify_gen_relational (unsignedp ? GTU : GT, mode, inner_mode,
op0, op1);
case GE_EXPR:
return simplify_gen_relational (unsignedp ? GEU : GE, mode, inner_mode,
op0, op1);
case EQ_EXPR:
return simplify_gen_relational (EQ, mode, inner_mode, op0, op1);
case NE_EXPR:
return simplify_gen_relational (NE, mode, inner_mode, op0, op1);
case UNORDERED_EXPR:
return simplify_gen_relational (UNORDERED, mode, inner_mode, op0, op1);
case ORDERED_EXPR:
return simplify_gen_relational (ORDERED, mode, inner_mode, op0, op1);
case UNLT_EXPR:
return simplify_gen_relational (UNLT, mode, inner_mode, op0, op1);
case UNLE_EXPR:
return simplify_gen_relational (UNLE, mode, inner_mode, op0, op1);
case UNGT_EXPR:
return simplify_gen_relational (UNGT, mode, inner_mode, op0, op1);
case UNGE_EXPR:
return simplify_gen_relational (UNGE, mode, inner_mode, op0, op1);
case UNEQ_EXPR:
return simplify_gen_relational (UNEQ, mode, inner_mode, op0, op1);
case LTGT_EXPR:
return simplify_gen_relational (LTGT, mode, inner_mode, op0, op1);
case COND_EXPR:
return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2);
case COMPLEX_EXPR:
gcc_assert (COMPLEX_MODE_P (mode));
if (GET_MODE (op0) == VOIDmode)
op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0);
if (GET_MODE (op1) == VOIDmode)
op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1);
return gen_rtx_CONCAT (mode, op0, op1);
case CONJ_EXPR:
if (GET_CODE (op0) == CONCAT)
return gen_rtx_CONCAT (mode, XEXP (op0, 0),
simplify_gen_unary (NEG, GET_MODE_INNER (mode),
XEXP (op0, 1),
GET_MODE_INNER (mode)));
else
{
enum machine_mode imode = GET_MODE_INNER (mode);
rtx re, im;
if (MEM_P (op0))
{
re = adjust_address_nv (op0, imode, 0);
im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode));
}
else
{
enum machine_mode ifmode = int_mode_for_mode (mode);
enum machine_mode ihmode = int_mode_for_mode (imode);
rtx halfsize;
if (ifmode == BLKmode || ihmode == BLKmode)
return NULL;
halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode));
re = op0;
if (mode != ifmode)
re = gen_rtx_SUBREG (ifmode, re, 0);
re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx);
if (imode != ihmode)
re = gen_rtx_SUBREG (imode, re, 0);
im = copy_rtx (op0);
if (mode != ifmode)
im = gen_rtx_SUBREG (ifmode, im, 0);
im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize);
if (imode != ihmode)
im = gen_rtx_SUBREG (imode, im, 0);
}
im = gen_rtx_NEG (imode, im);
return gen_rtx_CONCAT (mode, re, im);
}
case ADDR_EXPR:
op0 = expand_debug_expr (TREE_OPERAND (exp, 0));
if (!op0 || !MEM_P (op0))
{
if ((TREE_CODE (TREE_OPERAND (exp, 0)) == VAR_DECL
|| TREE_CODE (TREE_OPERAND (exp, 0)) == PARM_DECL
|| TREE_CODE (TREE_OPERAND (exp, 0)) == RESULT_DECL)
&& (!TREE_ADDRESSABLE (TREE_OPERAND (exp, 0))
|| target_for_debug_bind (TREE_OPERAND (exp, 0))))
return gen_rtx_DEBUG_IMPLICIT_PTR (mode, TREE_OPERAND (exp, 0));
if (handled_component_p (TREE_OPERAND (exp, 0)))
{
HOST_WIDE_INT bitoffset, bitsize, maxsize;
tree decl
= get_ref_base_and_extent (TREE_OPERAND (exp, 0),
&bitoffset, &bitsize, &maxsize);
if ((TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == PARM_DECL
|| TREE_CODE (decl) == RESULT_DECL)
&& (!TREE_ADDRESSABLE (decl)
|| target_for_debug_bind (decl))
&& (bitoffset % BITS_PER_UNIT) == 0
&& bitsize > 0
&& bitsize == maxsize)
{
rtx base = gen_rtx_DEBUG_IMPLICIT_PTR (mode, decl);
return plus_constant (mode, base, bitoffset / BITS_PER_UNIT);
}
}
if (TREE_CODE (TREE_OPERAND (exp, 0)) == MEM_REF
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
== ADDR_EXPR)
{
op0 = expand_debug_expr (TREE_OPERAND (TREE_OPERAND (exp, 0),
0));
if (op0 != NULL
&& (GET_CODE (op0) == DEBUG_IMPLICIT_PTR
|| (GET_CODE (op0) == PLUS
&& GET_CODE (XEXP (op0, 0)) == DEBUG_IMPLICIT_PTR
&& CONST_INT_P (XEXP (op0, 1)))))
{
op1 = expand_debug_expr (TREE_OPERAND (TREE_OPERAND (exp, 0),
1));
if (!op1 || !CONST_INT_P (op1))
return NULL;
return plus_constant (mode, op0, INTVAL (op1));
}
}
return NULL;
}
as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
op0 = convert_debug_memory_address (mode, XEXP (op0, 0), as);
return op0;
case VECTOR_CST:
{
unsigned i;
op0 = gen_rtx_CONCATN
(mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
{
op1 = expand_debug_expr (VECTOR_CST_ELT (exp, i));
if (!op1)
return NULL;
XVECEXP (op0, 0, i) = op1;
}
return op0;
}
case CONSTRUCTOR:
if (TREE_CLOBBER_P (exp))
return NULL;
else if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE)
{
unsigned i;
tree val;
op0 = gen_rtx_CONCATN
(mode, rtvec_alloc (TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp))));
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val)
{
op1 = expand_debug_expr (val);
if (!op1)
return NULL;
XVECEXP (op0, 0, i) = op1;
}
if (i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)))
{
op1 = expand_debug_expr
(build_zero_cst (TREE_TYPE (TREE_TYPE (exp))));
if (!op1)
return NULL;
for (; i < TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)); i++)
XVECEXP (op0, 0, i) = op1;
}
return op0;
}
else
goto flag_unsupported;
case CALL_EXPR:
/* ??? Maybe handle some builtins? */
return NULL;
case SSA_NAME:
{
gimple g = get_gimple_for_ssa_name (exp);
if (g)
{
op0 = expand_debug_expr (gimple_assign_rhs_to_tree (g));
if (!op0)
return NULL;
}
