/* This file is part of the Intel(R) Cilk(TM) Plus support This file contains routines to handle Array Notation expression handling routines in the C Compiler. Copyright (C) 2013 Free Software Foundation, Inc. Contributed by Balaji V. Iyer , Intel Corporation. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* The Array Notation Transformation Technique: An array notation expression has 4 major components: 1. The array name 2. Start Index 3. Number of elements we need to acess (we call it length) 4. Stride For example, A[0:5:2], implies that we are accessing A[0], A[2], A[4], A[6] and A[8]. The user is responsible to make sure the access length does not step outside the array's size. In this section, I highlight the overall method on how array notations are broken up into C/C++ code. Almost all the functions follows this overall technique: Let's say we have an array notation in a statement like this: A[St1:Ln:Str1] = B[St2:Ln:Str2] + where St{1,2} = Starting index, Ln = Number of elements we need to access, and Str{1,2} = the stride. Note: The length of both the array notation expressions must be the same. The above expression is broken into the following (with the help of c_finish_loop function from c-typeck.c): Tmp_Var = 0; goto compare_label: body_label: A[St1+Tmp_Var*Str1] = B[St1+Tmp_Var*Str2] + ; Tmp_Var++; compare_label: if (Tmp_Var < Ln) goto body_label; else goto exit_label; exit_label: */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "c-tree.h" #include "tree-iterator.h" #include "opts.h" #include "c-family/c-common.h" /* If *VALUE is not of type INTEGER_CST, PARM_DECL or VAR_DECL, then map it to a variable and then set *VALUE to the new variable. */ static inline void make_triplet_val_inv (location_t loc, tree *value) { tree var, new_exp; if (TREE_CODE (*value) != INTEGER_CST && TREE_CODE (*value) != PARM_DECL && TREE_CODE (*value) != VAR_DECL) { var = build_decl (loc, VAR_DECL, NULL_TREE, integer_type_node); new_exp = build_modify_expr (loc, var, TREE_TYPE (var), NOP_EXPR, loc, *value, TREE_TYPE (*value)); add_stmt (new_exp); *value = var; } } /* Populates the INCR and CMP vectors with the increment (of type POSTINCREMENT or POSTDECREMENT) and comparison (of TYPE GT_EXPR or LT_EXPR) expressions, using data from LENGTH, COUNT_DOWN, and VAR. INCR and CMP vectors are of size RANK. */ static void create_cmp_incr (location_t loc, vec *node, size_t rank, vec > an_info) { for (size_t ii = 0; ii < rank; ii++) { tree var = (*node)[ii].var; tree length = an_info[0][ii].length; (*node)[ii].incr = build_unary_op (loc, POSTINCREMENT_EXPR, var, 0); (*node)[ii].cmp = build2 (LT_EXPR, boolean_type_node, var, length); } } /* Returns a vector of size RANK that contains an array ref that is derived from array notation triplet parameters stored in VALUE, START, STRIDE. IS_VECTOR is used to check if the data stored at its corresponding location is an array notation. VAR is the induction variable passed in by the caller. For example: For an array notation A[5:10:2], the vector start will be of size 1 holding '5', stride of same size as start but holding the value of as 2, is_vector as true and count_down as false. Let's assume VAR is 'x' This function returns a vector of size 1 with the following data: A[5 + (x * 2)] . */ static vec * create_array_refs (location_t loc, vec > an_info, vec an_loop_info, size_t size, size_t rank) { tree ind_mult, ind_incr; vec *array_operand = NULL; for (size_t ii = 0; ii < size; ii++) if (an_info[ii][0].is_vector) { tree array_opr = an_info[ii][rank - 1].value; for (int s_jj = rank - 1; s_jj >= 0; s_jj--) { tree var = an_loop_info[s_jj].var; tree stride = an_info[ii][s_jj].stride; tree start = an_info[ii][s_jj].start; ind_mult = build2 (MULT_EXPR, TREE_TYPE (var), var, stride); ind_incr = build2 (PLUS_EXPR, TREE_TYPE (var), start, ind_mult); array_opr = build_array_ref (loc, array_opr, ind_incr); } vec_safe_push (array_operand, array_opr); } else /* This is just a dummy node to make sure both the list sizes for both array list and array operand list are the same. */ vec_safe_push (array_operand, integer_one_node); return array_operand; } /* Replaces all the scalar expressions in *NODE. Returns a STATEMENT_LIST that holds the NODE along with variables that holds the results of the invariant expressions. */ tree replace_invariant_exprs (tree *node) { size_t ix = 0; tree node_list = NULL_TREE; tree t = NULL_TREE, new_var = NULL_TREE, new_node; struct inv_list data; data.list_values = NULL; data.replacement = NULL; data.additional_tcodes = NULL; walk_tree (node, find_inv_trees, (void *)&data, NULL); if (vec_safe_length (data.list_values)) { node_list = push_stmt_list (); for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++) { new_var = build_decl (EXPR_LOCATION (t), VAR_DECL, NULL_TREE, TREE_TYPE (t)); gcc_assert (new_var != NULL_TREE && new_var != error_mark_node); new_node = build2 (MODIFY_EXPR, TREE_TYPE (t), new_var, t); add_stmt (new_node); vec_safe_push (data.replacement, new_var); } walk_tree (node, replace_inv_trees, (void *)&data, NULL); node_list = pop_stmt_list (node_list); } return node_list; } /* Given a CALL_EXPR to an array notation built-in function in AN_BUILTIN_FN, replace the call with the appropriate loop and computation. Return the computation in *NEW_VAR. The return value in *NEW_VAR will always be a scalar. If the built-in is __sec_reduce_mutating, *NEW_VAR is set to NULL_TREE. */ static tree fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var) { tree new_var_type = NULL_TREE, func_parm, new_expr, new_yes_expr, new_no_expr; tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list; tree new_yes_list, new_cond_expr, new_var_init = NULL_TREE; tree new_exp_init = NULL_TREE; vec *array_list = NULL, *array_operand = NULL; size_t list_size = 0, rank = 0, ii = 0; tree loop_init, array_op0; tree identity_value = NULL_TREE, call_fn = NULL_TREE, new_call_expr, body; location_t location = UNKNOWN_LOCATION; tree loop_with_init = alloc_stmt_list (); vec > an_info = vNULL; vec an_loop_info = vNULL; enum built_in_function an_type = is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn)); if (an_type == BUILT_IN_NONE) return NULL_TREE; if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE || an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING) { call_fn = CALL_EXPR_ARG (an_builtin_fn, 2); if (TREE_CODE (call_fn) == ADDR_EXPR) call_fn = TREE_OPERAND (call_fn, 0); identity_value = CALL_EXPR_ARG (an_builtin_fn, 0); func_parm = CALL_EXPR_ARG (an_builtin_fn, 1); } else func_parm = CALL_EXPR_ARG (an_builtin_fn, 0); /* Fully fold any EXCESSIVE_PRECISION EXPR that can occur in the function parameter. */ func_parm = c_fully_fold (func_parm, false, NULL); location = EXPR_LOCATION (an_builtin_fn); if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank)) return error_mark_node; if (rank == 0) return an_builtin_fn; else if (rank > 1 && (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND || an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)) { error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot" " have arrays with dimension greater than 1"); return error_mark_node; } extract_array_notation_exprs (func_parm, true, &array_list); list_size = vec_safe_length (array_list); switch (an_type) { case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD: case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL: case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX: case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN: new_var_type = TREE_TYPE ((*array_list)[0]); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO: case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO: case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO: case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO: new_var_type = integer_type_node; break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND: case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND: new_var_type = integer_type_node; break; case BUILT_IN_CILKPLUS_SEC_REDUCE: if (call_fn && identity_value) new_var_type = TREE_TYPE ((*array_list)[0]); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING: new_var_type = NULL_TREE; break; default: gcc_unreachable (); } an_loop_info.safe_grow_cleared (rank); cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info); loop_init = alloc_stmt_list (); for (ii = 0; ii < rank; ii++) { an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); an_loop_info[ii].ind_init = build_modify_expr (location, an_loop_info[ii].var, TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location, build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0), TREE_TYPE (an_loop_info[ii].var)); } array_operand = create_array_refs (location, an_info, an_loop_info, list_size, rank); replace_array_notations (&func_parm, true, array_list, array_operand); create_cmp_incr (location, &an_loop_info, rank, an_info); if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING) { *new_var = build_decl (location, VAR_DECL, NULL_TREE, new_var_type); gcc_assert (*new_var && *new_var != error_mark_node); } else *new_var = NULL_TREE; if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND || an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND) array_ind_value = build_decl (location, VAR_DECL, NULL_TREE, TREE_TYPE (func_parm)); array_op0 = (*array_operand)[0]; switch (an_type) { case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (new_var_type), new_var_type); new_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), PLUS_EXPR, location, func_parm, TREE_TYPE (func_parm)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_one_cst (new_var_type), new_var_type); new_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), MULT_EXPR, location, func_parm, TREE_TYPE (func_parm)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_one_cst (new_var_type), new_var_type); /* Initially