/* Expand builtin functions. Copyright (C) 1988-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "machmode.h" #include "rtl.h" #include "tree.h" #include "realmpfr.h" #include "gimple.h" #include "flags.h" #include "regs.h" #include "hard-reg-set.h" #include "except.h" #include "function.h" #include "insn-config.h" #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "recog.h" #include "output.h" #include "typeclass.h" #include "predict.h" #include "tm_p.h" #include "target.h" #include "langhooks.h" #include "basic-block.h" #include "tree-mudflap.h" #include "tree-flow.h" #include "value-prof.h" #include "diagnostic-core.h" #include "builtins.h" #ifndef PAD_VARARGS_DOWN #define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN #endif static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t)); struct target_builtins default_target_builtins; #if SWITCHABLE_TARGET struct target_builtins *this_target_builtins = &default_target_builtins; #endif /* Define the names of the builtin function types and codes. */ const char *const built_in_class_names[4] = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"}; #define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X, const char * built_in_names[(int) END_BUILTINS] = { #include "builtins.def" }; #undef DEF_BUILTIN /* Setup an array of _DECL trees, make sure each element is initialized to NULL_TREE. */ builtin_info_type builtin_info; static const char *c_getstr (tree); static rtx c_readstr (const char *, enum machine_mode); static int target_char_cast (tree, char *); static rtx get_memory_rtx (tree, tree); static int apply_args_size (void); static int apply_result_size (void); #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) static rtx result_vector (int, rtx); #endif static void expand_builtin_update_setjmp_buf (rtx); static void expand_builtin_prefetch (tree); static rtx expand_builtin_apply_args (void); static rtx expand_builtin_apply_args_1 (void); static rtx expand_builtin_apply (rtx, rtx, rtx); static void expand_builtin_return (rtx); static enum type_class type_to_class (tree); static rtx expand_builtin_classify_type (tree); static void expand_errno_check (tree, rtx); static rtx expand_builtin_mathfn (tree, rtx, rtx); static rtx expand_builtin_mathfn_2 (tree, rtx, rtx); static rtx expand_builtin_mathfn_3 (tree, rtx, rtx); static rtx expand_builtin_mathfn_ternary (tree, rtx, rtx); static rtx expand_builtin_interclass_mathfn (tree, rtx); static rtx expand_builtin_sincos (tree); static rtx expand_builtin_cexpi (tree, rtx); static rtx expand_builtin_int_roundingfn (tree, rtx); static rtx expand_builtin_int_roundingfn_2 (tree, rtx); static rtx expand_builtin_next_arg (void); static rtx expand_builtin_va_start (tree); static rtx expand_builtin_va_end (tree); static rtx expand_builtin_va_copy (tree); static rtx expand_builtin_memcmp (tree, rtx, enum machine_mode); static rtx expand_builtin_strcmp (tree, rtx); static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode); static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode); static rtx expand_builtin_memcpy (tree, rtx); static rtx expand_builtin_mempcpy (tree, rtx, enum machine_mode); static rtx expand_builtin_mempcpy_args (tree, tree, tree, rtx, enum machine_mode, int); static rtx expand_builtin_strcpy (tree, rtx); static rtx expand_builtin_strcpy_args (tree, tree, rtx); static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode); static rtx expand_builtin_strncpy (tree, rtx); static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode); static rtx expand_builtin_memset (tree, rtx, enum machine_mode); static rtx expand_builtin_memset_args (tree, tree, tree, rtx, enum machine_mode, tree); static rtx expand_builtin_bzero (tree); static rtx expand_builtin_strlen (tree, rtx, enum machine_mode); static rtx expand_builtin_alloca (tree, bool); static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab); static rtx expand_builtin_frame_address (tree, tree); static tree stabilize_va_list_loc (location_t, tree, int); static rtx expand_builtin_expect (tree, rtx); static tree fold_builtin_constant_p (tree); static tree fold_builtin_expect (location_t, tree, tree); static tree fold_builtin_classify_type (tree); static tree fold_builtin_strlen (location_t, tree, tree); static tree fold_builtin_inf (location_t, tree, int); static tree fold_builtin_nan (tree, tree, int); static tree rewrite_call_expr (location_t, tree, int, tree, int, ...); static bool validate_arg (const_tree, enum tree_code code); static bool integer_valued_real_p (tree); static tree fold_trunc_transparent_mathfn (location_t, tree, tree); static bool readonly_data_expr (tree); static rtx expand_builtin_fabs (tree, rtx, rtx); static rtx expand_builtin_signbit (tree, rtx); static tree fold_builtin_sqrt (location_t, tree, tree); static tree fold_builtin_cbrt (location_t, tree, tree); static tree fold_builtin_pow (location_t, tree, tree, tree, tree); static tree fold_builtin_powi (location_t, tree, tree, tree, tree); static tree fold_builtin_cos (location_t, tree, tree, tree); static tree fold_builtin_cosh (location_t, tree, tree, tree); static tree fold_builtin_tan (tree, tree); static tree fold_builtin_trunc (location_t, tree, tree); static tree fold_builtin_floor (location_t, tree, tree); static tree fold_builtin_ceil (location_t, tree, tree); static tree fold_builtin_round (location_t, tree, tree); static tree fold_builtin_int_roundingfn (location_t, tree, tree); static tree fold_builtin_bitop (tree, tree); static tree fold_builtin_memory_op (location_t, tree, tree, tree, tree, bool, int); static tree fold_builtin_strchr (location_t, tree, tree, tree); static tree fold_builtin_memchr (location_t, tree, tree, tree, tree); static tree fold_builtin_memcmp (location_t, tree, tree, tree); static tree fold_builtin_strcmp (location_t, tree, tree); static tree fold_builtin_strncmp (location_t, tree, tree, tree); static tree fold_builtin_signbit (location_t, tree, tree); static tree fold_builtin_copysign (location_t, tree, tree, tree, tree); static tree fold_builtin_isascii (location_t, tree); static tree fold_builtin_toascii (location_t, tree); static tree fold_builtin_isdigit (location_t, tree); static tree fold_builtin_fabs (location_t, tree, tree); static tree fold_builtin_abs (location_t, tree, tree); static tree fold_builtin_unordered_cmp (location_t, tree, tree, tree, enum tree_code, enum tree_code); static tree fold_builtin_n (location_t, tree, tree *, int, bool); static tree fold_builtin_0 (location_t, tree, bool); static tree fold_builtin_1 (location_t, tree, tree, bool); static tree fold_builtin_2 (location_t, tree, tree, tree, bool); static tree fold_builtin_3 (location_t, tree, tree, tree, tree, bool); static tree fold_builtin_4 (location_t, tree, tree, tree, tree, tree, bool); static tree fold_builtin_varargs (location_t, tree, tree, bool); static tree fold_builtin_strpbrk (location_t, tree, tree, tree); static tree fold_builtin_strstr (location_t, tree, tree, tree); static tree fold_builtin_strrchr (location_t, tree, tree, tree); static tree fold_builtin_strcat (location_t, tree, tree); static tree fold_builtin_strncat (location_t, tree, tree, tree); static tree fold_builtin_strspn (location_t, tree, tree); static tree fold_builtin_strcspn (location_t, tree, tree); static tree fold_builtin_sprintf (location_t, tree, tree, tree, int); static tree fold_builtin_snprintf (location_t, tree, tree, tree, tree, int); static rtx expand_builtin_object_size (tree); static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode, enum built_in_function); static void maybe_emit_chk_warning (tree, enum built_in_function); static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function); static void maybe_emit_free_warning (tree); static tree fold_builtin_object_size (tree, tree); static tree fold_builtin_strcat_chk (location_t, tree, tree, tree, tree); static tree fold_builtin_strncat_chk (location_t, tree, tree, tree, tree, tree); static tree fold_builtin_sprintf_chk (location_t, tree, enum built_in_function); static tree fold_builtin_printf (location_t, tree, tree, tree, bool, enum built_in_function); static tree fold_builtin_fprintf (location_t, tree, tree, tree, tree, bool, enum built_in_function); static bool init_target_chars (void); static unsigned HOST_WIDE_INT target_newline; static unsigned HOST_WIDE_INT target_percent; static unsigned HOST_WIDE_INT target_c; static unsigned HOST_WIDE_INT target_s; static char target_percent_c[3]; static char target_percent_s[3]; static char target_percent_s_newline[4]; static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t), const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool); static tree do_mpfr_arg2 (tree, tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)); static tree do_mpfr_arg3 (tree, tree, tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)); static tree do_mpfr_sincos (tree, tree, tree); static tree do_mpfr_bessel_n (tree, tree, tree, int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t), const REAL_VALUE_TYPE *, bool); static tree do_mpfr_remquo (tree, tree, tree); static tree do_mpfr_lgamma_r (tree, tree, tree); static void expand_builtin_sync_synchronize (void); /* Return true if NAME starts with __builtin_ or __sync_. */ static bool is_builtin_name (const char *name) { if (strncmp (name, "__builtin_", 10) == 0) return true; if (strncmp (name, "__sync_", 7) == 0) return true; if (strncmp (name, "__atomic_", 9) == 0) return true; return false; } /* Return true if DECL is a function symbol representing a built-in. */ bool is_builtin_fn (tree decl) { return TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl); } /* Return true if NODE should be considered for inline expansion regardless of the optimization level. This means whenever a function is invoked with its "internal" name, which normally contains the prefix "__builtin". */ static bool called_as_built_in (tree node) { /* Note that we must use DECL_NAME, not DECL_ASSEMBLER_NAME_SET_P since we want the name used to call the function, not the name it will have. */ const char *name = IDENTIFIER_POINTER (DECL_NAME (node)); return is_builtin_name (name); } /* Compute values M and N such that M divides (address of EXP - N) and such that N < M. If these numbers can be determined, store M in alignp and N in *BITPOSP and return true. Otherwise return false and store BITS_PER_UNIT to *alignp and any bit-offset to *bitposp. Note that the address (and thus the alignment) computed here is based on the address to which a symbol resolves, whereas DECL_ALIGN is based on the address at which an object is actually located. These two addresses are not always the same. For example, on ARM targets, the address &foo of a Thumb function foo() has the lowest bit set, whereas foo() itself starts on an even address. If ADDR_P is true we are taking the address of the memory reference EXP and thus cannot rely on the access taking place. */ static bool get_object_alignment_2 (tree exp, unsigned int *alignp, unsigned HOST_WIDE_INT *bitposp, bool addr_p) { HOST_WIDE_INT bitsize, bitpos; tree offset; enum machine_mode mode; int unsignedp, volatilep; unsigned int inner, align = BITS_PER_UNIT; bool known_alignment = false; /* Get the innermost object and the constant (bitpos) and possibly variable (offset) offset of the access. */ exp = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode, &unsignedp, &volatilep, true); /* Extract alignment information from the innermost object and possibly adjust bitpos and offset. */ if (TREE_CODE (exp) == FUNCTION_DECL) { /* Function addresses can encode extra information besides their alignment. However, if TARGET_PTRMEMFUNC_VBIT_LOCATION allows the low bit to be used as a virtual bit, we know that the address itself must be at least 2-byte aligned. */ if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn) align = 2 * BITS_PER_UNIT; } else if (TREE_CODE (exp) == LABEL_DECL) ; else if (TREE_CODE (exp) == CONST_DECL) { /* The alignment of a CONST_DECL is determined by its initializer. */ exp = DECL_INITIAL (exp); align = TYPE_ALIGN (TREE_TYPE (exp)); #ifdef CONSTANT_ALIGNMENT if (CONSTANT_CLASS_P (exp)) align = (unsigned) CONSTANT_ALIGNMENT (exp, align); #endif known_alignment = true; } else if (DECL_P (exp)) { align = DECL_ALIGN (exp); known_alignment = true; } else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR) { align = TYPE_ALIGN (TREE_TYPE (exp)); } else if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF) { tree addr = TREE_OPERAND (exp, 0); unsigned ptr_align; unsigned HOST_WIDE_INT ptr_bitpos; if (TREE_CODE (addr) == BIT_AND_EXPR && TREE_CODE (TREE_OPERAND (addr, 1)) == INTEGER_CST) { align = (TREE_INT_CST_LOW (TREE_OPERAND (addr, 1)) & -TREE_INT_CST_LOW (TREE_OPERAND (addr, 1))); align *= BITS_PER_UNIT; addr = TREE_OPERAND (addr, 0); } known_alignment = get_pointer_alignment_1 (addr, &ptr_align, &ptr_bitpos); align = MAX (ptr_align, align); /* The alignment of the pointer operand in a TARGET_MEM_REF has to take the variable offset parts into account. */ if (TREE_CODE (exp) == TARGET_MEM_REF) { if (TMR_INDEX (exp)) { unsigned HOST_WIDE_INT step = 1; if (TMR_STEP (exp)) step = TREE_INT_CST_LOW (TMR_STEP (exp)); align = MIN (align, (step & -step) * BITS_PER_UNIT); } if (TMR_INDEX2 (exp)) align = BITS_PER_UNIT; known_alignment = false; } /* When EXP is an actual memory reference then we can use TYPE_ALIGN of a pointer indirection to derive alignment. Do so only if get_pointer_alignment_1 did not reveal absolute alignment knowledge and if using that alignment would improve the situation. */ if (!addr_p && !known_alignment && TYPE_ALIGN (TREE_TYPE (exp)) > align) align = TYPE_ALIGN (TREE_TYPE (exp)); else { /* Else adjust bitpos accordingly. */ bitpos += ptr_bitpos; if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF) bitpos += mem_ref_offset (exp).low * BITS_PER_UNIT; } } else if (TREE_CODE (exp) == STRING_CST) { /* STRING_CST are the only constant objects we allow to be not wrapped inside a CONST_DECL. */ align = TYPE_ALIGN (TREE_TYPE (exp)); #ifdef CONSTANT_ALIGNMENT if (CONSTANT_CLASS_P (exp)) align = (unsigned) CONSTANT_ALIGNMENT (exp, align); #endif known_alignment = true; } /* If there is a non-constant offset part extract the maximum alignment that can prevail. */ inner = ~0U; while (offset) { tree next_offset; if (TREE_CODE (offset) == PLUS_EXPR) { next_offset = TREE_OPERAND (offset, 0); offset = TREE_OPERAND (offset, 1); } else next_offset = NULL; if (host_integerp (offset, 1)) { /* Any overflow in calculating offset_bits won't change the alignment. */ unsigned offset_bits = ((unsigned) tree_low_cst (offset, 1) * BITS_PER_UNIT); if (offset_bits) inner = MIN (inner, (offset_bits & -offset_bits)); } else if (TREE_CODE (offset) == MULT_EXPR && host_integerp (TREE_OPERAND (offset, 1), 1)) { /* Any overflow in calculating offset_factor won't change the alignment. */ unsigned offset_factor = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1) * BITS_PER_UNIT); if (offset_factor) inner = MIN (inner, (offset_factor & -offset_factor)); } else { inner = MIN (inner, BITS_PER_UNIT); break; } offset = next_offset; } /* Alignment is innermost object alignment adjusted by the constant and non-constant offset parts. */ align = MIN (align, inner); *alignp = align; *bitposp = bitpos & (*alignp - 1); return known_alignment; } /* For a memory reference expression EXP compute values M and N such that M divides (&EXP - N) and such that N < M. If these numbers can be determined, store M in alignp and N in *BITPOSP and return true. Otherwise return false and store BITS_PER_UNIT to *alignp and any bit-offset to *bitposp. */ bool get_object_alignment_1 (tree exp, unsigned int *alignp, unsigned HOST_WIDE_INT *bitposp) { return get_object_alignment_2 (exp, alignp, bitposp, false); } /* Return the alignment in bits of EXP, an object. */ unsigned int get_object_alignment (tree exp) { unsigned HOST_WIDE_INT bitpos = 0; unsigned int align; get_object_alignment_1 (exp, &align, &bitpos); /* align and bitpos now specify known low bits of the pointer. ptr & (align - 1) == bitpos. */ if (bitpos != 0) align = (bitpos & -bitpos); return align; } /* For a pointer valued expression EXP compute values M and N such that M divides (EXP - N) and such that N < M. If these numbers can be determined, store M in alignp and N in *BITPOSP and return true. Return false if the results are just a conservative approximation. If EXP is not a pointer, false is returned too. */ bool get_pointer_alignment_1 (tree exp, unsigned int *alignp, unsigned HOST_WIDE_INT *bitposp) { STRIP_NOPS (exp); if (TREE_CODE (exp) == ADDR_EXPR) return get_object_alignment_2 (TREE_OPERAND (exp, 0), alignp, bitposp, true); else if (TREE_CODE (exp) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (exp))) { unsigned int ptr_align, ptr_misalign; struct ptr_info_def *pi = SSA_NAME_PTR_INFO (exp); if (pi && get_ptr_info_alignment (pi, &ptr_align, &ptr_misalign)) { *bitposp = ptr_misalign * BITS_PER_UNIT; *alignp = ptr_align * BITS_PER_UNIT; /* We cannot really tell whether this result is an approximation. */ return true; } else { *bitposp = 0; *alignp = BITS_PER_UNIT; return false; } } else if (TREE_CODE (exp) == INTEGER_CST) { *alignp = BIGGEST_ALIGNMENT; *bitposp = ((TREE_INT_CST_LOW (exp) * BITS_PER_UNIT) & (BIGGEST_ALIGNMENT - 1)); return true; } *bitposp = 0; *alignp = BITS_PER_UNIT; return false; } /* Return the alignment in bits of EXP, a pointer valued expression. The alignment returned is, by default, the alignment of the thing that EXP points to. If it is not a POINTER_TYPE, 0 is returned. Otherwise, look at the expression to see if we can do better, i.e., if the expression is actually pointing at an object whose alignment is tighter. */ unsigned int get_pointer_alignment (tree exp) { unsigned HOST_WIDE_INT bitpos = 0; unsigned int align; get_pointer_alignment_1 (exp, &align, &bitpos); /* align and bitpos now specify known low bits of the pointer. ptr & (align - 1) == bitpos. */ if (bitpos != 0) align = (bitpos & -bitpos); return align; } /* Compute the length of a C string. TREE_STRING_LENGTH is not the right way, because it could contain a zero byte in the middle. TREE_STRING_LENGTH is the size of the character array, not the string. ONLY_VALUE should be nonzero if the result is not going to be emitted into the instruction stream and zero if it is going to be expanded. E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3 is returned, otherwise NULL, since len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not evaluate the side-effects. The value returned is of type `ssizetype'. Unfortunately, string_constant can't access the values of const char arrays with initializers, so neither can we do so here. */ tree c_strlen (tree src, int only_value) { tree offset_node; HOST_WIDE_INT offset; int max; const char *ptr; location_t loc; STRIP_NOPS (src); if (TREE_CODE (src) == COND_EXPR && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0)))) { tree len1, len2; len1 = c_strlen (TREE_OPERAND (src, 1), only_value); len2 = c_strlen (TREE_OPERAND (src, 2), only_value); if (tree_int_cst_equal (len1, len2)) return len1; } if (TREE_CODE (src) == COMPOUND_EXPR && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0)))) return c_strlen (TREE_OPERAND (src, 1), only_value); loc = EXPR_LOC_OR_HERE (src); src = string_constant (src, &offset_node); if (src == 0) return NULL_TREE; max = TREE_STRING_LENGTH (src) - 1; ptr = TREE_STRING_POINTER (src); if (offset_node && TREE_CODE (offset_node) != INTEGER_CST) { /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't compute the offset to the following null if we don't know where to start searching for it. */ int i; for (i = 0; i < max; i++) if (ptr[i] == 0) return NULL_TREE; /* We don't know the starting offset, but we do know that the string has no internal zero bytes. We can assume that the offset falls within the bounds of the string; otherwise, the programmer deserves what he gets. Subtract the offset from the length of the string, and return that. This would perhaps not be valid if we were dealing with named arrays in addition to literal string constants. */ return size_diffop_loc (loc, size_int (max), offset_node); } /* We have a known offset into the string. Start searching there for a null character if we can represent it as a single HOST_WIDE_INT. */ if (offset_node == 0) offset = 0; else if (! host_integerp (offset_node, 0)) offset = -1; else offset = tree_low_cst (offset_node, 0); /* If the offset is known to be out of bounds, warn, and call strlen at runtime. */ if (offset < 0 || offset > max) { /* Suppress multiple warnings for propagated constant strings. */ if (! TREE_NO_WARNING (src)) { warning_at (loc, 0, "offset outside bounds of constant string"); TREE_NO_WARNING (src) = 1; } return NULL_TREE; } /* Use strlen to search for the first zero byte. Since any strings constructed with build_string will have nulls appended, we win even if we get handed something like (char[4])"abcd". Since OFFSET is our starting index into the string, no further calculation is needed. */ return ssize_int (strlen (ptr + offset)); } /* Return a char pointer for a C string if it is a string constant or sum of string constant and integer constant. */ static const char * c_getstr (tree src) { tree offset_node; src = string_constant (src, &offset_node); if (src == 0) return 0; if (offset_node == 0) return TREE_STRING_POINTER (src); else if (!host_integerp (offset_node, 1) || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0) return 0; return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1); } /* Return a CONST_INT or CONST_DOUBLE corresponding to target reading GET_MODE_BITSIZE (MODE) bits from string constant STR. */ static rtx c_readstr (const char *str, enum machine_mode mode) { HOST_WIDE_INT c[2]; HOST_WIDE_INT ch; unsigned int i, j; gcc_assert (GET_MODE_CLASS (mode) == MODE_INT); c[0] = 0; c[1] = 0; ch = 1; for (i = 0; i < GET_MODE_SIZE (mode); i++) { j = i; if (WORDS_BIG_ENDIAN) j = GET_MODE_SIZE (mode) - i - 1; if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) >= UNITS_PER_WORD) j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1; j *= BITS_PER_UNIT; gcc_assert (j < HOST_BITS_PER_DOUBLE_INT); if (ch) ch = (unsigned char) str[i]; c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT); } return immed_double_const (c[0], c[1], mode); } /* Cast a target constant CST to target CHAR and if that value fits into host char type, return zero and put that value into variable pointed to by P. */ static int target_char_cast (tree cst, char *p) { unsigned HOST_WIDE_INT val, hostval; if (TREE_CODE (cst) != INTEGER_CST || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT) return 1; val = TREE_INT_CST_LOW (cst); if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT) val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1; hostval = val; if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT) hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1; if (val != hostval) return 1; *p = hostval; return 0; } /* Similar to save_expr, but assumes that arbitrary code is not executed in between the multiple evaluations. In particular, we assume that a non-addressable local variable will not be modified. */ static tree builtin_save_expr (tree exp) { if (TREE_CODE (exp) == SSA_NAME || (TREE_ADDRESSABLE (exp) == 0 && (TREE_CODE (exp) == PARM_DECL || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))) return exp; return save_expr (exp); } /* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT times to get the address of either a higher stack frame, or a return address located within it (depending on FNDECL_CODE). */ static rtx expand_builtin_return_addr (enum built_in_function fndecl_code, int count) { int i; #ifdef INITIAL_FRAME_ADDRESS_RTX rtx tem = INITIAL_FRAME_ADDRESS_RTX; #else rtx tem; /* For a zero count with __builtin_return_address, we don't care what frame address we return, because target-specific definitions will override us. Therefore frame pointer elimination is OK, and using the soft frame pointer is OK. For a nonzero count, or a zero count with __builtin_frame_address, we require a stable offset from the current frame pointer to the previous one, so we must use the hard frame pointer, and we must disable frame pointer elimination. */ if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS) tem = frame_pointer_rtx; else { tem = hard_frame_pointer_rtx; /* Tell reload not to eliminate the frame pointer. */ crtl->accesses_prior_frames = 1; } #endif /* Some machines need special handling before we can access arbitrary frames. For example, on the SPARC, we must first flush all register windows to the stack. */ #ifdef SETUP_FRAME_ADDRESSES if (count > 0) SETUP_FRAME_ADDRESSES (); #endif /* On the SPARC, the return address is not in the frame, it is in a register. There is no way to access it off of the current frame pointer, but it can be accessed off the previous frame pointer by reading the value from the register window save area. */ #ifdef RETURN_ADDR_IN_PREVIOUS_FRAME if (fndecl_code == BUILT_IN_RETURN_ADDRESS) count--; #endif /* Scan back COUNT frames to the specified frame. */ for (i = 0; i < count; i++) { /* Assume the dynamic chain pointer is in the word that the frame address points to, unless otherwise specified. */ #ifdef DYNAMIC_CHAIN_ADDRESS tem = DYNAMIC_CHAIN_ADDRESS (tem); #endif tem = memory_address (Pmode, tem); tem = gen_frame_mem (Pmode, tem); tem = copy_to_reg (tem); } /* For __builtin_frame_address, return what we've got. But, on the SPARC for example, we may have to add a bias. */ if (fndecl_code == BUILT_IN_FRAME_ADDRESS) #ifdef FRAME_ADDR_RTX return FRAME_ADDR_RTX (tem); #else return tem; #endif /* For __builtin_return_address, get the return address from that frame. */ #ifdef RETURN_ADDR_RTX tem = RETURN_ADDR_RTX (count, tem); #else tem = memory_address (Pmode, plus_constant (Pmode, tem, GET_MODE_SIZE (Pmode))); tem = gen_frame_mem (Pmode, tem); #endif return tem; } /* Alias set used for setjmp buffer. */ static alias_set_type setjmp_alias_set = -1; /* Construct the leading half of a __builtin_setjmp call. Control will return to RECEIVER_LABEL. This is also called directly by the SJLJ exception handling code. */ void expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label) { enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); rtx stack_save; rtx mem; if (setjmp_alias_set == -1) setjmp_alias_set = new_alias_set (); buf_addr = convert_memory_address (Pmode, buf_addr); buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX)); /* We store the frame pointer and the address of receiver_label in the buffer and use the rest of it for the stack save area, which is machine-dependent. */ mem = gen_rtx_MEM (Pmode, buf_addr); set_mem_alias_set (mem, setjmp_alias_set); emit_move_insn (mem, targetm.builtin_setjmp_frame_value ()); mem = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr, GET_MODE_SIZE (Pmode))), set_mem_alias_set (mem, setjmp_alias_set); emit_move_insn (validize_mem (mem), force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label))); stack_save = gen_rtx_MEM (sa_mode, plus_constant (Pmode, buf_addr, 2 * GET_MODE_SIZE (Pmode))); set_mem_alias_set (stack_save, setjmp_alias_set); emit_stack_save (SAVE_NONLOCAL, &stack_save); /* If there is further processing to do, do it. */ #ifdef HAVE_builtin_setjmp_setup if (HAVE_builtin_setjmp_setup) emit_insn (gen_builtin_setjmp_setup (buf_addr)); #endif /* We have a nonlocal label. */ cfun->has_nonlocal_label = 1; } /* Construct the trailing part of a __builtin_setjmp call. This is also called directly by the SJLJ exception handling code. */ void expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED) { rtx chain; /* Clobber the FP when we get here, so we have to make sure it's marked as used by this function. */ emit_use (hard_frame_pointer_rtx); /* Mark the static chain as clobbered here so life information doesn't get messed up for it. */ chain = targetm.calls.static_chain (current_function_decl, true); if (chain && REG_P (chain)) emit_clobber (chain); /* Now put in the code to restore the frame pointer, and argument pointer, if needed. */ #ifdef HAVE_nonlocal_goto if (! HAVE_nonlocal_goto) #endif { emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); /* This might change the hard frame pointer in ways that aren't apparent to early optimization passes, so force a clobber. */ emit_clobber (hard_frame_pointer_rtx); } #if !HARD_FRAME_POINTER_IS_ARG_POINTER if (fixed_regs[ARG_POINTER_REGNUM]) { #ifdef ELIMINABLE_REGS size_t i; static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS; for (i = 0; i < ARRAY_SIZE (elim_regs); i++) if (elim_regs[i].from == ARG_POINTER_REGNUM && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) break; if (i == ARRAY_SIZE (elim_regs)) #endif { /* Now restore our arg pointer from the address at which it was saved in our stack frame. */ emit_move_insn (crtl->args.internal_arg_pointer, copy_to_reg (get_arg_pointer_save_area ())); } } #endif #ifdef HAVE_builtin_setjmp_receiver if (HAVE_builtin_setjmp_receiver) emit_insn (gen_builtin_setjmp_receiver (receiver_label)); else #endif #ifdef HAVE_nonlocal_goto_receiver if (HAVE_nonlocal_goto_receiver) emit_insn (gen_nonlocal_goto_receiver ()); else #endif { /* Nothing */ } /* We must not allow the code we just generated to be reordered by scheduling. Specifically, the update of the frame pointer must happen immediately, not later. Similarly, we must block (frame-related) register values to be used across this code. */ emit_insn (gen_blockage ()); } /* __builtin_longjmp is passed a pointer to an array of five words (not all will be used on all machines). It operates similarly to the C library function of the same name, but is more efficient. Much of the code below is copied from the handling of non-local gotos. */ static void expand_builtin_longjmp (rtx buf_addr, rtx value) { rtx fp, lab, stack, insn, last; enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); /* DRAP is needed for stack realign if longjmp is expanded to current function */ if (SUPPORTS_STACK_ALIGNMENT) crtl->need_drap = true; if (setjmp_alias_set == -1) setjmp_alias_set = new_alias_set (); buf_addr = convert_memory_address (Pmode, buf_addr); buf_addr = force_reg (Pmode, buf_addr); /* We require that the user must pass a second argument of 1, because that is what builtin_setjmp will return. */ gcc_assert (value == const1_rtx); last = get_last_insn (); #ifdef HAVE_builtin_longjmp if (HAVE_builtin_longjmp) emit_insn (gen_builtin_longjmp (buf_addr)); else #endif { fp = gen_rtx_MEM (Pmode, buf_addr); lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr, GET_MODE_SIZE (Pmode))); stack = gen_rtx_MEM (sa_mode, plus_constant (Pmode, buf_addr, 2 * GET_MODE_SIZE (Pmode))); set_mem_alias_set (fp, setjmp_alias_set); set_mem_alias_set (lab, setjmp_alias_set); set_mem_alias_set (stack, setjmp_alias_set); /* Pick up FP, label, and SP from the block and jump. This code is from expand_goto in stmt.c; see there for detailed comments. */ #ifdef HAVE_nonlocal_goto if (HAVE_nonlocal_goto) /* We have to pass a value to the nonlocal_goto pattern that will get copied into the static_chain pointer, but it does not matter what that value is, because builtin_setjmp does not use it. */ emit_insn (gen_nonlocal_goto (value, lab, stack, fp)); else #endif { lab = copy_to_reg (lab); emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); emit_move_insn (hard_frame_pointer_rtx, fp); emit_stack_restore (SAVE_NONLOCAL, stack); emit_use (hard_frame_pointer_rtx); emit_use (stack_pointer_rtx); emit_indirect_jump (lab); } } /* Search backwards and mark the jump insn as a non-local goto. Note that this precludes the use of __builtin_longjmp to a __builtin_setjmp target in the same function. However, we've already cautioned the user that these functions are for internal exception handling use only. */ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) { gcc_assert (insn != last); if (JUMP_P (insn)) { add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx); break; } else if (CALL_P (insn)) break; } } /* Expand a call to __builtin_nonlocal_goto. We're passed the target label and the address of the save area. */ static rtx expand_builtin_nonlocal_goto (tree exp) { tree t_label, t_save_area; rtx r_label, r_save_area, r_fp, r_sp, insn; if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; t_label = CALL_EXPR_ARG (exp, 0); t_save_area = CALL_EXPR_ARG (exp, 1); r_label = expand_normal (t_label); r_label = convert_memory_address (Pmode, r_label); r_save_area = expand_normal (t_save_area); r_save_area = convert_memory_address (Pmode, r_save_area); /* Copy the address of the save location to a register just in case it was based on the frame pointer. */ r_save_area = copy_to_reg (r_save_area); r_fp = gen_rtx_MEM (Pmode, r_save_area); r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL), plus_constant (Pmode, r_save_area, GET_MODE_SIZE (Pmode))); crtl->has_nonlocal_goto = 1; #ifdef HAVE_nonlocal_goto /* ??? We no longer need to pass the static chain value, afaik. */ if (HAVE_nonlocal_goto) emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp)); else #endif { r_label = copy_to_reg (r_label); emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); /* Restore frame pointer for containing function. */ emit_move_insn (hard_frame_pointer_rtx, r_fp); emit_stack_restore (SAVE_NONLOCAL, r_sp); /* USE of hard_frame_pointer_rtx added for consistency; not clear if really needed. */ emit_use (hard_frame_pointer_rtx); emit_use (stack_pointer_rtx); /* If the architecture is using a GP register, we must conservatively assume that the target function makes use of it. The prologue of functions with nonlocal gotos must therefore initialize the GP register to the appropriate value, and we must then make sure that this value is live at the point of the jump. (Note that this doesn't necessarily apply to targets with a nonlocal_goto pattern; they are free to implement it in their own way. Note also that this is a no-op if the GP register is a global invariant.) */ if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) emit_use (pic_offset_table_rtx); emit_indirect_jump (r_label); } /* Search backwards to the jump insn and mark it as a non-local goto. */ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) { if (JUMP_P (insn)) { add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx); break; } else if (CALL_P (insn)) break; } return const0_rtx; } /* __builtin_update_setjmp_buf is passed a pointer to an array of five words (not all will be used on all machines) that was passed to __builtin_setjmp. It updates the stack pointer in that block to correspond to the current stack pointer. */ static void expand_builtin_update_setjmp_buf (rtx buf_addr) { enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); rtx stack_save = gen_rtx_MEM (sa_mode, memory_address (sa_mode, plus_constant (Pmode, buf_addr, 2 * GET_MODE_SIZE (Pmode)))); emit_stack_save (SAVE_NONLOCAL, &stack_save); } /* Expand a call to __builtin_prefetch. For a target that does not support data prefetch, evaluate the memory address argument in case it has side effects. */ static void expand_builtin_prefetch (tree exp) { tree arg0, arg1, arg2; int nargs; rtx op0, op1, op2; if (!validate_arglist (exp, POINTER_TYPE, 0)) return; arg0 = CALL_EXPR_ARG (exp, 0); /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to zero (read) and argument 2 (locality) defaults to 3 (high degree of locality). */ nargs = call_expr_nargs (exp); if (nargs > 1) arg1 = CALL_EXPR_ARG (exp, 1); else arg1 = integer_zero_node; if (nargs > 2) arg2 = CALL_EXPR_ARG (exp, 2); else arg2 = integer_three_node; /* Argument 0 is an address. */ op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL); /* Argument 1 (read/write flag) must be a compile-time constant int. */ if (TREE_CODE (arg1) != INTEGER_CST) { error ("second argument to %<__builtin_prefetch%> must be a constant"); arg1 = integer_zero_node; } op1 = expand_normal (arg1); /* Argument 1 must be either zero or one. */ if (INTVAL (op1) != 0 && INTVAL (op1) != 1) { warning (0, "invalid second argument to %<__builtin_prefetch%>;" " using zero"); op1 = const0_rtx; } /* Argument 2 (locality) must be a compile-time constant int. */ if (TREE_CODE (arg2) != INTEGER_CST) { error ("third argument to %<__builtin_prefetch%> must be a constant"); arg2 = integer_zero_node; } op2 = expand_normal (arg2); /* Argument 2 must be 0, 1, 2, or 3. */ if (INTVAL (op2) < 0 || INTVAL (op2) > 3) { warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero"); op2 = const0_rtx; } #ifdef HAVE_prefetch if (HAVE_prefetch) { struct expand_operand ops[3]; create_address_operand (&ops[0], op0); create_integer_operand (&ops[1], INTVAL (op1)); create_integer_operand (&ops[2], INTVAL (op2)); if (maybe_expand_insn (CODE_FOR_prefetch, 3, ops)) return; } #endif /* Don't do anything with direct references to volatile memory, but generate code to handle other side effects. */ if (!MEM_P (op0) && side_effects_p (op0)) emit_insn (op0); } /* Get a MEM rtx for expression EXP which is the address of an operand to be used in a string instruction (cmpstrsi, movmemsi, ..). LEN is the maximum length of the block of memory that might be accessed or NULL if unknown. */ static rtx get_memory_rtx (tree exp, tree len) { tree orig_exp = exp; rtx addr, mem; /* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived from its expression, for expr->a.b only .a.b is recorded. */ if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp)) exp = TREE_OPERAND (exp, 0); addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL); mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr)); /* Get an expression we can use to find the attributes to assign to MEM. First remove any nops. */ while (CONVERT_EXPR_P (exp) && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0)))) exp = TREE_OPERAND (exp, 0); /* Build a MEM_REF representing the whole accessed area as a byte blob, (as builtin stringops may alias with anything). */ exp = fold_build2 (MEM_REF, build_array_type (char_type_node, build_range_type (sizetype, size_one_node, len)), exp, build_int_cst (ptr_type_node, 0)); /* If the MEM_REF has no acceptable address, try to get the base object from the original address we got, and build an all-aliasing unknown-sized access to that one. */ if (is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0))) set_mem_attributes (mem, exp, 0); else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR && (exp = get_base_address (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))) { exp = build_fold_addr_expr (exp); exp = fold_build2 (MEM_REF, build_array_type (char_type_node, build_range_type (sizetype, size_zero_node, NULL)), exp, build_int_cst (ptr_type_node, 0)); set_mem_attributes (mem, exp, 0); } set_mem_alias_set (mem, 0); return mem; } /* Built-in functions to perform an untyped call and return. */ #define apply_args_mode \ (this_target_builtins->x_apply_args_mode) #define apply_result_mode \ (this_target_builtins->x_apply_result_mode) /* Return the size required for the block returned by __builtin_apply_args, and initialize apply_args_mode. */ static int apply_args_size (void) { static int size = -1; int align; unsigned int regno; enum machine_mode mode; /* The values computed by this function never change. */ if (size < 0) { /* The first value is the incoming arg-pointer. */ size = GET_MODE_SIZE (Pmode); /* The second value is the structure value address unless this is passed as an "invisible" first argument. */ if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0)) size += GET_MODE_SIZE (Pmode); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (FUNCTION_ARG_REGNO_P (regno)) { mode = targetm.calls.get_raw_arg_mode (regno); gcc_assert (mode != VOIDmode); align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; size += GET_MODE_SIZE (mode); apply_args_mode[regno] = mode; } else { apply_args_mode[regno] = VOIDmode; } } return size; } /* Return the size required for the block returned by __builtin_apply, and initialize apply_result_mode. */ static int apply_result_size (void) { static int size = -1; int align, regno; enum machine_mode mode; /* The values computed by this function never change. */ if (size < 0) { size = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (targetm.calls.function_value_regno_p (regno)) { mode = targetm.calls.get_raw_result_mode (regno); gcc_assert (mode != VOIDmode); align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; size += GET_MODE_SIZE (mode); apply_result_mode[regno] = mode; } else apply_result_mode[regno] = VOIDmode; /* Allow targets that use untyped_call and untyped_return to override the size so that machine-specific information can be stored here. */ #ifdef APPLY_RESULT_SIZE size = APPLY_RESULT_SIZE; #endif } return size; } #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) /* Create a vector describing the result block RESULT. If SAVEP is true, the result block is used to save the values; otherwise it is used to restore the values. */ static rtx result_vector (int savep, rtx result) { int regno, size, align, nelts; enum machine_mode mode; rtx reg, mem; rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER); size = nelts = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno)); mem = adjust_address (result, mode, size); savevec[nelts++] = (savep ? gen_rtx_SET (VOIDmode, mem, reg) : gen_rtx_SET (VOIDmode, reg, mem)); size += GET_MODE_SIZE (mode); } return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec)); } #endif /* HAVE_untyped_call or HAVE_untyped_return */ /* Save the state required to perform an untyped call with the same arguments as were passed to the current function. */ static rtx expand_builtin_apply_args_1 (void) { rtx registers, tem; int size, align, regno; enum machine_mode mode; rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1); /* Create a block where the arg-pointer, structure value address, and argument registers can be saved. */ registers = assign_stack_local (BLKmode, apply_args_size (), -1); /* Walk past the arg-pointer and structure value address. */ size = GET_MODE_SIZE (Pmode); if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0)) size += GET_MODE_SIZE (Pmode); /* Save each register used in calling a function to the block. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_args_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; tem = gen_rtx_REG (mode, INCOMING_REGNO (regno)); emit_move_insn (adjust_address (registers, mode, size), tem); size += GET_MODE_SIZE (mode); } /* Save the arg pointer to the block. */ tem = copy_to_reg (crtl->args.internal_arg_pointer); #ifdef STACK_GROWS_DOWNWARD /* We need the pointer as the caller actually passed them to us, not as we might have pretended they were passed. Make sure it's a valid operand, as emit_move_insn isn't expected to handle a PLUS. */ tem = force_operand (plus_constant (Pmode, tem, crtl->args.pretend_args_size), NULL_RTX); #endif emit_move_insn (adjust_address (registers, Pmode, 0), tem); size = GET_MODE_SIZE (Pmode); /* Save the structure value address unless this is passed as an "invisible" first argument. */ if (struct_incoming_value) { emit_move_insn (adjust_address (registers, Pmode, size), copy_to_reg (struct_incoming_value)); size += GET_MODE_SIZE (Pmode); } /* Return the address of the block. */ return copy_addr_to_reg (XEXP (registers, 0)); } /* __builtin_apply_args returns block of memory allocated on the stack into which is stored the arg pointer, structure value address, static chain, and all the registers that might possibly be used in performing a function call. The code is moved to the start of the function so the incoming values are saved. */ static rtx expand_builtin_apply_args (void) { /* Don't do __builtin_apply_args more than once in a function. Save the result of the first call and reuse it. */ if (apply_args_value != 0) return apply_args_value; { /* When this function is called, it means that registers must be saved on entry to this function. So we migrate the call to the first insn of this function. */ rtx temp; rtx seq; start_sequence (); temp = expand_builtin_apply_args_1 (); seq = get_insns (); end_sequence (); apply_args_value = temp; /* Put the insns after the NOTE that starts the function. If this is inside a start_sequence, make the outer-level insn chain current, so the code is placed at the start of the function. If internal_arg_pointer is a non-virtual pseudo, it needs to be placed after the function that initializes that pseudo. */ push_topmost_sequence (); if (REG_P (crtl->args.internal_arg_pointer) && REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER) emit_insn_before (seq, parm_birth_insn); else emit_insn_before (seq, NEXT_INSN (entry_of_function ())); pop_topmost_sequence (); return temp; } } /* Perform an untyped call and save the state required to perform an untyped return of whatever value was returned by the given function. */ static rtx expand_builtin_apply (rtx function, rtx arguments, rtx argsize) { int size, align, regno; enum machine_mode mode; rtx incoming_args, result, reg, dest, src, call_insn; rtx old_stack_level = 0; rtx call_fusage = 0; rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0); arguments = convert_memory_address (Pmode, arguments); /* Create a block where the return registers can be saved. */ result = assign_stack_local (BLKmode, apply_result_size (), -1); /* Fetch the arg pointer from the ARGUMENTS block. */ incoming_args = gen_reg_rtx (Pmode); emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments)); #ifndef STACK_GROWS_DOWNWARD incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize, incoming_args, 0, OPTAB_LIB_WIDEN); #endif /* Push a new argument block and copy the arguments. Do not allow the (potential) memcpy call below to interfere with our stack manipulations. */ do_pending_stack_adjust (); NO_DEFER_POP; /* Save the stack with nonlocal if available. */ #ifdef HAVE_save_stack_nonlocal if (HAVE_save_stack_nonlocal) emit_stack_save (SAVE_NONLOCAL, &old_stack_level); else #endif emit_stack_save (SAVE_BLOCK, &old_stack_level); /* Allocate a block of memory onto the stack and copy the memory arguments to the outgoing arguments address. We can pass TRUE as the 4th argument because we just saved the stack pointer and will restore it right after the call. */ allocate_dynamic_stack_space (argsize, 0, BIGGEST_ALIGNMENT, true); /* Set DRAP flag to true, even though allocate_dynamic_stack_space may have already set current_function_calls_alloca to true. current_function_calls_alloca won't be set if argsize is zero, so we have to guarantee need_drap is true here. */ if (SUPPORTS_STACK_ALIGNMENT) crtl->need_drap = true; dest = virtual_outgoing_args_rtx; #ifndef STACK_GROWS_DOWNWARD if (CONST_INT_P (argsize)) dest = plus_constant (Pmode, dest, -INTVAL (argsize)); else dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize)); #endif dest = gen_rtx_MEM (BLKmode, dest); set_mem_align (dest, PARM_BOUNDARY); src = gen_rtx_MEM (BLKmode, incoming_args); set_mem_align (src, PARM_BOUNDARY); emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL); /* Refer to the argument block. */ apply_args_size (); arguments = gen_rtx_MEM (BLKmode, arguments); set_mem_align (arguments, PARM_BOUNDARY); /* Walk past the arg-pointer and structure value address. */ size = GET_MODE_SIZE (Pmode); if (struct_value) size += GET_MODE_SIZE (Pmode); /* Restore each of the registers previously saved. Make USE insns for each of these registers for use in making the call. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_args_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, regno); emit_move_insn (reg, adjust_address (arguments, mode, size)); use_reg (&call_fusage, reg); size += GET_MODE_SIZE (mode); } /* Restore the structure value address unless this is passed as an "invisible" first argument. */ size = GET_MODE_SIZE (Pmode); if (struct_value) { rtx value = gen_reg_rtx (Pmode); emit_move_insn (value, adjust_address (arguments, Pmode, size)); emit_move_insn (struct_value, value); if (REG_P (struct_value)) use_reg (&call_fusage, struct_value); size += GET_MODE_SIZE (Pmode); } /* All arguments and registers used for the call are set up by now! */ function = prepare_call_address (NULL, function, NULL, &call_fusage, 0, 0); /* Ensure address is valid. SYMBOL_REF is already valid, so no need, and we don't want to load it into a register as an optimization, because prepare_call_address already did it if it should be done. */ if (GET_CODE (function) != SYMBOL_REF) function = memory_address (FUNCTION_MODE, function); /* Generate the actual call instruction and save the return value. */ #ifdef HAVE_untyped_call if (HAVE_untyped_call) emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function), result, result_vector (1, result))); else #endif #ifdef HAVE_call_value if (HAVE_call_value) { rtx valreg = 0; /* Locate the unique return register. It is not possible to express a call that sets more than one return register using call_value; use untyped_call for that. In fact, untyped_call only needs to save the return registers in the given block. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { gcc_assert (!valreg); /* HAVE_untyped_call required. */ valreg = gen_rtx_REG (mode, regno); } emit_call_insn (GEN_CALL_VALUE (valreg, gen_rtx_MEM (FUNCTION_MODE, function), const0_rtx, NULL_RTX, const0_rtx)); emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg); } else #endif gcc_unreachable (); /* Find the CALL insn we just emitted, and attach the register usage information. */ call_insn = last_call_insn (); add_function_usage_to (call_insn, call_fusage); /* Restore the stack. */ #ifdef HAVE_save_stack_nonlocal if (HAVE_save_stack_nonlocal) emit_stack_restore (SAVE_NONLOCAL, old_stack_level); else #endif emit_stack_restore (SAVE_BLOCK, old_stack_level); fixup_args_size_notes (call_insn, get_last_insn(), 0); OK_DEFER_POP; /* Return the address of the result block. */ result = copy_addr_to_reg (XEXP (result, 0)); return convert_memory_address (ptr_mode, result); } /* Perform an untyped return. */ static void expand_builtin_return (rtx result) { int size, align, regno; enum machine_mode mode; rtx reg; rtx call_fusage = 0; result = convert_memory_address (Pmode, result); apply_result_size (); result = gen_rtx_MEM (BLKmode, result); #ifdef HAVE_untyped_return if (HAVE_untyped_return) { emit_jump_insn (gen_untyped_return (result, result_vector (0, result))); emit_barrier (); return; } #endif /* Restore the return value and note that each value is used. */ size = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, INCOMING_REGNO (regno)); emit_move_insn (reg, adjust_address (result, mode, size)); push_to_sequence (call_fusage); emit_use (reg); call_fusage = get_insns (); end_sequence (); size += GET_MODE_SIZE (mode); } /* Put the USE insns before the return. */ emit_insn (call_fusage); /* Return whatever values was restored by jumping directly to the end of the function. */ expand_naked_return (); } /* Used by expand_builtin_classify_type and fold_builtin_classify_type. */ static enum type_class type_to_class (tree type) { switch (TREE_CODE (type)) { case VOID_TYPE: return void_type_class; case INTEGER_TYPE: return integer_type_class; case ENUMERAL_TYPE: return enumeral_type_class; case BOOLEAN_TYPE: return boolean_type_class; case POINTER_TYPE: return pointer_type_class; case REFERENCE_TYPE: return reference_type_class; case OFFSET_TYPE: return offset_type_class; case REAL_TYPE: return real_type_class; case COMPLEX_TYPE: return complex_type_class; case FUNCTION_TYPE: return function_type_class; case METHOD_TYPE: return method_type_class; case RECORD_TYPE: return record_type_class; case UNION_TYPE: case QUAL_UNION_TYPE: return union_type_class; case ARRAY_TYPE: return (TYPE_STRING_FLAG (type) ? string_type_class : array_type_class); case LANG_TYPE: return lang_type_class; default: return no_type_class; } } /* Expand a call EXP to __builtin_classify_type. */ static rtx expand_builtin_classify_type (tree exp) { if (call_expr_nargs (exp)) return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0)))); return GEN_INT (no_type_class); } /* This helper macro, meant to be used in mathfn_built_in below, determines which among a set of three builtin math functions is appropriate for a given type mode. The `F' and `L' cases are automatically generated from the `double' case. */ #define CASE_MATHFN(BUILT_IN_MATHFN) \ case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \ fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \ fcodel = BUILT_IN_MATHFN##L ; break; /* Similar to above, but appends _R after any F/L suffix. */ #define CASE_MATHFN_REENT(BUILT_IN_MATHFN) \ case BUILT_IN_MATHFN##_R: case BUILT_IN_MATHFN##F_R: case BUILT_IN_MATHFN##L_R: \ fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \ fcodel = BUILT_IN_MATHFN##L_R ; break; /* Return mathematic function equivalent to FN but operating directly on TYPE, if available. If IMPLICIT is true use the implicit builtin declaration, otherwise use the explicit declaration. If we can't do the conversion, return zero. */ static tree mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit_p) { enum built_in_function fcode, fcodef, fcodel, fcode2; switch (fn) { CASE_MATHFN (BUILT_IN_ACOS) CASE_MATHFN (BUILT_IN_ACOSH) CASE_MATHFN (BUILT_IN_ASIN) CASE_MATHFN (BUILT_IN_ASINH) CASE_MATHFN (BUILT_IN_ATAN) CASE_MATHFN (BUILT_IN_ATAN2) CASE_MATHFN (BUILT_IN_ATANH) CASE_MATHFN (BUILT_IN_CBRT) CASE_MATHFN (BUILT_IN_CEIL) CASE_MATHFN (BUILT_IN_CEXPI) CASE_MATHFN (BUILT_IN_COPYSIGN) CASE_MATHFN (BUILT_IN_COS) CASE_MATHFN (BUILT_IN_COSH) CASE_MATHFN (BUILT_IN_DREM) CASE_MATHFN (BUILT_IN_ERF) CASE_MATHFN (BUILT_IN_ERFC) CASE_MATHFN (BUILT_IN_EXP) CASE_MATHFN (BUILT_IN_EXP10) CASE_MATHFN (BUILT_IN_EXP2) CASE_MATHFN (BUILT_IN_EXPM1) CASE_MATHFN (BUILT_IN_FABS) CASE_MATHFN (BUILT_IN_FDIM) CASE_MATHFN (BUILT_IN_FLOOR) CASE_MATHFN (BUILT_IN_FMA) CASE_MATHFN (BUILT_IN_FMAX) CASE_MATHFN (BUILT_IN_FMIN) CASE_MATHFN (BUILT_IN_FMOD) CASE_MATHFN (BUILT_IN_FREXP) CASE_MATHFN (BUILT_IN_GAMMA) CASE_MATHFN_REENT (BUILT_IN_GAMMA) /* GAMMA_R */ CASE_MATHFN (BUILT_IN_HUGE_VAL) CASE_MATHFN (BUILT_IN_HYPOT) CASE_MATHFN (BUILT_IN_ILOGB) CASE_MATHFN (BUILT_IN_ICEIL) CASE_MATHFN (BUILT_IN_IFLOOR) CASE_MATHFN (BUILT_IN_INF) CASE_MATHFN (BUILT_IN_IRINT) CASE_MATHFN (BUILT_IN_IROUND) CASE_MATHFN (BUILT_IN_ISINF) CASE_MATHFN (BUILT_IN_J0) CASE_MATHFN (BUILT_IN_J1) CASE_MATHFN (BUILT_IN_JN) CASE_MATHFN (BUILT_IN_LCEIL) CASE_MATHFN (BUILT_IN_LDEXP) CASE_MATHFN (BUILT_IN_LFLOOR) CASE_MATHFN (BUILT_IN_LGAMMA) CASE_MATHFN_REENT (BUILT_IN_LGAMMA) /* LGAMMA_R */ CASE_MATHFN (BUILT_IN_LLCEIL) CASE_MATHFN (BUILT_IN_LLFLOOR) CASE_MATHFN (BUILT_IN_LLRINT) CASE_MATHFN (BUILT_IN_LLROUND) CASE_MATHFN (BUILT_IN_LOG) CASE_MATHFN (BUILT_IN_LOG10) CASE_MATHFN (BUILT_IN_LOG1P) CASE_MATHFN (BUILT_IN_LOG2) CASE_MATHFN (BUILT_IN_LOGB) CASE_MATHFN (BUILT_IN_LRINT) CASE_MATHFN (BUILT_IN_LROUND) CASE_MATHFN (BUILT_IN_MODF) CASE_MATHFN (BUILT_IN_NAN) CASE_MATHFN (BUILT_IN_NANS) CASE_MATHFN (BUILT_IN_NEARBYINT) CASE_MATHFN (BUILT_IN_NEXTAFTER) CASE_MATHFN (BUILT_IN_NEXTTOWARD) CASE_MATHFN (BUILT_IN_POW) CASE_MATHFN (BUILT_IN_POWI) CASE_MATHFN (BUILT_IN_POW10) CASE_MATHFN (BUILT_IN_REMAINDER) CASE_MATHFN (BUILT_IN_REMQUO) CASE_MATHFN (BUILT_IN_RINT) CASE_MATHFN (BUILT_IN_ROUND) CASE_MATHFN (BUILT_IN_SCALB) CASE_MATHFN (BUILT_IN_SCALBLN) CASE_MATHFN (BUILT_IN_SCALBN) CASE_MATHFN (BUILT_IN_SIGNBIT) CASE_MATHFN (BUILT_IN_SIGNIFICAND) CASE_MATHFN (BUILT_IN_SIN) CASE_MATHFN (BUILT_IN_SINCOS) CASE_MATHFN (BUILT_IN_SINH) CASE_MATHFN (BUILT_IN_SQRT) CASE_MATHFN (BUILT_IN_TAN) CASE_MATHFN (BUILT_IN_TANH) CASE_MATHFN (BUILT_IN_TGAMMA) CASE_MATHFN (BUILT_IN_TRUNC) CASE_MATHFN (BUILT_IN_Y0) CASE_MATHFN (BUILT_IN_Y1) CASE_MATHFN (BUILT_IN_YN) default: return NULL_TREE; } if (TYPE_MAIN_VARIANT (type) == double_type_node) fcode2 = fcode; else if (TYPE_MAIN_VARIANT (type) == float_type_node) fcode2 = fcodef; else if (TYPE_MAIN_VARIANT (type) == long_double_type_node) fcode2 = fcodel; else return NULL_TREE; if (implicit_p && !builtin_decl_implicit_p (fcode2)) return NULL_TREE; return builtin_decl_explicit (fcode2); } /* Like mathfn_built_in_1(), but always use the implicit array. */ tree mathfn_built_in (tree type, enum built_in_function fn) { return mathfn_built_in_1 (type, fn, /*implicit=*/ 1); } /* If errno must be maintained, expand the RTL to check if the result, TARGET, of a built-in function call, EXP, is NaN, and if so set errno to EDOM. */ static void expand_errno_check (tree exp, rtx target) { rtx lab = gen_label_rtx (); /* Test the result; if it is NaN, set errno=EDOM because the argument was not in the domain. */ do_compare_rtx_and_jump (target, target, EQ, 0, GET_MODE (target), NULL_RTX, NULL_RTX, lab, /* The jump is very likely. */ REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1)); #ifdef TARGET_EDOM /* If this built-in doesn't throw an exception, set errno directly. */ if (TREE_NOTHROW (TREE_OPERAND (CALL_EXPR_FN (exp), 0))) { #ifdef GEN_ERRNO_RTX rtx errno_rtx = GEN_ERRNO_RTX; #else rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno")); #endif emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM)); emit_label (lab); return; } #endif /* Make sure the library call isn't expanded as a tail call. */ CALL_EXPR_TAILCALL (exp) = 0; /* We can't set errno=EDOM directly; let the library call do it. Pop the arguments right away in case the call gets deleted. */ NO_DEFER_POP; expand_call (exp, target, 0); OK_DEFER_POP; emit_label (lab); } /* Expand a call to one of the builtin math functions (sqrt, exp, or log). Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_mathfn (tree exp, rtx target, rtx subtarget) { optab builtin_optab; rtx op0, insns; tree fndecl = get_callee_fndecl (exp); enum machine_mode mode; bool errno_set = false; tree arg; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_SQRT): errno_set = ! tree_expr_nonnegative_p (arg); builtin_optab = sqrt_optab; break; CASE_FLT_FN (BUILT_IN_EXP): errno_set = true; builtin_optab = exp_optab; break; CASE_FLT_FN (BUILT_IN_EXP10): CASE_FLT_FN (BUILT_IN_POW10): errno_set = true; builtin_optab = exp10_optab; break; CASE_FLT_FN (BUILT_IN_EXP2): errno_set = true; builtin_optab = exp2_optab; break; CASE_FLT_FN (BUILT_IN_EXPM1): errno_set = true; builtin_optab = expm1_optab; break; CASE_FLT_FN (BUILT_IN_LOGB): errno_set = true; builtin_optab = logb_optab; break; CASE_FLT_FN (BUILT_IN_LOG): errno_set = true; builtin_optab = log_optab; break; CASE_FLT_FN (BUILT_IN_LOG10): errno_set = true; builtin_optab = log10_optab; break; CASE_FLT_FN (BUILT_IN_LOG2): errno_set = true; builtin_optab = log2_optab; break; CASE_FLT_FN (BUILT_IN_LOG1P): errno_set = true; builtin_optab = log1p_optab; break; CASE_FLT_FN (BUILT_IN_ASIN): builtin_optab = asin_optab; break; CASE_FLT_FN (BUILT_IN_ACOS): builtin_optab = acos_optab; break; CASE_FLT_FN (BUILT_IN_TAN): builtin_optab = tan_optab; break; CASE_FLT_FN (BUILT_IN_ATAN): builtin_optab = atan_optab; break; CASE_FLT_FN (BUILT_IN_FLOOR): builtin_optab = floor_optab; break; CASE_FLT_FN (BUILT_IN_CEIL): builtin_optab = ceil_optab; break; CASE_FLT_FN (BUILT_IN_TRUNC): builtin_optab = btrunc_optab; break; CASE_FLT_FN (BUILT_IN_ROUND): builtin_optab = round_optab; break; CASE_FLT_FN (BUILT_IN_NEARBYINT): builtin_optab = nearbyint_optab; if (flag_trapping_math) break; /* Else fallthrough and expand as rint. */ CASE_FLT_FN (BUILT_IN_RINT): builtin_optab = rint_optab; break; CASE_FLT_FN (BUILT_IN_SIGNIFICAND): builtin_optab = significand_optab; break; default: gcc_unreachable (); } /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); if (! flag_errno_math || ! HONOR_NANS (mode)) errno_set = false; /* Before working hard, check whether the instruction is available. */ if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing && (!errno_set || !optimize_insn_for_size_p ())) { rtx result = gen_reg_rtx (mode); /* Wrap the computation of the argument in a SAVE_EXPR, as we may need to expand the argument again. This way, we will not perform side-effects more the once. */ CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); start_sequence (); /* Compute into RESULT. Set RESULT to wherever the result comes back. */ result = expand_unop (mode, builtin_optab, op0, result, 0); if (result != 0) { if (errno_set) expand_errno_check (exp, result); /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return result; } /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and call to the library function with the stabilized argument list. */ end_sequence (); } return expand_call (exp, target, target == const0_rtx); } /* Expand a call to the builtin binary math functions (pow and atan2). Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget) { optab builtin_optab; rtx op0, op1, insns, result; int op1_type = REAL_TYPE; tree fndecl = get_callee_fndecl (exp); tree arg0, arg1; enum machine_mode mode; bool errno_set = true; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_SCALBN): CASE_FLT_FN (BUILT_IN_SCALBLN): CASE_FLT_FN (BUILT_IN_LDEXP): op1_type = INTEGER_TYPE; default: break; } if (!validate_arglist (exp, REAL_TYPE, op1_type, VOID_TYPE)) return NULL_RTX; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_POW): builtin_optab = pow_optab; break; CASE_FLT_FN (BUILT_IN_ATAN2): builtin_optab = atan2_optab; break; CASE_FLT_FN (BUILT_IN_SCALB): if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2) return 0; builtin_optab = scalb_optab; break; CASE_FLT_FN (BUILT_IN_SCALBN): CASE_FLT_FN (BUILT_IN_SCALBLN): if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2) return 0; /* Fall through... */ CASE_FLT_FN (BUILT_IN_LDEXP): builtin_optab = ldexp_optab; break; CASE_FLT_FN (BUILT_IN_FMOD): builtin_optab = fmod_optab; break; CASE_FLT_FN (BUILT_IN_REMAINDER): CASE_FLT_FN (BUILT_IN_DREM): builtin_optab = remainder_optab; break; default: gcc_unreachable (); } /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); /* Before working hard, check whether the instruction is available. */ if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) return NULL_RTX; result = gen_reg_rtx (mode); if (! flag_errno_math || ! HONOR_NANS (mode)) errno_set = false; if (errno_set && optimize_insn_for_size_p ()) return 0; /* Always stabilize the argument list. */ CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0); CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1); op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL); op1 = expand_normal (arg1); start_sequence (); /* Compute into RESULT. Set RESULT to wherever the result comes back. */ result = expand_binop (mode, builtin_optab, op0, op1, result, 0, OPTAB_DIRECT); /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and call to the library function with the stabilized argument list. */ if (result == 0) { end_sequence (); return expand_call (exp, target, target == const0_rtx); } if (errno_set) expand_errno_check (exp, result); /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return result; } /* Expand a call to the builtin trinary math functions (fma). Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_mathfn_ternary (tree exp, rtx target, rtx subtarget) { optab builtin_optab; rtx op0, op1, op2, insns, result; tree fndecl = get_callee_fndecl (exp); tree arg0, arg1, arg2; enum machine_mode mode; if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_FMA): builtin_optab = fma_optab; break; default: gcc_unreachable (); } /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); /* Before working hard, check whether the instruction is available. */ if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) return NULL_RTX; result = gen_reg_rtx (mode); /* Always stabilize the argument list. */ CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0); CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1); CALL_EXPR_ARG (exp, 2) = arg2 = builtin_save_expr (arg2); op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL); op1 = expand_normal (arg1); op2 = expand_normal (arg2); start_sequence (); /* Compute into RESULT. Set RESULT to wherever the result comes back. */ result = expand_ternary_op (mode, builtin_optab, op0, op1, op2, result, 0); /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and call to the library function with the stabilized argument list. */ if (result == 0) { end_sequence (); return expand_call (exp, target, target == const0_rtx); } /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return result; } /* Expand a call to the builtin sin and cos math functions. Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget) { optab builtin_optab; rtx op0, insns; tree fndecl = get_callee_fndecl (exp); enum machine_mode mode; tree arg; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_SIN): CASE_FLT_FN (BUILT_IN_COS): builtin_optab = sincos_optab; break; default: gcc_unreachable (); } /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); /* Check if sincos insn is available, otherwise fallback to sin or cos insn. */ if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_SIN): builtin_optab = sin_optab; break; CASE_FLT_FN (BUILT_IN_COS): builtin_optab = cos_optab; break; default: gcc_unreachable (); } /* Before working hard, check whether the instruction is available. */ if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing) { rtx result = gen_reg_rtx (mode); /* Wrap the computation of the argument in a SAVE_EXPR, as we may need to expand the argument again. This way, we will not perform side-effects more the once. */ CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); start_sequence (); /* Compute into RESULT. Set RESULT to wherever the result comes back. */ if (builtin_optab == sincos_optab) { int ok; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_SIN): ok = expand_twoval_unop (builtin_optab, op0, 0, result, 0); break; CASE_FLT_FN (BUILT_IN_COS): ok = expand_twoval_unop (builtin_optab, op0, result, 0, 0); break; default: gcc_unreachable (); } gcc_assert (ok); } else result = expand_unop (mode, builtin_optab, op0, result, 0); if (result != 0) { /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return result; } /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and call to the library function with the stabilized argument list. */ end_sequence (); } return expand_call (exp, target, target == const0_rtx); } /* Given an interclass math builtin decl FNDECL and it's argument ARG return an RTL instruction code that implements the functionality. If that isn't possible or available return CODE_FOR_nothing. */ static enum insn_code interclass_mathfn_icode (tree arg, tree fndecl) { bool errno_set = false; optab builtin_optab = unknown_optab; enum machine_mode mode; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_ILOGB): errno_set = true; builtin_optab = ilogb_optab; break; CASE_FLT_FN (BUILT_IN_ISINF): builtin_optab = isinf_optab; break; case BUILT_IN_ISNORMAL: case BUILT_IN_ISFINITE: CASE_FLT_FN (BUILT_IN_FINITE): case BUILT_IN_FINITED32: case BUILT_IN_FINITED64: case BUILT_IN_FINITED128: case BUILT_IN_ISINFD32: case BUILT_IN_ISINFD64: case BUILT_IN_ISINFD128: /* These builtins have no optabs (yet). */ break; default: gcc_unreachable (); } /* There's no easy way to detect the case we need to set EDOM. */ if (flag_errno_math && errno_set) return CODE_FOR_nothing; /* Optab mode depends on the mode of the input argument. */ mode = TYPE_MODE (TREE_TYPE (arg)); if (builtin_optab) return optab_handler (builtin_optab, mode); return CODE_FOR_nothing; } /* Expand a call to one of the builtin math functions that operate on floating point argument and output an integer result (ilogb, isinf, isnan, etc). Return 0 if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_interclass_mathfn (tree exp, rtx target) { enum insn_code icode = CODE_FOR_nothing; rtx op0; tree fndecl = get_callee_fndecl (exp); enum machine_mode mode; tree arg; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); icode = interclass_mathfn_icode (arg, fndecl); mode = TYPE_MODE (TREE_TYPE (arg)); if (icode != CODE_FOR_nothing) { struct expand_operand ops[1]; rtx last = get_last_insn (); tree orig_arg = arg; /* Wrap the computation of the argument in a SAVE_EXPR, as we may need to expand the argument again. This way, we will not perform side-effects more the once. */ CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL); if (mode != GET_MODE (op0)) op0 = convert_to_mode (mode, op0, 0); create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp))); if (maybe_legitimize_operands (icode, 0, 1, ops) && maybe_emit_unop_insn (icode, ops[0].value, op0, UNKNOWN)) return ops[0].value; delete_insns_since (last); CALL_EXPR_ARG (exp, 0) = orig_arg; } return NULL_RTX; } /* Expand a call to the builtin sincos math function. Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function. */ static rtx expand_builtin_sincos (tree exp) { rtx op0, op1, op2, target1, target2; enum machine_mode mode; tree arg, sinp, cosp; int result; location_t loc = EXPR_LOCATION (exp); tree alias_type, alias_off; if (!validate_arglist (exp, REAL_TYPE, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); sinp = CALL_EXPR_ARG (exp, 1); cosp = CALL_EXPR_ARG (exp, 2); /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (arg)); /* Check if sincos insn is available, otherwise emit the call. */ if (optab_handler (sincos_optab, mode) == CODE_FOR_nothing) return NULL_RTX; target1 = gen_reg_rtx (mode); target2 = gen_reg_rtx (mode); op0 = expand_normal (arg); alias_type = build_pointer_type_for_mode (TREE_TYPE (arg), ptr_mode, true); alias_off = build_int_cst (alias_type, 0); op1 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg), sinp, alias_off)); op2 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg), cosp, alias_off)); /* Compute into target1 and target2. Set TARGET to wherever the result comes back. */ result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0); gcc_assert (result); /* Move target1 and target2 to the memory locations indicated by op1 and op2. */ emit_move_insn (op1, target1); emit_move_insn (op2, target2); return const0_rtx; } /* Expand a call to the internal cexpi builtin to the sincos math function. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_cexpi (tree exp, rtx target) { tree fndecl = get_callee_fndecl (exp); tree arg, type; enum machine_mode mode; rtx op0, op1, op2; location_t loc = EXPR_LOCATION (exp); if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); type = TREE_TYPE (arg); mode = TYPE_MODE (TREE_TYPE (arg)); /* Try expanding via a sincos optab, fall back to emitting a libcall to sincos or cexp. We are sure we have sincos or cexp because cexpi is only generated from sincos, cexp or if we have either of them. */ if (optab_handler (sincos_optab, mode) != CODE_FOR_nothing) { op1 = gen_reg_rtx (mode); op2 = gen_reg_rtx (mode); op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL); /* Compute into op1 and op2. */ expand_twoval_unop (sincos_optab, op0, op2, op1, 0); } else if (TARGET_HAS_SINCOS) { tree call, fn = NULL_TREE; tree top1, top2; rtx op1a, op2a; if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) fn = builtin_decl_explicit (BUILT_IN_SINCOSF); else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) fn = builtin_decl_explicit (BUILT_IN_SINCOS); else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) fn = builtin_decl_explicit (BUILT_IN_SINCOSL); else gcc_unreachable (); op1 = assign_temp (TREE_TYPE (arg), 1, 1); op2 = assign_temp (TREE_TYPE (arg), 1, 1); op1a = copy_addr_to_reg (XEXP (op1, 0)); op2a = copy_addr_to_reg (XEXP (op2, 0)); top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a); top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a); /* Make sure not to fold the sincos call again. */ call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)), call, 3, arg, top1, top2)); } else { tree call, fn = NULL_TREE, narg; tree ctype = build_complex_type (type); if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) fn = builtin_decl_explicit (BUILT_IN_CEXPF); else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) fn = builtin_decl_explicit (BUILT_IN_CEXP); else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) fn = builtin_decl_explicit (BUILT_IN_CEXPL); else gcc_unreachable (); /* If we don't have a decl for cexp create one. This is the friendliest fallback if the user calls __builtin_cexpi without full target C99 function support. */ if (fn == NULL_TREE) { tree fntype; const char *name = NULL; if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) name = "cexpf"; else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) name = "cexp"; else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) name = "cexpl"; fntype = build_function_type_list (ctype, ctype, NULL_TREE); fn = build_fn_decl (name, fntype); } narg = fold_build2_loc (loc, COMPLEX_EXPR, ctype, build_real (type, dconst0), arg); /* Make sure not to fold the cexp call again. */ call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); return expand_expr (build_call_nary (ctype, call, 1, narg), target, VOIDmode, EXPAND_NORMAL); } /* Now build the proper return type. */ return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type), make_tree (TREE_TYPE (arg), op2), make_tree (TREE_TYPE (arg), op1)), target, VOIDmode, EXPAND_NORMAL); } /* Conveniently construct a function call expression. FNDECL names the function to be called, N is the number of arguments, and the "..." parameters are the argument expressions. Unlike build_call_exr this doesn't fold the call, hence it will always return a CALL_EXPR. */ static tree build_call_nofold_loc (location_t loc, tree fndecl, int n, ...) { va_list ap; tree fntype = TREE_TYPE (fndecl); tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl); va_start (ap, n); fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap); va_end (ap); SET_EXPR_LOCATION (fn, loc); return fn; } /* Expand a call to one of the builtin rounding functions gcc defines as an extension (lfloor and lceil). As these are gcc extensions we do not need to worry about setting errno to EDOM. If expanding via optab fails, lower expression to (int)(floor(x)). EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_int_roundingfn (tree exp, rtx target) { convert_optab builtin_optab; rtx op0, insns, tmp; tree fndecl = get_callee_fndecl (exp); enum built_in_function fallback_fn; tree fallback_fndecl; enum machine_mode mode; tree arg; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) gcc_unreachable (); arg = CALL_EXPR_ARG (exp, 0); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_ICEIL): CASE_FLT_FN (BUILT_IN_LCEIL): CASE_FLT_FN (BUILT_IN_LLCEIL): builtin_optab = lceil_optab; fallback_fn = BUILT_IN_CEIL; break; CASE_FLT_FN (BUILT_IN_IFLOOR): CASE_FLT_FN (BUILT_IN_LFLOOR): CASE_FLT_FN (BUILT_IN_LLFLOOR): builtin_optab = lfloor_optab; fallback_fn = BUILT_IN_FLOOR; break; default: gcc_unreachable (); } /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); target = gen_reg_rtx (mode); /* Wrap the computation of the argument in a SAVE_EXPR, as we may need to expand the argument again. This way, we will not perform side-effects more the once. */ CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL); start_sequence (); /* Compute into TARGET. */ if (expand_sfix_optab (target, op0, builtin_optab)) { /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return target; } /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns). */ end_sequence (); /* Fall back to floating point rounding optab. */ fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn); /* For non-C99 targets we may end up without a fallback fndecl here if the user called __builtin_lfloor directly. In this case emit a call to the floor/ceil variants nevertheless. This should result in the best user experience for not full C99 targets. */ if (fallback_fndecl == NULL_TREE) { tree fntype; const char *name = NULL; switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_ICEIL: case BUILT_IN_LCEIL: case BUILT_IN_LLCEIL: name = "ceil"; break; case BUILT_IN_ICEILF: case BUILT_IN_LCEILF: case BUILT_IN_LLCEILF: name = "ceilf"; break; case BUILT_IN_ICEILL: case BUILT_IN_LCEILL: case BUILT_IN_LLCEILL: name = "ceill"; break; case BUILT_IN_IFLOOR: case BUILT_IN_LFLOOR: case BUILT_IN_LLFLOOR: name = "floor"; break; case BUILT_IN_IFLOORF: case BUILT_IN_LFLOORF: case BUILT_IN_LLFLOORF: name = "floorf"; break; case BUILT_IN_IFLOORL: case BUILT_IN_LFLOORL: case BUILT_IN_LLFLOORL: name = "floorl"; break; default: gcc_unreachable (); } fntype = build_function_type_list (TREE_TYPE (arg), TREE_TYPE (arg), NULL_TREE); fallback_fndecl = build_fn_decl (name, fntype); } exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg); tmp = expand_normal (exp); tmp = maybe_emit_group_store (tmp, TREE_TYPE (exp)); /* Truncate the result of floating point optab to integer via expand_fix (). */ target = gen_reg_rtx (mode); expand_fix (target, tmp, 0); return target; } /* Expand a call to one of the builtin math functions doing integer conversion (lrint). Return 0 if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_int_roundingfn_2 (tree exp, rtx target) { convert_optab builtin_optab; rtx op0, insns; tree fndecl = get_callee_fndecl (exp); tree arg; enum machine_mode mode; enum built_in_function fallback_fn = BUILT_IN_NONE; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) gcc_unreachable (); arg = CALL_EXPR_ARG (exp, 0); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_IRINT): fallback_fn = BUILT_IN_LRINT; /* FALLTHRU */ CASE_FLT_FN (BUILT_IN_LRINT): CASE_FLT_FN (BUILT_IN_LLRINT): builtin_optab = lrint_optab; break; CASE_FLT_FN (BUILT_IN_IROUND): fallback_fn = BUILT_IN_LROUND; /* FALLTHRU */ CASE_FLT_FN (BUILT_IN_LROUND): CASE_FLT_FN (BUILT_IN_LLROUND): builtin_optab = lround_optab; break; default: gcc_unreachable (); } /* There's no easy way to detect the case we need to set EDOM. */ if (flag_errno_math && fallback_fn == BUILT_IN_NONE) return NULL_RTX; /* Make a suitable register to place result in. */ mode = TYPE_MODE (TREE_TYPE (exp)); /* There's no easy way to detect the case we need to set EDOM. */ if (!flag_errno_math) { rtx result = gen_reg_rtx (mode); /* Wrap the computation of the argument in a SAVE_EXPR, as we may need to expand the argument again. This way, we will not perform side-effects more the once. */ CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL); start_sequence (); if (expand_sfix_optab (result, op0, builtin_optab)) { /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insn (insns); return result; } /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and call to the library function with the stabilized argument list. */ end_sequence (); } if (fallback_fn != BUILT_IN_NONE) { /* Fall back to rounding to long int. Use implicit_p 0 - for non-C99 targets, (int) round (x) should never be transformed into BUILT_IN_IROUND and if __builtin_iround is called directly, emit a call to lround in the hope that the target provides at least some C99 functions. This should result in the best user experience for not full C99 targets. */ tree fallback_fndecl = mathfn_built_in_1 (TREE_TYPE (arg), fallback_fn, 0); exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg); target = expand_call (exp, NULL_RTX, target == const0_rtx); target = maybe_emit_group_store (target, TREE_TYPE (exp)); return convert_to_mode (mode, target, 0); } return expand_call (exp, target, target == const0_rtx); } /* Expand a call to the powi built-in mathematical function. Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_powi (tree exp, rtx target) { tree arg0, arg1; rtx op0, op1; enum machine_mode mode; enum machine_mode mode2; if (! validate_arglist (exp, REAL_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); mode = TYPE_MODE (TREE_TYPE (exp)); /* Emit a libcall to libgcc. */ /* Mode of the 2nd argument must match that of an int. */ mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0); if (target == NULL_RTX) target = gen_reg_rtx (mode); op0 = expand_expr (arg0, NULL_RTX, mode, EXPAND_NORMAL); if (GET_MODE (op0) != mode) op0 = convert_to_mode (mode, op0, 0); op1 = expand_expr (arg1, NULL_RTX, mode2, EXPAND_NORMAL); if (GET_MODE (op1) != mode2) op1 = convert_to_mode (mode2, op1, 0); target = emit_library_call_value (optab_libfunc (powi_optab, mode), target, LCT_CONST, mode, 2, op0, mode, op1, mode2); return target; } /* Expand expression EXP which is a call to the strlen builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strlen (tree exp, rtx target, enum machine_mode target_mode) { if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; else { struct expand_operand ops[4]; rtx pat; tree len; tree src = CALL_EXPR_ARG (exp, 0); rtx src_reg, before_strlen; enum machine_mode insn_mode = target_mode; enum insn_code icode = CODE_FOR_nothing; unsigned int align; /* If the length can be computed at compile-time, return it. */ len = c_strlen (src, 0); if (len) return expand_expr (len, target, target_mode, EXPAND_NORMAL); /* If the length can be computed at compile-time and is constant integer, but there are side-effects in src, evaluate src for side-effects, then return len. E.g. x = strlen (i++ ? "xfoo" + 1 : "bar"); can be optimized into: i++; x = 3; */ len = c_strlen (src, 1); if (len && TREE_CODE (len) == INTEGER_CST) { expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL); return expand_expr (len, target, target_mode, EXPAND_NORMAL); } align = get_pointer_alignment (src) / BITS_PER_UNIT; /* If SRC is not a pointer type, don't do this operation inline. */ if (align == 0) return NULL_RTX; /* Bail out if we can't compute strlen in the right mode. */ while (insn_mode != VOIDmode) { icode = optab_handler (strlen_optab, insn_mode); if (icode != CODE_FOR_nothing) break; insn_mode = GET_MODE_WIDER_MODE (insn_mode); } if (insn_mode == VOIDmode) return NULL_RTX; /* Make a place to hold the source address. We will not expand the actual source until we are sure that the expansion will not fail -- there are trees that cannot be expanded twice. */ src_reg = gen_reg_rtx (Pmode); /* Mark the beginning of the strlen sequence so we can emit the source operand later. */ before_strlen = get_last_insn (); create_output_operand (&ops[0], target, insn_mode); create_fixed_operand (&ops[1], gen_rtx_MEM (BLKmode, src_reg)); create_integer_operand (&ops[2], 0); create_integer_operand (&ops[3], align); if (!maybe_expand_insn (icode, 4, ops)) return NULL_RTX; /* Now that we are assured of success, expand the source. */ start_sequence (); pat = expand_expr (src, src_reg, Pmode, EXPAND_NORMAL); if (pat != src_reg) { #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE (pat) != Pmode) pat = convert_to_mode (Pmode, pat, POINTERS_EXTEND_UNSIGNED); #endif emit_move_insn (src_reg, pat); } pat = get_insns (); end_sequence (); if (before_strlen) emit_insn_after (pat, before_strlen); else emit_insn_before (pat, get_insns ()); /* Return the value in the proper mode for this function. */ if (GET_MODE (ops[0].value) == target_mode) target = ops[0].value; else if (target != 0) convert_move (target, ops[0].value, 0); else target = convert_to_mode (target_mode, ops[0].value, 0); return target; } } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ static rtx builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset, enum machine_mode mode) { const char *str = (const char *) data; gcc_assert (offset >= 0 && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode) <= strlen (str) + 1)); return c_readstr (str + offset, mode); } /* Expand a call EXP to the memcpy builtin. Return NULL_RTX if we failed, the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_memcpy (tree exp, rtx target) { if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; else { tree dest = CALL_EXPR_ARG (exp, 0); tree src = CALL_EXPR_ARG (exp, 1); tree len = CALL_EXPR_ARG (exp, 2); const char *src_str; unsigned int src_align = get_pointer_alignment (src); unsigned int dest_align = get_pointer_alignment (dest); rtx dest_mem, src_mem, dest_addr, len_rtx; HOST_WIDE_INT expected_size = -1; unsigned int expected_align = 0; /* If DEST is not a pointer type, call the normal function. */ if (dest_align == 0) return NULL_RTX; /* If either SRC is not a pointer type, don't do this operation in-line. */ if (src_align == 0) return NULL_RTX; if (currently_expanding_gimple_stmt) stringop_block_profile (currently_expanding_gimple_stmt, &expected_align, &expected_size); if (expected_align < dest_align) expected_align = dest_align; dest_mem = get_memory_rtx (dest, len); set_mem_align (dest_mem, dest_align); len_rtx = expand_normal (len); src_str = c_getstr (src); /* If SRC is a string constant and block move would be done by pieces, we can avoid loading the string from memory and only stored the computed constants. */ if (src_str && CONST_INT_P (len_rtx) && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1 && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str, CONST_CAST (char *, src_str), dest_align, false)) { dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx), builtin_memcpy_read_str, CONST_CAST (char *, src_str), dest_align, false, 0); dest_mem = force_operand (XEXP (dest_mem, 0), target); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } src_mem = get_memory_rtx (src, len); set_mem_align (src_mem, src_align); /* Copy word part most expediently. */ dest_addr = emit_block_move_hints (dest_mem, src_mem, len_rtx, CALL_EXPR_TAILCALL (exp) ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL, expected_align, expected_size); if (dest_addr == 0) { dest_addr = force_operand (XEXP (dest_mem, 0), target); dest_addr = convert_memory_address (ptr_mode, dest_addr); } return dest_addr; } } /* Expand a call EXP to the mempcpy builtin. Return NULL_RTX if we failed; the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). If ENDP is 0 return the destination pointer, if ENDP is 1 return the end pointer ala mempcpy, and if ENDP is 2 return the end pointer minus one ala stpcpy. */ static rtx expand_builtin_mempcpy (tree exp, rtx target, enum machine_mode mode) { if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; else { tree dest = CALL_EXPR_ARG (exp, 0); tree src = CALL_EXPR_ARG (exp, 1); tree len = CALL_EXPR_ARG (exp, 2); return expand_builtin_mempcpy_args (dest, src, len, target, mode, /*endp=*/ 1); } } /* Helper function to do the actual work for expand_builtin_mempcpy. The arguments to the builtin_mempcpy call DEST, SRC, and LEN are broken out so that this can also be called without constructing an actual CALL_EXPR. The other arguments and return value are the same as for expand_builtin_mempcpy. */ static rtx expand_builtin_mempcpy_args (tree dest, tree src, tree len, rtx target, enum machine_mode mode, int endp) { /* If return value is ignored, transform mempcpy into memcpy. */ if (target == const0_rtx && builtin_decl_implicit_p (BUILT_IN_MEMCPY)) { tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY); tree result = build_call_nofold_loc (UNKNOWN_LOCATION, fn, 3, dest, src, len); return expand_expr (result, target, mode, EXPAND_NORMAL); } else { const char *src_str; unsigned int src_align = get_pointer_alignment (src); unsigned int dest_align = get_pointer_alignment (dest); rtx dest_mem, src_mem, len_rtx; /* If either SRC or DEST is not a pointer type, don't do this operation in-line. */ if (dest_align == 0 || src_align == 0) return NULL_RTX; /* If LEN is not constant, call the normal function. */ if (! host_integerp (len, 1)) return NULL_RTX; len_rtx = expand_normal (len); src_str = c_getstr (src); /* If SRC is a string constant and block move would be done by pieces, we can avoid loading the string from memory and only stored the computed constants. */ if (src_str && CONST_INT_P (len_rtx) && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1 && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str, CONST_CAST (char *, src_str), dest_align, false)) { dest_mem = get_memory_rtx (dest, len); set_mem_align (dest_mem, dest_align); dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx), builtin_memcpy_read_str, CONST_CAST (char *, src_str), dest_align, false, endp); dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } if (CONST_INT_P (len_rtx) && can_move_by_pieces (INTVAL (len_rtx), MIN (dest_align, src_align))) { dest_mem = get_memory_rtx (dest, len); set_mem_align (dest_mem, dest_align); src_mem = get_memory_rtx (src, len); set_mem_align (src_mem, src_align); dest_mem = move_by_pieces (dest_mem, src_mem, INTVAL (len_rtx), MIN (dest_align, src_align), endp); dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } return NULL_RTX; } } #ifndef HAVE_movstr # define HAVE_movstr 0 # define CODE_FOR_movstr CODE_FOR_nothing #endif /* Expand into a movstr instruction, if one is available. Return NULL_RTX if we failed, the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. If ENDP is 0 return the destination pointer, if ENDP is 1 return the end pointer ala mempcpy, and if ENDP is 2 return the end pointer minus one ala stpcpy. */ static rtx expand_movstr (tree dest, tree src, rtx target, int endp) { struct expand_operand ops[3]; rtx dest_mem; rtx src_mem; if (!HAVE_movstr) return NULL_RTX; dest_mem = get_memory_rtx (dest, NULL); src_mem = get_memory_rtx (src, NULL); if (!endp) { target = force_reg (Pmode, XEXP (dest_mem, 0)); dest_mem = replace_equiv_address (dest_mem, target); } create_output_operand (&ops[0], endp ? target : NULL_RTX, Pmode); create_fixed_operand (&ops[1], dest_mem); create_fixed_operand (&ops[2], src_mem); expand_insn (CODE_FOR_movstr, 3, ops); if (endp && target != const0_rtx) { target = ops[0].value; /* movstr is supposed to set end to the address of the NUL terminator. If the caller requested a mempcpy-like return value, adjust it. */ if (endp == 1) { rtx tem = plus_constant (GET_MODE (target), gen_lowpart (GET_MODE (target), target), 1); emit_move_insn (target, force_operand (tem, NULL_RTX)); } } return target; } /* Expand expression EXP, which is a call to the strcpy builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_strcpy (tree exp, rtx target) { if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) { tree dest = CALL_EXPR_ARG (exp, 0); tree src = CALL_EXPR_ARG (exp, 1); return expand_builtin_strcpy_args (dest, src, target); } return NULL_RTX; } /* Helper function to do the actual work for expand_builtin_strcpy. The arguments to the builtin_strcpy call DEST and SRC are broken out so that this can also be called without constructing an actual CALL_EXPR. The other arguments and return value are the same as for expand_builtin_strcpy. */ static rtx expand_builtin_strcpy_args (tree dest, tree src, rtx target) { return expand_movstr (dest, src, target, /*endp=*/0); } /* Expand a call EXP to the stpcpy builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_stpcpy (tree exp, rtx target, enum machine_mode mode) { tree dst, src; location_t loc = EXPR_LOCATION (exp); if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; dst = CALL_EXPR_ARG (exp, 0); src = CALL_EXPR_ARG (exp, 1); /* If return value is ignored, transform stpcpy into strcpy. */ if (target == const0_rtx && builtin_decl_implicit (BUILT_IN_STRCPY)) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); tree result = build_call_nofold_loc (loc, fn, 2, dst, src); return expand_expr (result, target, mode, EXPAND_NORMAL); } else { tree len, lenp1; rtx ret; /* Ensure we get an actual string whose length can be evaluated at compile-time, not an expression containing a string. This is because the latter will potentially produce pessimized code when used to produce the return value. */ if (! c_getstr (src) || ! (len = c_strlen (src, 0))) return expand_movstr (dst, src, target, /*endp=*/2); lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1)); ret = expand_builtin_mempcpy_args (dst, src, lenp1, target, mode, /*endp=*/2); if (ret) return ret; if (TREE_CODE (len) == INTEGER_CST) { rtx len_rtx = expand_normal (len); if (CONST_INT_P (len_rtx)) { ret = expand_builtin_strcpy_args (dst, src, target); if (ret) { if (! target) { if (mode != VOIDmode) target = gen_reg_rtx (mode); else target = gen_reg_rtx (GET_MODE (ret)); } if (GET_MODE (target) != GET_MODE (ret)) ret = gen_lowpart (GET_MODE (target), ret); ret = plus_constant (GET_MODE (ret), ret, INTVAL (len_rtx)); ret = emit_move_insn (target, force_operand (ret, NULL_RTX)); gcc_assert (ret); return target; } } } return expand_movstr (dst, src, target, /*endp=*/2); } } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ rtx builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset, enum machine_mode mode) { const char *str = (const char *) data; if ((unsigned HOST_WIDE_INT) offset > strlen (str)) return const0_rtx; return c_readstr (str + offset, mode); } /* Expand expression EXP, which is a call to the strncpy builtin. Return NULL_RTX if we failed the caller should emit a normal call. */ static rtx expand_builtin_strncpy (tree exp, rtx target) { location_t loc = EXPR_LOCATION (exp); if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) { tree dest = CALL_EXPR_ARG (exp, 0); tree src = CALL_EXPR_ARG (exp, 1); tree len = CALL_EXPR_ARG (exp, 2); tree slen = c_strlen (src, 1); /* We must be passed a constant len and src parameter. */ if (!host_integerp (len, 1) || !slen || !host_integerp (slen, 1)) return NULL_RTX; slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1)); /* We're required to pad with trailing zeros if the requested len is greater than strlen(s2)+1. In that case try to use store_by_pieces, if it fails, punt. */ if (tree_int_cst_lt (slen, len)) { unsigned int dest_align = get_pointer_alignment (dest); const char *p = c_getstr (src); rtx dest_mem; if (!p || dest_align == 0 || !host_integerp (len, 1) || !can_store_by_pieces (tree_low_cst (len, 1), builtin_strncpy_read_str, CONST_CAST (char *, p), dest_align, false)) return NULL_RTX; dest_mem = get_memory_rtx (dest, len); store_by_pieces (dest_mem, tree_low_cst (len, 1), builtin_strncpy_read_str, CONST_CAST (char *, p), dest_align, false, 0); dest_mem = force_operand (XEXP (dest_mem, 0), target); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } } return NULL_RTX; } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ rtx builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED, enum machine_mode mode) { const char *c = (const char *) data; char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode)); memset (p, *c, GET_MODE_SIZE (mode)); return c_readstr (p, mode); } /* Callback routine for store_by_pieces. Return the RTL of a register containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned char value given in the RTL register data. For example, if mode is 4 bytes wide, return the RTL for 0x01010101*data. */ static rtx builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED, enum machine_mode mode) { rtx target, coeff; size_t size; char *p; size = GET_MODE_SIZE (mode); if (size == 1) return (rtx) data; p = XALLOCAVEC (char, size); memset (p, 1, size); coeff = c_readstr (p, mode); target = convert_to_mode (mode, (rtx) data, 1); target = expand_mult (mode, target, coeff, NULL_RTX, 1); return force_reg (mode, target); } /* Expand expression EXP, which is a call to the memset builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_memset (tree exp, rtx target, enum machine_mode mode) { if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; else { tree dest = CALL_EXPR_ARG (exp, 0); tree val = CALL_EXPR_ARG (exp, 1); tree len = CALL_EXPR_ARG (exp, 2); return expand_builtin_memset_args (dest, val, len, target, mode, exp); } } /* Helper function to do the actual work for expand_builtin_memset. The arguments to the builtin_memset call DEST, VAL, and LEN are broken out so that this can also be called without constructing an actual CALL_EXPR. The other arguments and return value are the same as for expand_builtin_memset. */ static rtx expand_builtin_memset_args (tree dest, tree val, tree len, rtx target, enum machine_mode mode, tree orig_exp) { tree fndecl, fn; enum built_in_function fcode; enum machine_mode val_mode; char c; unsigned int dest_align; rtx dest_mem, dest_addr, len_rtx; HOST_WIDE_INT expected_size = -1; unsigned int expected_align = 0; dest_align = get_pointer_alignment (dest); /* If DEST is not a pointer type, don't do this operation in-line. */ if (dest_align == 0) return NULL_RTX; if (currently_expanding_gimple_stmt) stringop_block_profile (currently_expanding_gimple_stmt, &expected_align, &expected_size); if (expected_align < dest_align) expected_align = dest_align; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { /* Evaluate and ignore VAL in case it has side-effects. */ expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL); return expand_expr (dest, target, mode, EXPAND_NORMAL); } /* Stabilize the arguments in case we fail. */ dest = builtin_save_expr (dest); val = builtin_save_expr (val); len = builtin_save_expr (len); len_rtx = expand_normal (len); dest_mem = get_memory_rtx (dest, len); val_mode = TYPE_MODE (unsigned_char_type_node); if (TREE_CODE (val) != INTEGER_CST) { rtx val_rtx; val_rtx = expand_normal (val); val_rtx = convert_to_mode (val_mode, val_rtx, 0); /* Assume that we can memset by pieces if we can store * the coefficients by pieces (in the required modes). * We can't pass builtin_memset_gen_str as that emits RTL. */ c = 1; if (host_integerp (len, 1) && can_store_by_pieces (tree_low_cst (len, 1), builtin_memset_read_str, &c, dest_align, true)) { val_rtx = force_reg (val_mode, val_rtx); store_by_pieces (dest_mem, tree_low_cst (len, 1), builtin_memset_gen_str, val_rtx, dest_align, true, 0); } else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx, dest_align, expected_align, expected_size)) goto do_libcall; dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } if (target_char_cast (val, &c)) goto do_libcall; if (c) { if (host_integerp (len, 1) && can_store_by_pieces (tree_low_cst (len, 1), builtin_memset_read_str, &c, dest_align, true)) store_by_pieces (dest_mem, tree_low_cst (len, 1), builtin_memset_read_str, &c, dest_align, true, 0); else if (!set_storage_via_setmem (dest_mem, len_rtx, gen_int_mode (c, val_mode), dest_align, expected_align, expected_size)) goto do_libcall; dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX); dest_mem = convert_memory_address (ptr_mode, dest_mem); return dest_mem; } set_mem_align (dest_mem, dest_align); dest_addr = clear_storage_hints (dest_mem, len_rtx, CALL_EXPR_TAILCALL (orig_exp) ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL, expected_align, expected_size); if (dest_addr == 0) { dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX); dest_addr = convert_memory_address (ptr_mode, dest_addr); } return dest_addr; do_libcall: fndecl = get_callee_fndecl (orig_exp); fcode = DECL_FUNCTION_CODE (fndecl); if (fcode == BUILT_IN_MEMSET) fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 3, dest, val, len); else if (fcode == BUILT_IN_BZERO) fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 2, dest, len); else gcc_unreachable (); gcc_assert (TREE_CODE (fn) == CALL_EXPR); CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp); return expand_call (fn, target, target == const0_rtx); } /* Expand expression EXP, which is a call to the bzero builtin. Return NULL_RTX if we failed the caller should emit a normal call. */ static rtx expand_builtin_bzero (tree exp) { tree dest, size; location_t loc = EXPR_LOCATION (exp); if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; dest = CALL_EXPR_ARG (exp, 0); size = CALL_EXPR_ARG (exp, 1); /* New argument list transforming bzero(ptr x, int y) to memset(ptr x, int 0, size_t y). This is done this way so that if it isn't expanded inline, we fallback to calling bzero instead of memset. */ return expand_builtin_memset_args (dest, integer_zero_node, fold_convert_loc (loc, size_type_node, size), const0_rtx, VOIDmode, exp); } /* Expand expression EXP, which is a call to the memcmp built-in function. Return NULL_RTX if we failed and the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE, if that's convenient). */ static rtx expand_builtin_memcmp (tree exp, ATTRIBUTE_UNUSED rtx target, ATTRIBUTE_UNUSED enum machine_mode mode) { location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp); if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; /* Note: The cmpstrnsi pattern, if it exists, is not suitable for implementing memcmp because it will stop if it encounters two zero bytes. */ #if defined HAVE_cmpmemsi { rtx arg1_rtx, arg2_rtx, arg3_rtx; rtx result; rtx insn; tree arg1 = CALL_EXPR_ARG (exp, 0); tree arg2 = CALL_EXPR_ARG (exp, 1); tree len = CALL_EXPR_ARG (exp, 2); unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT; unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT; enum machine_mode insn_mode; if (HAVE_cmpmemsi) insn_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode; else return NULL_RTX; /* If we don't have POINTER_TYPE, call the function. */ if (arg1_align == 0 || arg2_align == 0) return NULL_RTX; /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && REG_P (result) && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); arg1_rtx = get_memory_rtx (arg1, len); arg2_rtx = get_memory_rtx (arg2, len); arg3_rtx = expand_normal (fold_convert_loc (loc, sizetype, len)); /* Set MEM_SIZE as appropriate. */ if (CONST_INT_P (arg3_rtx)) { set_mem_size (arg1_rtx, INTVAL (arg3_rtx)); set_mem_size (arg2_rtx, INTVAL (arg3_rtx)); } if (HAVE_cmpmemsi) insn = gen_cmpmemsi (result, arg1_rtx, arg2_rtx, arg3_rtx, GEN_INT (MIN (arg1_align, arg2_align))); else gcc_unreachable (); if (insn) emit_insn (insn); else emit_library_call_value (memcmp_libfunc, result, LCT_PURE, TYPE_MODE (integer_type_node), 3, XEXP (arg1_rtx, 0), Pmode, XEXP (arg2_rtx, 0), Pmode, convert_to_mode (TYPE_MODE (sizetype), arg3_rtx, TYPE_UNSIGNED (sizetype)), TYPE_MODE (sizetype)); /* Return the value in the proper mode for this function. */ mode = TYPE_MODE (TREE_TYPE (exp)); if (GET_MODE (result) == mode) return result; else if (target != 0) { convert_move (target, result, 0); return target; } else return convert_to_mode (mode, result, 0); } #endif /* HAVE_cmpmemsi. */ return NULL_RTX; } /* Expand expression EXP, which is a call to the strcmp builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strcmp (tree exp, ATTRIBUTE_UNUSED rtx target) { if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; #if defined HAVE_cmpstrsi || defined HAVE_cmpstrnsi if (direct_optab_handler (cmpstr_optab, SImode) != CODE_FOR_nothing || direct_optab_handler (cmpstrn_optab, SImode) != CODE_FOR_nothing) { rtx arg1_rtx, arg2_rtx; rtx result, insn = NULL_RTX; tree fndecl, fn; tree arg1 = CALL_EXPR_ARG (exp, 0); tree arg2 = CALL_EXPR_ARG (exp, 1); unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT; unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT; /* If we don't have POINTER_TYPE, call the function. */ if (arg1_align == 0 || arg2_align == 0) return NULL_RTX; /* Stabilize the arguments in case gen_cmpstr(n)si fail. */ arg1 = builtin_save_expr (arg1); arg2 = builtin_save_expr (arg2); arg1_rtx = get_memory_rtx (arg1, NULL); arg2_rtx = get_memory_rtx (arg2, NULL); #ifdef HAVE_cmpstrsi /* Try to call cmpstrsi. */ if (HAVE_cmpstrsi) { enum machine_mode insn_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode; /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && REG_P (result) && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx, GEN_INT (MIN (arg1_align, arg2_align))); } #endif #ifdef HAVE_cmpstrnsi /* Try to determine at least one length and call cmpstrnsi. */ if (!insn && HAVE_cmpstrnsi) { tree len; rtx arg3_rtx; enum machine_mode insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode; tree len1 = c_strlen (arg1, 1); tree len2 = c_strlen (arg2, 1); if (len1) len1 = size_binop (PLUS_EXPR, ssize_int (1), len1); if (len2) len2 = size_binop (PLUS_EXPR, ssize_int (1), len2); /* If we don't have a constant length for the first, use the length of the second, if we know it. We don't require a constant for this case; some cost analysis could be done if both are available but neither is constant. For now, assume they're equally cheap, unless one has side effects. If both strings have constant lengths, use the smaller. */ if (!len1) len = len2; else if (!len2) len = len1; else if (TREE_SIDE_EFFECTS (len1)) len = len2; else if (TREE_SIDE_EFFECTS (len2)) len = len1; else if (TREE_CODE (len1) != INTEGER_CST) len = len2; else if (TREE_CODE (len2) != INTEGER_CST) len = len1; else if (tree_int_cst_lt (len1, len2)) len = len1; else len = len2; /* If both arguments have side effects, we cannot optimize. */ if (!len || TREE_SIDE_EFFECTS (len)) goto do_libcall; arg3_rtx = expand_normal (len); /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && REG_P (result) && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx, GEN_INT (MIN (arg1_align, arg2_align))); } #endif if (insn) { enum machine_mode mode; emit_insn (insn); /* Return the value in the proper mode for this function. */ mode = TYPE_MODE (TREE_TYPE (exp)); if (GET_MODE (result) == mode) return result; if (target == 0) return convert_to_mode (mode, result, 0); convert_move (target, result, 0); return target; } /* Expand the library call ourselves using a stabilized argument list to avoid re-evaluating the function's arguments twice. */ #ifdef HAVE_cmpstrnsi do_libcall: #endif fndecl = get_callee_fndecl (exp); fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 2, arg1, arg2); gcc_assert (TREE_CODE (fn) == CALL_EXPR); CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp); return expand_call (fn, target, target == const0_rtx); } #endif return NULL_RTX; } /* Expand expression EXP, which is a call to the strncmp builtin. Return NULL_RTX if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strncmp (tree exp, ATTRIBUTE_UNUSED rtx target, ATTRIBUTE_UNUSED enum machine_mode mode) { location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp); if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; /* If c_strlen can determine an expression for one of the string lengths, and it doesn't have side effects, then emit cmpstrnsi using length MIN(strlen(string)+1, arg3). */ #ifdef HAVE_cmpstrnsi if (HAVE_cmpstrnsi) { tree len, len1, len2; rtx arg1_rtx, arg2_rtx, arg3_rtx; rtx result, insn; tree fndecl, fn; tree arg1 = CALL_EXPR_ARG (exp, 0); tree arg2 = CALL_EXPR_ARG (exp, 1); tree arg3 = CALL_EXPR_ARG (exp, 2); unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT; unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT; enum machine_mode insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode; len1 = c_strlen (arg1, 1); len2 = c_strlen (arg2, 1); if (len1) len1 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len1); if (len2) len2 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len2); /* If we don't have a constant length for the first, use the length of the second, if we know it. We don't require a constant for this case; some cost analysis could be done if both are available but neither is constant. For now, assume they're equally cheap, unless one has side effects. If both strings have constant lengths, use the smaller. */ if (!len1) len = len2; else if (!len2) len = len1; else if (TREE_SIDE_EFFECTS (len1)) len = len2; else if (TREE_SIDE_EFFECTS (len2)) len = len1; else if (TREE_CODE (len1) != INTEGER_CST) len = len2; else if (TREE_CODE (len2) != INTEGER_CST) len = len1; else if (tree_int_cst_lt (len1, len2)) len = len1; else len = len2; /* If both arguments have side effects, we cannot optimize. */ if (!len || TREE_SIDE_EFFECTS (len)) return NULL_RTX; /* The actual new length parameter is MIN(len,arg3). */ len = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (len), len, fold_convert_loc (loc, TREE_TYPE (len), arg3)); /* If we don't have POINTER_TYPE, call the function. */ if (arg1_align == 0 || arg2_align == 0) return NULL_RTX; /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && REG_P (result) && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); /* Stabilize the arguments in case gen_cmpstrnsi fails. */ arg1 = builtin_save_expr (arg1); arg2 = builtin_save_expr (arg2); len = builtin_save_expr (len); arg1_rtx = get_memory_rtx (arg1, len); arg2_rtx = get_memory_rtx (arg2, len); arg3_rtx = expand_normal (len); insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx, GEN_INT (MIN (arg1_align, arg2_align))); if (insn) { emit_insn (insn); /* Return the value in the proper mode for this function. */ mode = TYPE_MODE (TREE_TYPE (exp)); if (GET_MODE (result) == mode) return result; if (target == 0) return convert_to_mode (mode, result, 0); convert_move (target, result, 0); return target; } /* Expand the library call ourselves using a stabilized argument list to avoid re-evaluating the function's arguments twice. */ fndecl = get_callee_fndecl (exp); fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 3, arg1, arg2, len); gcc_assert (TREE_CODE (fn) == CALL_EXPR); CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp); return expand_call (fn, target, target == const0_rtx); } #endif return NULL_RTX; } /* Expand a call to __builtin_saveregs, generating the result in TARGET, if that's convenient. */ rtx expand_builtin_saveregs (void) { rtx val, seq; /* Don't do __builtin_saveregs more than once in a function. Save the result of the first call and reuse it. */ if (saveregs_value != 0) return saveregs_value; /* When this function is called, it means that registers must be saved on entry to this function. So we migrate the call to the first insn of this function. */ start_sequence (); /* Do whatever the machine needs done in this case. */ val = targetm.calls.expand_builtin_saveregs (); seq = get_insns (); end_sequence (); saveregs_value = val; /* Put the insns after the NOTE that starts the function. If this is inside a start_sequence, make the outer-level insn chain current, so the code is placed at the start of the function. */ push_topmost_sequence (); emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); return val; } /* Expand a call to __builtin_next_arg. */ static rtx expand_builtin_next_arg (void) { /* Checking arguments is already done in fold_builtin_next_arg that must be called before this function. */ return expand_binop (ptr_mode, add_optab, crtl->args.internal_arg_pointer, crtl->args.arg_offset_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); } /* Make it easier for the backends by protecting the valist argument from multiple evaluations. */ static tree stabilize_va_list_loc (location_t loc, tree valist, int needs_lvalue) { tree vatype = targetm.canonical_va_list_type (TREE_TYPE (valist)); /* The current way of determining the type of valist is completely bogus. We should have the information on the va builtin instead. */ if (!vatype) vatype = targetm.fn_abi_va_list (cfun->decl); if (TREE_CODE (vatype) == ARRAY_TYPE) { if (TREE_SIDE_EFFECTS (valist)) valist = save_expr (valist); /* For this case, the backends will be expecting a pointer to vatype, but it's possible we've actually been given an array (an actual TARGET_CANONICAL_VA_LIST_TYPE (valist)). So fix it. */ if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE) { tree p1 = build_pointer_type (TREE_TYPE (vatype)); valist = build_fold_addr_expr_with_type_loc (loc, valist, p1); } } else { tree pt = build_pointer_type (vatype); if (! needs_lvalue) { if (! TREE_SIDE_EFFECTS (valist)) return valist; valist = fold_build1_loc (loc, ADDR_EXPR, pt, valist); TREE_SIDE_EFFECTS (valist) = 1; } if (TREE_SIDE_EFFECTS (valist)) valist = save_expr (valist); valist = fold_build2_loc (loc, MEM_REF, vatype, valist, build_int_cst (pt, 0)); } return valist; } /* The "standard" definition of va_list is void*. */ tree std_build_builtin_va_list (void) { return