else
{
int part = var_to_partition (SA.map, exp);
if (part == NO_PARTITION)
{
/* If this is a reference to an incoming value of parameter
that is never used in the code or where the incoming
value is never used in the code, use PARM_DECL's
DECL_RTL if set. */
if (SSA_NAME_IS_DEFAULT_DEF (exp)
&& TREE_CODE (SSA_NAME_VAR (exp)) == PARM_DECL)
{
op0 = expand_debug_parm_decl (SSA_NAME_VAR (exp));
if (op0)
goto adjust_mode;
op0 = expand_debug_expr (SSA_NAME_VAR (exp));
if (op0)
goto adjust_mode;
}
return NULL;
}
gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions);
op0 = copy_rtx (SA.partition_to_pseudo[part]);
}
goto adjust_mode;
}
case ERROR_MARK:
return NULL;
/* Vector stuff. For most of the codes we don't have rtl codes. */
case REALIGN_LOAD_EXPR:
case REDUC_MAX_EXPR:
case REDUC_MIN_EXPR:
case REDUC_PLUS_EXPR:
case VEC_COND_EXPR:
case VEC_LSHIFT_EXPR:
case VEC_PACK_FIX_TRUNC_EXPR:
case VEC_PACK_SAT_EXPR:
case VEC_PACK_TRUNC_EXPR:
case VEC_RSHIFT_EXPR:
case VEC_UNPACK_FLOAT_HI_EXPR:
case VEC_UNPACK_FLOAT_LO_EXPR:
case VEC_UNPACK_HI_EXPR:
case VEC_UNPACK_LO_EXPR:
case VEC_WIDEN_MULT_HI_EXPR:
case VEC_WIDEN_MULT_LO_EXPR:
case VEC_WIDEN_MULT_EVEN_EXPR:
case VEC_WIDEN_MULT_ODD_EXPR:
case VEC_WIDEN_LSHIFT_HI_EXPR:
case VEC_WIDEN_LSHIFT_LO_EXPR:
case VEC_PERM_EXPR:
return NULL;
/* Misc codes. */
case ADDR_SPACE_CONVERT_EXPR:
case FIXED_CONVERT_EXPR:
case OBJ_TYPE_REF:
case WITH_SIZE_EXPR:
return NULL;
case DOT_PROD_EXPR:
if (SCALAR_INT_MODE_P (GET_MODE (op0))
&& SCALAR_INT_MODE_P (mode))
{
op0
= simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp,
0)))
? ZERO_EXTEND : SIGN_EXTEND, mode, op0,
inner_mode);
op1
= simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp,
1)))
? ZERO_EXTEND : SIGN_EXTEND, mode, op1,
inner_mode);
op0 = simplify_gen_binary (MULT, mode, op0, op1);
return simplify_gen_binary (PLUS, mode, op0, op2);
}
return NULL;
case WIDEN_MULT_EXPR:
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
if (SCALAR_INT_MODE_P (GET_MODE (op0))
&& SCALAR_INT_MODE_P (mode))
{
inner_mode = GET_MODE (op0);
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode);
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1))))
op1 = simplify_gen_unary (ZERO_EXTEND, mode, op1, inner_mode);
else
op1 = simplify_gen_unary (SIGN_EXTEND, mode, op1, inner_mode);
op0 = simplify_gen_binary (MULT, mode, op0, op1);
if (TREE_CODE (exp) == WIDEN_MULT_EXPR)
return op0;
else if (TREE_CODE (exp) == WIDEN_MULT_PLUS_EXPR)
return simplify_gen_binary (PLUS, mode, op0, op2);
else
return simplify_gen_binary (MINUS, mode, op2, op0);
}
return NULL;
case MULT_HIGHPART_EXPR:
/* ??? Similar to the above. */
return NULL;
case WIDEN_SUM_EXPR:
case WIDEN_LSHIFT_EXPR:
if (SCALAR_INT_MODE_P (GET_MODE (op0))
&& SCALAR_INT_MODE_P (mode))
{
op0
= simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp,
0)))
? ZERO_EXTEND : SIGN_EXTEND, mode, op0,
inner_mode);
return simplify_gen_binary (TREE_CODE (exp) == WIDEN_LSHIFT_EXPR
? ASHIFT : PLUS, mode, op0, op1);
}
return NULL;
case FMA_EXPR:
return simplify_gen_ternary (FMA, mode, inner_mode, op0, op1, op2);
default:
flag_unsupported:
#ifdef ENABLE_CHECKING
debug_tree (exp);
gcc_unreachable ();
#else
return NULL;
#endif
}
}
/* Return an RTX equivalent to the source bind value of the tree expression
EXP. */
static rtx
expand_debug_source_expr (tree exp)
{
rtx op0 = NULL_RTX;
enum machine_mode mode = VOIDmode, inner_mode;
switch (TREE_CODE (exp))
{
case PARM_DECL:
{
mode = DECL_MODE (exp);
op0 = expand_debug_parm_decl (exp);
if (op0)
break;
/* See if this isn't an argument that has been completely
optimized out. */
if (!DECL_RTL_SET_P (exp)
&& !DECL_INCOMING_RTL (exp)
&& DECL_ABSTRACT_ORIGIN (current_function_decl))
{
tree aexp = DECL_ORIGIN (exp);
if (DECL_CONTEXT (aexp)
== DECL_ABSTRACT_ORIGIN (current_function_decl))
{
vec **debug_args;
unsigned int ix;
tree ddecl;
debug_args = decl_debug_args_lookup (current_function_decl);
if (debug_args != NULL)
{
for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl);
ix += 2)
if (ddecl == aexp)
return gen_rtx_DEBUG_PARAMETER_REF (mode, aexp);
}
}
}
break;
}
default:
break;
}
if (op0 == NULL_RTX)
return NULL_RTX;
inner_mode = GET_MODE (op0);
if (mode == inner_mode)
return op0;
if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode))
{
if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (inner_mode))
op0 = simplify_gen_subreg (mode, op0, inner_mode, 0);
else if (GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (inner_mode))
op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode);
}
else if (FLOAT_MODE_P (mode))
gcc_unreachable ();
else if (FLOAT_MODE_P (inner_mode))
{
if (TYPE_UNSIGNED (TREE_TYPE (exp)))
op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (FIX, mode, op0, inner_mode);
}
else if (CONSTANT_P (op0)
|| GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (inner_mode))
op0 = simplify_gen_subreg (mode, op0, inner_mode,
subreg_lowpart_offset (mode, inner_mode));
else if (TYPE_UNSIGNED (TREE_TYPE (exp)))
op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode);
else
op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode);
return op0;
}
/* Ensure INSN_VAR_LOCATION_LOC (insn) doesn't have unbound complexity.