you assume everything is zero, now if we find a case where it is NOT true, then we set the result to false. Otherwise we just keep the previous value. */ new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (TREE_TYPE (*new_var)), TREE_TYPE (*new_var)); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm, build_zero_cst (TREE_TYPE (func_parm))); new_expr = build_conditional_expr (location, new_cond_expr, false, new_yes_expr, TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_one_cst (new_var_type), new_var_type); /* Initially you assume everything is non-zero, now if we find a case where it is NOT true, then we set the result to false. Otherwise we just keep the previous value. */ new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (TREE_TYPE (*new_var)), TREE_TYPE (*new_var)); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm, build_zero_cst (TREE_TYPE (func_parm))); new_expr = build_conditional_expr (location, new_cond_expr, false, new_yes_expr, TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (new_var_type), new_var_type); /* Initially we assume there are NO zeros in the list. When we find a non-zero, we keep the previous value. If we find a zero, we set the value to true. */ new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_one_cst (new_var_type), new_var_type); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm, build_zero_cst (TREE_TYPE (func_parm))); new_expr = build_conditional_expr (location, new_cond_expr, false, new_yes_expr, TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (new_var_type), new_var_type); /* Initially we assume there are NO non-zeros in the list. When we find a zero, we keep the previous value. If we find a non-zero, we set the value to true. */ new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_one_cst (new_var_type), new_var_type); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm, build_zero_cst (TREE_TYPE (func_parm))); new_expr = build_conditional_expr (location, new_cond_expr, false, new_yes_expr, TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX: if (TYPE_MIN_VALUE (new_var_type)) new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, TYPE_MIN_VALUE (new_var_type), new_var_type); else new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, func_parm, new_var_type); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, func_parm, TREE_TYPE (*new_var)); new_expr = build_conditional_expr (location, build2 (LT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false, new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN: if (TYPE_MAX_VALUE (new_var_type)) new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, TYPE_MAX_VALUE (new_var_type), new_var_type); else new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, func_parm, new_var_type); new_no_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_yes_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, func_parm, TREE_TYPE (*new_var)); new_expr = build_conditional_expr (location, build2 (GT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false, new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (new_var_type), new_var_type); new_exp_init = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_TYPE (func_parm)); new_no_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_no_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, array_ind_value, TREE_TYPE (array_ind_value)); if (list_size > 1) { new_yes_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var)); new_yes_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_TYPE ((*array_operand)[0])); } else { new_yes_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, TREE_OPERAND (array_op0, 1), TREE_TYPE (TREE_OPERAND (array_op0, 1))); new_yes_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_OPERAND (array_op0, 1)); } new_yes_list = alloc_stmt_list (); append_to_statement_list (new_yes_ind, &new_yes_list); append_to_statement_list (new_yes_expr, &new_yes_list); new_no_list = alloc_stmt_list (); append_to_statement_list (new_no_ind, &new_no_list); append_to_statement_list (new_no_expr, &new_no_list); new_expr = build_conditional_expr (location, build2 (LE_EXPR, TREE_TYPE (array_ind_value), array_ind_value, func_parm), false, new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, build_zero_cst (new_var_type), new_var_type); new_exp_init = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_TYPE (func_parm)); new_no_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, *new_var, TREE_TYPE (*new_var)); new_no_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, array_ind_value, TREE_TYPE (array_ind_value)); if (list_size > 1) { new_yes_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var)); new_yes_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_TYPE (array_op0)); } else { new_yes_ind = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, TREE_OPERAND (array_op0, 1), TREE_TYPE (TREE_OPERAND (array_op0, 1))); new_yes_expr = build_modify_expr (location, array_ind_value, TREE_TYPE (array_ind_value), NOP_EXPR, location, func_parm, TREE_OPERAND (array_op0, 1)); } new_yes_list = alloc_stmt_list (); append_to_statement_list (new_yes_ind, &new_yes_list); append_to_statement_list (new_yes_expr, &new_yes_list); new_no_list = alloc_stmt_list (); append_to_statement_list (new_no_ind, &new_no_list); append_to_statement_list (new_no_expr, &new_no_list); new_expr = build_conditional_expr (location, build2 (GE_EXPR, TREE_TYPE (array_ind_value), array_ind_value, func_parm), false, new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE: new_var_init = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, identity_value, new_var_type); new_call_expr = build_call_expr (call_fn, 2, *new_var, func_parm); new_expr = build_modify_expr (location, *new_var, TREE_TYPE (*new_var), NOP_EXPR, location, new_call_expr, TREE_TYPE (*new_var)); break; case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING: new_expr = build_call_expr (call_fn, 2, identity_value, func_parm); break; default: gcc_unreachable (); break; } for (ii = 0; ii < rank; ii++) append_to_statement_list (an_loop_info[ii].ind_init, &loop_init); if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND || an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND) append_to_statement_list (new_exp_init, &loop_init); if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING) append_to_statement_list (new_var_init, &loop_init); append_to_statement_list_force (loop_init, &loop_with_init); body = new_expr; for (ii = 0; ii < rank; ii++) { tree new_loop = push_stmt_list (); c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr, body, NULL_TREE, NULL_TREE, true); body = pop_stmt_list (new_loop); } append_to_statement_list_force (body, &loop_with_init); an_info.release (); an_loop_info.release (); return loop_with_init; } /* Returns a loop with ARRAY_REF inside it with an appropriate modify expr. The LHS and/or RHS will be array notation expressions that have a MODIFYCODE Their locations are specified by LHS_LOC, RHS_LOC. The location of the modify expression is location. The original type of LHS and RHS are passed in LHS_ORIGTYPE and RHS_ORIGTYPE. */ tree build_array_notation_expr (location_t location, tree lhs, tree lhs_origtype, enum tree_code modifycode, location_t rhs_loc, tree rhs, tree rhs_origtype) { bool found_builtin_fn = false; tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE; tree array_expr = NULL_TREE; tree an_init = NULL_TREE; vec cond_expr = vNULL; tree body, loop_with_init = alloc_stmt_list(); tree scalar_mods = NULL_TREE; vec *rhs_array_operand = NULL, *lhs_array_operand = NULL; size_t lhs_rank = 0, rhs_rank = 0; size_t ii = 0; vec *lhs_list = NULL, *rhs_list = NULL; tree new_modify_expr, new_var = NULL_TREE, builtin_loop = NULL_TREE; size_t rhs_list_size = 0, lhs_list_size = 0; vec > lhs_an_info = vNULL, rhs_an_info = vNULL; vec lhs_an_loop_info = vNULL, rhs_an_loop_info = vNULL; /* If either of this is true, an error message must have been send out already. Not necessary to send out multiple error messages. */ if (lhs == error_mark_node || rhs == error_mark_node) return error_mark_node; if (!find_rank (location, rhs, rhs, false, &rhs_rank)) return error_mark_node; extract_array_notation_exprs (rhs, false, &rhs_list); rhs_list_size = vec_safe_length (rhs_list); an_init = push_stmt_list (); if (rhs_rank) { scalar_mods = replace_invariant_exprs (&rhs); if (scalar_mods) add_stmt (scalar_mods); } for (ii = 0; ii < rhs_list_size; ii++) { tree rhs_node = (*rhs_list)[ii]; if (TREE_CODE (rhs_node) == CALL_EXPR) { builtin_loop = fix_builtin_array_notation_fn (rhs_node, &new_var); if (builtin_loop == error_mark_node) { pop_stmt_list (an_init); return error_mark_node; } else if (builtin_loop) { add_stmt (builtin_loop); found_builtin_fn = true; if (new_var) { vec *rhs_sub_list = NULL, *new_var_list = NULL; vec_safe_push (rhs_sub_list, rhs_node); vec_safe_push (new_var_list, new_var); replace_array_notations (&rhs, false, rhs_sub_list, new_var_list); } } } } lhs_rank = 0; rhs_rank = 0; if (!find_rank (location, lhs, lhs, true, &lhs_rank)) { pop_stmt_list (an_init); return error_mark_node; } if (!find_rank (location, rhs, rhs, true, &rhs_rank)) { pop_stmt_list (an_init); return error_mark_node; } if (lhs_rank == 0 && rhs_rank == 0) { if (found_builtin_fn) { new_modify_expr = build_modify_expr (location, lhs, lhs_origtype, modifycode, rhs_loc, rhs, rhs_origtype); add_stmt (new_modify_expr); pop_stmt_list (an_init); return an_init; } else { pop_stmt_list (an_init); return NULL_TREE; } } rhs_list_size = 0; rhs_list = NULL; extract_array_notation_exprs (rhs, true, &rhs_list); extract_array_notation_exprs (lhs, true, &lhs_list); rhs_list_size = vec_safe_length (rhs_list); lhs_list_size = vec_safe_length (lhs_list); if (lhs_rank == 0 && rhs_rank != 0) { tree rhs_base = rhs; if (TREE_CODE (rhs_base) == ARRAY_NOTATION_REF) { for (ii = 0; ii < (size_t) rhs_rank; ii++) rhs_base = ARRAY_NOTATION_ARRAY (rhs); error_at (location, "%qE cannot be scalar when %qE is not", lhs, rhs_base); return error_mark_node; } else { error_at (location, "%qE cannot be scalar when %qE is not", lhs, rhs_base); return error_mark_node; } } if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank) { error_at (location, "rank mismatch between %qE and %qE", lhs, rhs); pop_stmt_list (an_init); return error_mark_node; } /* Here we assign the array notation components to variable so that we can satisfy the exec once rule. */ for (ii = 0; ii < lhs_list_size; ii++) { tree array_node = (*lhs_list)[ii]; make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node)); } for (ii = 0; ii < rhs_list_size; ii++) if ((*rhs_list)[ii] && TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF) { tree array_node = (*rhs_list)[ii]; make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node)); } cond_expr.safe_grow_cleared (MAX (lhs_rank, rhs_rank)); lhs_an_loop_info.safe_grow_cleared (lhs_rank); if (rhs_rank) rhs_an_loop_info.safe_grow_cleared (rhs_rank); cilkplus_extract_an_triplets (lhs_list, lhs_list_size, lhs_rank, &lhs_an_info); if (rhs_rank) { rhs_an_loop_info.safe_grow_cleared (rhs_rank); cilkplus_extract_an_triplets (rhs_list, rhs_list_size, rhs_rank, &rhs_an_info); } if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_an_info) || (rhs_rank && length_mismatch_in_expr_p (EXPR_LOCATION (rhs), rhs_an_info))) { pop_stmt_list (an_init); return error_mark_node; } if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0 && TREE_CODE (lhs_an_info[0][0].length) == INTEGER_CST && rhs_an_info[0][0].length && TREE_CODE (rhs_an_info[0][0].length) == INTEGER_CST) { HOST_WIDE_INT l_length = int_cst_value (lhs_an_info[0][0].length); HOST_WIDE_INT r_length = int_cst_value (rhs_an_info[0][0].length); /* Length can be negative or positive. As long as the magnitude is OK, then the array notation is valid. */ if (absu_hwi (l_length) != absu_hwi (r_length)) { error_at (location, "length mismatch between LHS and RHS"); pop_stmt_list (an_init); return error_mark_node; } } for (ii = 0; ii < lhs_rank; ii++) if (lhs_an_info[0][ii].is_vector) { lhs_an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); lhs_an_loop_info[ii].ind_init = build_modify_expr (location, lhs_an_loop_info[ii].var, TREE_TYPE (lhs_an_loop_info[ii].var), NOP_EXPR, location, build_zero_cst (TREE_TYPE (lhs_an_loop_info[ii].var)), TREE_TYPE (lhs_an_loop_info[ii].var)); } for (ii = 0; ii < rhs_rank; ii++) { /* When we have a polynomial, we assume that the indices are of type integer. */ rhs_an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); rhs_an_loop_info[ii].ind_init = build_modify_expr (location, rhs_an_loop_info[ii].var, TREE_TYPE (rhs_an_loop_info[ii].var), NOP_EXPR, location, build_int_cst (TREE_TYPE (rhs_an_loop_info[ii].var), 0), TREE_TYPE (rhs_an_loop_info[ii].var)); } if (lhs_rank) { lhs_array_operand = create_array_refs (location, lhs_an_info, lhs_an_loop_info, lhs_list_size, lhs_rank); replace_array_notations (&lhs, true, lhs_list, lhs_array_operand); array_expr_lhs = lhs; } if (rhs_array_operand) vec_safe_truncate (rhs_array_operand, 0); if (rhs_rank) { rhs_array_operand = create_array_refs (location, rhs_an_info, rhs_an_loop_info, rhs_list_size, rhs_rank); replace_array_notations (&rhs, true, rhs_list, rhs_array_operand); vec_safe_truncate (rhs_array_operand, 0); rhs_array_operand = fix_sec_implicit_args (location, rhs_list, rhs_an_loop_info, rhs_rank, rhs); if (!rhs_array_operand) return error_mark_node; replace_array_notations (&rhs, true, rhs_list, rhs_array_operand); } else if (rhs_list_size > 0) { rhs_array_operand = fix_sec_implicit_args (location, rhs_list, lhs_an_loop_info, lhs_rank, lhs); if (!rhs_array_operand) return error_mark_node; replace_array_notations (&rhs, true, rhs_list, rhs_array_operand); } array_expr_lhs = lhs; array_expr_rhs = rhs; array_expr = build_modify_expr (location, array_expr_lhs, lhs_origtype, modifycode, rhs_loc, array_expr_rhs, rhs_origtype); create_cmp_incr (location, &lhs_an_loop_info, lhs_rank, lhs_an_info); if (rhs_rank) create_cmp_incr (location, &rhs_an_loop_info, rhs_rank, rhs_an_info); for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++) if (ii < lhs_rank && ii < rhs_rank) cond_expr[ii] = build2 (TRUTH_ANDIF_EXPR, boolean_type_node, lhs_an_loop_info[ii].cmp, rhs_an_loop_info[ii].cmp); else if (ii < lhs_rank && ii >= rhs_rank) cond_expr[ii] = lhs_an_loop_info[ii].cmp; else gcc_unreachable (); an_init = pop_stmt_list (an_init); append_to_statement_list_force (an_init, &loop_with_init); body = array_expr; for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++) { tree incr_list = alloc_stmt_list (); tree new_loop = push_stmt_list (); if (lhs_rank) add_stmt (lhs_an_loop_info[ii].ind_init); if (rhs_rank) add_stmt (rhs_an_loop_info[ii].ind_init); if (lhs_rank) append_to_statement_list_force (lhs_an_loop_info[ii].incr, &incr_list); if (rhs_rank && rhs_an_loop_info[ii].incr) append_to_statement_list_force (rhs_an_loop_info[ii].incr, &incr_list); c_finish_loop (location, cond_expr[ii], incr_list, body, NULL_TREE, NULL_TREE, true); body = pop_stmt_list (new_loop); } append_to_statement_list_force (body, &loop_with_init); lhs_an_info.release (); lhs_an_loop_info.release (); if (rhs_rank) { rhs_an_info.release (); rhs_an_loop_info.release (); } cond_expr.release (); return loop_with_init; } /* Helper function for fix_conditional_array_notations. Encloses the conditional statement passed in STMT with a loop around it and replaces the condition in STMT with a ARRAY_REF tree-node to the array. The condition must have an ARRAY_NOTATION_REF tree. An expansion of array notation in STMT is returned in a STATEMENT_LIST. */ static tree fix_conditional_array_notations_1 (tree stmt) { vec *array_list = NULL, *array_operand = NULL; size_t list_size = 0; tree cond = NULL_TREE, builtin_loop = NULL_TREE, new_var = NULL_TREE; size_t rank = 0, ii = 0; tree loop_init; location_t location = EXPR_LOCATION (stmt); tree body = NULL_TREE, loop_with_init = alloc_stmt_list (); vec > an_info = vNULL; vec an_loop_info = vNULL; if (TREE_CODE (stmt) == COND_EXPR) cond = COND_EXPR_COND (stmt); else if (TREE_CODE (stmt) == SWITCH_EXPR) cond = SWITCH_COND (stmt); else if (truth_value_p (TREE_CODE (stmt))) cond = TREE_OPERAND (stmt, 0); else /* Otherwise dont even touch the statement. */ return stmt; if (!find_rank (location, cond, cond, false, &rank)) return error_mark_node; extract_array_notation_exprs (stmt, false, &array_list); loop_init = push_stmt_list (); for (ii = 0; ii < vec_safe_length (array_list); ii++) { tree array_node = (*array_list)[ii]; if (TREE_CODE (array_node) == CALL_EXPR) { builtin_loop = fix_builtin_array_notation_fn (array_node, &new_var); if (builtin_loop == error_mark_node) { add_stmt (error_mark_node); pop_stmt_list (loop_init); return loop_init; } else if (builtin_loop) { vec * sub_list = NULL, *new_var_list = NULL; vec_safe_push (sub_list, array_node); vec_safe_push (new_var_list, new_var); add_stmt (builtin_loop); replace_array_notations (&stmt, false, sub_list, new_var_list); } } } if (!find_rank (location, stmt, stmt, true, &rank)) { pop_stmt_list (loop_init); return error_mark_node; } if (rank == 0) { add_stmt (stmt); pop_stmt_list (loop_init); return loop_init; } extract_array_notation_exprs (stmt, true, &array_list); if (vec_safe_length (array_list) == 0) return stmt; list_size = vec_safe_length (array_list); an_loop_info.safe_grow_cleared (rank); for (ii = 0; ii < list_size; ii++) if ((*array_list)[ii] && TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF) { tree array_node = (*array_list)[ii]; make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node)); } cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info); for (ii = 0; ii < rank; ii++) { an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); an_loop_info[ii].ind_init = build_modify_expr (location, an_loop_info[ii].var, TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location, build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0), TREE_TYPE (an_loop_info[ii].var)); } array_operand = create_array_refs (location, an_info, an_loop_info, list_size, rank); replace_array_notations (&stmt, true, array_list, array_operand); create_cmp_incr (location, &an_loop_info, rank, an_info); loop_init = pop_stmt_list (loop_init); body = stmt; append_to_statement_list_force (loop_init, &loop_with_init); for (ii = 0; ii < rank; ii++) { tree new_loop = push_stmt_list (); add_stmt (an_loop_info[ii].ind_init); c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr, body, NULL_TREE, NULL_TREE, true); body = pop_stmt_list (new_loop); } append_to_statement_list_force (body, &loop_with_init); an_loop_info.release (); an_info.release (); return loop_with_init; } /* Top-level function to replace ARRAY_NOTATION_REF in a conditional statement in STMT. An expansion of array notation in STMT is returned as a STATEMENT_LIST. */ tree fix_conditional_array_notations (tree stmt) { if (TREE_CODE (stmt) == STATEMENT_LIST) { tree_stmt_iterator tsi; for (tsi = tsi_start (stmt); !tsi_end_p (tsi); tsi_next (&tsi)) { tree single_stmt = *tsi_stmt_ptr (tsi); *tsi_stmt_ptr (tsi) = fix_conditional_array_notations_1 (single_stmt); } return stmt; } else return fix_conditional_array_notations_1 (stmt); } /* Create a struct c_expr that contains a loop with ARRAY_REF expr at location LOCATION with the tree_code CODE and the array notation expr is passed in ARG. Returns the fixed c_expr in ARG itself. */ struct c_expr fix_array_notation_expr (location_t location, enum tree_code code, struct c_expr arg) { vec *array_list = NULL, *array_operand = NULL; size_t list_size = 0, rank = 0, ii = 0; tree loop_init; tree body, loop_with_init = alloc_stmt_list (); vec > an_info = vNULL; vec an_loop_info = vNULL; if (!find_rank (location, arg.value, arg.value, false, &rank)) { /* If