Allow 4 levels of rtl nesting for most rtl codes, and if we see anything
deeper than that, create DEBUG_EXPRs and emit DEBUG_INSNs before INSN. */
static void
avoid_complex_debug_insns (rtx insn, rtx *exp_p, int depth)
{
rtx exp = *exp_p;
if (exp == NULL_RTX)
return;
if ((OBJECT_P (exp) && !MEM_P (exp)) || GET_CODE (exp) == CLOBBER)
return;
if (depth == 4)
{
/* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
rtx dval = make_debug_expr_from_rtl (exp);
/* Emit a debug bind insn before INSN. */
rtx bind = gen_rtx_VAR_LOCATION (GET_MODE (exp),
DEBUG_EXPR_TREE_DECL (dval), exp,
VAR_INIT_STATUS_INITIALIZED);
emit_debug_insn_before (bind, insn);
*exp_p = dval;
return;
}
const char *format_ptr = GET_RTX_FORMAT (GET_CODE (exp));
int i, j;
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
switch (*format_ptr++)
{
case 'e':
avoid_complex_debug_insns (insn, &XEXP (exp, i), depth + 1);
break;
case 'E':
case 'V':
for (j = 0; j < XVECLEN (exp, i); j++)
avoid_complex_debug_insns (insn, &XVECEXP (exp, i, j), depth + 1);
break;
default:
break;
}
}
/* Expand the _LOCs in debug insns. We run this after expanding all
regular insns, so that any variables referenced in the function
will have their DECL_RTLs set. */
static void
expand_debug_locations (void)
{
rtx insn;
rtx last = get_last_insn ();
int save_strict_alias = flag_strict_aliasing;
/* New alias sets while setting up memory attributes cause
-fcompare-debug failures, even though it doesn't bring about any
codegen changes. */
flag_strict_aliasing = 0;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (DEBUG_INSN_P (insn))
{
tree value = (tree)INSN_VAR_LOCATION_LOC (insn);
rtx val, prev_insn, insn2;
enum machine_mode mode;
if (value == NULL_TREE)
val = NULL_RTX;
else
{
if (INSN_VAR_LOCATION_STATUS (insn)
== VAR_INIT_STATUS_UNINITIALIZED)
val = expand_debug_source_expr (value);
else
val = expand_debug_expr (value);
gcc_assert (last == get_last_insn ());
}
if (!val)
val = gen_rtx_UNKNOWN_VAR_LOC ();
else
{
mode = GET_MODE (INSN_VAR_LOCATION (insn));
gcc_assert (mode == GET_MODE (val)
|| (GET_MODE (val) == VOIDmode
&& (CONST_SCALAR_INT_P (val)
|| GET_CODE (val) == CONST_FIXED
|| GET_CODE (val) == LABEL_REF)));
}
INSN_VAR_LOCATION_LOC (insn) = val;
prev_insn = PREV_INSN (insn);
for (insn2 = insn; insn2 != prev_insn; insn2 = PREV_INSN (insn2))
avoid_complex_debug_insns (insn2, &INSN_VAR_LOCATION_LOC (insn2), 0);
}
flag_strict_aliasing = save_strict_alias;
}
/* Expand basic block BB from GIMPLE trees to RTL. */
static basic_block
expand_gimple_basic_block (basic_block bb, bool disable_tail_calls)
{
gimple_stmt_iterator gsi;
gimple_seq stmts;
gimple stmt = NULL;
rtx note, last;
edge e;
edge_iterator ei;
void **elt;
if (dump_file)
fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n",
bb->index);
/* Note that since we are now transitioning from GIMPLE to RTL, we
cannot use the gsi_*_bb() routines because they expect the basic
block to be in GIMPLE, instead of RTL. Therefore, we need to
access the BB sequence directly. */
stmts = bb_seq (bb);
bb->il.gimple.seq = NULL;
bb->il.gimple.phi_nodes = NULL;
rtl_profile_for_bb (bb);
init_rtl_bb_info (bb);
bb->flags |= BB_RTL;
/* Remove the RETURN_EXPR if we may fall though to the exit
instead. */
gsi = gsi_last (stmts);
if (!gsi_end_p (gsi)
&& gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN)
{
gimple ret_stmt = gsi_stmt (gsi);
gcc_assert (single_succ_p (bb));
gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
if (bb->next_bb == EXIT_BLOCK_PTR
&& !gimple_return_retval (ret_stmt))
{
gsi_remove (&gsi, false);
single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
}
}
gsi = gsi_start (stmts);
if (!gsi_end_p (gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_LABEL)
stmt = NULL;
}
elt = pointer_map_contains (lab_rtx_for_bb, bb);
if (stmt || elt)
{
last = get_last_insn ();
if (stmt)
{
expand_gimple_stmt (stmt);
gsi_next (&gsi);
}
if (elt)
emit_label ((rtx) *elt);
/* Java emits line number notes in the top of labels.