this function returns a NULL, we convert the tree value in the structure to error_mark_node and the parser should take care of the rest. */ arg.value = error_mark_node; return arg; } if (rank == 0) return arg; extract_array_notation_exprs (arg.value, true, &array_list); if (vec_safe_length (array_list) == 0) return arg; list_size = vec_safe_length (array_list); an_loop_info.safe_grow_cleared (rank); cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info); loop_init = push_stmt_list (); for (ii = 0; ii < rank; ii++) { an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); an_loop_info[ii].ind_init = build_modify_expr (location, an_loop_info[ii].var, TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location, build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0), TREE_TYPE (an_loop_info[ii].var));; } array_operand = create_array_refs (location, an_info, an_loop_info, list_size, rank); replace_array_notations (&arg.value, true, array_list, array_operand); create_cmp_incr (location, &an_loop_info, rank, an_info); arg = default_function_array_read_conversion (location, arg); if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR) arg.value = build_unary_op (location, code, arg.value, 0); else if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR) arg = parser_build_unary_op (location, code, arg); loop_init = pop_stmt_list (loop_init); append_to_statement_list_force (loop_init, &loop_with_init); body = arg.value; for (ii = 0; ii < rank; ii++) { tree new_loop = push_stmt_list (); add_stmt (an_loop_info[ii].ind_init); c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr, body, NULL_TREE, NULL_TREE, true); body = pop_stmt_list (new_loop); } append_to_statement_list_force (body, &loop_with_init); arg.value = loop_with_init; an_info.release (); an_loop_info.release (); return arg; } /* Replaces array notations in a void function call arguments in ARG and returns a STATEMENT_LIST. */ static tree fix_array_notation_call_expr (tree arg) { vec *array_list = NULL, *array_operand = NULL; tree new_var = NULL_TREE; size_t list_size = 0, rank = 0, ii = 0; tree loop_init; tree body, loop_with_init = alloc_stmt_list (); location_t location = UNKNOWN_LOCATION; vec > an_info = vNULL; vec an_loop_info = vNULL; if (TREE_CODE (arg) == CALL_EXPR && is_cilkplus_reduce_builtin (CALL_EXPR_FN (arg))) { loop_init = fix_builtin_array_notation_fn (arg, &new_var); /* We are ignoring the new var because either the user does not want to capture it OR he is using sec_reduce_mutating function. */ return loop_init; } if (!find_rank (location, arg, arg, false, &rank)) return error_mark_node; if (rank == 0) return arg; extract_array_notation_exprs (arg, true, &array_list); if (vec_safe_length (array_list) == 0) return arg; list_size = vec_safe_length (array_list); location = EXPR_LOCATION (arg); an_loop_info.safe_grow_cleared (rank); loop_init = push_stmt_list (); for (ii = 0; ii < list_size; ii++) if ((*array_list)[ii] && TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF) { tree array_node = (*array_list)[ii]; make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node)); make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node)); } cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info); if (length_mismatch_in_expr_p (location, an_info)) { pop_stmt_list (loop_init); return error_mark_node; } for (ii = 0; ii < rank; ii++) { an_loop_info[ii].var = build_decl (location, VAR_DECL, NULL_TREE, integer_type_node); an_loop_info[ii].ind_init = build_modify_expr (location, an_loop_info[ii].var, TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location, build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0), TREE_TYPE (an_loop_info[ii].var)); } array_operand = create_array_refs (location, an_info, an_loop_info, list_size, rank); replace_array_notations (&arg, true, array_list, array_operand); create_cmp_incr (location, &an_loop_info, rank, an_info); loop_init = pop_stmt_list (loop_init); append_to_statement_list_force (loop_init, &loop_with_init); body = arg; for (ii = 0; ii < rank; ii++) { tree new_loop = push_stmt_list (); add_stmt (an_loop_info[ii].ind_init); c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr, body, NULL_TREE, NULL_TREE, true); body = pop_stmt_list (new_loop); } append_to_statement_list_force (body, &loop_with_init); an_loop_info.release (); an_info.release (); return loop_with_init; } /* Expands the built-in functions in a return. EXPR is a RETURN_EXPR with a built-in reduction function. This function returns the expansion code for the built-in function. */ static tree fix_return_expr (tree expr) { tree new_mod_list, new_var, new_mod, retval_expr, retval_type; location_t loc = EXPR_LOCATION (expr); new_mod_list = alloc_stmt_list (); retval_expr = TREE_OPERAND (expr, 0); retval_type = TREE_TYPE (TREE_OPERAND (retval_expr, 1)); new_var = build_decl (loc, VAR_DECL, NULL_TREE, TREE_TYPE (retval_expr)); new_mod = build_array_notation_expr (loc, new_var, TREE_TYPE (new_var), NOP_EXPR, loc, TREE_OPERAND (retval_expr, 1), retval_type); TREE_OPERAND (retval_expr, 1) = new_var; TREE_OPERAND (expr, 0) = retval_expr; append_to_statement_list_force (new_mod, &new_mod_list); append_to_statement_list_force (expr, &new_mod_list); return new_mod_list; } /* Walks through tree node T and find all the call-statements that do not return anything and fix up any array notations they may carry. The return value is the same type as T but with all array notations replaced with appropriate STATEMENT_LISTS. */ tree expand_array_notation_exprs (tree t) { if (!contains_array_notation_expr (t)) return t; switch (TREE_CODE (t)) { case BIND_EXPR: t = expand_array_notation_exprs (BIND_EXPR_BODY (t)); return t; case TRUTH_ORIF_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_OR_EXPR: case TRUTH_AND_EXPR: case TRUTH_XOR_EXPR: case TRUTH_NOT_EXPR: case COND_EXPR: t = fix_conditional_array_notations (t); /* After the expansion if they are still a COND_EXPR, we go into its subtrees. */ if (TREE_CODE (t) == COND_EXPR) { if (COND_EXPR_THEN (t)) COND_EXPR_THEN (t) = expand_array_notation_exprs (COND_EXPR_THEN (t)); if (COND_EXPR_ELSE (t)) COND_EXPR_ELSE (t) = expand_array_notation_exprs (COND_EXPR_ELSE (t)); } return t; case STATEMENT_LIST: { tree_stmt_iterator ii_tsi; for (ii_tsi = tsi_start (t); !tsi_end_p (ii_tsi); tsi_next (&ii_tsi)) *tsi_stmt_ptr (ii_tsi) = expand_array_notation_exprs (*tsi_stmt_ptr (ii_tsi)); } return t; case MODIFY_EXPR: { location_t loc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) : UNKNOWN_LOCATION; tree lhs = TREE_OPERAND (t, 0); tree rhs = TREE_OPERAND (t, 1); location_t rhs_loc = EXPR_HAS_LOCATION (rhs) ? EXPR_LOCATION (rhs) : UNKNOWN_LOCATION; t = build_array_notation_expr (loc, lhs, TREE_TYPE (lhs), NOP_EXPR, rhs_loc, rhs, TREE_TYPE (rhs)); return t; } case CALL_EXPR: t = fix_array_notation_call_expr (t); return t; case RETURN_EXPR: if (contains_array_notation_expr (t)) t = fix_return_expr (t); return t; case ARRAY_NOTATION_REF: /* IF we are here, then we are dealing with cases like this: A[:]; A[x:y:z]; A[x:y]; Replace those with just void zero node. */ t = void_zero_node; default: for (int ii = 0; ii < TREE_CODE_LENGTH (TREE_CODE (t)); ii++) if (contains_array_notation_expr (TREE_OPERAND (t, ii))) TREE_OPERAND (t, ii) = expand_array_notation_exprs (TREE_OPERAND (t, ii)); return t; } return t; } /* This handles expression of the form "a[i:j:k]" or "a[:]" or "a[i:j]," which denotes an array notation expression. If a is a variable or a member, then we generate a ARRAY_NOTATION_REF front-end tree and return it. This tree is broken down to ARRAY_REF toward the end of parsing. ARRAY_NOTATION_REF tree holds the START_INDEX, LENGTH, STRIDE and the TYPE of ARRAY_REF. Restrictions on START_INDEX, LENGTH and STRIDE is same as that of the index field passed into ARRAY_REF. The only additional restriction is that, unlike index in ARRAY_REF, stride, length and start_index cannot contain ARRAY_NOTATIONS. */ tree build_array_notation_ref (location_t loc, tree array, tree start_index, tree length, tree stride, tree type) { tree array_ntn_tree = NULL_TREE; size_t stride_rank = 0, length_rank = 0, start_rank = 0; if (!INTEGRAL_TYPE_P (TREE_TYPE (start_index))) { error_at (loc, "start-index of array notation triplet is not an integer"); return error_mark_node; } if (!INTEGRAL_TYPE_P (TREE_TYPE (length))) { error_at (loc, "length of array notation triplet is not an integer"); return error_mark_node; } /* The stride is an optional field. */ if (stride && !INTEGRAL_TYPE_P (TREE_TYPE (stride))) { error_at (loc, "stride of array notation triplet is not an integer"); return error_mark_node; } if (!stride) { if (TREE_CONSTANT (start_index) && TREE_CONSTANT (length) && tree_int_cst_lt (length, start_index)) stride = build_int_cst (TREE_TYPE (start_index), -1); else stride = build_int_cst (TREE_TYPE (start_index), 1); } if (!find_rank (loc, start_index, start_index, false, &start_rank)) return error_mark_node; if (!find_rank (loc, length, length, false, &length_rank)) return error_mark_node; if (!find_rank (loc, stride, stride, false, &stride_rank)) return error_mark_node; if (start_rank != 0) { error_at (loc, "rank of an array notation triplet's start-index is not " "zero"); return error_mark_node; } if (length_rank != 0) { error_at (loc, "rank of an array notation triplet's length is not zero"); return error_mark_node; } if (stride_rank != 0) { error_at (loc, "rank of array notation triplet's stride is not zero"); return error_mark_node; } array_ntn_tree = build4 (ARRAY_NOTATION_REF, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE); ARRAY_NOTATION_ARRAY (array_ntn_tree) = array; ARRAY_NOTATION_START (array_ntn_tree) = start_index; ARRAY_NOTATION_LENGTH (array_ntn_tree) = length; ARRAY_NOTATION_STRIDE (array_ntn_tree) = stride; TREE_TYPE (array_ntn_tree) = type; return array_ntn_tree; }