??? Make this go away once line number notes are obsoleted. */
BB_HEAD (bb) = NEXT_INSN (last);
if (NOTE_P (BB_HEAD (bb)))
BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
maybe_dump_rtl_for_gimple_stmt (stmt, last);
}
else
note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
NOTE_BASIC_BLOCK (note) = bb;
for (; !gsi_end_p (gsi); gsi_next (&gsi))
{
basic_block new_bb;
stmt = gsi_stmt (gsi);
/* If this statement is a non-debug one, and we generate debug
insns, then this one might be the last real use of a TERed
SSA_NAME, but where there are still some debug uses further
down. Expanding the current SSA name in such further debug
uses by their RHS might lead to wrong debug info, as coalescing
might make the operands of such RHS be placed into the same
pseudo as something else. Like so:
a_1 = a_0 + 1; // Assume a_1 is TERed and a_0 is dead
use(a_1);
a_2 = ...
#DEBUG ... => a_1
As a_0 and a_2 don't overlap in lifetime, assume they are coalesced.
If we now would expand a_1 by it's RHS (a_0 + 1) in the debug use,
the write to a_2 would actually have clobbered the place which
formerly held a_0.
So, instead of that, we recognize the situation, and generate
debug temporaries at the last real use of TERed SSA names:
a_1 = a_0 + 1;
#DEBUG #D1 => a_1
use(a_1);
a_2 = ...
#DEBUG ... => #D1
*/
if (MAY_HAVE_DEBUG_INSNS
&& SA.values
&& !is_gimple_debug (stmt))
{
ssa_op_iter iter;
tree op;
gimple def;
location_t sloc = curr_insn_location ();
/* Look for SSA names that have their last use here (TERed
names always have only one real use). */
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
if ((def = get_gimple_for_ssa_name (op)))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
bool have_debug_uses = false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
{
if (gimple_debug_bind_p (USE_STMT (use_p)))
{
have_debug_uses = true;
break;
}
}
if (have_debug_uses)
{
/* OP is a TERed SSA name, with DEF it's defining
statement, and where OP is used in further debug
instructions. Generate a debug temporary, and
replace all uses of OP in debug insns with that
temporary. */
gimple debugstmt;
tree value = gimple_assign_rhs_to_tree (def);
tree vexpr = make_node (DEBUG_EXPR_DECL);
rtx val;
enum machine_mode mode;
set_curr_insn_location (gimple_location (def));
DECL_ARTIFICIAL (vexpr) = 1;
TREE_TYPE (vexpr) = TREE_TYPE (value);
if (DECL_P (value))
mode = DECL_MODE (value);
else
mode = TYPE_MODE (TREE_TYPE (value));
DECL_MODE (vexpr) = mode;
val = gen_rtx_VAR_LOCATION
(mode, vexpr, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
emit_debug_insn (val);
FOR_EACH_IMM_USE_STMT (debugstmt, imm_iter, op)
{
if (!gimple_debug_bind_p (debugstmt))
continue;
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, vexpr);
update_stmt (debugstmt);
}
}
}
set_curr_insn_location (sloc);
}
currently_expanding_gimple_stmt = stmt;
/* Expand this statement, then evaluate the resulting RTL and
fixup the CFG accordingly. */
if (gimple_code (stmt) == GIMPLE_COND)
{
new_bb = expand_gimple_cond (bb, stmt);
if (new_bb)
return new_bb;
}
else if (gimple_debug_bind_p (stmt))
{
location_t sloc = curr_insn_location ();
gimple_stmt_iterator nsi = gsi;
for (;;)
{
tree var = gimple_debug_bind_get_var (stmt);
tree value;
rtx val;
enum machine_mode mode;
if (TREE_CODE (var) != DEBUG_EXPR_DECL
&& TREE_CODE (var) != LABEL_DECL
&& !target_for_debug_bind (var))
goto delink_debug_stmt;
if (gimple_debug_bind_has_value_p (stmt))
value = gimple_debug_bind_get_value (stmt);
else
value = NULL_TREE;
last = get_last_insn ();
set_curr_insn_location (gimple_location (stmt));
if (DECL_P (var))
mode = DECL_MODE (var);
else
mode = TYPE_MODE (TREE_TYPE (var));
val = gen_rtx_VAR_LOCATION
(mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED);
emit_debug_insn (val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
/* We can't dump the insn with a TREE where an RTX
is expected. */
PAT_VAR_LOCATION_LOC (val) = const0_rtx;
maybe_dump_rtl_for_gimple_stmt (stmt, last);
PAT_VAR_LOCATION_LOC (val) = (rtx)value;
}
delink_debug_stmt:
/* In order not to generate too many debug temporaries,
we delink all uses of debug statements we already expanded.
Therefore debug statements between definition and real
use of TERed SSA names will continue to use the SSA name,
and not be replaced with debug temps. */
delink_stmt_imm_use (stmt);
gsi = nsi;
gsi_next (&nsi);
if (gsi_end_p (nsi))
break;
stmt = gsi_stmt (nsi);
if (!gimple_debug_bind_p (stmt))
break;
}
set_curr_insn_location (sloc);
}
else if (gimple_debug_source_bind_p (stmt))
{
location_t sloc = curr_insn_location ();
tree var = gimple_debug_source_bind_get_var (stmt);
tree value = gimple_debug_source_bind_get_value (stmt);
rtx val;
enum machine_mode mode;
last = get_last_insn ();
set_curr_insn_location (gimple_location (stmt));
mode = DECL_MODE (var);
val = gen_rtx_VAR_LOCATION (mode, var, (rtx)value,
VAR_INIT_STATUS_UNINITIALIZED);
emit_debug_insn (val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
/* We can't dump the insn with a TREE where an RTX
is expected. */
PAT_VAR_LOCATION_LOC (val) = const0_rtx;
maybe_dump_rtl_for_gimple_stmt (stmt, last);
PAT_VAR_LOCATION_LOC (val) = (rtx)value;
}
set_curr_insn_location (sloc);
}
else
{
if (is_gimple_call (stmt)
&& gimple_call_tail_p (stmt)
&& disable_tail_calls)
gimple_call_set_tail (stmt, false);
if (is_gimple_call (stmt) && gimple_call_tail_p (stmt))
{
bool can_fallthru;
new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
if (new_bb)
{
if (can_fallthru)
bb = new_bb;
else
return new_bb;
}
}
else
{
def_operand_p def_p;
def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
if (def_p != NULL)
{
/* Ignore this stmt if it is in the list of
replaceable expressions. */
if (SA.values
&& bitmap_bit_p (SA.values,
SSA_NAME_VERSION (DEF_FROM_PTR (def_p))))
continue;
}
last = expand_gimple_stmt (stmt);
maybe_dump_rtl_for_gimple_stmt (stmt, last);
}
}
}
currently_expanding_gimple_stmt = NULL;
/* Expand implicit goto and convert goto_locus. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (e->goto_locus);
if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb)
{
emit_jump (label_rtx_for_bb (e->dest));
e->flags &= ~EDGE_FALLTHRU;
}
}
/* Expanded RTL can create a jump in the last instruction of block.
This later might be assumed to be a jump to successor and break edge insertion.
We need to insert dummy move to prevent this. PR41440. */
if (single_succ_p (bb)
&& (single_succ_edge (bb)->flags & EDGE_FALLTHRU)
&& (last = get_last_insn ())
&& JUMP_P (last))
{
rtx dummy = gen_reg_rtx (SImode);
emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL);
}
do_pending_stack_adjust ();
/* Find the block tail. The last insn in the block is the insn
before a barrier and/or table jump insn. */
last = get_last_insn ();
if (BARRIER_P (last))
last = PREV_INSN (last);
if (JUMP_TABLE_DATA_P (last))
last = PREV_INSN (PREV_INSN (last));
BB_END (bb) = last;
update_bb_for_insn (bb);
return bb;
}
/* Create a basic block for initialization code. */
static basic_block
construct_init_block (void)
{
basic_block init_block, first_block;
edge e = NULL;
int flags;
/* Multiple entry points not supported yet. */
gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
init_rtl_bb_info (ENTRY_BLOCK_PTR);
init_rtl_bb_info (EXIT_BLOCK_PTR);
ENTRY_BLOCK_PTR->flags |= BB_RTL;
EXIT_BLOCK_PTR->flags |= BB_RTL;
e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
/* When entry edge points to first basic block, we don't need jump,
otherwise we have to jump into proper target. */
if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
{
tree label = gimple_block_label (e->dest);
emit_jump (label_rtx (label));
flags = 0;
}
else
flags = EDGE_FALLTHRU;
init_block = create_basic_block (NEXT_INSN (get_insns ()),
get_last_insn (),
ENTRY_BLOCK_PTR);
init_block->frequency = ENTRY_BLOCK_PTR->frequency;
init_block->count = ENTRY_BLOCK_PTR->count;
if (current_loops && ENTRY_BLOCK_PTR->loop_father)
add_bb_to_loop (init_block, ENTRY_BLOCK_PTR->loop_father);
if (e)
{
first_block = e->dest;
redirect_edge_succ (e, init_block);
e = make_edge (init_block, first_block, flags);
}
else
e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
e->probability = REG_BR_PROB_BASE;
e->count = ENTRY_BLOCK_PTR->count;
update_bb_for_insn (init_block);
return init_block;
}
/* For each lexical block, set BLOCK_NUMBER to the depth at which it is
found in the block tree. */
static void
set_block_levels (tree block, int level)
{
while (block)
{
BLOCK_NUMBER (block) = level;
set_block_levels (BLOCK_SUBBLOCKS (block), level + 1);
block = BLOCK_CHAIN (block);
}
}
/* Create a block containing landing pads and similar stuff. */
static void
construct_exit_block (void)
{
rtx head = get_last_insn ();
rtx end;
basic_block exit_block;
edge e, e2;
unsigned ix;
edge_iterator ei;
rtx orig_end = BB_END (EXIT_BLOCK_PTR->prev_bb);
rtl_profile_for_bb (EXIT_BLOCK_PTR);
/* Make sure the locus is set to the end of the function, so that
epilogue line numbers and warnings are set properly. */
if (LOCATION_LOCUS (cfun->function_end_locus) != UNKNOWN_LOCATION)
input_location = cfun->function_end_locus;
/* Generate rtl for function exit. */
expand_function_end ();
end = get_last_insn ();
if (head == end)
return;
/* While emitting the function end we could move end of the last basic block.
*/
BB_END (EXIT_BLOCK_PTR->prev_bb) = orig_end;
while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
head = NEXT_INSN (head);
exit_block = create_basic_block (NEXT_INSN (head), end,
EXIT_BLOCK_PTR->prev_bb);
exit_block->frequency = EXIT_BLOCK_PTR->frequency;
exit_block->count = EXIT_BLOCK_PTR->count;
if (current_loops && EXIT_BLOCK_PTR->loop_father)
add_bb_to_loop (exit_block, EXIT_BLOCK_PTR->loop_father);
ix = 0;
while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
{
e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
if (!(e->flags & EDGE_ABNORMAL))
redirect_edge_succ (e, exit_block);
else
ix++;
}
e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
e->probability = REG_BR_PROB_BASE;
e->count = EXIT_BLOCK_PTR->count;
FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
if (e2 != e)
{
e->count -= e2->count;
exit_block->count -= e2->count;
exit_block->frequency -= EDGE_FREQUENCY (e2);
}
if (e->count < 0)
e->count = 0;
if (exit_block->count < 0)
exit_block->count = 0;
if (exit_block->frequency < 0)
exit_block->frequency = 0;
update_bb_for_insn (exit_block);
}
/* Helper function for discover_nonconstant_array_refs.
Look for ARRAY_REF nodes with non-constant indexes and mark them
addressable. */
static tree
discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
&& is_gimple_min_invariant (TREE_OPERAND (t, 1))
&& (!TREE_OPERAND (t, 2)
|| is_gimple_min_invariant (TREE_OPERAND (t, 2))))
|| (TREE_CODE (t) == COMPONENT_REF
&& (!TREE_OPERAND (t,2)
|| is_gimple_min_invariant (TREE_OPERAND (t, 2))))
|| TREE_CODE (t) == BIT_FIELD_REF
|| TREE_CODE (t) == REALPART_EXPR
|| TREE_CODE (t) == IMAGPART_EXPR
|| TREE_CODE (t) == VIEW_CONVERT_EXPR
|| CONVERT_EXPR_P (t))
t = TREE_OPERAND (t, 0);
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
t = get_base_address (t);
if (t && DECL_P (t)
&& DECL_MODE (t) != BLKmode)
TREE_ADDRESSABLE (t) = 1;
}
*walk_subtrees = 0;
}
return NULL_TREE;
}
/* RTL expansion is not able to compile array references with variable
offsets for arrays stored in single register. Discover such
expressions and mark variables as addressable to avoid this
scenario. */
static void
discover_nonconstant_array_refs (void)
{
basic_block bb;
gimple_stmt_iterator gsi;
FOR_EACH_BB (bb)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (!is_gimple_debug (stmt))
walk_gimple_op (stmt, discover_nonconstant_array_refs_r, NULL);
}
}
/* This function sets crtl->args.internal_arg_pointer to a virtual
register if DRAP is needed. Local register allocator will replace
virtual_incoming_args_rtx with the virtual register. */
static void
expand_stack_alignment (void)
{
rtx drap_rtx;
unsigned int preferred_stack_boundary;
if (! SUPPORTS_STACK_ALIGNMENT)
return;
if (cfun->calls_alloca
|| cfun->has_nonlocal_label
|| crtl->has_nonlocal_goto)
crtl->need_drap = true;
/* Call update_stack_boundary here again to update incoming stack
boundary. It may set incoming stack alignment to a different
value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may
use the minimum incoming stack alignment to check if it is OK
to perform sibcall optimization since sibcall optimization will
only align the outgoing stack to incoming stack boundary. */
if (targetm.calls.update_stack_boundary)
targetm.calls.update_stack_boundary ();
/* The incoming stack frame has to be aligned at least at
parm_stack_boundary. */
gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY);
/* Update crtl->stack_alignment_estimated and use it later to align
stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call
exceptions since callgraph doesn't collect incoming stack alignment
in this case. */
if (cfun->can_throw_non_call_exceptions
&& PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary)
preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
else
preferred_stack_boundary = crtl->preferred_stack_boundary;
if (preferred_stack_boundary > crtl->stack_alignment_estimated)
crtl->stack_alignment_estimated = preferred_stack_boundary;
if (preferred_stack_boundary > crtl->stack_alignment_needed)
crtl->stack_alignment_needed = preferred_stack_boundary;
gcc_assert (crtl->stack_alignment_needed
<= crtl->stack_alignment_estimated);
crtl->stack_realign_needed
= INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated;
crtl->stack_realign_tried = crtl->stack_realign_needed;
crtl->stack_realign_processed = true;
/* Target has to redefine TARGET_GET_DRAP_RTX to support stack
alignment. */
gcc_assert (targetm.calls.get_drap_rtx != NULL);
drap_rtx = targetm.calls.get_drap_rtx ();
/* stack_realign_drap and drap_rtx must match. */
gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL));
/* Do nothing if NULL is returned, which means DRAP is not needed. */
if (NULL != drap_rtx)
{
crtl->args.internal_arg_pointer = drap_rtx;
/* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is
needed. */
fixup_tail_calls ();
}
}
/* Translate the intermediate representation contained in the CFG
from GIMPLE trees to RTL.
We do conversion per basic block and preserve/update the tree CFG.
This implies we have to do some magic as the CFG can simultaneously
consist of basic blocks containing RTL and GIMPLE trees. This can
confuse the CFG hooks, so be careful to not manipulate CFG during
the expansion. */
static unsigned int
gimple_expand_cfg (void)
{
basic_block bb, init_block;
sbitmap blocks;
edge_iterator ei;
edge e;
rtx var_seq, var_ret_seq;
unsigned i;
timevar_push (TV_OUT_OF_SSA);
rewrite_out_of_ssa (&SA);
timevar_pop (TV_OUT_OF_SSA);
SA.partition_to_pseudo = XCNEWVEC (rtx, SA.map->num_partitions);
/* Make sure all values used by the optimization passes have sane
defaults. */
reg_renumber = 0;
/* Some backends want to know that we are expanding to RTL. */
currently_expanding_to_rtl = 1;
/* Dominators are not kept up-to-date as we may create new basic-blocks. */
free_dominance_info (CDI_DOMINATORS);
rtl_profile_for_bb (ENTRY_BLOCK_PTR);
insn_locations_init ();
if (!DECL_IS_BUILTIN (current_function_decl))
{
/* Eventually, all FEs should explicitly set function_start_locus. */
if (LOCATION_LOCUS (cfun->function_start_locus) == UNKNOWN_LOCATION)
set_curr_insn_location
(DECL_SOURCE_LOCATION (current_function_decl));
else
set_curr_insn_location (cfun->function_start_locus);
}
else
set_curr_insn_location (UNKNOWN_LOCATION);
prologue_location = curr_insn_location ();
#ifdef INSN_SCHEDULING
init_sched_attrs ();
#endif
/* Make sure first insn is a note even if we don't want linenums.
This makes sure the first insn will never be deleted.
Also, final expects a note to appear there. */
emit_note (NOTE_INSN_DELETED);
/* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
discover_nonconstant_array_refs ();
targetm.expand_to_rtl_hook ();
crtl->stack_alignment_needed = STACK_BOUNDARY;
crtl->max_used_stack_slot_alignment = STACK_BOUNDARY;
crtl->stack_alignment_estimated = 0;
crtl->preferred_stack_boundary = STACK_BOUNDARY;
cfun->cfg->max_jumptable_ents = 0;
/* Resovle the function section. Some targets, like ARM EABI rely on knowledge
of the function section at exapnsion time to predict distance of calls. */
resolve_unique_section (current_function_decl, 0, flag_function_sections);
/* Expand the variables recorded during gimple lowering. */
timevar_push (TV_VAR_EXPAND);
start_sequence ();
var_ret_seq = expand_used_vars ();
var_seq = get_insns ();
end_sequence ();
timevar_pop (TV_VAR_EXPAND);
/* Honor stack protection warnings. */
if (warn_stack_protect)
{
if (cfun->calls_alloca)
warning (OPT_Wstack_protector,
"stack protector not protecting local variables: "
"variable length buffer");
if (has_short_buffer && !crtl->stack_protect_guard)
warning (OPT_Wstack_protector,
"stack protector not protecting function: "
"all local arrays are less than %d bytes long",
(int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
}
/* Set up parameters and prepare for return, for the function. */
expand_function_start (current_function_decl);
/* If we emitted any instructions for setting up the variables,
emit them before the FUNCTION_START note. */
if (var_seq)
{
emit_insn_before (var_seq, parm_birth_insn);
/* In expand_function_end we'll insert the alloca save/restore
before parm_birth_insn. We've just insertted an alloca call.
Adjust the pointer to match. */
parm_birth_insn = var_seq;
}
/* Now that we also have the parameter RTXs, copy them over to our
partitions. */
for (i = 0; i < SA.map->num_partitions; i++)
{
tree var = SSA_NAME_VAR (partition_to_var (SA.map, i));
if (TREE_CODE (var) != VAR_DECL
&& !SA.partition_to_pseudo[i])
SA.partition_to_pseudo[i] = DECL_RTL_IF_SET (var);
gcc_assert (SA.partition_to_pseudo[i]);
/* If this decl was marked as living in multiple places, reset
this now to NULL. */
if (DECL_RTL_IF_SET (var) == pc_rtx)
SET_DECL_RTL (var, NULL);
/* Some RTL parts really want to look at DECL_RTL(x) when x
was a decl marked in REG_ATTR or MEM_ATTR. We could use
SET_DECL_RTL here making this available, but that would mean
to select one of the potentially many RTLs for one DECL. Instead
of doing that we simply reset the MEM_EXPR of the RTL in question,
then nobody can get at it and hence nobody can call DECL_RTL on it. */
if (!DECL_RTL_SET_P (var))
{
if (MEM_P (SA.partition_to_pseudo[i]))
set_mem_expr (SA.partition_to_pseudo[i], NULL);
}
}
/* If we have a class containing differently aligned pointers
we need to merge those into the corresponding RTL pointer
alignment. */
for (i = 1; i < num_ssa_names; i++)
{
tree name = ssa_name (i);
int part;
rtx r;
if (!name
/* We might have generated new SSA names in
update_alias_info_with_stack_vars. They will have a NULL
defining statements, and won't be part of the partitioning,
so ignore those. */
|| !SSA_NAME_DEF_STMT (name))
continue;
part = var_to_partition (SA.map, name);
if (part == NO_PARTITION)
continue;
/* Adjust all partition members to get the underlying decl of
the representative which we might have created in expand_one_var. */
if (SSA_NAME_VAR (name) == NULL_TREE)
{
tree leader = partition_to_var (SA.map, part);
gcc_assert (SSA_NAME_VAR (leader) != NULL_TREE);
replace_ssa_name_symbol (name, SSA_NAME_VAR (leader));
}
if (!POINTER_TYPE_P (TREE_TYPE (name)))
continue;
r = SA.partition_to_pseudo[part];
if (REG_P (r))
mark_reg_pointer (r, get_pointer_alignment (name));
}
/* If this function is `main', emit a call to `__main'
to run global initializers, etc. */
if (DECL_NAME (current_function_decl)
&& MAIN_NAME_P (DECL_NAME (current_function_decl))
&& DECL_FILE_SCOPE_P (current_function_decl))
expand_main_function ();
/* Initialize the stack_protect_guard field. This must happen after the
call to __main (if any) so that the external decl is initialized. */
if (crtl->stack_protect_guard)
stack_protect_prologue ();
expand_phi_nodes (&SA);
/* Register rtl specific functions for cfg. */
rtl_register_cfg_hooks ();
init_block = construct_init_block ();
/* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the
remaining edges later. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
e->flags &= ~EDGE_EXECUTABLE;
lab_rtx_for_bb = pointer_map_create ();
FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
bb = expand_gimple_basic_block (bb, var_ret_seq != NULL_RTX);
if (MAY_HAVE_DEBUG_INSNS)
expand_debug_locations ();
/* Free stuff we no longer need after GIMPLE optimizations. */
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
delete_tree_cfg_annotations ();
timevar_push (TV_OUT_OF_SSA);
finish_out_of_ssa (&SA);
timevar_pop (TV_OUT_OF_SSA);
timevar_push (TV_POST_EXPAND);
/* We are no longer in SSA form. */
cfun->gimple_df->in_ssa_p = false;
if (current_loops)
loops_state_clear (LOOP_CLOSED_SSA);
/* Expansion is used by optimization passes too, set maybe_hot_insn_p
conservatively to true until they are all profile aware. */
pointer_map_destroy (lab_rtx_for_bb);
free_histograms ();
construct_exit_block ();
insn_locations_finalize ();
if (var_ret_seq)
{
rtx after = return_label;
rtx next = NEXT_INSN (after);
if (next && NOTE_INSN_BASIC_BLOCK_P (next))
after = next;
emit_insn_after (var_ret_seq, after);
}
/* Zap the tree EH table. */
set_eh_throw_stmt_table (cfun, NULL);
/* We need JUMP_LABEL be set in order to redirect jumps, and hence
split edges which edge insertions might do. */
rebuild_jump_labels (get_insns ());
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
edge e;
edge_iterator ei;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (e->insns.r)
{
rebuild_jump_labels_chain (e->insns.r);
/* Avoid putting insns before parm_birth_insn. */
if (e->src == ENTRY_BLOCK_PTR
&& single_succ_p (ENTRY_BLOCK_PTR)
&& parm_birth_insn)
{
rtx insns = e->insns.r;
e->insns.r = NULL_RTX;
emit_insn_after_noloc (insns, parm_birth_insn, e->dest);
}
else
commit_one_edge_insertion (e);
}
else
ei_next (&ei);
}
}
/* We're done expanding trees to RTL. */
currently_expanding_to_rtl = 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
{
edge e;
edge_iterator ei;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
/* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */
e->flags &= ~EDGE_EXECUTABLE;
/* At the moment not all abnormal edges match the RTL
representation. It is safe to remove them here as
find_many_sub_basic_blocks will rediscover them.
In the future we should get this fixed properly. */
if ((e->flags & EDGE_ABNORMAL)
&& !(e->flags & EDGE_SIBCALL))
remove_edge (e);
else
ei_next (&ei);
}
}
blocks = sbitmap_alloc (last_basic_block);
bitmap_ones (blocks);
find_many_sub_basic_blocks (blocks);
sbitmap_free (blocks);
purge_all_dead_edges ();
expand_stack_alignment ();
/* Fixup REG_EQUIV notes in the prologue if there are tailcalls in this
function. */
if (crtl->tail_call_emit)
fixup_tail_calls ();
/* After initial rtl generation, call back to finish generating
exception support code. We need to do this before cleaning up
the CFG as the code does not expect dead landing pads. */
if (cfun->eh->region_tree != NULL)
finish_eh_generation ();
/* Remove unreachable blocks, otherwise we cannot compute dominators
which are needed for loop state verification. As a side-effect
this also compacts blocks.
??? We cannot remove trivially dead insns here as for example
the DRAP reg on i?86 is not magically live at this point.
gcc.c-torture/execute/ipa-sra-2.c execution, -Os -m32 fails otherwise. */
cleanup_cfg (CLEANUP_NO_INSN_DEL);
#ifdef ENABLE_CHECKING
verify_flow_info ();
#endif
/* Initialize pseudos allocated for hard registers. */
emit_initial_value_sets ();
/* And finally unshare all RTL. */
unshare_all_rtl ();
/* There's no need to defer outputting this function any more; we
know we want to output it. */
DECL_DEFER_OUTPUT (current_function_decl) = 0;
/* Now that we're done expanding trees to RTL, we shouldn't have any
more CONCATs anywhere. */
generating_concat_p = 0;
if (dump_file)
{
fprintf (dump_file,
"\n\n;;\n;; Full RTL generated for this function:\n;;\n");
/* And the pass manager will dump RTL for us. */
}
/* If we're emitting a nested function, make sure its parent gets
emitted as well. Doing otherwise confuses debug info. */
{
tree parent;
for (parent = DECL_CONTEXT (current_function_decl);
parent != NULL_TREE;
parent = get_containing_scope (parent))
if (TREE_CODE (parent) == FUNCTION_DECL)
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
}
/* We are now committed to emitting code for this function. Do any
preparation, such as emitting abstract debug info for the inline
before it gets mangled by optimization. */
if (cgraph_function_possibly_inlined_p (current_function_decl))
(*debug_hooks->outlining_inline_function) (current_function_decl);
TREE_ASM_WRITTEN (current_function_decl) = 1;
/* After expanding, the return labels are no longer needed. */
return_label = NULL;
naked_return_label = NULL;
/* After expanding, the tm_restart map is no longer needed. */
if (cfun->gimple_df->tm_restart)
{
htab_delete (cfun->gimple_df->tm_restart);
cfun->gimple_df->tm_restart = NULL;
}
/* Tag the blocks with a depth number so that change_scope can find
the common parent easily. */
set_block_levels (DECL_INITIAL (cfun->decl), 0);
default_rtl_profile ();
timevar_pop (TV_POST_EXPAND);
return 0;
}
namespace {
const pass_data pass_data_expand =
{
RTL_PASS, /* type */
"expand", /* name */
OPTGROUP_NONE, /* optinfo_flags */
false, /* has_gate */
true, /* has_execute */
TV_EXPAND, /* tv_id */
( PROP_ssa | PROP_gimple_leh | PROP_cfg
| PROP_gimple_lcx
| PROP_gimple_lvec ), /* properties_required */
PROP_rtl, /* properties_provided */
( PROP_ssa | PROP_trees ), /* properties_destroyed */
( TODO_verify_ssa | TODO_verify_flow
| TODO_verify_stmts ), /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_expand : public rtl_opt_pass
{
public:
pass_expand (gcc::context *ctxt)
: rtl_opt_pass (pass_data_expand, ctxt)
{}
/* opt_pass methods: */
unsigned int execute () { return gimple_expand_cfg (); }
}; // class pass_expand
} // anon namespace
rtl_opt_pass *
make_pass_expand (gcc::context *ctxt)
{
return new pass_expand (ctxt);
}