ptr_type_node; } /* The "standard" abi va_list is va_list_type_node. */ tree std_fn_abi_va_list (tree fndecl ATTRIBUTE_UNUSED) { return va_list_type_node; } /* The "standard" type of va_list is va_list_type_node. */ tree std_canonical_va_list_type (tree type) { tree wtype, htype; if (INDIRECT_REF_P (type)) type = TREE_TYPE (type); else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type))) type = TREE_TYPE (type); wtype = va_list_type_node; htype = type; /* Treat structure va_list types. */ if (TREE_CODE (wtype) == RECORD_TYPE && POINTER_TYPE_P (htype)) htype = TREE_TYPE (htype); else if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return va_list_type_node; return NULL_TREE; } /* The "standard" implementation of va_start: just assign `nextarg' to the variable. */ void std_expand_builtin_va_start (tree valist, rtx nextarg) { rtx va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE); convert_move (va_r, nextarg, 0); } /* Expand EXP, a call to __builtin_va_start. */ static rtx expand_builtin_va_start (tree exp) { rtx nextarg; tree valist; location_t loc = EXPR_LOCATION (exp); if (call_expr_nargs (exp) < 2) { error_at (loc, "too few arguments to function %"); return const0_rtx; } if (fold_builtin_next_arg (exp, true)) return const0_rtx; nextarg = expand_builtin_next_arg (); valist = stabilize_va_list_loc (loc, CALL_EXPR_ARG (exp, 0), 1); if (targetm.expand_builtin_va_start) targetm.expand_builtin_va_start (valist, nextarg); else std_expand_builtin_va_start (valist, nextarg); return const0_rtx; } /* The "standard" implementation of va_arg: read the value from the current (padded) address and increment by the (padded) size. */ tree std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { tree addr, t, type_size, rounded_size, valist_tmp; unsigned HOST_WIDE_INT align, boundary; bool indirect; #ifdef ARGS_GROW_DOWNWARD /* All of the alignment and movement below is for args-grow-up machines. As of 2004, there are only 3 ARGS_GROW_DOWNWARD targets, and they all implement their own specialized gimplify_va_arg_expr routines. */ gcc_unreachable (); #endif indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect) type = build_pointer_type (type); align = PARM_BOUNDARY / BITS_PER_UNIT; boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type); /* When we align parameter on stack for caller, if the parameter alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee here with caller. */ if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) boundary = MAX_SUPPORTED_STACK_ALIGNMENT; boundary /= BITS_PER_UNIT; /* Hoist the valist value into a temporary for the moment. */ valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL); /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually requires greater alignment, we must perform dynamic alignment. */ if (boundary > align && !integer_zerop (TYPE_SIZE (type))) { t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp, fold_build_pointer_plus_hwi (valist_tmp, boundary - 1)); gimplify_and_add (t, pre_p); t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp, fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist), valist_tmp, build_int_cst (TREE_TYPE (valist), -boundary))); gimplify_and_add (t, pre_p); } else boundary = align; /* If the actual alignment is less than the alignment of the type, adjust the type accordingly so that we don't assume strict alignment when dereferencing the pointer. */ boundary *= BITS_PER_UNIT; if (boundary < TYPE_ALIGN (type)) { type = build_variant_type_copy (type); TYPE_ALIGN (type) = boundary; } /* Compute the rounded size of the type. */ type_size = size_in_bytes (type); rounded_size = round_up (type_size, align); /* Reduce rounded_size so it's sharable with the postqueue. */ gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue); /* Get AP. */ addr = valist_tmp; if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size)) { /* Small args are padded downward. */ t = fold_build2_loc (input_location, GT_EXPR, sizetype, rounded_size, size_int (align)); t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node, size_binop (MINUS_EXPR, rounded_size, type_size)); addr = fold_build_pointer_plus (addr, t); } /* Compute new value for AP. */ t = fold_build_pointer_plus (valist_tmp, rounded_size); t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t); gimplify_and_add (t, pre_p); addr = fold_convert (build_pointer_type (type), addr); if (indirect) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Build an indirect-ref expression over the given TREE, which represents a piece of a va_arg() expansion. */ tree build_va_arg_indirect_ref (tree addr) { addr = build_simple_mem_ref_loc (EXPR_LOCATION (addr), addr); if (flag_mudflap) /* Don't instrument va_arg INDIRECT_REF. */ mf_mark (addr); return addr; } /* Return a dummy expression of type TYPE in order to keep going after an error. */ static tree dummy_object (tree type) { tree t = build_int_cst (build_pointer_type (type), 0); return build2 (MEM_REF, type, t, t); } /* Gimplify __builtin_va_arg, aka VA_ARG_EXPR, which is not really a builtin function, but a very special sort of operator. */ enum gimplify_status gimplify_va_arg_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p) { tree promoted_type, have_va_type; tree valist = TREE_OPERAND (*expr_p, 0); tree type = TREE_TYPE (*expr_p); tree t; location_t loc = EXPR_LOCATION (*expr_p); /* Verify that valist is of the proper type. */ have_va_type = TREE_TYPE (valist); if (have_va_type == error_mark_node) return GS_ERROR; have_va_type = targetm.canonical_va_list_type (have_va_type); if (have_va_type == NULL_TREE) { error_at (loc, "first argument to % not of type %"); return GS_ERROR; } /* Generate a diagnostic for requesting data of a type that cannot be passed through `...' due to type promotion at the call site. */ if ((promoted_type = lang_hooks.types.type_promotes_to (type)) != type) { static bool gave_help; bool warned; /* Unfortunately, this is merely undefined, rather than a constraint violation, so we cannot make this an error. If this call is never executed, the program is still strictly conforming. */ warned = warning_at (loc, 0, "%qT is promoted to %qT when passed through %<...%>", type, promoted_type); if (!gave_help && warned) { gave_help = true; inform (loc, "(so you should pass %qT not %qT to %)", promoted_type, type); } /* We can, however, treat "undefined" any way we please. Call abort to encourage the user to fix the program. */ if (warned) inform (loc, "if this code is reached, the program will abort"); /* Before the abort, allow the evaluation of the va_list expression to exit or longjmp. */ gimplify_and_add (valist, pre_p); t = build_call_expr_loc (loc, builtin_decl_implicit (BUILT_IN_TRAP), 0); gimplify_and_add (t, pre_p); /* This is dead code, but go ahead and finish so that the mode of the result comes out right. */ *expr_p = dummy_object (type); return GS_ALL_DONE; } else { /* Make it easier for the backends by protecting the valist argument from multiple evaluations. */ if (TREE_CODE (have_va_type) == ARRAY_TYPE) { /* For this case, the backends will be expecting a pointer to TREE_TYPE (abi), but it's possible we've actually been given an array (an actual TARGET_FN_ABI_VA_LIST). So fix it. */ if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE) { tree p1 = build_pointer_type (TREE_TYPE (have_va_type)); valist = fold_convert_loc (loc, p1, build_fold_addr_expr_loc (loc, valist)); } gimplify_expr (&valist, pre_p, post_p, is_gimple_val, fb_rvalue); } else gimplify_expr (&valist, pre_p, post_p, is_gimple_min_lval, fb_lvalue); if (!targetm.gimplify_va_arg_expr) /* FIXME: Once most targets are converted we should merely assert this is non-null. */ return GS_ALL_DONE; *expr_p = targetm.gimplify_va_arg_expr (valist, type, pre_p, post_p); return GS_OK; } } /* Expand EXP, a call to __builtin_va_end. */ static rtx expand_builtin_va_end (tree exp) { tree valist = CALL_EXPR_ARG (exp, 0); /* Evaluate for side effects, if needed. I hate macros that don't do that. */ if (TREE_SIDE_EFFECTS (valist)) expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } /* Expand EXP, a call to __builtin_va_copy. We do this as a builtin rather than just as an assignment in stdarg.h because of the nastiness of array-type va_list types. */ static rtx expand_builtin_va_copy (tree exp) { tree dst, src, t; location_t loc = EXPR_LOCATION (exp); dst = CALL_EXPR_ARG (exp, 0); src = CALL_EXPR_ARG (exp, 1); dst = stabilize_va_list_loc (loc, dst, 1); src = stabilize_va_list_loc (loc, src, 0); gcc_assert (cfun != NULL && cfun->decl != NULL_TREE); if (TREE_CODE (targetm.fn_abi_va_list (cfun->decl)) != ARRAY_TYPE) { t = build2 (MODIFY_EXPR, targetm.fn_abi_va_list (cfun->decl), dst, src); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } else { rtx dstb, srcb, size; /* Evaluate to pointers. */ dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL); srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL); size = expand_expr (TYPE_SIZE_UNIT (targetm.fn_abi_va_list (cfun->decl)), NULL_RTX, VOIDmode, EXPAND_NORMAL); dstb = convert_memory_address (Pmode, dstb); srcb = convert_memory_address (Pmode, srcb); /* "Dereference" to BLKmode memories. */ dstb = gen_rtx_MEM (BLKmode, dstb); set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst)))); set_mem_align (dstb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl))); srcb = gen_rtx_MEM (BLKmode, srcb); set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src)))); set_mem_align (srcb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl))); /* Copy. */ emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL); } return const0_rtx; } /* Expand a call to one of the builtin functions __builtin_frame_address or __builtin_return_address. */ static rtx expand_builtin_frame_address (tree fndecl, tree exp) { /* The argument must be a nonnegative integer constant. It counts the number of frames to scan up the stack. The value is the return address saved in that frame. */ if (call_expr_nargs (exp) == 0) /* Warning about missing arg was already issued. */ return const0_rtx; else if (! host_integerp (CALL_EXPR_ARG (exp, 0), 1)) { if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) error ("invalid argument to %<__builtin_frame_address%>"); else error ("invalid argument to %<__builtin_return_address%>"); return const0_rtx; } else { rtx tem = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl), tree_low_cst (CALL_EXPR_ARG (exp, 0), 1)); /* Some ports cannot access arbitrary stack frames. */ if (tem == NULL) { if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) warning (0, "unsupported argument to %<__builtin_frame_address%>"); else warning (0, "unsupported argument to %<__builtin_return_address%>"); return const0_rtx; } /* For __builtin_frame_address, return what we've got. */ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) return tem; if (!REG_P (tem) && ! CONSTANT_P (tem)) tem = copy_addr_to_reg (tem); return tem; } } /* Expand EXP, a call to the alloca builtin. Return NULL_RTX if we failed and the caller should emit a normal call. CANNOT_ACCUMULATE is the same as for allocate_dynamic_stack_space. */ static rtx expand_builtin_alloca (tree exp, bool cannot_accumulate) { rtx op0; rtx result; bool valid_arglist; unsigned int align; bool alloca_with_align = (DECL_FUNCTION_CODE (get_callee_fndecl (exp)) == BUILT_IN_ALLOCA_WITH_ALIGN); /* Emit normal call if we use mudflap. */ if (flag_mudflap) return NULL_RTX; valid_arglist = (alloca_with_align ? validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE) : validate_arglist (exp, INTEGER_TYPE, VOID_TYPE)); if (!valid_arglist) return NULL_RTX; /* Compute the argument. */ op0 = expand_normal (CALL_EXPR_ARG (exp, 0)); /* Compute the alignment. */ align = (alloca_with_align ? TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 1)) : BIGGEST_ALIGNMENT); /* Allocate the desired space. */ result = allocate_dynamic_stack_space (op0, 0, align, cannot_accumulate); result = convert_memory_address (ptr_mode, result); return result; } /* Expand a call to bswap builtin in EXP. Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. If convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_bswap (enum machine_mode target_mode, tree exp, rtx target, rtx subtarget) { tree arg; rtx op0; if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); op0 = expand_expr (arg, subtarget && GET_MODE (subtarget) == target_mode ? subtarget : NULL_RTX, target_mode, EXPAND_NORMAL); if (GET_MODE (op0) != target_mode) op0 = convert_to_mode (target_mode, op0, 1); target = expand_unop (target_mode, bswap_optab, op0, target, 1); gcc_assert (target); return convert_to_mode (target_mode, target, 1); } /* Expand a call to a unary builtin in EXP. Return NULL_RTX if a normal call should be emitted rather than expanding the function in-line. If convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_unop (enum machine_mode target_mode, tree exp, rtx target, rtx subtarget, optab op_optab) { rtx op0; if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; /* Compute the argument. */ op0 = expand_expr (CALL_EXPR_ARG (exp, 0), (subtarget && (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))) == GET_MODE (subtarget))) ? subtarget : NULL_RTX, VOIDmode, EXPAND_NORMAL); /* Compute op, into TARGET if possible. Set TARGET to wherever the result comes back. */ target = expand_unop (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))), op_optab, op0, target, op_optab != clrsb_optab); gcc_assert (target); return convert_to_mode (target_mode, target, 0); } /* Expand a call to __builtin_expect. We just return our argument as the builtin_expect semantic should've been already executed by tree branch prediction pass. */ static rtx expand_builtin_expect (tree exp, rtx target) { tree arg; if (call_expr_nargs (exp) < 2) return const0_rtx; arg = CALL_EXPR_ARG (exp, 0); target = expand_expr (arg, target, VOIDmode, EXPAND_NORMAL); /* When guessing was done, the hints should be already stripped away. */ gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ()); return target; } /* Expand a call to __builtin_assume_aligned. We just return our first argument as the builtin_assume_aligned semantic should've been already executed by CCP. */ static rtx expand_builtin_assume_aligned (tree exp, rtx target) { if (call_expr_nargs (exp) < 2) return const0_rtx; target = expand_expr (CALL_EXPR_ARG (exp, 0), target, VOIDmode, EXPAND_NORMAL); gcc_assert (!TREE_SIDE_EFFECTS (CALL_EXPR_ARG (exp, 1)) && (call_expr_nargs (exp) < 3 || !TREE_SIDE_EFFECTS (CALL_EXPR_ARG (exp, 2)))); return target; } void expand_builtin_trap (void) { #ifdef HAVE_trap if (HAVE_trap) { rtx insn = emit_insn (gen_trap ()); /* For trap insns when not accumulating outgoing args force REG_ARGS_SIZE note to prevent crossjumping of calls with different args sizes. */ if (!ACCUMULATE_OUTGOING_ARGS) add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta)); } else #endif emit_library_call (abort_libfunc, LCT_NORETURN, VOIDmode, 0); emit_barrier (); } /* Expand a call to __builtin_unreachable. We do nothing except emit a barrier saying that control flow will not pass here. It is the responsibility of the program being compiled to ensure that control flow does never reach __builtin_unreachable. */ static void expand_builtin_unreachable (void) { emit_barrier (); } /* Expand EXP, a call to fabs, fabsf or fabsl. Return NULL_RTX if a normal call should be emitted rather than expanding the function inline. If convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing the operand. */ static rtx expand_builtin_fabs (tree exp, rtx target, rtx subtarget) { enum machine_mode mode; tree arg; rtx op0; if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); mode = TYPE_MODE (TREE_TYPE (arg)); op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1)); } /* Expand EXP, a call to copysign, copysignf, or copysignl. Return NULL is a normal call should be emitted rather than expanding the function inline. If convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing the operand. */ static rtx expand_builtin_copysign (tree exp, rtx target, rtx subtarget) { rtx op0, op1; tree arg; if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); arg = CALL_EXPR_ARG (exp, 1); op1 = expand_normal (arg); return expand_copysign (op0, op1, target); } /* Create a new constant string literal and return a char* pointer to it. The STRING_CST value is the LEN characters at STR. */ tree build_string_literal (int len, const char *str) { tree t, elem, index, type; t = build_string (len, str); elem = build_type_variant (char_type_node, 1, 0); index = build_index_type (size_int (len - 1)); type = build_array_type (elem, index); TREE_TYPE (t) = type; TREE_CONSTANT (t) = 1; TREE_READONLY (t) = 1; TREE_STATIC (t) = 1; type = build_pointer_type (elem); t = build1 (ADDR_EXPR, type, build4 (ARRAY_REF, elem, t, integer_zero_node, NULL_TREE, NULL_TREE)); return t; } /* Expand a call to __builtin___clear_cache. */ static rtx expand_builtin___clear_cache (tree exp ATTRIBUTE_UNUSED) { #ifndef HAVE_clear_cache #ifdef CLEAR_INSN_CACHE /* There is no "clear_cache" insn, and __clear_cache() in libgcc does something. Just do the default expansion to a call to __clear_cache(). */ return NULL_RTX; #else /* There is no "clear_cache" insn, and __clear_cache() in libgcc does nothing. There is no need to call it. Do nothing. */ return const0_rtx; #endif /* CLEAR_INSN_CACHE */ #else /* We have a "clear_cache" insn, and it will handle everything. */ tree begin, end; rtx begin_rtx, end_rtx; /* We must not expand to a library call. If we did, any fallback library function in libgcc that might contain a call to __builtin___clear_cache() would recurse infinitely. */ if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) { error ("both arguments to %<__builtin___clear_cache%> must be pointers"); return const0_rtx; } if (HAVE_clear_cache) { struct expand_operand ops[2]; begin = CALL_EXPR_ARG (exp, 0); begin_rtx = expand_expr (begin, NULL_RTX, Pmode, EXPAND_NORMAL); end = CALL_EXPR_ARG (exp, 1); end_rtx = expand_expr (end, NULL_RTX, Pmode, EXPAND_NORMAL); create_address_operand (&ops[0], begin_rtx); create_address_operand (&ops[1], end_rtx); if (maybe_expand_insn (CODE_FOR_clear_cache, 2, ops)) return const0_rtx; } return const0_rtx; #endif /* HAVE_clear_cache */ } /* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT. */ static rtx round_trampoline_addr (rtx tramp) { rtx temp, addend, mask; /* If we don't need too much alignment, we'll have been guaranteed proper alignment by get_trampoline_type. */ if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY) return tramp; /* Round address up to desired boundary. */ temp = gen_reg_rtx (Pmode); addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1); mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT); temp = expand_simple_binop (Pmode, PLUS, tramp, addend, temp, 0, OPTAB_LIB_WIDEN); tramp = expand_simple_binop (Pmode, AND, temp, mask, temp, 0, OPTAB_LIB_WIDEN); return tramp; } static rtx expand_builtin_init_trampoline (tree exp, bool onstack) { tree t_tramp, t_func, t_chain; rtx m_tramp, r_tramp, r_chain, tmp; if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; t_tramp = CALL_EXPR_ARG (exp, 0); t_func = CALL_EXPR_ARG (exp, 1); t_chain = CALL_EXPR_ARG (exp, 2); r_tramp = expand_normal (t_tramp); m_tramp = gen_rtx_MEM (BLKmode, r_tramp); MEM_NOTRAP_P (m_tramp) = 1; /* If ONSTACK, the TRAMP argument should be the address of a field within the local function's FRAME decl. Either way, let's see if we can fill in the MEM_ATTRs for this memory. */ if (TREE_CODE (t_tramp) == ADDR_EXPR) set_mem_attributes (m_tramp, TREE_OPERAND (t_tramp, 0), true); /* Creator of a heap trampoline is responsible for making sure the address is aligned to at least STACK_BOUNDARY. Normally malloc will ensure this anyhow. */ tmp = round_trampoline_addr (r_tramp); if (tmp != r_tramp) { m_tramp = change_address (m_tramp, BLKmode, tmp); set_mem_align (m_tramp, TRAMPOLINE_ALIGNMENT); set_mem_size (m_tramp, TRAMPOLINE_SIZE); } /* The FUNC argument should be the address of the nested function. Extract the actual function decl to pass to the hook. */ gcc_assert (TREE_CODE (t_func) == ADDR_EXPR); t_func = TREE_OPERAND (t_func, 0); gcc_assert (TREE_CODE (t_func) == FUNCTION_DECL); r_chain = expand_normal (t_chain); /* Generate insns to initialize the trampoline. */ targetm.calls.trampoline_init (m_tramp, t_func, r_chain); if (onstack) { trampolines_created = 1; warning_at (DECL_SOURCE_LOCATION (t_func), OPT_Wtrampolines, "trampoline generated for nested function %qD", t_func); } return const0_rtx; } static rtx expand_builtin_adjust_trampoline (tree exp) { rtx tramp; if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; tramp = expand_normal (CALL_EXPR_ARG (exp, 0)); tramp = round_trampoline_addr (tramp); if (targetm.calls.trampoline_adjust_address) tramp = targetm.calls.trampoline_adjust_address (tramp); return tramp; } /* Expand the call EXP to the built-in signbit, signbitf or signbitl function. The function first checks whether the back end provides an insn to implement signbit for the respective mode. If not, it checks whether the floating point format of the value is such that the sign bit can be extracted. If that is not the case, the function returns NULL_RTX to indicate that a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. */ static rtx expand_builtin_signbit (tree exp, rtx target) { const struct real_format *fmt; enum machine_mode fmode, imode, rmode; tree arg; int word, bitpos; enum insn_code icode; rtx temp; location_t loc = EXPR_LOCATION (exp); if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) return NULL_RTX; arg = CALL_EXPR_ARG (exp, 0); fmode = TYPE_MODE (TREE_TYPE (arg)); rmode = TYPE_MODE (TREE_TYPE (exp)); fmt = REAL_MODE_FORMAT (fmode); arg = builtin_save_expr (arg); /* Expand the argument yielding a RTX expression. */ temp = expand_normal (arg); /* Check if the back end provides an insn that handles signbit for the argument's mode. */ icode = optab_handler (signbit_optab, fmode); if (icode != CODE_FOR_nothing) { rtx last = get_last_insn (); target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp))); if (maybe_emit_unop_insn (icode, target, temp, UNKNOWN)) return target; delete_insns_since (last); } /* For floating point formats without a sign bit, implement signbit as "ARG < 0.0". */ bitpos = fmt->signbit_ro; if (bitpos < 0) { /* But we can't do this if the format supports signed zero. */ if (fmt->has_signed_zero && HONOR_SIGNED_ZEROS (fmode)) return NULL_RTX; arg = fold_build2_loc (loc, LT_EXPR, TREE_TYPE (exp), arg, build_real (TREE_TYPE (arg), dconst0)); return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL); } if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD) { imode = int_mode_for_mode (fmode); if (imode == BLKmode) return NULL_RTX; temp = gen_lowpart (imode, temp); } else { imode = word_mode; /* Handle targets with different FP word orders. */ if (FLOAT_WORDS_BIG_ENDIAN) word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD; else word = bitpos / BITS_PER_WORD; temp = operand_subword_force (temp, word, fmode); bitpos = bitpos % BITS_PER_WORD; } /* Force the intermediate word_mode (or narrower) result into a register. This avoids attempting to create paradoxical SUBREGs of floating point modes below. */ temp = force_reg (imode, temp); /* If the bitpos is within the "result mode" lowpart, the operation can be implement with a single bitwise AND. Otherwise, we need a right shift and an AND. */ if (bitpos < GET_MODE_BITSIZE (rmode)) { double_int mask = double_int_zero.set_bit (bitpos); if (GET_MODE_SIZE (imode) > GET_MODE_SIZE (rmode)) temp = gen_lowpart (rmode, temp); temp = expand_binop (rmode, and_optab, temp, immed_double_int_const (mask, rmode), NULL_RTX, 1, OPTAB_LIB_WIDEN); } else { /* Perform a logical right shift to place the signbit in the least significant bit, then truncate the result to the desired mode and mask just this bit. */ temp = expand_shift (RSHIFT_EXPR, imode, temp, bitpos, NULL_RTX, 1); temp = gen_lowpart (rmode, temp); temp = expand_binop (rmode, and_optab, temp, const1_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN); } return temp; } /* Expand fork or exec calls. TARGET is the desired target of the call. EXP is the call. FN is the identificator of the actual function. IGNORE is nonzero if the value is to be ignored. */ static rtx expand_builtin_fork_or_exec (tree fn, tree exp, rtx target, int ignore) { tree id, decl; tree call; /* If we are not profiling, just call the function. */ if (!profile_arc_flag) return NULL_RTX; /* Otherwise call the wrapper. This should be equivalent for the rest of compiler, so the code does not diverge, and the wrapper may run the code necessary for keeping the profiling sane. */ switch (DECL_FUNCTION_CODE (fn)) { case BUILT_IN_FORK: id = get_identifier ("__gcov_fork"); break; case BUILT_IN_EXECL: id = get_identifier ("__gcov_execl"); break; case BUILT_IN_EXECV: id = get_identifier ("__gcov_execv"); break; case BUILT_IN_EXECLP: id = get_identifier ("__gcov_execlp"); break; case BUILT_IN_EXECLE: id = get_identifier ("__gcov_execle"); break; case BUILT_IN_EXECVP: id = get_identifier ("__gcov_execvp"); break; case BUILT_IN_EXECVE: id = get_identifier ("__gcov_execve"); break; default: gcc_unreachable (); } decl = build_decl (DECL_SOURCE_LOCATION (fn), FUNCTION_DECL, id, TREE_TYPE (fn)); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_ARTIFICIAL (decl) = 1; TREE_NOTHROW (decl) = 1; DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT; DECL_VISIBILITY_SPECIFIED (decl) = 1; call = rewrite_call_expr (EXPR_LOCATION (exp), exp, 0, decl, 0); return expand_call (call, target, ignore); } /* Reconstitute a mode for a __sync intrinsic operation. Since the type of the pointer in these functions is void*, the tree optimizers may remove casts. The mode computed in expand_builtin isn't reliable either, due to __sync_bool_compare_and_swap. FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the group of builtins. This gives us log2 of the mode size. */ static inline enum machine_mode get_builtin_sync_mode (int fcode_diff) { /* The size is not negotiable, so ask not to get BLKmode in return if the target indicates that a smaller size would be better. */ return mode_for_size (BITS_PER_UNIT << fcode_diff, MODE_INT, 0); } /* Expand the memory expression LOC and return the appropriate memory operand for the builtin_sync operations. */ static rtx get_builtin_sync_mem (tree loc, enum machine_mode mode) { rtx addr, mem; addr = expand_expr (loc, NULL_RTX, ptr_mode, EXPAND_SUM); addr = convert_memory_address (Pmode, addr); /* Note that we explicitly do not want any alias information for this memory, so that we kill all other live memories. Otherwise we don't satisfy the full barrier semantics of the intrinsic. */ mem = validize_mem (gen_rtx_MEM (mode, addr)); /* The alignment needs to be at least according to that of the mode. */ set_mem_align (mem, MAX (GET_MODE_ALIGNMENT (mode), get_pointer_alignment (loc))); set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER); MEM_VOLATILE_P (mem) = 1; return mem; } /* Make sure an argument is in the right mode. EXP is the tree argument. MODE is the mode it should be in. */ static rtx expand_expr_force_mode (tree exp, enum machine_mode mode) { rtx val; enum machine_mode old_mode; val = expand_expr (exp, NULL_RTX, mode, EXPAND_NORMAL); /* If VAL is promoted to a wider mode, convert it back to MODE. Take care of CONST_INTs, where we know the old_mode only from the call argument. */ old_mode = GET_MODE (val); if (old_mode == VOIDmode) old_mode = TYPE_MODE (TREE_TYPE (exp)); val = convert_modes (mode, old_mode, val, 1); return val; } /* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics. EXP is the CALL_EXPR. CODE is the rtx code that corresponds to the arithmetic or logical operation from the name; an exception here is that NOT actually means NAND. TARGET is an optional place for us to store the results; AFTER is true if this is the fetch_and_xxx form. */ static rtx expand_builtin_sync_operation (enum machine_mode mode, tree exp, enum rtx_code code, bool after, rtx target) { rtx val, mem; location_t loc = EXPR_LOCATION (exp); if (code == NOT && warn_sync_nand) { tree fndecl = get_callee_fndecl (exp); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); static bool warned_f_a_n, warned_n_a_f; switch (fcode) { case BUILT_IN_SYNC_FETCH_AND_NAND_1: case BUILT_IN_SYNC_FETCH_AND_NAND_2: case BUILT_IN_SYNC_FETCH_AND_NAND_4: case BUILT_IN_SYNC_FETCH_AND_NAND_8: case BUILT_IN_SYNC_FETCH_AND_NAND_16: if (warned_f_a_n) break; fndecl = builtin_decl_implicit (BUILT_IN_SYNC_FETCH_AND_NAND_N); inform (loc, "%qD changed semantics in GCC 4.4", fndecl); warned_f_a_n = true; break; case BUILT_IN_SYNC_NAND_AND_FETCH_1: case BUILT_IN_SYNC_NAND_AND_FETCH_2: case BUILT_IN_SYNC_NAND_AND_FETCH_4: case BUILT_IN_SYNC_NAND_AND_FETCH_8: case BUILT_IN_SYNC_NAND_AND_FETCH_16: if (warned_n_a_f) break; fndecl = builtin_decl_implicit (BUILT_IN_SYNC_NAND_AND_FETCH_N); inform (loc, "%qD changed semantics in GCC 4.4", fndecl); warned_n_a_f = true; break; default: gcc_unreachable (); } } /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); return expand_atomic_fetch_op (target, mem, val, code, MEMMODEL_SEQ_CST, after); } /* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap intrinsics. EXP is the CALL_EXPR. IS_BOOL is true if this is the boolean form. TARGET is a place for us to store the results; this is NOT optional if IS_BOOL is true. */ static rtx expand_builtin_compare_and_swap (enum machine_mode mode, tree exp, bool is_bool, rtx target) { rtx old_val, new_val, mem; rtx *pbool, *poval; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); old_val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); new_val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 2), mode); pbool = poval = NULL; if (target != const0_rtx) { if (is_bool) pbool = ⌖ else poval = ⌖ } if (!expand_atomic_compare_and_swap (pbool, poval, mem, old_val, new_val, false, MEMMODEL_SEQ_CST, MEMMODEL_SEQ_CST)) return NULL_RTX; return target; } /* Expand the __sync_lock_test_and_set intrinsic. Note that the most general form is actually an atomic exchange, and some targets only support a reduced form with the second argument being a constant 1. EXP is the CALL_EXPR; TARGET is an optional place for us to store the results. */ static rtx expand_builtin_sync_lock_test_and_set (enum machine_mode mode, tree exp, rtx target) { rtx val, mem; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); return expand_sync_lock_test_and_set (target, mem, val); } /* Expand the __sync_lock_release intrinsic. EXP is the CALL_EXPR. */ static void expand_builtin_sync_lock_release (enum machine_mode mode, tree exp) { rtx mem; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); expand_atomic_store (mem, const0_rtx, MEMMODEL_RELEASE, true); } /* Given an integer representing an ``enum memmodel'', verify its correctness and return the memory model enum. */ static enum memmodel get_memmodel (tree exp) { rtx op; unsigned HOST_WIDE_INT val; /* If the parameter is not a constant, it's a run time value so we'll just convert it to MEMMODEL_SEQ_CST to avoid annoying runtime checking. */ if (TREE_CODE (exp) != INTEGER_CST) return MEMMODEL_SEQ_CST; op = expand_normal (exp); val = INTVAL (op); if (targetm.memmodel_check) val = targetm.memmodel_check (val); else if (val & ~MEMMODEL_MASK) { warning (OPT_Winvalid_memory_model, "Unknown architecture specifier in memory model to builtin."); return MEMMODEL_SEQ_CST; } if ((INTVAL(op) & MEMMODEL_MASK) >= MEMMODEL_LAST) { warning (OPT_Winvalid_memory_model, "invalid memory model argument to builtin"); return MEMMODEL_SEQ_CST; } return (enum memmodel) val; } /* Expand the __atomic_exchange intrinsic: TYPE __atomic_exchange (TYPE *object, TYPE desired, enum memmodel) EXP is the CALL_EXPR. TARGET is an optional place for us to store the results. */ static rtx expand_builtin_atomic_exchange (enum machine_mode mode, tree exp, rtx target) { rtx val, mem; enum memmodel model; model = get_memmodel (CALL_EXPR_ARG (exp, 2)); if ((model & MEMMODEL_MASK) == MEMMODEL_CONSUME) { error ("invalid memory model for %<__atomic_exchange%>"); return NULL_RTX; } if (!flag_inline_atomics) return NULL_RTX; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); return expand_atomic_exchange (target, mem, val, model); } /* Expand the __atomic_compare_exchange intrinsic: bool __atomic_compare_exchange (TYPE *object, TYPE *expect, TYPE desired, BOOL weak, enum memmodel success, enum memmodel failure) EXP is the CALL_EXPR. TARGET is an optional place for us to store the results. */ static rtx expand_builtin_atomic_compare_exchange (enum machine_mode mode, tree exp, rtx target) { rtx expect, desired, mem, oldval; enum memmodel success, failure; tree weak; bool is_weak; success = get_memmodel (CALL_EXPR_ARG (exp, 4)); failure = get_memmodel (CALL_EXPR_ARG (exp, 5)); if ((failure & MEMMODEL_MASK) == MEMMODEL_RELEASE || (failure & MEMMODEL_MASK) == MEMMODEL_ACQ_REL) { error ("invalid failure memory model for %<__atomic_compare_exchange%>"); return NULL_RTX; } if (failure > success) { error ("failure memory model cannot be stronger than success " "memory model for %<__atomic_compare_exchange%>"); return NULL_RTX; } if (!flag_inline_atomics) return NULL_RTX; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); expect = expand_normal (CALL_EXPR_ARG (exp, 1)); expect = convert_memory_address (Pmode, expect); expect = gen_rtx_MEM (mode, expect); desired = expand_expr_force_mode (CALL_EXPR_ARG (exp, 2), mode); weak = CALL_EXPR_ARG (exp, 3); is_weak = false; if (host_integerp (weak, 0) && tree_low_cst (weak, 0) != 0) is_weak = true; oldval = expect; if (!expand_atomic_compare_and_swap ((target == const0_rtx ? NULL : &target), &oldval, mem, oldval, desired, is_weak, success, failure)) return NULL_RTX; if (oldval != expect) emit_move_insn (expect, oldval); return target; } /* Expand the __atomic_load intrinsic: TYPE __atomic_load (TYPE *object, enum memmodel) EXP is the CALL_EXPR. TARGET is an optional place for us to store the results. */ static rtx expand_builtin_atomic_load (enum machine_mode mode, tree exp, rtx target) { rtx mem; enum memmodel model; model = get_memmodel (CALL_EXPR_ARG (exp, 1)); if ((model & MEMMODEL_MASK) == MEMMODEL_RELEASE || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL) { error ("invalid memory model for %<__atomic_load%>"); return NULL_RTX; } if (!flag_inline_atomics) return NULL_RTX; /* Expand the operand. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); return expand_atomic_load (target, mem, model); } /* Expand the __atomic_store intrinsic: void __atomic_store (TYPE *object, TYPE desired, enum memmodel) EXP is the CALL_EXPR. TARGET is an optional place for us to store the results. */ static rtx expand_builtin_atomic_store (enum machine_mode mode, tree exp) { rtx mem, val; enum memmodel model; model = get_memmodel (CALL_EXPR_ARG (exp, 2)); if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED && (model & MEMMODEL_MASK) != MEMMODEL_SEQ_CST && (model & MEMMODEL_MASK) != MEMMODEL_RELEASE) { error ("invalid memory model for %<__atomic_store%>"); return NULL_RTX; } if (!flag_inline_atomics) return NULL_RTX; /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); return expand_atomic_store (mem, val, model, false); } /* Expand the __atomic_fetch_XXX intrinsic: TYPE __atomic_fetch_XXX (TYPE *object, TYPE val, enum memmodel) EXP is the CALL_EXPR. TARGET is an optional place for us to store the results. CODE is the operation, PLUS, MINUS, ADD, XOR, or IOR. FETCH_AFTER is true if returning the result of the operation. FETCH_AFTER is false if returning the value before the operation. IGNORE is true if the result is not used. EXT_CALL is the correct builtin for an external call if this cannot be resolved to an instruction sequence. */ static rtx expand_builtin_atomic_fetch_op (enum machine_mode mode, tree exp, rtx target, enum rtx_code code, bool fetch_after, bool ignore, enum built_in_function ext_call) { rtx val, mem, ret; enum memmodel model; tree fndecl; tree addr; model = get_memmodel (CALL_EXPR_ARG (exp, 2)); /* Expand the operands. */ mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode); /* Only try generating instructions if inlining is turned on. */ if (flag_inline_atomics) { ret = expand_atomic_fetch_op (target, mem, val, code, model, fetch_after); if (ret) return ret; } /* Return if a different routine isn't needed for the library call. */ if (ext_call == BUILT_IN_NONE) return NULL_RTX; /* Change the call to the specified function. */ fndecl = get_callee_fndecl (exp); addr = CALL_EXPR_FN (exp); STRIP_NOPS (addr); gcc_assert (TREE_OPERAND (addr, 0) == fndecl); TREE_OPERAND (addr, 0) = builtin_decl_explicit(ext_call); /* Expand the call here so we can emit trailing code. */ ret = expand_call (exp, target, ignore); /* Replace the original function just in case it matters. */ TREE_OPERAND (addr, 0) = fndecl; /* Then issue the arithmetic correction to return the right result. */ if (!ignore) { if (code == NOT) { ret = expand_simple_binop (mode, AND, ret, val, NULL_RTX, true, OPTAB_LIB_WIDEN); ret = expand_simple_unop (mode, NOT, ret, target, true); } else ret = expand_simple_binop (mode, code, ret, val, target, true, OPTAB_LIB_WIDEN); } return ret; } #ifndef HAVE_atomic_clear # define HAVE_atomic_clear 0 # define gen_atomic_clear(x,y) (gcc_unreachable (), NULL_RTX) #endif /* Expand an atomic clear operation. void _atomic_clear (BOOL *obj, enum memmodel) EXP is the call expression. */ static rtx expand_builtin_atomic_clear (tree exp) { enum machine_mode mode; rtx mem, ret; enum memmodel model; mode = mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0); mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); model = get_memmodel (CALL_EXPR_ARG (exp, 1)); if ((model & MEMMODEL_MASK) == MEMMODEL_ACQUIRE || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL) { error ("invalid memory model for %<__atomic_store%>"); return const0_rtx; } if (HAVE_atomic_clear) { emit_insn (gen_atomic_clear (mem, model)); return const0_rtx; } /* Try issuing an __atomic_store, and allow fallback to __sync_lock_release. Failing that, a store is issued by __atomic_store. The only way this can fail is if the bool type is larger than a word size. Unlikely, but handle it anyway for completeness. Assume a single threaded model since there is no atomic support in this case, and no barriers are required. */ ret = expand_atomic_store (mem, const0_rtx, model, true); if (!ret) emit_move_insn (mem, const0_rtx); return const0_rtx; } /* Expand an atomic test_and_set operation. bool _atomic_test_and_set (BOOL *obj, enum memmodel) EXP is the call expression. */ static rtx expand_builtin_atomic_test_and_set (tree exp, rtx target) { rtx mem; enum memmodel model; enum machine_mode mode; mode = mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0); mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode); model = get_memmodel (CALL_EXPR_ARG (exp, 1)); return expand_atomic_test_and_set (target, mem, model); } /* Return true if (optional) argument ARG1 of size ARG0 is always lock free on this architecture. If ARG1 is NULL, use typical alignment for size ARG0. */ static tree fold_builtin_atomic_always_lock_free (tree arg0, tree arg1) { int size; enum machine_mode mode; unsigned int mode_align, type_align; if (TREE_CODE (arg0) != INTEGER_CST) return NULL_TREE; size = INTVAL (expand_normal (arg0)) * BITS_PER_UNIT; mode = mode_for_size (size, MODE_INT, 0); mode_align = GET_MODE_ALIGNMENT (mode); if (TREE_CODE (arg1) == INTEGER_CST && INTVAL (expand_normal (arg1)) == 0) type_align = mode_align; else { tree ttype = TREE_TYPE (arg1); /* This function is usually invoked and folded immediately by the front end before anything else has a chance to look at it. The pointer parameter at this point is usually cast to a void *, so check for that and look past the cast. */ if (TREE_CODE (arg1) == NOP_EXPR && POINTER_TYPE_P (ttype) && VOID_TYPE_P (TREE_TYPE (ttype))) arg1 = TREE_OPERAND (arg1, 0); ttype = TREE_TYPE (arg1); gcc_assert (POINTER_TYPE_P (ttype)); /* Get the underlying type of the object. */ ttype = TREE_TYPE (ttype); type_align = TYPE_ALIGN (ttype); } /* If the object has smaller alignment, the the lock free routines cannot be used. */ if (type_align < mode_align) return boolean_false_node; /* Check if a compare_and_swap pattern exists for the mode which represents the required size. The pattern is not allowed to fail, so the existence of the pattern indicates support is present. */ if (can_compare_and_swap_p (mode, true)) return boolean_true_node; else return boolean_false_node; } /* Return true if the parameters to call EXP represent an object which will always generate lock free instructions. The first argument represents the size of the object, and the second parameter is a pointer to the object itself. If NULL is passed for the object, then the result is based on typical alignment for an object of the specified size. Otherwise return false. */ static rtx expand_builtin_atomic_always_lock_free (tree exp) { tree size; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); if (TREE_CODE (arg0) != INTEGER_CST) { error ("non-constant argument 1 to __atomic_always_lock_free"); return const0_rtx; } size = fold_builtin_atomic_always_lock_free (arg0, arg1); if (size == boolean_true_node) return const1_rtx; return const0_rtx; } /* Return a one or zero if it can be determined that object ARG1 of size ARG is lock free on this architecture. */ static tree fold_builtin_atomic_is_lock_free (tree arg0, tree arg1) { if (!flag_inline_atomics) return NULL_TREE; /* If it isn't always lock free, don't generate a result. */ if (fold_builtin_atomic_always_lock_free (arg0, arg1) == boolean_true_node) return boolean_true_node; return NULL_TREE; } /* Return true if the parameters to call EXP represent an object which will always generate lock free instructions. The first argument represents the size of the object, and the second parameter is a pointer to the object itself. If NULL is passed for the object, then the result is based on typical alignment for an object of the specified size. Otherwise return NULL*/ static rtx expand_builtin_atomic_is_lock_free (tree exp) { tree size; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))) { error ("non-integer argument 1 to __atomic_is_lock_free"); return NULL_RTX; } if (!flag_inline_atomics) return NULL_RTX; /* If the value is known at compile time, return the RTX for it. */ size = fold_builtin_atomic_is_lock_free (arg0, arg1); if (size == boolean_true_node) return const1_rtx; return NULL_RTX; } /* Expand the __atomic_thread_fence intrinsic: void __atomic_thread_fence (enum memmodel) EXP is the CALL_EXPR. */ static void expand_builtin_atomic_thread_fence (tree exp) { enum memmodel model = get_memmodel (CALL_EXPR_ARG (exp, 0)); expand_mem_thread_fence (model); } /* Expand the __atomic_signal_fence intrinsic: void __atomic_signal_fence (enum memmodel) EXP is the CALL_EXPR. */ static void expand_builtin_atomic_signal_fence (tree exp) { enum memmodel model = get_memmodel (CALL_EXPR_ARG (exp, 0)); expand_mem_signal_fence (model); } /* Expand the __sync_synchronize intrinsic. */ static void expand_builtin_sync_synchronize (void) { expand_mem_thread_fence (MEMMODEL_SEQ_CST); } static rtx expand_builtin_thread_pointer (tree exp, rtx target) { enum insn_code icode; if (!validate_arglist (exp, VOID_TYPE)) return const0_rtx; icode = direct_optab_handler (get_thread_pointer_optab, Pmode); if (icode != CODE_FOR_nothing) { struct expand_operand op; if (!REG_P (target) || GET_MODE (target) != Pmode) target = gen_reg_rtx (Pmode); create_output_operand (&op, target, Pmode); expand_insn (icode, 1, &op); return target; } error ("__builtin_thread_pointer is not supported on this target"); return const0_rtx; } static void expand_builtin_set_thread_pointer (tree exp) { enum insn_code icode; if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) return; icode = direct_optab_handler (set_thread_pointer_optab, Pmode); if (icode != CODE_FOR_nothing) { struct expand_operand op; rtx val = expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX, Pmode, EXPAND_NORMAL); create_input_operand (&op, val, Pmode); expand_insn (icode, 1, &op); return; } error ("__builtin_set_thread_pointer is not supported on this target"); } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ rtx expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode, int ignore) { tree fndecl = get_callee_fndecl (exp); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); enum machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp)); int flags; if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) return targetm.expand_builtin (exp, target, subtarget, mode, ignore); /* When not optimizing, generate calls to library functions for a certain set of builtins. */ if (!optimize && !called_as_built_in (fndecl) && fcode != BUILT_IN_ALLOCA && fcode != BUILT_IN_ALLOCA_WITH_ALIGN && fcode != BUILT_IN_FREE) return expand_call (exp, target, ignore); /* The built-in function expanders test for target == const0_rtx to determine whether the function's result will be ignored. */ if (ignore) target = const0_rtx; /* If the result of a pure or const built-in function is ignored, and none of its arguments are volatile, we can avoid expanding the built-in call and just evaluate the arguments for side-effects. */ if (target == const0_rtx && ((flags = flags_from_decl_or_type (fndecl)) & (ECF_CONST | ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE)) { bool volatilep = false; tree arg; call_expr_arg_iterator iter; FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) if (TREE_THIS_VOLATILE (arg)) { volatilep = true; break; } if (! volatilep) { FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } } switch (fcode) { CASE_FLT_FN (BUILT_IN_FABS): target = expand_builtin_fabs (exp, target, subtarget); if (target) return target; break; CASE_FLT_FN (BUILT_IN_COPYSIGN): target = expand_builtin_copysign (exp, target, subtarget); if (target) return target; break; /* Just do a normal library call if we were unable to fold the values. */ CASE_FLT_FN (BUILT_IN_CABS): break; CASE_FLT_FN (BUILT_IN_EXP): CASE_FLT_FN (BUILT_IN_EXP10): CASE_FLT_FN (BUILT_IN_POW10): CASE_FLT_FN (BUILT_IN_EXP2): CASE_FLT_FN (BUILT_IN_EXPM1): CASE_FLT_FN (BUILT_IN_LOGB): CASE_FLT_FN (BUILT_IN_LOG): CASE_FLT_FN (BUILT_IN_LOG10): CASE_FLT_FN (BUILT_IN_LOG2): CASE_FLT_FN (BUILT_IN_LOG1P): CASE_FLT_FN (BUILT_IN_TAN): CASE_FLT_FN (BUILT_IN_ASIN): CASE_FLT_FN (BUILT_IN_ACOS): CASE_FLT_FN (BUILT_IN_ATAN): CASE_FLT_FN (BUILT_IN_SIGNIFICAND): /* Treat these like sqrt only if unsafe math optimizations are allowed, because of possible accuracy problems. */ if (! flag_unsafe_math_optimizations) break; CASE_FLT_FN (BUILT_IN_SQRT): CASE_FLT_FN (BUILT_IN_FLOOR): CASE_FLT_FN (BUILT_IN_CEIL): CASE_FLT_FN (BUILT_IN_TRUNC): CASE_FLT_FN (BUILT_IN_ROUND): CASE_FLT_FN (BUILT_IN_NEARBYINT): CASE_FLT_FN (BUILT_IN_RINT): target = expand_builtin_mathfn (exp, target, subtarget); if (target) return target; break; CASE_FLT_FN (BUILT_IN_FMA): target = expand_builtin_mathfn_ternary (exp, target, subtarget); if (target) return target; break; CASE_FLT_FN (BUILT_IN_ILOGB): if (! flag_unsafe_math_optimizations) break; CASE_FLT_FN (BUILT_IN_ISINF): CASE_FLT_FN (BUILT_IN_FINITE): case BUILT_IN_ISFINITE: case BUILT_IN_ISNORMAL: target = expand_builtin_interclass_mathfn (exp, target); if (target) return target; break; CASE_FLT_FN (BUILT_IN_ICEIL): CASE_FLT_FN (BUILT_IN_LCEIL): CASE_FLT_FN (BUILT_IN_LLCEIL): CASE_FLT_FN (BUILT_IN_LFLOOR): CASE_FLT_FN (BUILT_IN_IFLOOR): CASE_FLT_FN (BUILT_IN_LLFLOOR): target = expand_builtin_int_roundingfn (exp, target); if (target) return target; break; CASE_FLT_FN (BUILT_IN_IRINT): CASE_FLT_FN (BUILT_IN_LRINT): CASE_FLT_FN (BUILT_IN_LLRINT): CASE_FLT_FN (BUILT_IN_IROUND): CASE_FLT_FN (BUILT_IN_LROUND): CASE_FLT_FN (BUILT_IN_LLROUND): target = expand_builtin_int_roundingfn_2 (exp, target); if (target) return target; break; CASE_FLT_FN (BUILT_IN_POWI): target = expand_builtin_powi (exp, target); if (target) return target; break; CASE_FLT_FN (BUILT_IN_ATAN2): CASE_FLT_FN (BUILT_IN_LDEXP): CASE_FLT_FN (BUILT_IN_SCALB): CASE_FLT_FN (BUILT_IN_SCALBN): CASE_FLT_FN (BUILT_IN_SCALBLN): if (! flag_unsafe_math_optimizations) break; CASE_FLT_FN (BUILT_IN_FMOD): CASE_FLT_FN (BUILT_IN_REMAINDER): CASE_FLT_FN (BUILT_IN_DREM): CASE_FLT_FN (BUILT_IN_POW): target = expand_builtin_mathfn_2 (exp, target, subtarget); if (target) return target; break; CASE_FLT_FN (BUILT_IN_CEXPI): target = expand_builtin_cexpi (exp, target); gcc_assert (target); return target; CASE_FLT_FN (BUILT_IN_SIN): CASE_FLT_FN (BUILT_IN_COS): if (! flag_unsafe_math_optimizations) break; target = expand_builtin_mathfn_3 (exp, target, subtarget); if (target) return target; break; CASE_FLT_FN (BUILT_IN_SINCOS): if (! flag_unsafe_math_optimizations) break; target = expand_builtin_sincos (exp); if (target) return target; break; case BUILT_IN_APPLY_ARGS: return expand_builtin_apply_args (); /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes FUNCTION with a copy of the parameters described by ARGUMENTS, and ARGSIZE. It returns a block of memory allocated on the stack into which is stored all the registers that might possibly be used for returning the result of a function. ARGUMENTS is the value returned by __builtin_apply_args. ARGSIZE is the number of bytes of arguments that must be copied. ??? How should this value be computed? We'll also need a safe worst case value for varargs functions. */ case BUILT_IN_APPLY: if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE) && !validate_arglist (exp, REFERENCE_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return const0_rtx; else { rtx ops[3]; ops[0] = expand_normal (CALL_EXPR_ARG (exp, 0)); ops[1] = expand_normal (CALL_EXPR_ARG (exp, 1)); ops[2] = expand_normal (CALL_EXPR_ARG (exp, 2)); return expand_builtin_apply (ops[0], ops[1], ops[2]); } /* __builtin_return (RESULT) causes the function to return the value described by RESULT. RESULT is address of the block of memory returned by __builtin_apply. */ case BUILT_IN_RETURN: if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) expand_builtin_return (expand_normal (CALL_EXPR_ARG (exp, 0))); return const0_rtx; case BUILT_IN_SAVEREGS: return expand_builtin_saveregs (); case BUILT_IN_VA_ARG_PACK: /* All valid uses of __builtin_va_arg_pack () are removed during inlining. */ error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp); return const0_rtx; case BUILT_IN_VA_ARG_PACK_LEN: /* All valid uses of __builtin_va_arg_pack_len () are removed during inlining. */ error ("%Kinvalid use of %<__builtin_va_arg_pack_len ()%>", exp); return const0_rtx; /* Return the address of the first anonymous stack arg. */ case BUILT_IN_NEXT_ARG: if (fold_builtin_next_arg (exp, false)) return const0_rtx; return expand_builtin_next_arg (); case BUILT_IN_CLEAR_CACHE: target = expand_builtin___clear_cache (exp); if (target) return target; break; case BUILT_IN_CLASSIFY_TYPE: return expand_builtin_classify_type (exp); case BUILT_IN_CONSTANT_P: return const0_rtx; case BUILT_IN_FRAME_ADDRESS: case BUILT_IN_RETURN_ADDRESS: return expand_builtin_frame_address (fndecl, exp); /* Returns the address of the area where the structure is returned. 0 otherwise. */ case BUILT_IN_AGGREGATE_INCOMING_ADDRESS: if (call_expr_nargs (exp) != 0 || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))) || !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl)))) return const0_rtx; else return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0); case BUILT_IN_ALLOCA: case BUILT_IN_ALLOCA_WITH_ALIGN: /* If the allocation stems from the declaration of a variable-sized object, it cannot accumulate. */ target = expand_builtin_alloca (exp, CALL_ALLOCA_FOR_VAR_P (exp)); if (target) return target; break; case BUILT_IN_STACK_SAVE: return expand_stack_save (); case BUILT_IN_STACK_RESTORE: expand_stack_restore (CALL_EXPR_ARG (exp, 0)); return const0_rtx; case BUILT_IN_BSWAP16: case BUILT_IN_BSWAP32: case BUILT_IN_BSWAP64: target = expand_builtin_bswap (target_mode, exp, target, subtarget); if (target) return target; break; CASE_INT_FN (BUILT_IN_FFS): case BUILT_IN_FFSIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, ffs_optab); if (target) return target; break; CASE_INT_FN (BUILT_IN_CLZ): case BUILT_IN_CLZIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, clz_optab); if (target) return target; break; CASE_INT_FN (BUILT_IN_CTZ): case BUILT_IN_CTZIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, ctz_optab); if (target) return target; break; CASE_INT_FN (BUILT_IN_CLRSB): case BUILT_IN_CLRSBIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, clrsb_optab); if (target) return target; break; CASE_INT_FN (BUILT_IN_POPCOUNT): case BUILT_IN_POPCOUNTIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, popcount_optab); if (target) return target; break; CASE_INT_FN (BUILT_IN_PARITY): case BUILT_IN_PARITYIMAX: target = expand_builtin_unop (target_mode, exp, target, subtarget, parity_optab); if (target) return target; break; case BUILT_IN_STRLEN: target = expand_builtin_strlen (exp, target, target_mode); if (target) return target; break; case BUILT_IN_STRCPY: target = expand_builtin_strcpy (exp, target); if (target) return target; break; case BUILT_IN_STRNCPY: target = expand_builtin_strncpy (exp, target); if (target) return target; break; case BUILT_IN_STPCPY: target = expand_builtin_stpcpy (exp, target, mode); if (target) return target; break; case BUILT_IN_MEMCPY: target = expand_builtin_memcpy (exp, target); if (target) return target; break; case BUILT_IN_MEMPCPY: target = expand_builtin_mempcpy (exp, target, mode); if (target) return target; break; case BUILT_IN_MEMSET: target = expand_builtin_memset (exp, target, mode); if (target) return target; break; case BUILT_IN_BZERO: target = expand_builtin_bzero (exp); if (target) return target; break; case BUILT_IN_STRCMP: target = expand_builtin_strcmp (exp, target); if (target) return target; break; case BUILT_IN_STRNCMP: target = expand_builtin_strncmp (exp, target, mode); if (target) return target; break; case BUILT_IN_BCMP: case BUILT_IN_MEMCMP: target = expand_builtin_memcmp (exp, target, mode); if (target) return target; break; case BUILT_IN_SETJMP: /* This should have been lowered to the builtins below. */ gcc_unreachable (); case BUILT_IN_SETJMP_SETUP: /* __builtin_setjmp_setup is passed a pointer to an array of five words and the receiver label. */ if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) { rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget, VOIDmode, EXPAND_NORMAL); tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 1), 0); rtx label_r = label_rtx (label); /* This is copied from the handling of non-local gotos. */ expand_builtin_setjmp_setup (buf_addr, label_r); nonlocal_goto_handler_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, nonlocal_goto_handler_labels); /* ??? Do not let expand_label treat us as such since we would not want to be both on the list of non-local labels and on the list of forced labels. */ FORCED_LABEL (label) = 0; return const0_rtx; } break; case BUILT_IN_SETJMP_DISPATCHER: /* __builtin_setjmp_dispatcher is passed the dispatcher label. */ if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) { tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0); rtx label_r = label_rtx (label); /* Remove the dispatcher label from the list of non-local labels since the receiver labels have been added to it above. */ remove_node_from_expr_list (label_r, &nonlocal_goto_handler_labels); return const0_rtx; } break; case BUILT_IN_SETJMP_RECEIVER: /* __builtin_setjmp_receiver is passed the receiver label. */ if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) { tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0); rtx label_r = label_rtx (label); expand_builtin_setjmp_receiver (label_r); return const0_rtx; } break; /* __builtin_longjmp is passed a pointer to an array of five words. It's similar to the C library longjmp function but works with __builtin_setjmp above. */ case BUILT_IN_LONGJMP: if (validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) { rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget, VOIDmode, EXPAND_NORMAL); rtx value = expand_normal (CALL_EXPR_ARG (exp, 1)); if (value != const1_rtx) { error ("%<__builtin_longjmp%> second argument must be 1"); return const0_rtx; } expand_builtin_longjmp (buf_addr, value); return const0_rtx; } break; case BUILT_IN_NONLOCAL_GOTO: target = expand_builtin_nonlocal_goto (exp); if (target) return target; break; /* This updates the setjmp buffer that is its argument with the value of the current stack pointer. */ case BUILT_IN_UPDATE_SETJMP_BUF: if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) { rtx buf_addr = expand_normal (CALL_EXPR_ARG (exp, 0)); expand_builtin_update_setjmp_buf (buf_addr); return const0_rtx; } break; case BUILT_IN_TRAP: expand_builtin_trap (); return const0_rtx; case BUILT_IN_UNREACHABLE: expand_builtin_unreachable (); return const0_rtx; CASE_FLT_FN (BUILT_IN_SIGNBIT): case BUILT_IN_SIGNBITD32: case BUILT_IN_SIGNBITD64: case BUILT_IN_SIGNBITD128: target = expand_builtin_signbit (exp, target); if (target) return target; break; /* Various hooks for the DWARF 2 __throw routine. */ case BUILT_IN_UNWIND_INIT: expand_builtin_unwind_init (); return const0_rtx; case BUILT_IN_DWARF_CFA: return virtual_cfa_rtx; #ifdef DWARF2_UNWIND_INFO case BUILT_IN_DWARF_SP_COLUMN: return expand_builtin_dwarf_sp_column (); case BUILT_IN_INIT_DWARF_REG_SIZES: expand_builtin_init_dwarf_reg_sizes (CALL_EXPR_ARG (exp, 0)); return const0_rtx; #endif case BUILT_IN_FROB_RETURN_ADDR: return expand_builtin_frob_return_addr (CALL_EXPR_ARG (exp, 0)); case BUILT_IN_EXTRACT_RETURN_ADDR: return expand_builtin_extract_return_addr (CALL_EXPR_ARG (exp, 0)); case BUILT_IN_EH_RETURN: expand_builtin_eh_return (CALL_EXPR_ARG (exp, 0), CALL_EXPR_ARG (exp, 1)); return const0_rtx; #ifdef EH_RETURN_DATA_REGNO case BUILT_IN_EH_RETURN_DATA_REGNO: return expand_builtin_eh_return_data_regno (exp); #endif case BUILT_IN_EXTEND_POINTER: return expand_builtin_extend_pointer (CALL_EXPR_ARG (exp, 0)); case BUILT_IN_EH_POINTER: return expand_builtin_eh_pointer (exp); case BUILT_IN_EH_FILTER: return expand_builtin_eh_filter (exp); case BUILT_IN_EH_COPY_VALUES: return expand_builtin_eh_copy_values (exp); case BUILT_IN_VA_START: return expand_builtin_va_start (exp); case BUILT_IN_VA_END: return expand_builtin_va_end (exp); case BUILT_IN_VA_COPY: return expand_builtin_va_copy (exp); case BUILT_IN_EXPECT: return expand_builtin_expect (exp, target); case BUILT_IN_ASSUME_ALIGNED: return expand_builtin_assume_aligned (exp, target); case BUILT_IN_PREFETCH: expand_builtin_prefetch (exp); return const0_rtx; case BUILT_IN_INIT_TRAMPOLINE: return expand_builtin_init_trampoline (exp, true); case BUILT_IN_INIT_HEAP_TRAMPOLINE: return expand_builtin_init_trampoline (exp, false); case BUILT_IN_ADJUST_TRAMPOLINE: return expand_builtin_adjust_trampoline (exp); case BUILT_IN_FORK: case BUILT_IN_EXECL: case BUILT_IN_EXECV: case BUILT_IN_EXECLP: case BUILT_IN_EXECLE: case BUILT_IN_EXECVP: case BUILT_IN_EXECVE: target = expand_builtin_fork_or_exec (fndecl, exp, target, ignore); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_ADD_1: case BUILT_IN_SYNC_FETCH_AND_ADD_2: case BUILT_IN_SYNC_FETCH_AND_ADD_4: case BUILT_IN_SYNC_FETCH_AND_ADD_8: case BUILT_IN_SYNC_FETCH_AND_ADD_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_ADD_1); target = expand_builtin_sync_operation (mode, exp, PLUS, false, target); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_SUB_1: case BUILT_IN_SYNC_FETCH_AND_SUB_2: case BUILT_IN_SYNC_FETCH_AND_SUB_4: case BUILT_IN_SYNC_FETCH_AND_SUB_8: case BUILT_IN_SYNC_FETCH_AND_SUB_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_SUB_1); target = expand_builtin_sync_operation (mode, exp, MINUS, false, target); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_OR_1: case BUILT_IN_SYNC_FETCH_AND_OR_2: case BUILT_IN_SYNC_FETCH_AND_OR_4: case BUILT_IN_SYNC_FETCH_AND_OR_8: case BUILT_IN_SYNC_FETCH_AND_OR_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_OR_1); target = expand_builtin_sync_operation (mode, exp, IOR, false, target); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_AND_1: case BUILT_IN_SYNC_FETCH_AND_AND_2: case BUILT_IN_SYNC_FETCH_AND_AND_4: case BUILT_IN_SYNC_FETCH_AND_AND_8: case BUILT_IN_SYNC_FETCH_AND_AND_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_AND_1); target = expand_builtin_sync_operation (mode, exp, AND, false, target); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_XOR_1: case BUILT_IN_SYNC_FETCH_AND_XOR_2: case BUILT_IN_SYNC_FETCH_AND_XOR_4: case BUILT_IN_SYNC_FETCH_AND_XOR_8: case BUILT_IN_SYNC_FETCH_AND_XOR_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_XOR_1); target = expand_builtin_sync_operation (mode, exp, XOR, false, target); if (target) return target; break; case BUILT_IN_SYNC_FETCH_AND_NAND_1: case BUILT_IN_SYNC_FETCH_AND_NAND_2: case BUILT_IN_SYNC_FETCH_AND_NAND_4: case BUILT_IN_SYNC_FETCH_AND_NAND_8: case BUILT_IN_SYNC_FETCH_AND_NAND_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_NAND_1); target = expand_builtin_sync_operation (mode, exp, NOT, false, target); if (target) return target; break; case BUILT_IN_SYNC_ADD_AND_FETCH_1: case BUILT_IN_SYNC_ADD_AND_FETCH_2: case BUILT_IN_SYNC_ADD_AND_FETCH_4: case BUILT_IN_SYNC_ADD_AND_FETCH_8: case BUILT_IN_SYNC_ADD_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_ADD_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, PLUS, true, target); if (target) return target; break; case BUILT_IN_SYNC_SUB_AND_FETCH_1: case BUILT_IN_SYNC_SUB_AND_FETCH_2: case BUILT_IN_SYNC_SUB_AND_FETCH_4: case BUILT_IN_SYNC_SUB_AND_FETCH_8: case BUILT_IN_SYNC_SUB_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_SUB_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, MINUS, true, target); if (target) return target; break; case BUILT_IN_SYNC_OR_AND_FETCH_1: case BUILT_IN_SYNC_OR_AND_FETCH_2: case BUILT_IN_SYNC_OR_AND_FETCH_4: case BUILT_IN_SYNC_OR_AND_FETCH_8: case BUILT_IN_SYNC_OR_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_OR_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, IOR, true, target); if (target) return target; break; case BUILT_IN_SYNC_AND_AND_FETCH_1: case BUILT_IN_SYNC_AND_AND_FETCH_2: case BUILT_IN_SYNC_AND_AND_FETCH_4: case BUILT_IN_SYNC_AND_AND_FETCH_8: case BUILT_IN_SYNC_AND_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_AND_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, AND, true, target); if (target) return target; break; case BUILT_IN_SYNC_XOR_AND_FETCH_1: case BUILT_IN_SYNC_XOR_AND_FETCH_2: case BUILT_IN_SYNC_XOR_AND_FETCH_4: case BUILT_IN_SYNC_XOR_AND_FETCH_8: case BUILT_IN_SYNC_XOR_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_XOR_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, XOR, true, target); if (target) return target; break; case BUILT_IN_SYNC_NAND_AND_FETCH_1: case BUILT_IN_SYNC_NAND_AND_FETCH_2: case BUILT_IN_SYNC_NAND_AND_FETCH_4: case BUILT_IN_SYNC_NAND_AND_FETCH_8: case BUILT_IN_SYNC_NAND_AND_FETCH_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_NAND_AND_FETCH_1); target = expand_builtin_sync_operation (mode, exp, NOT, true, target); if (target) return target; break; case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1: case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2: case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4: case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8: case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16: if (mode == VOIDmode) mode = TYPE_MODE (boolean_type_node); if (!target || !register_operand (target, mode)) target = gen_reg_rtx (mode); mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1); target = expand_builtin_compare_and_swap (mode, exp, true, target); if (target) return target; break; case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1: case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2: case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4: case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8: case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1); target = expand_builtin_compare_and_swap (mode, exp, false, target); if (target) return target; break; case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1: case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2: case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4: case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8: case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_LOCK_TEST_AND_SET_1); target = expand_builtin_sync_lock_test_and_set (mode, exp, target); if (target) return target; break; case BUILT_IN_SYNC_LOCK_RELEASE_1: case BUILT_IN_SYNC_LOCK_RELEASE_2: case BUILT_IN_SYNC_LOCK_RELEASE_4: case BUILT_IN_SYNC_LOCK_RELEASE_8: case BUILT_IN_SYNC_LOCK_RELEASE_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_LOCK_RELEASE_1); expand_builtin_sync_lock_release (mode, exp); return const0_rtx; case BUILT_IN_SYNC_SYNCHRONIZE: expand_builtin_sync_synchronize (); return const0_rtx; case BUILT_IN_ATOMIC_EXCHANGE_1: case BUILT_IN_ATOMIC_EXCHANGE_2: case BUILT_IN_ATOMIC_EXCHANGE_4: case BUILT_IN_ATOMIC_EXCHANGE_8: case BUILT_IN_ATOMIC_EXCHANGE_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_EXCHANGE_1); target = expand_builtin_atomic_exchange (mode, exp, target); if (target) return target; break; case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16: { unsigned int nargs, z; vec *vec; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1); target = expand_builtin_atomic_compare_exchange (mode, exp, target); if (target) return target; /* If this is turned into an external library call, the weak parameter must be dropped to match the expected parameter list. */ nargs = call_expr_nargs (exp); vec_alloc (vec, nargs - 1); for (z = 0; z < 3; z++) vec->quick_push (CALL_EXPR_ARG (exp, z)); /* Skip the boolean weak parameter. */ for (z = 4; z < 6; z++) vec->quick_push (CALL_EXPR_ARG (exp, z)); exp = build_call_vec (TREE_TYPE (exp), CALL_EXPR_FN (exp), vec); break; } case BUILT_IN_ATOMIC_LOAD_1: case BUILT_IN_ATOMIC_LOAD_2: case BUILT_IN_ATOMIC_LOAD_4: case BUILT_IN_ATOMIC_LOAD_8: case BUILT_IN_ATOMIC_LOAD_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_LOAD_1); target = expand_builtin_atomic_load (mode, exp, target); if (target) return target; break; case BUILT_IN_ATOMIC_STORE_1: case BUILT_IN_ATOMIC_STORE_2: case BUILT_IN_ATOMIC_STORE_4: case BUILT_IN_ATOMIC_STORE_8: case BUILT_IN_ATOMIC_STORE_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_STORE_1); target = expand_builtin_atomic_store (mode, exp); if (target) return const0_rtx; break; case BUILT_IN_ATOMIC_ADD_FETCH_1: case BUILT_IN_ATOMIC_ADD_FETCH_2: case BUILT_IN_ATOMIC_ADD_FETCH_4: case BUILT_IN_ATOMIC_ADD_FETCH_8: case BUILT_IN_ATOMIC_ADD_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_ADD_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_ADD_1 + (fcode - BUILT_IN_ATOMIC_ADD_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, PLUS, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_SUB_FETCH_1: case BUILT_IN_ATOMIC_SUB_FETCH_2: case BUILT_IN_ATOMIC_SUB_FETCH_4: case BUILT_IN_ATOMIC_SUB_FETCH_8: case BUILT_IN_ATOMIC_SUB_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_SUB_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_SUB_1 + (fcode - BUILT_IN_ATOMIC_SUB_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, MINUS, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_AND_FETCH_1: case BUILT_IN_ATOMIC_AND_FETCH_2: case BUILT_IN_ATOMIC_AND_FETCH_4: case BUILT_IN_ATOMIC_AND_FETCH_8: case BUILT_IN_ATOMIC_AND_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_AND_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_AND_1 + (fcode - BUILT_IN_ATOMIC_AND_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, AND, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_NAND_FETCH_1: case BUILT_IN_ATOMIC_NAND_FETCH_2: case BUILT_IN_ATOMIC_NAND_FETCH_4: case BUILT_IN_ATOMIC_NAND_FETCH_8: case BUILT_IN_ATOMIC_NAND_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_NAND_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_NAND_1 + (fcode - BUILT_IN_ATOMIC_NAND_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, NOT, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_XOR_FETCH_1: case BUILT_IN_ATOMIC_XOR_FETCH_2: case BUILT_IN_ATOMIC_XOR_FETCH_4: case BUILT_IN_ATOMIC_XOR_FETCH_8: case BUILT_IN_ATOMIC_XOR_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_XOR_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_XOR_1 + (fcode - BUILT_IN_ATOMIC_XOR_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, XOR, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_OR_FETCH_1: case BUILT_IN_ATOMIC_OR_FETCH_2: case BUILT_IN_ATOMIC_OR_FETCH_4: case BUILT_IN_ATOMIC_OR_FETCH_8: case BUILT_IN_ATOMIC_OR_FETCH_16: { enum built_in_function lib; mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_OR_FETCH_1); lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_OR_1 + (fcode - BUILT_IN_ATOMIC_OR_FETCH_1)); target = expand_builtin_atomic_fetch_op (mode, exp, target, IOR, true, ignore, lib); if (target) return target; break; } case BUILT_IN_ATOMIC_FETCH_ADD_1: case BUILT_IN_ATOMIC_FETCH_ADD_2: case BUILT_IN_ATOMIC_FETCH_ADD_4: case BUILT_IN_ATOMIC_FETCH_ADD_8: case BUILT_IN_ATOMIC_FETCH_ADD_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_ADD_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, PLUS, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_FETCH_SUB_1: case BUILT_IN_ATOMIC_FETCH_SUB_2: case BUILT_IN_ATOMIC_FETCH_SUB_4: case BUILT_IN_ATOMIC_FETCH_SUB_8: case BUILT_IN_ATOMIC_FETCH_SUB_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_SUB_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, MINUS, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_FETCH_AND_1: case BUILT_IN_ATOMIC_FETCH_AND_2: case BUILT_IN_ATOMIC_FETCH_AND_4: case BUILT_IN_ATOMIC_FETCH_AND_8: case BUILT_IN_ATOMIC_FETCH_AND_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_AND_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, AND, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_FETCH_NAND_1: case BUILT_IN_ATOMIC_FETCH_NAND_2: case BUILT_IN_ATOMIC_FETCH_NAND_4: case BUILT_IN_ATOMIC_FETCH_NAND_8: case BUILT_IN_ATOMIC_FETCH_NAND_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_NAND_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, NOT, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_FETCH_XOR_1: case BUILT_IN_ATOMIC_FETCH_XOR_2: case BUILT_IN_ATOMIC_FETCH_XOR_4: case BUILT_IN_ATOMIC_FETCH_XOR_8: case BUILT_IN_ATOMIC_FETCH_XOR_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_XOR_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, XOR, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_FETCH_OR_1: case BUILT_IN_ATOMIC_FETCH_OR_2: case BUILT_IN_ATOMIC_FETCH_OR_4: case BUILT_IN_ATOMIC_FETCH_OR_8: case BUILT_IN_ATOMIC_FETCH_OR_16: mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_OR_1); target = expand_builtin_atomic_fetch_op (mode, exp, target, IOR, false, ignore, BUILT_IN_NONE); if (target) return target; break; case BUILT_IN_ATOMIC_TEST_AND_SET: return expand_builtin_atomic_test_and_set (exp, target); case BUILT_IN_ATOMIC_CLEAR: return expand_builtin_atomic_clear (exp); case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE: return expand_builtin_atomic_always_lock_free (exp); case BUILT_IN_ATOMIC_IS_LOCK_FREE: target = expand_builtin_atomic_is_lock_free (exp); if (target) return target; break; case BUILT_IN_ATOMIC_THREAD_FENCE: expand_builtin_atomic_thread_fence (exp); return const0_rtx; case BUILT_IN_ATOMIC_SIGNAL_FENCE: expand_builtin_atomic_signal_fence (exp); return const0_rtx; case BUILT_IN_OBJECT_SIZE: return expand_builtin_object_size (exp); case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: target = expand_builtin_memory_chk (exp, target, mode, fcode); if (target) return target; break; case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_STPNCPY_CHK: case BUILT_IN_STRCAT_CHK: case BUILT_IN_STRNCAT_CHK: case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: maybe_emit_chk_warning (exp, fcode); break; case BUILT_IN_SPRINTF_CHK: case BUILT_IN_VSPRINTF_CHK: maybe_emit_sprintf_chk_warning (exp, fcode); break; case BUILT_IN_FREE: if (warn_free_nonheap_object) maybe_emit_free_warning (exp); break; case BUILT_IN_THREAD_POINTER: return expand_builtin_thread_pointer (exp, target); case BUILT_IN_SET_THREAD_POINTER: expand_builtin_set_thread_pointer (exp); return const0_rtx; default: /* just do library call, if unknown builtin */ break; } /* The switch statement above can drop through to cause the function to be called normally. */ return expand_call (exp, target, ignore); } /* Determine whether a tree node represents a call to a built-in function. If the tree T is a call to a built-in function with the right number of arguments of the appropriate types, return the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT. Otherwise the return value is END_BUILTINS. */ enum built_in_function builtin_mathfn_code (const_tree t) { const_tree fndecl, arg, parmlist; const_tree argtype, parmtype; const_call_expr_arg_iterator iter; if (TREE_CODE (t) != CALL_EXPR || TREE_CODE (CALL_EXPR_FN (t)) != ADDR_EXPR) return END_BUILTINS; fndecl = get_callee_fndecl (t); if (fndecl == NULL_TREE || TREE_CODE (fndecl) != FUNCTION_DECL || ! DECL_BUILT_IN (fndecl) || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) return END_BUILTINS; parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); init_const_call_expr_arg_iterator (t, &iter); for (; parmlist; parmlist = TREE_CHAIN (parmlist)) { /* If a function doesn't take a variable number of arguments, the last element in the list will have type `void'. */ parmtype = TREE_VALUE (parmlist); if (VOID_TYPE_P (parmtype)) { if (more_const_call_expr_args_p (&iter)) return END_BUILTINS; return DECL_FUNCTION_CODE (fndecl); } if (! more_const_call_expr_args_p (&iter)) return END_BUILTINS; arg = next_const_call_expr_arg (&iter); argtype = TREE_TYPE (arg); if (SCALAR_FLOAT_TYPE_P (parmtype)) { if (! SCALAR_FLOAT_TYPE_P (argtype)) return END_BUILTINS; } else if (COMPLEX_FLOAT_TYPE_P (parmtype)) { if (! COMPLEX_FLOAT_TYPE_P (argtype)) return END_BUILTINS; } else if (POINTER_TYPE_P (parmtype)) { if (! POINTER_TYPE_P (argtype)) return END_BUILTINS; } else if (INTEGRAL_TYPE_P (parmtype)) { if (! INTEGRAL_TYPE_P (argtype)) return END_BUILTINS; } else return END_BUILTINS; } /* Variable-length argument list. */ return DECL_FUNCTION_CODE (fndecl); } /* Fold a call to __builtin_constant_p, if we know its argument ARG will evaluate to a constant. */ static tree fold_builtin_constant_p (tree arg) { /* We return 1 for a numeric type that's known to be a constant value at compile-time or for an aggregate type that's a literal constant. */ STRIP_NOPS (arg); /* If we know this is a constant, emit the constant of one. */ if (CONSTANT_CLASS_P (arg) || (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))) return integer_one_node; if (TREE_CODE (arg) == ADDR_EXPR) { tree op = TREE_OPERAND (arg, 0); if (TREE_CODE (op) == STRING_CST || (TREE_CODE (op) == ARRAY_REF && integer_zerop (TREE_OPERAND (op, 1)) && TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST)) return integer_one_node; } /* If this expression has side effects, show we don't know it to be a constant. Likewise if it's a pointer or aggregate type since in those case we only want literals, since those are only optimized when generating RTL, not later. And finally, if we are compiling an initializer, not code, we need to return a definite result now; there's not going to be any more optimization done. */ if (TREE_SIDE_EFFECTS (arg) || AGGREGATE_TYPE_P (TREE_TYPE (arg)) || POINTER_TYPE_P (TREE_TYPE (arg)) || cfun == 0 || folding_initializer) return integer_zero_node; return NULL_TREE; } /* Create builtin_expect with PRED and EXPECTED as its arguments and return it as a truthvalue. */ static tree build_builtin_expect_predicate (location_t loc, tree pred, tree expected) { tree fn, arg_types, pred_type, expected_type, call_expr, ret_type; fn = builtin_decl_explicit (BUILT_IN_EXPECT); arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn)); ret_type = TREE_TYPE (TREE_TYPE (fn)); pred_type = TREE_VALUE (arg_types); expected_type = TREE_VALUE (TREE_CHAIN (arg_types)); pred = fold_convert_loc (loc, pred_type, pred); expected = fold_convert_loc (loc, expected_type, expected); call_expr = build_call_expr_loc (loc, fn, 2, pred, expected); return build2 (NE_EXPR, TREE_TYPE (pred), call_expr, build_int_cst (ret_type, 0)); } /* Fold a call to builtin_expect with arguments ARG0 and ARG1. Return NULL_TREE if no simplification is possible. */ static tree fold_builtin_expect (location_t loc, tree arg0, tree arg1) { tree inner, fndecl, inner_arg0; enum tree_code code; /* Distribute the expected value over short-circuiting operators. See through the cast from truthvalue_type_node to long. */ inner_arg0 = arg0; while (TREE_CODE (inner_arg0) == NOP_EXPR && INTEGRAL_TYPE_P (TREE_TYPE (inner_arg0)) && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (inner_arg0, 0)))) inner_arg0 = TREE_OPERAND (inner_arg0, 0); /* If this is a builtin_expect within a builtin_expect keep the inner one. See through a comparison against a constant. It might have been added to create a thruthvalue. */ inner = inner_arg0; if (COMPARISON_CLASS_P (inner) && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST) inner = TREE_OPERAND (inner, 0); if (TREE_CODE (inner) == CALL_EXPR && (fndecl = get_callee_fndecl (inner)) && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT) return arg0; inner = inner_arg0; code = TREE_CODE (inner); if (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR) { tree op0 = TREE_OPERAND (inner, 0); tree op1 = TREE_OPERAND (inner, 1); op0 = build_builtin_expect_predicate (loc, op0, arg1); op1 = build_builtin_expect_predicate (loc, op1, arg1); inner = build2 (code, TREE_TYPE (inner), op0, op1); return fold_convert_loc (loc, TREE_TYPE (arg0), inner); } /* If the argument isn't invariant then there's nothing else we can do. */ if (!TREE_CONSTANT (inner_arg0)) return NULL_TREE; /* If we expect that a comparison against the argument will fold to a constant return the constant. In practice, this means a true constant or the address of a non-weak symbol. */ inner = inner_arg0; STRIP_NOPS (inner); if (TREE_CODE (inner) == ADDR_EXPR) { do { inner = TREE_OPERAND (inner, 0); } while (TREE_CODE (inner) == COMPONENT_REF || TREE_CODE (inner) == ARRAY_REF); if ((TREE_CODE (inner) == VAR_DECL || TREE_CODE (inner) == FUNCTION_DECL) && DECL_WEAK (inner)) return NULL_TREE; } /* Otherwise, ARG0 already has the proper type for the return value. */ return arg0; } /* Fold a call to __builtin_classify_type with argument ARG. */ static tree fold_builtin_classify_type (tree arg) { if (arg == 0) return build_int_cst (integer_type_node, no_type_class); return build_int_cst (integer_type_node, type_to_class (TREE_TYPE (arg))); } /* Fold a call to __builtin_strlen with argument ARG. */ static tree fold_builtin_strlen (location_t loc, tree type, tree arg) { if (!validate_arg (arg, POINTER_TYPE)) return NULL_TREE; else { tree len = c_strlen (arg, 0); if (len) return fold_convert_loc (loc, type, len); return NULL_TREE; } } /* Fold a call to __builtin_inf or __builtin_huge_val. */ static tree fold_builtin_inf (location_t loc, tree type, int warn) { REAL_VALUE_TYPE real; /* __builtin_inff is intended to be usable to define INFINITY on all targets. If an infinity is not available, INFINITY expands "to a positive constant of type float that overflows at translation time", footnote "In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4). Thus we pedwarn to ensure this constraint violation is diagnosed. */ if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn) pedwarn (loc, 0, "target format does not support infinity"); real_inf (&real); return build_real (type, real); } /* Fold a call to __builtin_nan or __builtin_nans with argument ARG. */ static tree fold_builtin_nan (tree arg, tree type, int quiet) { REAL_VALUE_TYPE real; const char *str; if (!validate_arg (arg, POINTER_TYPE)) return NULL_TREE; str = c_getstr (arg); if (!str) return NULL_TREE; if (!real_nan (&real, str, quiet, TYPE_MODE (type))) return NULL_TREE; return build_real (type, real); } /* Return true if the floating point expression T has an integer value. We also allow +Inf, -Inf and NaN to be considered integer values. */ static bool integer_valued_real_p (tree t) { switch (TREE_CODE (t)) { case FLOAT_EXPR: return true; case ABS_EXPR: case SAVE_EXPR: return integer_valued_real_p (TREE_OPERAND (t, 0)); case COMPOUND_EXPR: case MODIFY_EXPR: case BIND_EXPR: return integer_valued_real_p (TREE_OPERAND (t, 1)); case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case MIN_EXPR: case MAX_EXPR: return integer_valued_real_p (TREE_OPERAND (t, 0)) && integer_valued_real_p (TREE_OPERAND (t, 1)); case COND_EXPR: return integer_valued_real_p (TREE_OPERAND (t, 1)) && integer_valued_real_p (TREE_OPERAND (t, 2)); case REAL_CST: return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t))); case NOP_EXPR: { tree type = TREE_TYPE (TREE_OPERAND (t, 0)); if (TREE_CODE (type) == INTEGER_TYPE) return true; if (TREE_CODE (type) == REAL_TYPE) return integer_valued_real_p (TREE_OPERAND (t, 0)); break; } case CALL_EXPR: switch (builtin_mathfn_code (t)) { CASE_FLT_FN (BUILT_IN_CEIL): CASE_FLT_FN (BUILT_IN_FLOOR): CASE_FLT_FN (BUILT_IN_NEARBYINT): CASE_FLT_FN (BUILT_IN_RINT): CASE_FLT_FN (BUILT_IN_ROUND): CASE_FLT_FN (BUILT_IN_TRUNC): return true; CASE_FLT_FN (BUILT_IN_FMIN): CASE_FLT_FN (BUILT_IN_FMAX): return integer_valued_real_p (CALL_EXPR_ARG (t, 0)) && integer_valued_real_p (CALL_EXPR_ARG (t, 1)); default: break; } break; default: break; } return false; } /* FNDECL is assumed to be a builtin where truncation can be propagated across (for instance floor((double)f) == (double)floorf (f). Do the transformation for a call with argument ARG. */ static tree fold_trunc_transparent_mathfn (location_t loc, tree fndecl, tree arg) { enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Integer rounding functions are idempotent. */ if (fcode == builtin_mathfn_code (arg)) return arg; /* If argument is already integer valued, and we don't need to worry about setting errno, there's no need to perform rounding. */ if (! flag_errno_math && integer_valued_real_p (arg)) return arg; if (optimize) { tree arg0 = strip_float_extensions (arg); tree ftype = TREE_TYPE (TREE_TYPE (fndecl)); tree newtype = TREE_TYPE (arg0); tree decl; if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype) && (decl = mathfn_built_in (newtype, fcode))) return fold_convert_loc (loc, ftype, build_call_expr_loc (loc, decl, 1, fold_convert_loc (loc, newtype, arg0))); } return NULL_TREE; } /* FNDECL is assumed to be builtin which can narrow the FP type of the argument, for instance lround((double)f) -> lroundf (f). Do the transformation for a call with argument ARG. */ static tree fold_fixed_mathfn (location_t loc, tree fndecl, tree arg) { enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* If argument is already integer valued, and we don't need to worry about setting errno, there's no need to perform rounding. */ if (! flag_errno_math && integer_valued_real_p (arg)) return fold_build1_loc (loc, FIX_TRUNC_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), arg); if (optimize) { tree ftype = TREE_TYPE (arg); tree arg0 = strip_float_extensions (arg); tree newtype = TREE_TYPE (arg0); tree decl; if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype) && (decl = mathfn_built_in (newtype, fcode))) return build_call_expr_loc (loc, decl, 1, fold_convert_loc (loc, newtype, arg0)); } /* Canonicalize iround (x) to lround (x) on ILP32 targets where sizeof (int) == sizeof (long). */ if (TYPE_PRECISION (integer_type_node) == TYPE_PRECISION (long_integer_type_node)) { tree newfn = NULL_TREE; switch (fcode) { CASE_FLT_FN (BUILT_IN_ICEIL): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL); break; CASE_FLT_FN (BUILT_IN_IFLOOR): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR); break; CASE_FLT_FN (BUILT_IN_IROUND): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND); break; CASE_FLT_FN (BUILT_IN_IRINT): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT); break; default: break; } if (newfn) { tree newcall = build_call_expr_loc (loc, newfn, 1, arg); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), newcall); } } /* Canonicalize llround (x) to lround (x) on LP64 targets where sizeof (long long) == sizeof (long). */ if (TYPE_PRECISION (long_long_integer_type_node) == TYPE_PRECISION (long_integer_type_node)) { tree newfn = NULL_TREE; switch (fcode) { CASE_FLT_FN (BUILT_IN_LLCEIL): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL); break; CASE_FLT_FN (BUILT_IN_LLFLOOR): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR); break; CASE_FLT_FN (BUILT_IN_LLROUND): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND); break; CASE_FLT_FN (BUILT_IN_LLRINT): newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT); break; default: break; } if (newfn) { tree newcall = build_call_expr_loc (loc, newfn, 1, arg); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), newcall); } } return NULL_TREE; } /* Fold call to builtin cabs, cabsf or cabsl with argument ARG. TYPE is the return type. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cabs (location_t loc, tree arg, tree type, tree fndecl) { tree res; if (!validate_arg (arg, COMPLEX_TYPE) || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if (TREE_CODE (arg) == COMPLEX_CST && (res = do_mpfr_arg2 (TREE_REALPART (arg), TREE_IMAGPART (arg), type, mpfr_hypot))) return res; if (TREE_CODE (arg) == COMPLEX_EXPR) { tree real = TREE_OPERAND (arg, 0); tree imag = TREE_OPERAND (arg, 1); /* If either part is zero, cabs is fabs of the other. */ if (real_zerop (real)) return fold_build1_loc (loc, ABS_EXPR, type, imag); if (real_zerop (imag)) return fold_build1_loc (loc, ABS_EXPR, type, real); /* cabs(x+xi) -> fabs(x)*sqrt(2). */ if (flag_unsafe_math_optimizations && operand_equal_p (real, imag, OEP_PURE_SAME)) { const REAL_VALUE_TYPE sqrt2_trunc = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ()); STRIP_NOPS (real); return fold_build2_loc (loc, MULT_EXPR, type, fold_build1_loc (loc, ABS_EXPR, type, real), build_real (type, sqrt2_trunc)); } } /* Optimize cabs(-z) and cabs(conj(z)) as cabs(z). */ if (TREE_CODE (arg) == NEGATE_EXPR || TREE_CODE (arg) == CONJ_EXPR) return build_call_expr_loc (loc, fndecl, 1, TREE_OPERAND (arg, 0)); /* Don't do this when optimizing for size. */ if (flag_unsafe_math_optimizations && optimize && optimize_function_for_speed_p (cfun)) { tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); if (sqrtfn != NULL_TREE) { tree rpart, ipart, result; arg = builtin_save_expr (arg); rpart = fold_build1_loc (loc, REALPART_EXPR, type, arg); ipart = fold_build1_loc (loc, IMAGPART_EXPR, type, arg); rpart = builtin_save_expr (rpart); ipart = builtin_save_expr (ipart); result = fold_build2_loc (loc, PLUS_EXPR, type, fold_build2_loc (loc, MULT_EXPR, type, rpart, rpart), fold_build2_loc (loc, MULT_EXPR, type, ipart, ipart)); return build_call_expr_loc (loc, sqrtfn, 1, result); } } return NULL_TREE; } /* Build a complex (inf +- 0i) for the result of cproj. TYPE is the complex tree type of the result. If NEG is true, the imaginary zero is negative. */ static tree build_complex_cproj (tree type, bool neg) { REAL_VALUE_TYPE rinf, rzero = dconst0; real_inf (&rinf); rzero.sign = neg; return build_complex (type, build_real (TREE_TYPE (type), rinf), build_real (TREE_TYPE (type), rzero)); } /* Fold call to builtin cproj, cprojf or cprojl with argument ARG. TYPE is the return type. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cproj (location_t loc, tree arg, tree type) { if (!validate_arg (arg, COMPLEX_TYPE) || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE) return NULL_TREE; /* If there are no infinities, return arg. */ if (! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (type)))) return non_lvalue_loc (loc, arg); /* Calculate the result when the argument is a constant. */ if (TREE_CODE (arg) == COMPLEX_CST) { const REAL_VALUE_TYPE *real = TREE_REAL_CST_PTR (TREE_REALPART (arg)); const REAL_VALUE_TYPE *imag = TREE_REAL_CST_PTR (TREE_IMAGPART (arg)); if (real_isinf (real) || real_isinf (imag)) return build_complex_cproj (type, imag->sign); else return arg; } else if (TREE_CODE (arg) == COMPLEX_EXPR) { tree real = TREE_OPERAND (arg, 0); tree imag = TREE_OPERAND (arg, 1); STRIP_NOPS (real); STRIP_NOPS (imag); /* If the real part is inf and the imag part is known to be nonnegative, return (inf + 0i). Remember side-effects are possible in the imag part. */ if (TREE_CODE (real) == REAL_CST && real_isinf (TREE_REAL_CST_PTR (real)) && tree_expr_nonnegative_p (imag)) return omit_one_operand_loc (loc, type, build_complex_cproj (type, false), arg); /* If the imag part is inf, return (inf+I*copysign(0,imag)). Remember side-effects are possible in the real part. */ if (TREE_CODE (imag) == REAL_CST && real_isinf (TREE_REAL_CST_PTR (imag))) return omit_one_operand_loc (loc, type, build_complex_cproj (type, TREE_REAL_CST_PTR (imag)->sign), arg); } return NULL_TREE; } /* Fold a builtin function call to sqrt, sqrtf, or sqrtl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_sqrt (location_t loc, tree arg, tree type) { enum built_in_function fcode; tree res; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, mpfr_sqrt, &dconst0, NULL, true))) return res; /* Optimize sqrt(expN(x)) = expN(x*0.5). */ fcode = builtin_mathfn_code (arg); if (flag_unsafe_math_optimizations && BUILTIN_EXPONENT_P (fcode)) { tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0); arg = fold_build2_loc (loc, MULT_EXPR, type, CALL_EXPR_ARG (arg, 0), build_real (type, dconsthalf)); return build_call_expr_loc (loc, expfn, 1, arg); } /* Optimize sqrt(Nroot(x)) -> pow(x,1/(2*N)). */ if (flag_unsafe_math_optimizations && BUILTIN_ROOT_P (fcode)) { tree powfn = mathfn_built_in (type, BUILT_IN_POW); if (powfn) { tree arg0 = CALL_EXPR_ARG (arg, 0); tree tree_root; /* The inner root was either sqrt or cbrt. */ /* This was a conditional expression but it triggered a bug in Sun C 5.5. */ REAL_VALUE_TYPE dconstroot; if (BUILTIN_SQRT_P (fcode)) dconstroot = dconsthalf; else dconstroot = dconst_third (); /* Adjust for the outer root. */ SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1); dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot); tree_root = build_real (type, dconstroot); return build_call_expr_loc (loc, powfn, 2, arg0, tree_root); } } /* Optimize sqrt(pow(x,y)) = pow(|x|,y*0.5). */ if (flag_unsafe_math_optimizations && (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF || fcode == BUILT_IN_POWL)) { tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0); tree arg0 = CALL_EXPR_ARG (arg, 0); tree arg1 = CALL_EXPR_ARG (arg, 1); tree narg1; if (!tree_expr_nonnegative_p (arg0)) arg0 = build1 (ABS_EXPR, type, arg0); narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1, build_real (type, dconsthalf)); return build_call_expr_loc (loc, powfn, 2, arg0, narg1); } return NULL_TREE; } /* Fold a builtin function call to cbrt, cbrtf, or cbrtl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cbrt (location_t loc, tree arg, tree type) { const enum built_in_function fcode = builtin_mathfn_code (arg); tree res; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, mpfr_cbrt, NULL, NULL, 0))) return res; if (flag_unsafe_math_optimizations) { /* Optimize cbrt(expN(x)) -> expN(x/3). */ if (BUILTIN_EXPONENT_P (fcode)) { tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0); const REAL_VALUE_TYPE third_trunc = real_value_truncate (TYPE_MODE (type), dconst_third ()); arg = fold_build2_loc (loc, MULT_EXPR, type, CALL_EXPR_ARG (arg, 0), build_real (type, third_trunc)); return build_call_expr_loc (loc, expfn, 1, arg); } /* Optimize cbrt(sqrt(x)) -> pow(x,1/6). */ if (BUILTIN_SQRT_P (fcode)) { tree powfn = mathfn_built_in (type, BUILT_IN_POW); if (powfn) { tree arg0 = CALL_EXPR_ARG (arg, 0); tree tree_root; REAL_VALUE_TYPE dconstroot = dconst_third (); SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1); dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot); tree_root = build_real (type, dconstroot); return build_call_expr_loc (loc, powfn, 2, arg0, tree_root); } } /* Optimize cbrt(cbrt(x)) -> pow(x,1/9) iff x is nonnegative. */ if (BUILTIN_CBRT_P (fcode)) { tree arg0 = CALL_EXPR_ARG (arg, 0); if (tree_expr_nonnegative_p (arg0)) { tree powfn = mathfn_built_in (type, BUILT_IN_POW); if (powfn) { tree tree_root; REAL_VALUE_TYPE dconstroot; real_arithmetic (&dconstroot, MULT_EXPR, dconst_third_ptr (), dconst_third_ptr ()); dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot); tree_root = build_real (type, dconstroot); return build_call_expr_loc (loc, powfn, 2, arg0, tree_root); } } } /* Optimize cbrt(pow(x,y)) -> pow(x,y/3) iff x is nonnegative. */ if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF || fcode == BUILT_IN_POWL) { tree arg00 = CALL_EXPR_ARG (arg, 0); tree arg01 = CALL_EXPR_ARG (arg, 1); if (tree_expr_nonnegative_p (arg00)) { tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0); const REAL_VALUE_TYPE dconstroot = real_value_truncate (TYPE_MODE (type), dconst_third ()); tree narg01 = fold_build2_loc (loc, MULT_EXPR, type, arg01, build_real (type, dconstroot)); return build_call_expr_loc (loc, powfn, 2, arg00, narg01); } } } return NULL_TREE; } /* Fold function call to builtin cos, cosf, or cosl with argument ARG. TYPE is the type of the return value. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cos (location_t loc, tree arg, tree type, tree fndecl) { tree res, narg; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, mpfr_cos, NULL, NULL, 0))) return res; /* Optimize cos(-x) into cos (x). */ if ((narg = fold_strip_sign_ops (arg))) return build_call_expr_loc (loc, fndecl, 1, narg); return NULL_TREE; } /* Fold function call to builtin cosh, coshf, or coshl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cosh (location_t loc, tree arg, tree type, tree fndecl) { if (validate_arg (arg, REAL_TYPE)) { tree res, narg; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, mpfr_cosh, NULL, NULL, 0))) return res; /* Optimize cosh(-x) into cosh (x). */ if ((narg = fold_strip_sign_ops (arg))) return build_call_expr_loc (loc, fndecl, 1, narg); } return NULL_TREE; } /* Fold function call to builtin ccos (or ccosh if HYPER is TRUE) with argument ARG. TYPE is the type of the return value. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_ccos (location_t loc, tree arg, tree type, tree fndecl, bool hyper) { if (validate_arg (arg, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE) { tree tmp; /* Calculate the result when the argument is a constant. */ if ((tmp = do_mpc_arg1 (arg, type, (hyper ? mpc_cosh : mpc_cos)))) return tmp; /* Optimize fn(-x) into fn(x). */ if ((tmp = fold_strip_sign_ops (arg))) return build_call_expr_loc (loc, fndecl, 1, tmp); } return NULL_TREE; } /* Fold function call to builtin tan, tanf, or tanl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_tan (tree arg, tree type) { enum built_in_function fcode; tree res; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, mpfr_tan, NULL, NULL, 0))) return res; /* Optimize tan(atan(x)) = x. */ fcode = builtin_mathfn_code (arg); if (flag_unsafe_math_optimizations && (fcode == BUILT_IN_ATAN || fcode == BUILT_IN_ATANF || fcode == BUILT_IN_ATANL)) return CALL_EXPR_ARG (arg, 0); return NULL_TREE; } /* Fold function call to builtin sincos, sincosf, or sincosl. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_sincos (location_t loc, tree arg0, tree arg1, tree arg2) { tree type; tree res, fn, call; if (!validate_arg (arg0, REAL_TYPE) || !validate_arg (arg1, POINTER_TYPE) || !validate_arg (arg2, POINTER_TYPE)) return NULL_TREE; type = TREE_TYPE (arg0); /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_sincos (arg0, arg1, arg2))) return res; /* Canonicalize sincos to cexpi. */ if (!TARGET_C99_FUNCTIONS) return NULL_TREE; fn = mathfn_built_in (type, BUILT_IN_CEXPI); if (!fn) return NULL_TREE; call = build_call_expr_loc (loc, fn, 1, arg0); call = builtin_save_expr (call); return build2 (COMPOUND_EXPR, void_type_node, build2 (MODIFY_EXPR, void_type_node, build_fold_indirect_ref_loc (loc, arg1), build1 (IMAGPART_EXPR, type, call)), build2 (MODIFY_EXPR, void_type_node, build_fold_indirect_ref_loc (loc, arg2), build1 (REALPART_EXPR, type, call))); } /* Fold function call to builtin cexp, cexpf, or cexpl. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_cexp (location_t loc, tree arg0, tree type) { tree rtype; tree realp, imagp, ifn; tree res; if (!validate_arg (arg0, COMPLEX_TYPE) || TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) != REAL_TYPE) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpc_arg1 (arg0, type, mpc_exp))) return res; rtype = TREE_TYPE (TREE_TYPE (arg0)); /* In case we can figure out the real part of arg0 and it is constant zero fold to cexpi. */ if (!TARGET_C99_FUNCTIONS) return NULL_TREE; ifn = mathfn_built_in (rtype, BUILT_IN_CEXPI); if (!ifn) return NULL_TREE; if ((realp = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0)) && real_zerop (realp)) { tree narg = fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0); return build_call_expr_loc (loc, ifn, 1, narg); } /* In case we can easily decompose real and imaginary parts split cexp to exp (r) * cexpi (i). */ if (flag_unsafe_math_optimizations && realp) { tree rfn, rcall, icall; rfn = mathfn_built_in (rtype, BUILT_IN_EXP); if (!rfn) return NULL_TREE; imagp = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); if (!imagp) return NULL_TREE; icall = build_call_expr_loc (loc, ifn, 1, imagp); icall = builtin_save_expr (icall); rcall = build_call_expr_loc (loc, rfn, 1, realp); rcall = builtin_save_expr (rcall); return fold_build2_loc (loc, COMPLEX_EXPR, type, fold_build2_loc (loc, MULT_EXPR, rtype, rcall, fold_build1_loc (loc, REALPART_EXPR, rtype, icall)), fold_build2_loc (loc, MULT_EXPR, rtype, rcall, fold_build1_loc (loc, IMAGPART_EXPR, rtype, icall))); } return NULL_TREE; } /* Fold function call to builtin trunc, truncf or truncl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_trunc (location_t loc, tree fndecl, tree arg) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Optimize trunc of constant value. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { REAL_VALUE_TYPE r, x; tree type = TREE_TYPE (TREE_TYPE (fndecl)); x = TREE_REAL_CST (arg); real_trunc (&r, TYPE_MODE (type), &x); return build_real (type, r); } return fold_trunc_transparent_mathfn (loc, fndecl, arg); } /* Fold function call to builtin floor, floorf or floorl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_floor (location_t loc, tree fndecl, tree arg) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Optimize floor of constant value. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { REAL_VALUE_TYPE x; x = TREE_REAL_CST (arg); if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); REAL_VALUE_TYPE r; real_floor (&r, TYPE_MODE (type), &x); return build_real (type, r); } } /* Fold floor (x) where x is nonnegative to trunc (x). */ if (tree_expr_nonnegative_p (arg)) { tree truncfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_TRUNC); if (truncfn) return build_call_expr_loc (loc, truncfn, 1, arg); } return fold_trunc_transparent_mathfn (loc, fndecl, arg); } /* Fold function call to builtin ceil, ceilf or ceill with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_ceil (location_t loc, tree fndecl, tree arg) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Optimize ceil of constant value. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { REAL_VALUE_TYPE x; x = TREE_REAL_CST (arg); if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); REAL_VALUE_TYPE r; real_ceil (&r, TYPE_MODE (type), &x); return build_real (type, r); } } return fold_trunc_transparent_mathfn (loc, fndecl, arg); } /* Fold function call to builtin round, roundf or roundl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_round (location_t loc, tree fndecl, tree arg) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Optimize round of constant value. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { REAL_VALUE_TYPE x; x = TREE_REAL_CST (arg); if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); REAL_VALUE_TYPE r; real_round (&r, TYPE_MODE (type), &x); return build_real (type, r); } } return fold_trunc_transparent_mathfn (loc, fndecl, arg); } /* Fold function call to builtin lround, lroundf or lroundl (or the corresponding long long versions) and other rounding functions. ARG is the argument to the call. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_int_roundingfn (location_t loc, tree fndecl, tree arg) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* Optimize lround of constant value. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { const REAL_VALUE_TYPE x = TREE_REAL_CST (arg); if (real_isfinite (&x)) { tree itype = TREE_TYPE (TREE_TYPE (fndecl)); tree ftype = TREE_TYPE (arg); double_int val; REAL_VALUE_TYPE r; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_IFLOOR): CASE_FLT_FN (BUILT_IN_LFLOOR): CASE_FLT_FN (BUILT_IN_LLFLOOR): real_floor (&r, TYPE_MODE (ftype), &x); break; CASE_FLT_FN (BUILT_IN_ICEIL): CASE_FLT_FN (BUILT_IN_LCEIL): CASE_FLT_FN (BUILT_IN_LLCEIL): real_ceil (&r, TYPE_MODE (ftype), &x); break; CASE_FLT_FN (BUILT_IN_IROUND): CASE_FLT_FN (BUILT_IN_LROUND): CASE_FLT_FN (BUILT_IN_LLROUND): real_round (&r, TYPE_MODE (ftype), &x); break; default: gcc_unreachable (); } real_to_integer2 ((HOST_WIDE_INT *)&val.low, &val.high, &r); if (double_int_fits_to_tree_p (itype, val)) return double_int_to_tree (itype, val); } } switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_LFLOOR): CASE_FLT_FN (BUILT_IN_LLFLOOR): /* Fold lfloor (x) where x is nonnegative to FIX_TRUNC (x). */ if (tree_expr_nonnegative_p (arg)) return fold_build1_loc (loc, FIX_TRUNC_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), arg); break; default:; } return fold_fixed_mathfn (loc, fndecl, arg); } /* Fold function call to builtin ffs, clz, ctz, popcount and parity and their long and long long variants (i.e. ffsl and ffsll). ARG is the argument to the call. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_bitop (tree fndecl, tree arg) { if (!validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; /* Optimize for constant argument. */ if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg)) { HOST_WIDE_INT hi, width, result; unsigned HOST_WIDE_INT lo; tree type; type = TREE_TYPE (arg); width = TYPE_PRECISION (type); lo = TREE_INT_CST_LOW (arg); /* Clear all the bits that are beyond the type's precision. */ if (width > HOST_BITS_PER_WIDE_INT) { hi = TREE_INT_CST_HIGH (arg); if (width < HOST_BITS_PER_DOUBLE_INT) hi &= ~((unsigned HOST_WIDE_INT) (-1) << (width - HOST_BITS_PER_WIDE_INT)); } else { hi = 0; if (width < HOST_BITS_PER_WIDE_INT) lo &= ~((unsigned HOST_WIDE_INT) (-1) << width); } switch (DECL_FUNCTION_CODE (fndecl)) { CASE_INT_FN (BUILT_IN_FFS): if (lo != 0) result = ffs_hwi (lo); else if (hi != 0) result = HOST_BITS_PER_WIDE_INT + ffs_hwi (hi); else result = 0; break; CASE_INT_FN (BUILT_IN_CLZ): if (hi != 0) result = width - floor_log2 (hi) - 1 - HOST_BITS_PER_WIDE_INT; else if (lo != 0) result = width - floor_log2 (lo) - 1; else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result)) result = width; break; CASE_INT_FN (BUILT_IN_CTZ): if (lo != 0) result = ctz_hwi (lo); else if (hi != 0) result = HOST_BITS_PER_WIDE_INT + ctz_hwi (hi); else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result)) result = width; break; CASE_INT_FN (BUILT_IN_CLRSB): if (width > HOST_BITS_PER_WIDE_INT && (hi & ((unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1))) != 0) { hi = ~hi & ~((unsigned HOST_WIDE_INT) (-1) << (width - HOST_BITS_PER_WIDE_INT - 1)); lo = ~lo; } else if (width <= HOST_BITS_PER_WIDE_INT && (lo & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0) lo = ~lo & ~((unsigned HOST_WIDE_INT) (-1) << (width - 1)); if (hi != 0) result = width - floor_log2 (hi) - 2 - HOST_BITS_PER_WIDE_INT; else if (lo != 0) result = width - floor_log2 (lo) - 2; else result = width - 1; break; CASE_INT_FN (BUILT_IN_POPCOUNT): result = 0; while (lo) result++, lo &= lo - 1; while (hi) result++, hi &= (unsigned HOST_WIDE_INT) hi - 1; break; CASE_INT_FN (BUILT_IN_PARITY): result = 0; while (lo) result++, lo &= lo - 1; while (hi) result++, hi &= (unsigned HOST_WIDE_INT) hi - 1; result &= 1; break; default: gcc_unreachable (); } return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), result); } return NULL_TREE; } /* Fold function call to builtin_bswap and the short, long and long long variants. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_bswap (tree fndecl, tree arg) { if (! validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; /* Optimize constant value. */ if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg)) { HOST_WIDE_INT hi, width, r_hi = 0; unsigned HOST_WIDE_INT lo, r_lo = 0; tree type = TREE_TYPE (TREE_TYPE (fndecl)); width = TYPE_PRECISION (type); lo = TREE_INT_CST_LOW (arg); hi = TREE_INT_CST_HIGH (arg); switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_BSWAP16: case BUILT_IN_BSWAP32: case BUILT_IN_BSWAP64: { int s; for (s = 0; s < width; s += 8) { int d = width - s - 8; unsigned HOST_WIDE_INT byte; if (s < HOST_BITS_PER_WIDE_INT) byte = (lo >> s) & 0xff; else byte = (hi >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff; if (d < HOST_BITS_PER_WIDE_INT) r_lo |= byte << d; else r_hi |= byte << (d - HOST_BITS_PER_WIDE_INT); } } break; default: gcc_unreachable (); } if (width < HOST_BITS_PER_WIDE_INT) return build_int_cst (type, r_lo); else return build_int_cst_wide (type, r_lo, r_hi); } return NULL_TREE; } /* A subroutine of fold_builtin to fold the various logarithmic functions. Return NULL_TREE if no simplification can me made. FUNC is the corresponding MPFR logarithm function. */ static tree fold_builtin_logarithm (location_t loc, tree fndecl, tree arg, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t)) { if (validate_arg (arg, REAL_TYPE)) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); tree res; const enum built_in_function fcode = builtin_mathfn_code (arg); /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, func, &dconst0, NULL, false))) return res; /* Special case, optimize logN(expN(x)) = x. */ if (flag_unsafe_math_optimizations && ((func == mpfr_log && (fcode == BUILT_IN_EXP || fcode == BUILT_IN_EXPF || fcode == BUILT_IN_EXPL)) || (func == mpfr_log2 && (fcode == BUILT_IN_EXP2 || fcode == BUILT_IN_EXP2F || fcode == BUILT_IN_EXP2L)) || (func == mpfr_log10 && (BUILTIN_EXP10_P (fcode))))) return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0)); /* Optimize logN(func()) for various exponential functions. We want to determine the value "x" and the power "exponent" in order to transform logN(x**exponent) into exponent*logN(x). */ if (flag_unsafe_math_optimizations) { tree exponent = 0, x = 0; switch (fcode) { CASE_FLT_FN (BUILT_IN_EXP): /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */ x = build_real (type, real_value_truncate (TYPE_MODE (type), dconst_e ())); exponent = CALL_EXPR_ARG (arg, 0); break; CASE_FLT_FN (BUILT_IN_EXP2): /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */ x = build_real (type, dconst2); exponent = CALL_EXPR_ARG (arg, 0); break; CASE_FLT_FN (BUILT_IN_EXP10): CASE_FLT_FN (BUILT_IN_POW10): /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */ { REAL_VALUE_TYPE dconst10; real_from_integer (&dconst10, VOIDmode, 10, 0, 0); x = build_real (type, dconst10); } exponent = CALL_EXPR_ARG (arg, 0); break; CASE_FLT_FN (BUILT_IN_SQRT): /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */ x = CALL_EXPR_ARG (arg, 0); exponent = build_real (type, dconsthalf); break; CASE_FLT_FN (BUILT_IN_CBRT): /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */ x = CALL_EXPR_ARG (arg, 0); exponent = build_real (type, real_value_truncate (TYPE_MODE (type), dconst_third ())); break; CASE_FLT_FN (BUILT_IN_POW): /* Prepare to do logN(pow(x,exponent) -> exponent*logN(x). */ x = CALL_EXPR_ARG (arg, 0); exponent = CALL_EXPR_ARG (arg, 1); break; default: break; } /* Now perform the optimization. */ if (x && exponent) { tree logfn = build_call_expr_loc (loc, fndecl, 1, x); return fold_build2_loc (loc, MULT_EXPR, type, exponent, logfn); } } } return NULL_TREE; } /* Fold a builtin function call to hypot, hypotf, or hypotl. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_hypot (location_t loc, tree fndecl, tree arg0, tree arg1, tree type) { tree res, narg0, narg1; if (!validate_arg (arg0, REAL_TYPE) || !validate_arg (arg1, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_hypot))) return res; /* If either argument to hypot has a negate or abs, strip that off. E.g. hypot(-x,fabs(y)) -> hypot(x,y). */ narg0 = fold_strip_sign_ops (arg0); narg1 = fold_strip_sign_ops (arg1); if (narg0 || narg1) { return build_call_expr_loc (loc, fndecl, 2, narg0 ? narg0 : arg0, narg1 ? narg1 : arg1); } /* If either argument is zero, hypot is fabs of the other. */ if (real_zerop (arg0)) return fold_build1_loc (loc, ABS_EXPR, type, arg1); else if (real_zerop (arg1)) return fold_build1_loc (loc, ABS_EXPR, type, arg0); /* hypot(x,x) -> fabs(x)*sqrt(2). */ if (flag_unsafe_math_optimizations && operand_equal_p (arg0, arg1, OEP_PURE_SAME)) { const REAL_VALUE_TYPE sqrt2_trunc = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ()); return fold_build2_loc (loc, MULT_EXPR, type, fold_build1_loc (loc, ABS_EXPR, type, arg0), build_real (type, sqrt2_trunc)); } return NULL_TREE; } /* Fold a builtin function call to pow, powf, or powl. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_pow (location_t loc, tree fndecl, tree arg0, tree arg1, tree type) { tree res; if (!validate_arg (arg0, REAL_TYPE) || !validate_arg (arg1, REAL_TYPE)) return NULL_TREE; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_pow))) return res; /* Optimize pow(1.0,y) = 1.0. */ if (real_onep (arg0)) return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1); if (TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)) { REAL_VALUE_TYPE cint; REAL_VALUE_TYPE c; HOST_WIDE_INT n; c = TREE_REAL_CST (arg1); /* Optimize pow(x,0.0) = 1.0. */ if (REAL_VALUES_EQUAL (c, dconst0)) return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg0); /* Optimize pow(x,1.0) = x. */ if (REAL_VALUES_EQUAL (c, dconst1)) return arg0; /* Optimize pow(x,-1.0) = 1.0/x. */ if (REAL_VALUES_EQUAL (c, dconstm1)) return fold_build2_loc (loc, RDIV_EXPR, type, build_real (type, dconst1), arg0); /* Optimize pow(x,0.5) = sqrt(x). */ if (flag_unsafe_math_optimizations && REAL_VALUES_EQUAL (c, dconsthalf)) { tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); if (sqrtfn != NULL_TREE) return build_call_expr_loc (loc, sqrtfn, 1, arg0); } /* Optimize pow(x,1.0/3.0) = cbrt(x). */ if (flag_unsafe_math_optimizations) { const REAL_VALUE_TYPE dconstroot = real_value_truncate (TYPE_MODE (type), dconst_third ()); if (REAL_VALUES_EQUAL (c, dconstroot)) { tree cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT); if (cbrtfn != NULL_TREE) return build_call_expr_loc (loc, cbrtfn, 1, arg0); } } /* Check for an integer exponent. */ n = real_to_integer (&c); real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0); if (real_identical (&c, &cint)) { /* Attempt to evaluate pow at compile-time, unless this should raise an exception. */ if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0) && (n > 0 || (!flag_trapping_math && !flag_errno_math) || !REAL_VALUES_EQUAL (TREE_REAL_CST (arg0), dconst0))) { REAL_VALUE_TYPE x; bool inexact; x = TREE_REAL_CST (arg0); inexact = real_powi (&x, TYPE_MODE (type), &x, n); if (flag_unsafe_math_optimizations || !inexact) return build_real (type, x); } /* Strip sign ops from even integer powers. */ if ((n & 1) == 0 && flag_unsafe_math_optimizations) { tree narg0 = fold_strip_sign_ops (arg0); if (narg0) return build_call_expr_loc (loc, fndecl, 2, narg0, arg1); } } } if (flag_unsafe_math_optimizations) { const enum built_in_function fcode = builtin_mathfn_code (arg0); /* Optimize pow(expN(x),y) = expN(x*y). */ if (BUILTIN_EXPONENT_P (fcode)) { tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0); tree arg = CALL_EXPR_ARG (arg0, 0); arg = fold_build2_loc (loc, MULT_EXPR, type, arg, arg1); return build_call_expr_loc (loc, expfn, 1, arg); } /* Optimize pow(sqrt(x),y) = pow(x,y*0.5). */ if (BUILTIN_SQRT_P (fcode)) { tree narg0 = CALL_EXPR_ARG (arg0, 0); tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1, build_real (type, dconsthalf)); return build_call_expr_loc (loc, fndecl, 2, narg0, narg1); } /* Optimize pow(cbrt(x),y) = pow(x,y/3) iff x is nonnegative. */ if (BUILTIN_CBRT_P (fcode)) { tree arg = CALL_EXPR_ARG (arg0, 0); if (tree_expr_nonnegative_p (arg)) { const REAL_VALUE_TYPE dconstroot = real_value_truncate (TYPE_MODE (type), dconst_third ()); tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1, build_real (type, dconstroot)); return build_call_expr_loc (loc, fndecl, 2, arg, narg1); } } /* Optimize pow(pow(x,y),z) = pow(x,y*z) iff x is nonnegative. */ if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF || fcode == BUILT_IN_POWL) { tree arg00 = CALL_EXPR_ARG (arg0, 0); if (tree_expr_nonnegative_p (arg00)) { tree arg01 = CALL_EXPR_ARG (arg0, 1); tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg01, arg1); return build_call_expr_loc (loc, fndecl, 2, arg00, narg1); } } } return NULL_TREE; } /* Fold a builtin function call to powi, powif, or powil with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_powi (location_t loc, tree fndecl ATTRIBUTE_UNUSED, tree arg0, tree arg1, tree type) { if (!validate_arg (arg0, REAL_TYPE) || !validate_arg (arg1, INTEGER_TYPE)) return NULL_TREE; /* Optimize pow(1.0,y) = 1.0. */ if (real_onep (arg0)) return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1); if (host_integerp (arg1, 0)) { HOST_WIDE_INT c = TREE_INT_CST_LOW (arg1); /* Evaluate powi at compile-time. */ if (TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)) { REAL_VALUE_TYPE x; x = TREE_REAL_CST (arg0); real_powi (&x, TYPE_MODE (type), &x, c); return build_real (type, x); } /* Optimize pow(x,0) = 1.0. */ if (c == 0) return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg0); /* Optimize pow(x,1) = x. */ if (c == 1) return arg0; /* Optimize pow(x,-1) = 1.0/x. */ if (c == -1) return fold_build2_loc (loc, RDIV_EXPR, type, build_real (type, dconst1), arg0); } return NULL_TREE; } /* A subroutine of fold_builtin to fold the various exponent functions. Return NULL_TREE if no simplification can be made. FUNC is the corresponding MPFR exponent function. */ static tree fold_builtin_exponent (location_t loc, tree fndecl, tree arg, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t)) { if (validate_arg (arg, REAL_TYPE)) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); tree res; /* Calculate the result when the argument is a constant. */ if ((res = do_mpfr_arg1 (arg, type, func, NULL, NULL, 0))) return res; /* Optimize expN(logN(x)) = x. */ if (flag_unsafe_math_optimizations) { const enum built_in_function fcode = builtin_mathfn_code (arg); if ((func == mpfr_exp && (fcode == BUILT_IN_LOG || fcode == BUILT_IN_LOGF || fcode == BUILT_IN_LOGL)) || (func == mpfr_exp2 && (fcode == BUILT_IN_LOG2 || fcode == BUILT_IN_LOG2F || fcode == BUILT_IN_LOG2L)) || (func == mpfr_exp10 && (fcode == BUILT_IN_LOG10 || fcode == BUILT_IN_LOG10F || fcode == BUILT_IN_LOG10L))) return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0)); } } return NULL_TREE; } /* Return true if VAR is a VAR_DECL or a component thereof. */ static bool var_decl_component_p (tree var) { tree inner = var; while (handled_component_p (inner)) inner = TREE_OPERAND (inner, 0); return SSA_VAR_P (inner); } /* Fold function call to builtin memset. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_memset (location_t loc, tree dest, tree c, tree len, tree type, bool ignore) { tree var, ret, etype; unsigned HOST_WIDE_INT length, cval; if (! validate_arg (dest, POINTER_TYPE) || ! validate_arg (c, INTEGER_TYPE) || ! validate_arg (len, INTEGER_TYPE)) return NULL_TREE; if (! host_integerp (len, 1)) return NULL_TREE; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) return omit_one_operand_loc (loc, type, dest, c); if (TREE_CODE (c) != INTEGER_CST || TREE_SIDE_EFFECTS (dest)) return NULL_TREE; var = dest; STRIP_NOPS (var); if (TREE_CODE (var) != ADDR_EXPR) return NULL_TREE; var = TREE_OPERAND (var, 0); if (TREE_THIS_VOLATILE (var)) return NULL_TREE; etype = TREE_TYPE (var); if (TREE_CODE (etype) == ARRAY_TYPE) etype = TREE_TYPE (etype); if (!INTEGRAL_TYPE_P (etype) && !POINTER_TYPE_P (etype)) return NULL_TREE; if (! var_decl_component_p (var)) return NULL_TREE; length = tree_low_cst (len, 1); if (GET_MODE_SIZE (TYPE_MODE (etype)) != length || get_pointer_alignment (dest) / BITS_PER_UNIT < length) return NULL_TREE; if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) return NULL_TREE; if (integer_zerop (c)) cval = 0; else { if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64) return NULL_TREE; cval = TREE_INT_CST_LOW (c); cval &= 0xff; cval |= cval << 8; cval |= cval << 16; cval |= (cval << 31) << 1; } ret = build_int_cst_type (etype, cval); var = build_fold_indirect_ref_loc (loc, fold_convert_loc (loc, build_pointer_type (etype), dest)); ret = build2 (MODIFY_EXPR, etype, var, ret); if (ignore) return ret; return omit_one_operand_loc (loc, type, dest, ret); } /* Fold function call to builtin memset. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_bzero (location_t loc, tree dest, tree size, bool ignore) { if (! validate_arg (dest, POINTER_TYPE) || ! validate_arg (size, INTEGER_TYPE)) return NULL_TREE; if (!ignore) return NULL_TREE; /* New argument list transforming bzero(ptr x, int y) to memset(ptr x, int 0, size_t y). This is done this way so that if it isn't expanded inline, we fallback to calling bzero instead of memset. */ return fold_builtin_memset (loc, dest, integer_zero_node, fold_convert_loc (loc, size_type_node, size), void_type_node, ignore); } /* Fold function call to builtin mem{{,p}cpy,move}. Return NULL_TREE if no simplification can be made. If ENDP is 0, return DEST (like memcpy). If ENDP is 1, return DEST+LEN (like mempcpy). If ENDP is 2, return DEST+LEN-1 (like stpcpy). If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap (memmove). */ static tree fold_builtin_memory_op (location_t loc, tree dest, tree src, tree len, tree type, bool ignore, int endp) { tree destvar, srcvar, expr; if (! validate_arg (dest, POINTER_TYPE) || ! validate_arg (src, POINTER_TYPE) || ! validate_arg (len, INTEGER_TYPE)) return NULL_TREE; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) return omit_one_operand_loc (loc, type, dest, src); /* If SRC and DEST are the same (and not volatile), return DEST{,+LEN,+LEN-1}. */ if (operand_equal_p (src, dest, 0)) expr = len; else { tree srctype, desttype; unsigned int src_align, dest_align; tree off0; if (endp == 3) { src_align = get_pointer_alignment (src); dest_align = get_pointer_alignment (dest); /* Both DEST and SRC must be pointer types. ??? This is what old code did. Is the testing for pointer types really mandatory? If either SRC is readonly or length is 1, we can use memcpy. */ if (!dest_align || !src_align) return NULL_TREE; if (readonly_data_expr (src) || (host_integerp (len, 1) && (MIN (src_align, dest_align) / BITS_PER_UNIT >= (unsigned HOST_WIDE_INT) tree_low_cst (len, 1)))) { tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } /* If *src and *dest can't overlap, optimize into memcpy as well. */ if (TREE_CODE (src) == ADDR_EXPR && TREE_CODE (dest) == ADDR_EXPR) { tree src_base, dest_base, fn; HOST_WIDE_INT src_offset = 0, dest_offset = 0; HOST_WIDE_INT size = -1; HOST_WIDE_INT maxsize = -1; srcvar = TREE_OPERAND (src, 0); src_base = get_ref_base_and_extent (srcvar, &src_offset, &size, &maxsize); destvar = TREE_OPERAND (dest, 0); dest_base = get_ref_base_and_extent (destvar, &dest_offset, &size, &maxsize); if (host_integerp (len, 1)) maxsize = tree_low_cst (len, 1); else maxsize = -1; src_offset /= BITS_PER_UNIT; dest_offset /= BITS_PER_UNIT; if (SSA_VAR_P (src_base) && SSA_VAR_P (dest_base)) { if (operand_equal_p (src_base, dest_base, 0) && ranges_overlap_p (src_offset, maxsize, dest_offset, maxsize)) return NULL_TREE; } else if (TREE_CODE (src_base) == MEM_REF && TREE_CODE (dest_base) == MEM_REF) { double_int off; if (! operand_equal_p (TREE_OPERAND (src_base, 0), TREE_OPERAND (dest_base, 0), 0)) return NULL_TREE; off = mem_ref_offset (src_base) + double_int::from_shwi (src_offset); if (!off.fits_shwi ()) return NULL_TREE; src_offset = off.low; off = mem_ref_offset (dest_base) + double_int::from_shwi (dest_offset); if (!off.fits_shwi ()) return NULL_TREE; dest_offset = off.low; if (ranges_overlap_p (src_offset, maxsize, dest_offset, maxsize)) return NULL_TREE; } else return NULL_TREE; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } /* If the destination and source do not alias optimize into memcpy as well. */ if ((is_gimple_min_invariant (dest) || TREE_CODE (dest) == SSA_NAME) && (is_gimple_min_invariant (src) || TREE_CODE (src) == SSA_NAME)) { ao_ref destr, srcr; ao_ref_init_from_ptr_and_size (&destr, dest, len); ao_ref_init_from_ptr_and_size (&srcr, src, len); if (!refs_may_alias_p_1 (&destr, &srcr, false)) { tree fn; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } } return NULL_TREE; } if (!host_integerp (len, 0)) return NULL_TREE; /* FIXME: This logic lose for arguments like (type *)malloc (sizeof (type)), since we strip the casts of up to VOID return value from malloc. Perhaps we ought to inherit type from non-VOID argument here? */ STRIP_NOPS (src); STRIP_NOPS (dest); if (!POINTER_TYPE_P (TREE_TYPE (src)) || !POINTER_TYPE_P (TREE_TYPE (dest))) return NULL_TREE; /* As we fold (void *)(p + CST) to (void *)p + CST undo this here. */ if (TREE_CODE (src) == POINTER_PLUS_EXPR) { tree tem = TREE_OPERAND (src, 0); STRIP_NOPS (tem); if (tem != TREE_OPERAND (src, 0)) src = build1 (NOP_EXPR, TREE_TYPE (tem), src); } if (TREE_CODE (dest) == POINTER_PLUS_EXPR) { tree tem = TREE_OPERAND (dest, 0); STRIP_NOPS (tem); if (tem != TREE_OPERAND (dest, 0)) dest = build1 (NOP_EXPR, TREE_TYPE (tem), dest); } srctype = TREE_TYPE (TREE_TYPE (src)); if (TREE_CODE (srctype) == ARRAY_TYPE && !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)) { srctype = TREE_TYPE (srctype); STRIP_NOPS (src); src = build1 (NOP_EXPR, build_pointer_type (srctype), src); } desttype = TREE_TYPE (TREE_TYPE (dest)); if (TREE_CODE (desttype) == ARRAY_TYPE && !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)) { desttype = TREE_TYPE (desttype); STRIP_NOPS (dest); dest = build1 (NOP_EXPR, build_pointer_type (desttype), dest); } if (TREE_ADDRESSABLE (srctype) || TREE_ADDRESSABLE (desttype)) return NULL_TREE; src_align = get_pointer_alignment (src); dest_align = get_pointer_alignment (dest); if (dest_align < TYPE_ALIGN (desttype) || src_align < TYPE_ALIGN (srctype)) return NULL_TREE; if (!ignore) dest = builtin_save_expr (dest); /* Build accesses at offset zero with a ref-all character type. */ off0 = build_int_cst (build_pointer_type_for_mode (char_type_node, ptr_mode, true), 0); destvar = dest; STRIP_NOPS (destvar); if (TREE_CODE (destvar) == ADDR_EXPR && var_decl_component_p (TREE_OPERAND (destvar, 0)) && tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)) destvar = fold_build2 (MEM_REF, desttype, destvar, off0); else destvar = NULL_TREE; srcvar = src; STRIP_NOPS (srcvar); if (TREE_CODE (srcvar) == ADDR_EXPR && var_decl_component_p (TREE_OPERAND (srcvar, 0)) && tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)) { if (!destvar || src_align >= TYPE_ALIGN (desttype)) srcvar = fold_build2 (MEM_REF, destvar ? desttype : srctype, srcvar, off0); else if (!STRICT_ALIGNMENT) { srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, srcvar, off0); } else srcvar = NULL_TREE; } else srcvar = NULL_TREE; if (srcvar == NULL_TREE && destvar == NULL_TREE) return NULL_TREE; if (srcvar == NULL_TREE) { STRIP_NOPS (src); if (src_align >= TYPE_ALIGN (desttype)) srcvar = fold_build2 (MEM_REF, desttype, src, off0); else { if (STRICT_ALIGNMENT) return NULL_TREE; srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, src, off0); } } else if (destvar == NULL_TREE) { STRIP_NOPS (dest); if (dest_align >= TYPE_ALIGN (srctype)) destvar = fold_build2 (MEM_REF, srctype, dest, off0); else { if (STRICT_ALIGNMENT) return NULL_TREE; desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype), dest_align); destvar = fold_build2 (MEM_REF, desttype, dest, off0); } } expr = build2 (MODIFY_EXPR, TREE_TYPE (destvar), destvar, srcvar); } if (ignore) return expr; if (endp == 0 || endp == 3) return omit_one_operand_loc (loc, type, dest, expr); if (expr == len) expr = NULL_TREE; if (endp == 2) len = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (len), len, ssize_int (1)); dest = fold_build_pointer_plus_loc (loc, dest, len); dest = fold_convert_loc (loc, type, dest); if (expr) dest = omit_one_operand_loc (loc, type, dest, expr); return dest; } /* Fold function call to builtin strcpy with arguments DEST and SRC. If LEN is not NULL, it represents the length of the string to be copied. Return NULL_TREE if no simplification can be made. */ tree fold_builtin_strcpy (location_t loc, tree fndecl, tree dest, tree src, tree len) { tree fn; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE)) return NULL_TREE; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (operand_equal_p (src, dest, 0)) return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest); if (optimize_function_for_size_p (cfun)) return NULL_TREE; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; if (!len) { len = c_strlen (src, 1); if (! len || TREE_SIDE_EFFECTS (len)) return NULL_TREE; } len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), build_call_expr_loc (loc, fn, 3, dest, src, len)); } /* Fold function call to builtin stpcpy with arguments DEST and SRC. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_stpcpy (location_t loc, tree fndecl, tree dest, tree src) { tree fn, len, lenp1, call, type; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE)) return NULL_TREE; len = c_strlen (src, 1); if (!len || TREE_CODE (len) != INTEGER_CST) return NULL_TREE; if (optimize_function_for_size_p (cfun) /* If length is zero it's small enough. */ && !integer_zerop (len)) return NULL_TREE; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; lenp1 = size_binop_loc (loc, PLUS_EXPR, fold_convert_loc (loc, size_type_node, len), build_int_cst (size_type_node, 1)); /* We use dest twice in building our expression. Save it from multiple expansions. */ dest = builtin_save_expr (dest); call = build_call_expr_loc (loc, fn, 3, dest, src, lenp1); type = TREE_TYPE (TREE_TYPE (fndecl)); dest = fold_build_pointer_plus_loc (loc, dest, len); dest = fold_convert_loc (loc, type, dest); dest = omit_one_operand_loc (loc, type, dest, call); return dest; } /* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN. If SLEN is not NULL, it represents the length of the source string. Return NULL_TREE if no simplification can be made. */ tree fold_builtin_strncpy (location_t loc, tree fndecl, tree dest, tree src, tree len, tree slen) { tree fn; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (len, INTEGER_TYPE)) return NULL_TREE; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src); /* We can't compare slen with len as constants below if len is not a constant. */ if (len == 0 || TREE_CODE (len) != INTEGER_CST) return NULL_TREE; if (!slen) slen = c_strlen (src, 1); /* Now, we must be passed a constant src ptr parameter. */ if (slen == 0 || TREE_CODE (slen) != INTEGER_CST) return NULL_TREE; slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1)); /* We do not support simplification of this case, though we do support it when expanding trees into RTL. */ /* FIXME: generate a call to __builtin_memset. */ if (tree_int_cst_lt (slen, len)) return NULL_TREE; /* OK transform into builtin memcpy. */ fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return NULL_TREE; len = fold_convert_loc (loc, size_type_node, len); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), build_call_expr_loc (loc, fn, 3, dest, src, len)); } /* Fold function call to builtin memchr. ARG1, ARG2 and LEN are the arguments to the call, and TYPE is its return type. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_memchr (location_t loc, tree arg1, tree arg2, tree len, tree type) { if (!validate_arg (arg1, POINTER_TYPE) || !validate_arg (arg2, INTEGER_TYPE) || !validate_arg (len, INTEGER_TYPE)) return NULL_TREE; else { const char *p1; if (TREE_CODE (arg2) != INTEGER_CST || !host_integerp (len, 1)) return NULL_TREE; p1 = c_getstr (arg1); if (p1 && compare_tree_int (len, strlen (p1) + 1) <= 0) { char c; const char *r; tree tem; if (target_char_cast (arg2, &c)) return NULL_TREE; r = (const char *) memchr (p1, c, tree_low_cst (len, 1)); if (r == NULL) return build_int_cst (TREE_TYPE (arg1), 0); tem = fold_build_pointer_plus_hwi_loc (loc, arg1, r - p1); return fold_convert_loc (loc, type, tem); } return NULL_TREE; } } /* Fold function call to builtin memcmp with arguments ARG1 and ARG2. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_memcmp (location_t loc, tree arg1, tree arg2, tree len) { const char *p1, *p2; if (!validate_arg (arg1, POINTER_TYPE) || !validate_arg (arg2, POINTER_TYPE) || !validate_arg (len, INTEGER_TYPE)) return NULL_TREE; /* If the LEN parameter is zero, return zero. */ if (integer_zerop (len)) return omit_two_operands_loc (loc, integer_type_node, integer_zero_node, arg1, arg2); /* If ARG1 and ARG2 are the same (and not volatile), return zero. */ if (operand_equal_p (arg1, arg2, 0)) return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len); p1 = c_getstr (arg1); p2 = c_getstr (arg2); /* If all arguments are constant, and the value of len is not greater than the lengths of arg1 and arg2, evaluate at compile-time. */ if (host_integerp (len, 1) && p1 && p2 && compare_tree_int (len, strlen (p1) + 1) <= 0 && compare_tree_int (len, strlen (p2) + 1) <= 0) { const int r = memcmp (p1, p2, tree_low_cst (len, 1)); if (r > 0) return integer_one_node; else if (r < 0) return integer_minus_one_node; else return integer_zero_node; } /* If len parameter is one, return an expression corresponding to (*(const unsigned char*)arg1 - (const unsigned char*)arg2). */ if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); tree ind1 = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg1))); tree ind2 = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg2))); return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2); } return NULL_TREE; } /* Fold function call to builtin strcmp with arguments ARG1 and ARG2. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_strcmp (location_t loc, tree arg1, tree arg2) { const char *p1, *p2; if (!validate_arg (arg1, POINTER_TYPE) || !validate_arg (arg2, POINTER_TYPE)) return NULL_TREE; /* If ARG1 and ARG2 are the same (and not volatile), return zero. */ if (operand_equal_p (arg1, arg2, 0)) return integer_zero_node; p1 = c_getstr (arg1); p2 = c_getstr (arg2); if (p1 && p2) { const int i = strcmp (p1, p2); if (i < 0) return integer_minus_one_node; else if (i > 0) return integer_one_node; else return integer_zero_node; } /* If the second arg is "", return *(const unsigned char*)arg1. */ if (p2 && *p2 == '\0') { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); return fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg1))); } /* If the first arg is "", return -*(const unsigned char*)arg2. */ if (p1 && *p1 == '\0') { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); tree temp = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg2))); return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp); } return NULL_TREE; } /* Fold function call to builtin strncmp with arguments ARG1, ARG2, and LEN. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_strncmp (location_t loc, tree arg1, tree arg2, tree len) { const char *p1, *p2; if (!validate_arg (arg1, POINTER_TYPE) || !validate_arg (arg2, POINTER_TYPE) || !validate_arg (len, INTEGER_TYPE)) return NULL_TREE; /* If the LEN parameter is zero, return zero. */ if (integer_zerop (len)) return omit_two_operands_loc (loc, integer_type_node, integer_zero_node, arg1, arg2); /* If ARG1 and ARG2 are the same (and not volatile), return zero. */ if (operand_equal_p (arg1, arg2, 0)) return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len); p1 = c_getstr (arg1); p2 = c_getstr (arg2); if (host_integerp (len, 1) && p1 && p2) { const int i = strncmp (p1, p2, tree_low_cst (len, 1)); if (i > 0) return integer_one_node; else if (i < 0) return integer_minus_one_node; else return integer_zero_node; } /* If the second arg is "", and the length is greater than zero, return *(const unsigned char*)arg1. */ if (p2 && *p2 == '\0' && TREE_CODE (len) == INTEGER_CST && tree_int_cst_sgn (len) == 1) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); return fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg1))); } /* If the first arg is "", and the length is greater than zero, return -*(const unsigned char*)arg2. */ if (p1 && *p1 == '\0' && TREE_CODE (len) == INTEGER_CST && tree_int_cst_sgn (len) == 1) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); tree temp = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg2))); return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp); } /* If len parameter is one, return an expression corresponding to (*(const unsigned char*)arg1 - (const unsigned char*)arg2). */ if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); tree ind1 = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg1))); tree ind2 = fold_convert_loc (loc, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, fold_convert_loc (loc, cst_uchar_ptr_node, arg2))); return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2); } return NULL_TREE; } /* Fold function call to builtin signbit, signbitf or signbitl with argument ARG. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_signbit (location_t loc, tree arg, tree type) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; /* If ARG is a compile-time constant, determine the result. */ if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { REAL_VALUE_TYPE c; c = TREE_REAL_CST (arg); return (REAL_VALUE_NEGATIVE (c) ? build_one_cst (type) : build_zero_cst (type)); } /* If ARG is non-negative, the result is always zero. */ if (tree_expr_nonnegative_p (arg)) return omit_one_operand_loc (loc, type, integer_zero_node, arg); /* If ARG's format doesn't have signed zeros, return "arg < 0.0". */ if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg)))) return fold_convert (type, fold_build2_loc (loc, LT_EXPR, boolean_type_node, arg, build_real (TREE_TYPE (arg), dconst0))); return NULL_TREE; } /* Fold function call to builtin copysign, copysignf or copysignl with arguments ARG1 and ARG2. Return NULL_TREE if no simplification can be made. */ static tree fold_builtin_copysign (location_t loc, tree fndecl, tree arg1, tree arg2, tree type) { tree tem; if (!validate_arg (arg1, REAL_TYPE) || !validate_arg (arg2, REAL_TYPE)) return NULL_TREE; /* copysign(X,X) is X. */ if (operand_equal_p (arg1, arg2, 0)) return fold_convert_loc (loc, type, arg1); /* If ARG1 and ARG2 are compile-time constants, determine the result. */ if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg1) && !TREE_OVERFLOW (arg2)) { REAL_VALUE_TYPE c1, c2; c1 = TREE_REAL_CST (arg1); c2 = TREE_REAL_CST (arg2); /* c1.sign := c2.sign. */ real_copysign (&c1, &c2); return build_real (type, c1); } /* copysign(X, Y) is fabs(X) when Y is always non-negative. Remember to evaluate Y for side-effects. */ if (tree_expr_nonnegative_p (arg2)) return omit_one_operand_loc (loc, type, fold_build1_loc (loc, ABS_EXPR, type, arg1), arg2); /* Strip sign changing operations for the first argument. */ tem = fold_strip_sign_ops (arg1); if (tem) return build_call_expr_loc (loc, fndecl, 2, tem, arg2); return NULL_TREE; } /* Fold a call to builtin isascii with argument ARG. */ static tree fold_builtin_isascii (location_t loc, tree arg) { if (!validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; else { /* Transform isascii(c) -> ((c & ~0x7f) == 0). */ arg = fold_build2 (BIT_AND_EXPR, integer_type_node, arg, build_int_cst (integer_type_node, ~ (unsigned HOST_WIDE_INT) 0x7f)); return fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg, integer_zero_node); } } /* Fold a call to builtin toascii with argument ARG. */ static tree fold_builtin_toascii (location_t loc, tree arg) { if (!validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; /* Transform toascii(c) -> (c & 0x7f). */ return fold_build2_loc (loc, BIT_AND_EXPR, integer_type_node, arg, build_int_cst (integer_type_node, 0x7f)); } /* Fold a call to builtin isdigit with argument ARG. */ static tree fold_builtin_isdigit (location_t loc, tree arg) { if (!validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; else { /* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9. */ /* According to the C standard, isdigit is unaffected by locale. However, it definitely is affected by the target character set. */ unsigned HOST_WIDE_INT target_digit0 = lang_hooks.to_target_charset ('0'); if (target_digit0 == 0) return NULL_TREE; arg = fold_convert_loc (loc, unsigned_type_node, arg); arg = fold_build2 (MINUS_EXPR, unsigned_type_node, arg, build_int_cst (unsigned_type_node, target_digit0)); return fold_build2_loc (loc, LE_EXPR, integer_type_node, arg, build_int_cst (unsigned_type_node, 9)); } } /* Fold a call to fabs, fabsf or fabsl with argument ARG. */ static tree fold_builtin_fabs (location_t loc, tree arg, tree type) { if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; arg = fold_convert_loc (loc, type, arg); if (TREE_CODE (arg) == REAL_CST) return fold_abs_const (arg, type); return fold_build1_loc (loc, ABS_EXPR, type, arg); } /* Fold a call to abs, labs, llabs or imaxabs with argument ARG. */ static tree fold_builtin_abs (location_t loc, tree arg, tree type) { if (!validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; arg = fold_convert_loc (loc, type, arg); if (TREE_CODE (arg) == INTEGER_CST) return fold_abs_const (arg, type); return fold_build1_loc (loc, ABS_EXPR, type, arg); } /* Fold a fma operation with arguments ARG[012]. */ tree fold_fma (location_t loc ATTRIBUTE_UNUSED, tree type, tree arg0, tree arg1, tree arg2) { if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST) return do_mpfr_arg3 (arg0, arg1, arg2, type, mpfr_fma); return NULL_TREE; } /* Fold a call to fma, fmaf, or fmal with arguments ARG[012]. */ static tree fold_builtin_fma (location_t loc, tree arg0, tree arg1, tree arg2, tree type) { if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, REAL_TYPE) && validate_arg(arg2, REAL_TYPE)) { tree tem = fold_fma (loc, type, arg0, arg1, arg2); if (tem) return tem; /* ??? Only expand to FMA_EXPR if it's directly supported. */ if (optab_handler (fma_optab, TYPE_MODE (type)) != CODE_FOR_nothing) return fold_build3_loc (loc, FMA_EXPR, type, arg0, arg1, arg2); } return NULL_TREE; } /* Fold a call to builtin fmin or fmax. */ static tree fold_builtin_fmin_fmax (location_t loc, tree arg0, tree arg1, tree type, bool max) { if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, REAL_TYPE)) { /* Calculate the result when the argument is a constant. */ tree res = do_mpfr_arg2 (arg0, arg1, type, (max ? mpfr_max : mpfr_min)); if (res) return res; /* If either argument is NaN, return the other one. Avoid the transformation if we get (and honor) a signalling NaN. Using omit_one_operand() ensures we create a non-lvalue. */ if (TREE_CODE (arg0) == REAL_CST && real_isnan (&TREE_REAL_CST (arg0)) && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))) || ! TREE_REAL_CST (arg0).signalling)) return omit_one_operand_loc (loc, type, arg1, arg0); if (TREE_CODE (arg1) == REAL_CST && real_isnan (&TREE_REAL_CST (arg1)) && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))) || ! TREE_REAL_CST (arg1).signalling)) return omit_one_operand_loc (loc, type, arg0, arg1); /* Transform fmin/fmax(x,x) -> x. */ if (operand_equal_p (arg0, arg1, OEP_PURE_SAME)) return omit_one_operand_loc (loc, type, arg0, arg1); /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these functions to return the numeric arg if the other one is NaN. These tree codes don't honor that, so only transform if -ffinite-math-only is set. C99 doesn't require -0.0 to be handled, so we don't have to worry about it either. */ if (flag_finite_math_only) return fold_build2_loc (loc, (max ? MAX_EXPR : MIN_EXPR), type, fold_convert_loc (loc, type, arg0), fold_convert_loc (loc, type, arg1)); } return NULL_TREE; } /* Fold a call to builtin carg(a+bi) -> atan2(b,a). */ static tree fold_builtin_carg (location_t loc, tree arg, tree type) { if (validate_arg (arg, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE) { tree atan2_fn = mathfn_built_in (type, BUILT_IN_ATAN2); if (atan2_fn) { tree new_arg = builtin_save_expr (arg); tree r_arg = fold_build1_loc (loc, REALPART_EXPR, type, new_arg); tree i_arg = fold_build1_loc (loc, IMAGPART_EXPR, type, new_arg); return build_call_expr_loc (loc, atan2_fn, 2, i_arg, r_arg); } } return NULL_TREE; } /* Fold a call to builtin logb/ilogb. */ static tree fold_builtin_logb (location_t loc, tree arg, tree rettype) { if (! validate_arg (arg, REAL_TYPE)) return NULL_TREE; STRIP_NOPS (arg); if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg)) { const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg); switch (value->cl) { case rvc_nan: case rvc_inf: /* If arg is Inf or NaN and we're logb, return it. */ if (TREE_CODE (rettype) == REAL_TYPE) return fold_convert_loc (loc, rettype, arg); /* Fall through... */ case rvc_zero: /* Zero may set errno and/or raise an exception for logb, also for ilogb we don't know FP_ILOGB0. */ return NULL_TREE; case rvc_normal: /* For normal numbers, proceed iff radix == 2. In GCC, normalized significands are in the range [0.5, 1.0). We want the exponent as if they were [1.0, 2.0) so get the exponent and subtract 1. */ if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2) return fold_convert_loc (loc, rettype, build_int_cst (integer_type_node, REAL_EXP (value)-1)); break; } } return NULL_TREE; } /* Fold a call to builtin significand, if radix == 2. */ static tree fold_builtin_significand (location_t loc, tree arg, tree rettype) { if (! validate_arg (arg, REAL_TYPE)) return NULL_TREE; STRIP_NOPS (arg); if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg)) { const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg); switch (value->cl) { case rvc_zero: case rvc_nan: case rvc_inf: /* If arg is +-0, +-Inf or +-NaN, then return it. */ return fold_convert_loc (loc, rettype, arg); case rvc_normal: /* For normal numbers, proceed iff radix == 2. */ if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2) { REAL_VALUE_TYPE result = *value; /* In GCC, normalized significands are in the range [0.5, 1.0). We want them to be [1.0, 2.0) so set the exponent to 1. */ SET_REAL_EXP (&result, 1); return build_real (rettype, result); } break; } } return NULL_TREE; } /* Fold a call to builtin frexp, we can assume the base is 2. */ static tree fold_builtin_frexp (location_t loc, tree arg0, tree arg1, tree rettype) { if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE)) return NULL_TREE; STRIP_NOPS (arg0); if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0))) return NULL_TREE; arg1 = build_fold_indirect_ref_loc (loc, arg1); /* Proceed if a valid pointer type was passed in. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == integer_type_node) { const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0); tree frac, exp; switch (value->cl) { case rvc_zero: /* For +-0, return (*exp = 0, +-0). */ exp = integer_zero_node; frac = arg0; break; case rvc_nan: case rvc_inf: /* For +-NaN or +-Inf, *exp is unspecified, return arg0. */ return omit_one_operand_loc (loc, rettype, arg0, arg1); case rvc_normal: { /* Since the frexp function always expects base 2, and in GCC normalized significands are already in the range [0.5, 1.0), we have exactly what frexp wants. */ REAL_VALUE_TYPE frac_rvt = *value; SET_REAL_EXP (&frac_rvt, 0); frac = build_real (rettype, frac_rvt); exp = build_int_cst (integer_type_node, REAL_EXP (value)); } break; default: gcc_unreachable (); } /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */ arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1, exp); TREE_SIDE_EFFECTS (arg1) = 1; return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1, frac); } return NULL_TREE; } /* Fold a call to builtin ldexp or scalbn/scalbln. If LDEXP is true then we can assume the base is two. If it's false, then we have to check the mode of the TYPE parameter in certain cases. */ static tree fold_builtin_load_exponent (location_t loc, tree arg0, tree arg1, tree type, bool ldexp) { if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, INTEGER_TYPE)) { STRIP_NOPS (arg0); STRIP_NOPS (arg1); /* If arg0 is 0, Inf or NaN, or if arg1 is 0, then return arg0. */ if (real_zerop (arg0) || integer_zerop (arg1) || (TREE_CODE (arg0) == REAL_CST && !real_isfinite (&TREE_REAL_CST (arg0)))) return omit_one_operand_loc (loc, type, arg0, arg1); /* If both arguments are constant, then try to evaluate it. */ if ((ldexp || REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2) && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0) && host_integerp (arg1, 0)) { /* Bound the maximum adjustment to twice the range of the mode's valid exponents. Use abs to ensure the range is positive as a sanity check. */ const long max_exp_adj = 2 * labs (REAL_MODE_FORMAT (TYPE_MODE (type))->emax - REAL_MODE_FORMAT (TYPE_MODE (type))->emin); /* Get the user-requested adjustment. */ const HOST_WIDE_INT req_exp_adj = tree_low_cst (arg1, 0); /* The requested adjustment must be inside this range. This is a preliminary cap to avoid things like overflow, we may still fail to compute the result for other reasons. */ if (-max_exp_adj < req_exp_adj && req_exp_adj < max_exp_adj) { REAL_VALUE_TYPE initial_result; real_ldexp (&initial_result, &TREE_REAL_CST (arg0), req_exp_adj); /* Ensure we didn't overflow. */ if (! real_isinf (&initial_result)) { const REAL_VALUE_TYPE trunc_result = real_value_truncate (TYPE_MODE (type), initial_result); /* Only proceed if the target mode can hold the resulting value. */ if (REAL_VALUES_EQUAL (initial_result, trunc_result)) return build_real (type, trunc_result); } } } } return NULL_TREE; } /* Fold a call to builtin modf. */ static tree fold_builtin_modf (location_t loc, tree arg0, tree arg1, tree rettype) { if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE)) return NULL_TREE; STRIP_NOPS (arg0); if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0))) return NULL_TREE; arg1 = build_fold_indirect_ref_loc (loc, arg1); /* Proceed if a valid pointer type was passed in. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == TYPE_MAIN_VARIANT (rettype)) { const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0); REAL_VALUE_TYPE trunc, frac; switch (value->cl) { case rvc_nan: case rvc_zero: /* For +-NaN or +-0, return (*arg1 = arg0, arg0). */ trunc = frac = *value; break; case rvc_inf: /* For +-Inf, return (*arg1 = arg0, +-0). */ frac = dconst0; frac.sign = value->sign; trunc = *value; break; case rvc_normal: /* Return (*arg1 = trunc(arg0), arg0-trunc(arg0)). */ real_trunc (&trunc, VOIDmode, value); real_arithmetic (&frac, MINUS_EXPR, value, &trunc); /* If the original number was negative and already integral, then the fractional part is -0.0. */ if (value->sign && frac.cl == rvc_zero) frac.sign = value->sign; break; } /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */ arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1, build_real (rettype, trunc)); TREE_SIDE_EFFECTS (arg1) = 1; return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1, build_real (rettype, frac)); } return NULL_TREE; } /* Given a location LOC, an interclass builtin function decl FNDECL and its single argument ARG, return an folded expression computing the same, or NULL_TREE if we either couldn't or didn't want to fold (the latter happen if there's an RTL instruction available). */ static tree fold_builtin_interclass_mathfn (location_t loc, tree fndecl, tree arg) { enum machine_mode mode; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; if (interclass_mathfn_icode (arg, fndecl) != CODE_FOR_nothing) return NULL_TREE; mode = TYPE_MODE (TREE_TYPE (arg)); /* If there is no optab, try generic code. */ switch (DECL_FUNCTION_CODE (fndecl)) { tree result; CASE_FLT_FN (BUILT_IN_ISINF): { /* isinf(x) -> isgreater(fabs(x),DBL_MAX). */ tree const isgr_fn = builtin_decl_explicit (BUILT_IN_ISGREATER); tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isgr_fn, 2, fold_build1_loc (loc, ABS_EXPR, type, arg), build_real (type, r)); return result; } CASE_FLT_FN (BUILT_IN_FINITE): case BUILT_IN_ISFINITE: { /* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isle_fn, 2, fold_build1_loc (loc, ABS_EXPR, type, arg), build_real (type, r)); /*result = fold_build2_loc (loc, UNGT_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), fold_build1_loc (loc, ABS_EXPR, type, arg), build_real (type, r)); result = fold_build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), result);*/ return result; } case BUILT_IN_ISNORMAL: { /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) & islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); tree const isge_fn = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL); tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE rmax, rmin; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&rmax, buf); sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1); real_from_string (&rmin, buf); arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg)); result = build_call_expr (isle_fn, 2, arg, build_real (type, rmax)); result = fold_build2 (BIT_AND_EXPR, integer_type_node, result, build_call_expr (isge_fn, 2, arg, build_real (type, rmin))); return result; } default: break; } return NULL_TREE; } /* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite. ARG is the argument for the call. */ static tree fold_builtin_classify (location_t loc, tree fndecl, tree arg, int builtin_index) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); REAL_VALUE_TYPE r; if (!validate_arg (arg, REAL_TYPE)) return NULL_TREE; switch (builtin_index) { case BUILT_IN_ISINF: if (!HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg)))) return omit_one_operand_loc (loc, type, integer_zero_node, arg); if (TREE_CODE (arg) == REAL_CST) { r = TREE_REAL_CST (arg); if (real_isinf (&r)) return real_compare (GT_EXPR, &r, &dconst0) ? integer_one_node : integer_minus_one_node; else return integer_zero_node; } return NULL_TREE; case BUILT_IN_ISINF_SIGN: { /* isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 */ /* In a boolean context, GCC will fold the inner COND_EXPR to 1. So e.g. "if (isinf_sign(x))" would be folded to just "if (isinf(x) ? 1 : 0)" which becomes "if (isinf(x))". */ tree signbit_fn = mathfn_built_in_1 (TREE_TYPE (arg), BUILT_IN_SIGNBIT, 0); tree isinf_fn = builtin_decl_explicit (BUILT_IN_ISINF); tree tmp = NULL_TREE; arg = builtin_save_expr (arg); if (signbit_fn && isinf_fn) { tree signbit_call = build_call_expr_loc (loc, signbit_fn, 1, arg); tree isinf_call = build_call_expr_loc (loc, isinf_fn, 1, arg); signbit_call = fold_build2_loc (loc, NE_EXPR, integer_type_node, signbit_call, integer_zero_node); isinf_call = fold_build2_loc (loc, NE_EXPR, integer_type_node, isinf_call, integer_zero_node); tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node, signbit_call, integer_minus_one_node, integer_one_node); tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node, isinf_call, tmp, integer_zero_node); } return tmp; } case BUILT_IN_ISFINITE: if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg))) && !HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg)))) return omit_one_operand_loc (loc, type, integer_one_node, arg); if (TREE_CODE (arg) == REAL_CST) { r = TREE_REAL_CST (arg); return real_isfinite (&r) ? integer_one_node : integer_zero_node; } return NULL_TREE; case BUILT_IN_ISNAN: if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg)))) return omit_one_operand_loc (loc, type, integer_zero_node, arg); if (TREE_CODE (arg) == REAL_CST) { r = TREE_REAL_CST (arg); return real_isnan (&r) ? integer_one_node : integer_zero_node; } arg = builtin_save_expr (arg); return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg); default: gcc_unreachable (); } } /* Fold a call to __builtin_fpclassify(int, int, int, int, int, ...). This builtin will generate code to return the appropriate floating point classification depending on the value of the floating point number passed in. The possible return values must be supplied as int arguments to the call in the following order: FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipses is for exactly one floating point argument which is "type generic". */ static tree fold_builtin_fpclassify (location_t loc, tree exp) { tree fp_nan, fp_infinite, fp_normal, fp_subnormal, fp_zero, arg, type, res, tmp; enum machine_mode mode; REAL_VALUE_TYPE r; char buf[128]; /* Verify the required arguments in the original call. */ if (!validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE, INTEGER_TYPE, INTEGER_TYPE, INTEGER_TYPE, REAL_TYPE, VOID_TYPE)) return NULL_TREE; fp_nan = CALL_EXPR_ARG (exp, 0); fp_infinite = CALL_EXPR_ARG (exp, 1); fp_normal = CALL_EXPR_ARG (exp, 2); fp_subnormal = CALL_EXPR_ARG (exp, 3); fp_zero = CALL_EXPR_ARG (exp, 4); arg = CALL_EXPR_ARG (exp, 5); type = TREE_TYPE (arg); mode = TYPE_MODE (type); arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg)); /* fpclassify(x) -> isnan(x) ? FP_NAN : (fabs(x) == Inf ? FP_INFINITE : (fabs(x) >= DBL_MIN ? FP_NORMAL : (x == 0 ? FP_ZERO : FP_SUBNORMAL))). */ tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg, build_real (type, dconst0)); res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_zero, fp_subnormal); sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1); real_from_string (&r, buf); tmp = fold_build2_loc (loc, GE_EXPR, integer_type_node, arg, build_real (type, r)); res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_normal, res); if (HONOR_INFINITIES (mode)) { real_inf (&r); tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg, build_real (type, r)); res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_infinite, res); } if (HONOR_NANS (mode)) { tmp = fold_build2_loc (loc, ORDERED_EXPR, integer_type_node, arg, arg); res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, res, fp_nan); } return res; } /* Fold a call to an unordered comparison function such as __builtin_isgreater(). FNDECL is the FUNCTION_DECL for the function being called and ARG0 and ARG1 are the arguments for the call. UNORDERED_CODE and ORDERED_CODE are comparison codes that give the opposite of the desired result. UNORDERED_CODE is used for modes that can hold NaNs and ORDERED_CODE is used for the rest. */ static tree fold_builtin_unordered_cmp (location_t loc, tree fndecl, tree arg0, tree arg1, enum tree_code unordered_code, enum tree_code ordered_code) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); enum tree_code code; tree type0, type1; enum tree_code code0, code1; tree cmp_type = NULL_TREE; type0 = TREE_TYPE (arg0); type1 = TREE_TYPE (arg1); code0 = TREE_CODE (type0); code1 = TREE_CODE (type1); if (code0 == REAL_TYPE && code1 == REAL_TYPE) /* Choose the wider of two real types. */ cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1) ? type0 : type1; else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE) cmp_type = type0; else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE) cmp_type = type1; arg0 = fold_convert_loc (loc, cmp_type, arg0); arg1 = fold_convert_loc (loc, cmp_type, arg1); if (unordered_code == UNORDERED_EXPR) { if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))) return omit_two_operands_loc (loc, type, integer_zero_node, arg0, arg1); return fold_build2_loc (loc, UNORDERED_EXPR, type, arg0, arg1); } code = HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))) ? unordered_code : ordered_code; return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, fold_build2_loc (loc, code, type, arg0, arg1)); } /* Fold a call to built-in function FNDECL with 0 arguments. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. */ static tree fold_builtin_0 (location_t loc, tree fndecl, bool ignore ATTRIBUTE_UNUSED) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { CASE_FLT_FN (BUILT_IN_INF): case BUILT_IN_INFD32: case BUILT_IN_INFD64: case BUILT_IN_INFD128: return fold_builtin_inf (loc, type, true); CASE_FLT_FN (BUILT_IN_HUGE_VAL): return fold_builtin_inf (loc, type, false); case BUILT_IN_CLASSIFY_TYPE: return fold_builtin_classify_type (NULL_TREE); default: break; } return NULL_TREE; } /* Fold a call to built-in function FNDECL with 1 argument, ARG0. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. */ static tree fold_builtin_1 (location_t loc, tree fndecl, tree arg0, bool ignore) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { case BUILT_IN_CONSTANT_P: { tree val = fold_builtin_constant_p (arg0); /* Gimplification will pull the CALL_EXPR for the builtin out of an if condition. When not optimizing, we'll not CSE it back. To avoid link error types of regressions, return false now. */ if (!val && !optimize) val = integer_zero_node; return val; } case BUILT_IN_CLASSIFY_TYPE: return fold_builtin_classify_type (arg0); case BUILT_IN_STRLEN: return fold_builtin_strlen (loc, type, arg0); CASE_FLT_FN (BUILT_IN_FABS): return fold_builtin_fabs (loc, arg0, type); case BUILT_IN_ABS: case BUILT_IN_LABS: case BUILT_IN_LLABS: case BUILT_IN_IMAXABS: return fold_builtin_abs (loc, arg0, type); CASE_FLT_FN (BUILT_IN_CONJ): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return fold_build1_loc (loc, CONJ_EXPR, type, arg0); break; CASE_FLT_FN (BUILT_IN_CREAL): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return non_lvalue_loc (loc, fold_build1_loc (loc, REALPART_EXPR, type, arg0));; break; CASE_FLT_FN (BUILT_IN_CIMAG): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return non_lvalue_loc (loc, fold_build1_loc (loc, IMAGPART_EXPR, type, arg0)); break; CASE_FLT_FN (BUILT_IN_CCOS): return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ false); CASE_FLT_FN (BUILT_IN_CCOSH): return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ true); CASE_FLT_FN (BUILT_IN_CPROJ): return fold_builtin_cproj(loc, arg0, type); CASE_FLT_FN (BUILT_IN_CSIN): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_sin); break; CASE_FLT_FN (BUILT_IN_CSINH): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_sinh); break; CASE_FLT_FN (BUILT_IN_CTAN): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_tan); break; CASE_FLT_FN (BUILT_IN_CTANH): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_tanh); break; CASE_FLT_FN (BUILT_IN_CLOG): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_log); break; CASE_FLT_FN (BUILT_IN_CSQRT): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_sqrt); break; CASE_FLT_FN (BUILT_IN_CASIN): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_asin); break; CASE_FLT_FN (BUILT_IN_CACOS): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_acos); break; CASE_FLT_FN (BUILT_IN_CATAN): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_atan); break; CASE_FLT_FN (BUILT_IN_CASINH): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_asinh); break; CASE_FLT_FN (BUILT_IN_CACOSH): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_acosh); break; CASE_FLT_FN (BUILT_IN_CATANH): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE) return do_mpc_arg1 (arg0, type, mpc_atanh); break; CASE_FLT_FN (BUILT_IN_CABS): return fold_builtin_cabs (loc, arg0, type, fndecl); CASE_FLT_FN (BUILT_IN_CARG): return fold_builtin_carg (loc, arg0, type); CASE_FLT_FN (BUILT_IN_SQRT): return fold_builtin_sqrt (loc, arg0, type); CASE_FLT_FN (BUILT_IN_CBRT): return fold_builtin_cbrt (loc, arg0, type); CASE_FLT_FN (BUILT_IN_ASIN): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_asin, &dconstm1, &dconst1, true); break; CASE_FLT_FN (BUILT_IN_ACOS): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_acos, &dconstm1, &dconst1, true); break; CASE_FLT_FN (BUILT_IN_ATAN): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_atan, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_ASINH): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_asinh, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_ACOSH): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_acosh, &dconst1, NULL, true); break; CASE_FLT_FN (BUILT_IN_ATANH): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_atanh, &dconstm1, &dconst1, false); break; CASE_FLT_FN (BUILT_IN_SIN): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_sin, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_COS): return fold_builtin_cos (loc, arg0, type, fndecl); CASE_FLT_FN (BUILT_IN_TAN): return fold_builtin_tan (arg0, type); CASE_FLT_FN (BUILT_IN_CEXP): return fold_builtin_cexp (loc, arg0, type); CASE_FLT_FN (BUILT_IN_CEXPI): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_sincos (arg0, NULL_TREE, NULL_TREE); break; CASE_FLT_FN (BUILT_IN_SINH): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_sinh, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_COSH): return fold_builtin_cosh (loc, arg0, type, fndecl); CASE_FLT_FN (BUILT_IN_TANH): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_tanh, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_ERF): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_erf, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_ERFC): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_erfc, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_TGAMMA): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_gamma, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_EXP): return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp); CASE_FLT_FN (BUILT_IN_EXP2): return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp2); CASE_FLT_FN (BUILT_IN_EXP10): CASE_FLT_FN (BUILT_IN_POW10): return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp10); CASE_FLT_FN (BUILT_IN_EXPM1): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_expm1, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_LOG): return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log); CASE_FLT_FN (BUILT_IN_LOG2): return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log2); CASE_FLT_FN (BUILT_IN_LOG10): return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log10); CASE_FLT_FN (BUILT_IN_LOG1P): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_log1p, &dconstm1, NULL, false); break; CASE_FLT_FN (BUILT_IN_J0): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_j0, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_J1): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_j1, NULL, NULL, 0); break; CASE_FLT_FN (BUILT_IN_Y0): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_y0, &dconst0, NULL, false); break; CASE_FLT_FN (BUILT_IN_Y1): if (validate_arg (arg0, REAL_TYPE)) return do_mpfr_arg1 (arg0, type, mpfr_y1, &dconst0, NULL, false); break; CASE_FLT_FN (BUILT_IN_NAN): case BUILT_IN_NAND32: case BUILT_IN_NAND64: case BUILT_IN_NAND128: return fold_builtin_nan (arg0, type, true); CASE_FLT_FN (BUILT_IN_NANS): return fold_builtin_nan (arg0, type, false); CASE_FLT_FN (BUILT_IN_FLOOR): return fold_builtin_floor (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_CEIL): return fold_builtin_ceil (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_TRUNC): return fold_builtin_trunc (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_ROUND): return fold_builtin_round (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_NEARBYINT): CASE_FLT_FN (BUILT_IN_RINT): return fold_trunc_transparent_mathfn (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_ICEIL): CASE_FLT_FN (BUILT_IN_LCEIL): CASE_FLT_FN (BUILT_IN_LLCEIL): CASE_FLT_FN (BUILT_IN_LFLOOR): CASE_FLT_FN (BUILT_IN_IFLOOR): CASE_FLT_FN (BUILT_IN_LLFLOOR): CASE_FLT_FN (BUILT_IN_IROUND): CASE_FLT_FN (BUILT_IN_LROUND): CASE_FLT_FN (BUILT_IN_LLROUND): return fold_builtin_int_roundingfn (loc, fndecl, arg0); CASE_FLT_FN (BUILT_IN_IRINT): CASE_FLT_FN (BUILT_IN_LRINT): CASE_FLT_FN (BUILT_IN_LLRINT): return fold_fixed_mathfn (loc, fndecl, arg0); case BUILT_IN_BSWAP16: case BUILT_IN_BSWAP32: case BUILT_IN_BSWAP64: return fold_builtin_bswap (fndecl, arg0); CASE_INT_FN (BUILT_IN_FFS): CASE_INT_FN (BUILT_IN_CLZ): CASE_INT_FN (BUILT_IN_CTZ): CASE_INT_FN (BUILT_IN_CLRSB): CASE_INT_FN (BUILT_IN_POPCOUNT): CASE_INT_FN (BUILT_IN_PARITY): return fold_builtin_bitop (fndecl, arg0); CASE_FLT_FN (BUILT_IN_SIGNBIT): return fold_builtin_signbit (loc, arg0, type); CASE_FLT_FN (BUILT_IN_SIGNIFICAND): return fold_builtin_significand (loc, arg0, type); CASE_FLT_FN (BUILT_IN_ILOGB): CASE_FLT_FN (BUILT_IN_LOGB): return fold_builtin_logb (loc, arg0, type); case BUILT_IN_ISASCII: return fold_builtin_isascii (loc, arg0); case BUILT_IN_TOASCII: return fold_builtin_toascii (loc, arg0); case BUILT_IN_ISDIGIT: return fold_builtin_isdigit (loc, arg0); CASE_FLT_FN (BUILT_IN_FINITE): case BUILT_IN_FINITED32: case BUILT_IN_FINITED64: case BUILT_IN_FINITED128: case BUILT_IN_ISFINITE: { tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE); if (ret) return ret; return fold_builtin_interclass_mathfn (loc, fndecl, arg0); } CASE_FLT_FN (BUILT_IN_ISINF): case BUILT_IN_ISINFD32: case BUILT_IN_ISINFD64: case BUILT_IN_ISINFD128: { tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF); if (ret) return ret; return fold_builtin_interclass_mathfn (loc, fndecl, arg0); } case BUILT_IN_ISNORMAL: return fold_builtin_interclass_mathfn (loc, fndecl, arg0); case BUILT_IN_ISINF_SIGN: return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN); CASE_FLT_FN (BUILT_IN_ISNAN): case BUILT_IN_ISNAND32: case BUILT_IN_ISNAND64: case BUILT_IN_ISNAND128: return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN); case BUILT_IN_PRINTF: case BUILT_IN_PRINTF_UNLOCKED: case BUILT_IN_VPRINTF: return fold_builtin_printf (loc, fndecl, arg0, NULL_TREE, ignore, fcode); case BUILT_IN_FREE: if (integer_zerop (arg0)) return build_empty_stmt (loc); break; default: break; } return NULL_TREE; } /* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. */ static tree fold_builtin_2 (location_t loc, tree fndecl, tree arg0, tree arg1, bool ignore) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { CASE_FLT_FN (BUILT_IN_JN): if (validate_arg (arg0, INTEGER_TYPE) && validate_arg (arg1, REAL_TYPE)) return do_mpfr_bessel_n (arg0, arg1, type, mpfr_jn, NULL, 0); break; CASE_FLT_FN (BUILT_IN_YN): if (validate_arg (arg0, INTEGER_TYPE) && validate_arg (arg1, REAL_TYPE)) return do_mpfr_bessel_n (arg0, arg1, type, mpfr_yn, &dconst0, false); break; CASE_FLT_FN (BUILT_IN_DREM): CASE_FLT_FN (BUILT_IN_REMAINDER): if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, REAL_TYPE)) return do_mpfr_arg2 (arg0, arg1, type, mpfr_remainder); break; CASE_FLT_FN_REENT (BUILT_IN_GAMMA): /* GAMMA_R */ CASE_FLT_FN_REENT (BUILT_IN_LGAMMA): /* LGAMMA_R */ if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, POINTER_TYPE)) return do_mpfr_lgamma_r (arg0, arg1, type); break; CASE_FLT_FN (BUILT_IN_ATAN2): if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, REAL_TYPE)) return do_mpfr_arg2 (arg0, arg1, type, mpfr_atan2); break; CASE_FLT_FN (BUILT_IN_FDIM): if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, REAL_TYPE)) return do_mpfr_arg2 (arg0, arg1, type, mpfr_dim); break; CASE_FLT_FN (BUILT_IN_HYPOT): return fold_builtin_hypot (loc, fndecl, arg0, arg1, type); CASE_FLT_FN (BUILT_IN_CPOW): if (validate_arg (arg0, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE && validate_arg (arg1, COMPLEX_TYPE) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE) return do_mpc_arg2 (arg0, arg1, type, /*do_nonfinite=*/ 0, mpc_pow); break; CASE_FLT_FN (BUILT_IN_LDEXP): return fold_builtin_load_exponent (loc, arg0, arg1, type, /*ldexp=*/true); CASE_FLT_FN (BUILT_IN_SCALBN): CASE_FLT_FN (BUILT_IN_SCALBLN): return fold_builtin_load_exponent (loc, arg0, arg1, type, /*ldexp=*/false); CASE_FLT_FN (BUILT_IN_FREXP): return fold_builtin_frexp (loc, arg0, arg1, type); CASE_FLT_FN (BUILT_IN_MODF): return fold_builtin_modf (loc, arg0, arg1, type); case BUILT_IN_BZERO: return fold_builtin_bzero (loc, arg0, arg1, ignore); case BUILT_IN_FPUTS: return fold_builtin_fputs (loc, arg0, arg1, ignore, false, NULL_TREE); case BUILT_IN_FPUTS_UNLOCKED: return fold_builtin_fputs (loc, arg0, arg1, ignore, true, NULL_TREE); case BUILT_IN_STRSTR: return fold_builtin_strstr (loc, arg0, arg1, type); case BUILT_IN_STRCAT: return fold_builtin_strcat (loc, arg0, arg1); case BUILT_IN_STRSPN: return fold_builtin_strspn (loc, arg0, arg1); case BUILT_IN_STRCSPN: return fold_builtin_strcspn (loc, arg0, arg1); case BUILT_IN_STRCHR: case BUILT_IN_INDEX: return fold_builtin_strchr (loc, arg0, arg1, type); case BUILT_IN_STRRCHR: case BUILT_IN_RINDEX: return fold_builtin_strrchr (loc, arg0, arg1, type); case BUILT_IN_STRCPY: return fold_builtin_strcpy (loc, fndecl, arg0, arg1, NULL_TREE); case BUILT_IN_STPCPY: if (ignore) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) break; return build_call_expr_loc (loc, fn, 2, arg0, arg1); } else return fold_builtin_stpcpy (loc, fndecl, arg0, arg1); break; case BUILT_IN_STRCMP: return fold_builtin_strcmp (loc, arg0, arg1); case BUILT_IN_STRPBRK: return fold_builtin_strpbrk (loc, arg0, arg1, type); case BUILT_IN_EXPECT: return fold_builtin_expect (loc, arg0, arg1); CASE_FLT_FN (BUILT_IN_POW): return fold_builtin_pow (loc, fndecl, arg0, arg1, type); CASE_FLT_FN (BUILT_IN_POWI): return fold_builtin_powi (loc, fndecl, arg0, arg1, type); CASE_FLT_FN (BUILT_IN_COPYSIGN): return fold_builtin_copysign (loc, fndecl, arg0, arg1, type); CASE_FLT_FN (BUILT_IN_FMIN): return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/false); CASE_FLT_FN (BUILT_IN_FMAX): return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/true); case BUILT_IN_ISGREATER: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNLE_EXPR, LE_EXPR); case BUILT_IN_ISGREATEREQUAL: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNLT_EXPR, LT_EXPR); case BUILT_IN_ISLESS: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNGE_EXPR, GE_EXPR); case BUILT_IN_ISLESSEQUAL: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNGT_EXPR, GT_EXPR); case BUILT_IN_ISLESSGREATER: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNEQ_EXPR, EQ_EXPR); case BUILT_IN_ISUNORDERED: return fold_builtin_unordered_cmp (loc, fndecl, arg0, arg1, UNORDERED_EXPR, NOP_EXPR); /* We do the folding for va_start in the expander. */ case BUILT_IN_VA_START: break; case BUILT_IN_SPRINTF: return fold_builtin_sprintf (loc, arg0, arg1, NULL_TREE, ignore); case BUILT_IN_OBJECT_SIZE: return fold_builtin_object_size (arg0, arg1); case BUILT_IN_PRINTF: case BUILT_IN_PRINTF_UNLOCKED: case BUILT_IN_VPRINTF: return fold_builtin_printf (loc, fndecl, arg0, arg1, ignore, fcode); case BUILT_IN_PRINTF_CHK: case BUILT_IN_VPRINTF_CHK: if (!validate_arg (arg0, INTEGER_TYPE) || TREE_SIDE_EFFECTS (arg0)) return NULL_TREE; else return fold_builtin_printf (loc, fndecl, arg1, NULL_TREE, ignore, fcode); break; case BUILT_IN_FPRINTF: case BUILT_IN_FPRINTF_UNLOCKED: case BUILT_IN_VFPRINTF: return fold_builtin_fprintf (loc, fndecl, arg0, arg1, NULL_TREE, ignore, fcode); case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE: return fold_builtin_atomic_always_lock_free (arg0, arg1); case BUILT_IN_ATOMIC_IS_LOCK_FREE: return fold_builtin_atomic_is_lock_free (arg0, arg1); default: break; } return NULL_TREE; } /* Fold a call to built-in function FNDECL with 3 arguments, ARG0, ARG1, and ARG2. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. */ static tree fold_builtin_3 (location_t loc, tree fndecl, tree arg0, tree arg1, tree arg2, bool ignore) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { CASE_FLT_FN (BUILT_IN_SINCOS): return fold_builtin_sincos (loc, arg0, arg1, arg2); CASE_FLT_FN (BUILT_IN_FMA): return fold_builtin_fma (loc, arg0, arg1, arg2, type); break; CASE_FLT_FN (BUILT_IN_REMQUO): if (validate_arg (arg0, REAL_TYPE) && validate_arg(arg1, REAL_TYPE) && validate_arg(arg2, POINTER_TYPE)) return do_mpfr_remquo (arg0, arg1, arg2); break; case BUILT_IN_MEMSET: return fold_builtin_memset (loc, arg0, arg1, arg2, type, ignore); case BUILT_IN_BCOPY: return fold_builtin_memory_op (loc, arg1, arg0, arg2, void_type_node, true, /*endp=*/3); case BUILT_IN_MEMCPY: return fold_builtin_memory_op (loc, arg0, arg1, arg2, type, ignore, /*endp=*/0); case BUILT_IN_MEMPCPY: return fold_builtin_memory_op (loc, arg0, arg1, arg2, type, ignore, /*endp=*/1); case BUILT_IN_MEMMOVE: return fold_builtin_memory_op (loc, arg0, arg1, arg2, type, ignore, /*endp=*/3); case BUILT_IN_STRNCAT: return fold_builtin_strncat (loc, arg0, arg1, arg2); case BUILT_IN_STRNCPY: return fold_builtin_strncpy (loc, fndecl, arg0, arg1, arg2, NULL_TREE); case BUILT_IN_STRNCMP: return fold_builtin_strncmp (loc, arg0, arg1, arg2); case BUILT_IN_MEMCHR: return fold_builtin_memchr (loc, arg0, arg1, arg2, type); case BUILT_IN_BCMP: case BUILT_IN_MEMCMP: return fold_builtin_memcmp (loc, arg0, arg1, arg2);; case BUILT_IN_SPRINTF: return fold_builtin_sprintf (loc, arg0, arg1, arg2, ignore); case BUILT_IN_SNPRINTF: return fold_builtin_snprintf (loc, arg0, arg1, arg2, NULL_TREE, ignore); case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: return fold_builtin_stxcpy_chk (loc, fndecl, arg0, arg1, arg2, NULL_TREE, ignore, fcode); case BUILT_IN_STRCAT_CHK: return fold_builtin_strcat_chk (loc, fndecl, arg0, arg1, arg2); case BUILT_IN_PRINTF_CHK: case BUILT_IN_VPRINTF_CHK: if (!validate_arg (arg0, INTEGER_TYPE) || TREE_SIDE_EFFECTS (arg0)) return NULL_TREE; else return fold_builtin_printf (loc, fndecl, arg1, arg2, ignore, fcode); break; case BUILT_IN_FPRINTF: case BUILT_IN_FPRINTF_UNLOCKED: case BUILT_IN_VFPRINTF: return fold_builtin_fprintf (loc, fndecl, arg0, arg1, arg2, ignore, fcode); case BUILT_IN_FPRINTF_CHK: case BUILT_IN_VFPRINTF_CHK: if (!validate_arg (arg1, INTEGER_TYPE) || TREE_SIDE_EFFECTS (arg1)) return NULL_TREE; else return fold_builtin_fprintf (loc, fndecl, arg0, arg2, NULL_TREE, ignore, fcode); default: break; } return NULL_TREE; } /* Fold a call to built-in function FNDECL with 4 arguments, ARG0, ARG1, ARG2, and ARG3. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. */ static tree fold_builtin_4 (location_t loc, tree fndecl, tree arg0, tree arg1, tree arg2, tree arg3, bool ignore) { enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: return fold_builtin_memory_chk (loc, fndecl, arg0, arg1, arg2, arg3, NULL_TREE, ignore, DECL_FUNCTION_CODE (fndecl)); case BUILT_IN_STRNCPY_CHK: case BUILT_IN_STPNCPY_CHK: return fold_builtin_stxncpy_chk (loc, arg0, arg1, arg2, arg3, NULL_TREE, ignore, fcode); case BUILT_IN_STRNCAT_CHK: return fold_builtin_strncat_chk (loc, fndecl, arg0, arg1, arg2, arg3); case BUILT_IN_SNPRINTF: return fold_builtin_snprintf (loc, arg0, arg1, arg2, arg3, ignore); case BUILT_IN_FPRINTF_CHK: case BUILT_IN_VFPRINTF_CHK: if (!validate_arg (arg1, INTEGER_TYPE) || TREE_SIDE_EFFECTS (arg1)) return NULL_TREE; else return fold_builtin_fprintf (loc, fndecl, arg0, arg2, arg3, ignore, fcode); break; default: break; } return NULL_TREE; } /* Fold a call to built-in function FNDECL. ARGS is an array of NARGS arguments, where NARGS <= 4. IGNORE is true if the result of the function call is ignored. This function returns NULL_TREE if no simplification was possible. Note that this only folds builtins with fixed argument patterns. Foldings that do varargs-to-varargs transformations, or that match calls with more than 4 arguments, need to be handled with fold_builtin_varargs instead. */ #define MAX_ARGS_TO_FOLD_BUILTIN 4 static tree fold_builtin_n (location_t loc, tree fndecl, tree *args, int nargs, bool ignore) { tree ret = NULL_TREE; switch (nargs) { case 0: ret = fold_builtin_0 (loc, fndecl, ignore); break; case 1: ret = fold_builtin_1 (loc, fndecl, args[0], ignore); break; case 2: ret = fold_builtin_2 (loc, fndecl, args[0], args[1], ignore); break; case 3: ret = fold_builtin_3 (loc, fndecl, args[0], args[1], args[2], ignore); break; case 4: ret = fold_builtin_4 (loc, fndecl, args[0], args[1], args[2], args[3], ignore); break; default: break; } if (ret) { ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret); SET_EXPR_LOCATION (ret, loc); TREE_NO_WARNING (ret) = 1; return ret; } return NULL_TREE; } /* Builtins with folding operations that operate on "..." arguments need special handling; we need to store the arguments in a convenient data structure before attempting any folding. Fortunately there are only a few builtins that fall into this category. FNDECL is the function, EXP is the CALL_EXPR for the call, and IGNORE is true if the result of the function call is ignored. */ static tree fold_builtin_varargs (location_t loc, tree fndecl, tree exp, bool ignore ATTRIBUTE_UNUSED) { enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); tree ret = NULL_TREE; switch (fcode) { case BUILT_IN_SPRINTF_CHK: case BUILT_IN_VSPRINTF_CHK: ret = fold_builtin_sprintf_chk (loc, exp, fcode); break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: ret = fold_builtin_snprintf_chk (loc, exp, NULL_TREE, fcode); break; case BUILT_IN_FPCLASSIFY: ret = fold_builtin_fpclassify (loc, exp); break; default: break; } if (ret) { ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret); SET_EXPR_LOCATION (ret, loc); TREE_NO_WARNING (ret) = 1; return ret; } return NULL_TREE; } /* Return true if FNDECL shouldn't be folded right now. If a built-in function has an inline attribute always_inline wrapper, defer folding it after always_inline functions have been inlined, otherwise e.g. -D_FORTIFY_SOURCE checking might not be performed. */ bool avoid_folding_inline_builtin (tree fndecl) { return (DECL_DECLARED_INLINE_P (fndecl) && DECL_DISREGARD_INLINE_LIMITS (fndecl) && cfun && !cfun->always_inline_functions_inlined && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fndecl))); } /* A wrapper function for builtin folding that prevents warnings for "statement without effect" and the like, caused by removing the call node earlier than the warning is generated. */ tree fold_call_expr (location_t loc, tree exp, bool ignore) { tree ret = NULL_TREE; tree fndecl = get_callee_fndecl (exp); if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL && DECL_BUILT_IN (fndecl) /* If CALL_EXPR_VA_ARG_PACK is set, the arguments aren't finalized yet. Defer folding until we see all the arguments (after inlining). */ && !CALL_EXPR_VA_ARG_PACK (exp)) { int nargs = call_expr_nargs (exp); /* Before gimplification CALL_EXPR_VA_ARG_PACK is not set, but instead last argument is __builtin_va_arg_pack (). Defer folding even in that case, until arguments are finalized. */ if (nargs && TREE_CODE (CALL_EXPR_ARG (exp, nargs - 1)) == CALL_EXPR) { tree fndecl2 = get_callee_fndecl (CALL_EXPR_ARG (exp, nargs - 1)); if (fndecl2 && TREE_CODE (fndecl2) == FUNCTION_DECL && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK) return NULL_TREE; } if (avoid_folding_inline_builtin (fndecl)) return NULL_TREE; if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) return targetm.fold_builtin (fndecl, call_expr_nargs (exp), CALL_EXPR_ARGP (exp), ignore); else { if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN) { tree *args = CALL_EXPR_ARGP (exp); ret = fold_builtin_n (loc, fndecl, args, nargs, ignore); } if (!ret) ret = fold_builtin_varargs (loc, fndecl, exp, ignore); if (ret) return ret; } } return NULL_TREE; } /* Conveniently construct a function call expression. FNDECL names the function to be called and N arguments are passed in the array ARGARRAY. */ tree build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray) { tree fntype = TREE_TYPE (fndecl); tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl); return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray); } /* Conveniently construct a function call expression. FNDECL names the function to be called and the arguments are passed in the vector VEC. */ tree build_call_expr_loc_vec (location_t loc, tree fndecl, vec *vec) { return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec), vec_safe_address (vec)); } /* Conveniently construct a function call expression. FNDECL names the function to be called, N is the number of arguments, and the "..." parameters are the argument expressions. */ tree build_call_expr_loc (location_t loc, tree fndecl, int n, ...) { va_list ap; tree *argarray = XALLOCAVEC (tree, n); int i; va_start (ap, n); for (i = 0; i < n; i++) argarray[i] = va_arg (ap, tree); va_end (ap); return build_call_expr_loc_array (loc, fndecl, n, argarray); } /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because varargs macros aren't supported by all bootstrap compilers. */ tree build_call_expr (tree fndecl, int n, ...) { va_list ap; tree *argarray = XALLOCAVEC (tree, n); int i; va_start (ap, n); for (i = 0; i < n; i++) argarray[i] = va_arg (ap, tree); va_end (ap); return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray); } /* Construct a CALL_EXPR with type TYPE with FN as the function expression. N arguments are passed in the array ARGARRAY. */ tree fold_builtin_call_array (location_t loc, tree type, tree fn, int n, tree *argarray) { tree ret = NULL_TREE; tree exp; if (TREE_CODE (fn) == ADDR_EXPR) { tree fndecl = TREE_OPERAND (fn, 0); if (TREE_CODE (fndecl) == FUNCTION_DECL && DECL_BUILT_IN (fndecl)) { /* If last argument is __builtin_va_arg_pack (), arguments to this function are not finalized yet. Defer folding until they are. */ if (n && TREE_CODE (argarray[n - 1]) == CALL_EXPR) { tree fndecl2 = get_callee_fndecl (argarray[n - 1]); if (fndecl2 && TREE_CODE (fndecl2) == FUNCTION_DECL && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK) return build_call_array_loc (loc, type, fn, n, argarray); } if (avoid_folding_inline_builtin (fndecl)) return build_call_array_loc (loc, type, fn, n, argarray); if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) { ret = targetm.fold_builtin (fndecl, n, argarray, false); if (ret) return ret; return build_call_array_loc (loc, type, fn, n, argarray); } else if (n <= MAX_ARGS_TO_FOLD_BUILTIN) { /* First try the transformations that don't require consing up an exp. */ ret = fold_builtin_n (loc, fndecl, argarray, n, false); if (ret) return ret; } /* If we got this far, we need to build an exp. */ exp = build_call_array_loc (loc, type, fn, n, argarray); ret = fold_builtin_varargs (loc, fndecl, exp, false); return ret ? ret : exp; } } return build_call_array_loc (loc, type, fn, n, argarray); } /* Construct a new CALL_EXPR to FNDECL using the tail of the argument list ARGS along with N new arguments in NEWARGS. SKIP is the number of arguments in ARGS to be omitted. OLDNARGS is the number of elements in ARGS. */ static tree rewrite_call_expr_valist (location_t loc, int oldnargs, tree *args, int skip, tree fndecl, int n, va_list newargs) { int nargs = oldnargs - skip + n; tree *buffer; if (n > 0) { int i, j; buffer = XALLOCAVEC (tree, nargs); for (i = 0; i < n; i++) buffer[i] = va_arg (newargs, tree); for (j = skip; j < oldnargs; j++, i++) buffer[i] = args[j]; } else buffer = args + skip; return build_call_expr_loc_array (loc, fndecl, nargs, buffer); } /* Construct a new CALL_EXPR to FNDECL using the tail of the argument list ARGS along with N new arguments specified as the "..." parameters. SKIP is the number of arguments in ARGS to be omitted. OLDNARGS is the number of elements in ARGS. */ static tree rewrite_call_expr_array (location_t loc, int oldnargs, tree *args, int skip, tree fndecl, int n, ...) { va_list ap; tree t; va_start (ap, n); t = rewrite_call_expr_valist (loc, oldnargs, args, skip, fndecl, n, ap); va_end (ap); return t; } /* Construct a new CALL_EXPR using the tail of the argument list of EXP along with N new arguments specified as the "..." parameters. SKIP is the number of arguments in EXP to be omitted. This function is used to do varargs-to-varargs transformations. */ static tree rewrite_call_expr (location_t loc, tree exp, int skip, tree fndecl, int n, ...) { va_list ap; tree t; va_start (ap, n); t = rewrite_call_expr_valist (loc, call_expr_nargs (exp), CALL_EXPR_ARGP (exp), skip, fndecl, n, ap); va_end (ap); return t; } /* Validate a single argument ARG against a tree code CODE representing a type. */ static bool validate_arg (const_tree arg, enum tree_code code) { if (!arg) return false; else if (code == POINTER_TYPE) return POINTER_TYPE_P (TREE_TYPE (arg)); else if (code == INTEGER_TYPE) return INTEGRAL_TYPE_P (TREE_TYPE (arg)); return code == TREE_CODE (TREE_TYPE (arg)); } /* This function validates the types of a function call argument list against a specified list of tree_codes. If the last specifier is a 0, that represents an ellipses, otherwise the last specifier must be a VOID_TYPE. This is the GIMPLE version of validate_arglist. Eventually we want to completely convert builtins.c to work from GIMPLEs and the tree based validate_arglist will then be removed. */ bool validate_gimple_arglist (const_gimple call, ...) { enum tree_code code; bool res = 0; va_list ap; const_tree arg; size_t i; va_start (ap, call); i = 0; do { code = (enum tree_code) va_arg (ap, int); switch (code) { case 0: /* This signifies an ellipses, any further arguments are all ok. */ res = true; goto end; case VOID_TYPE: /* This signifies an endlink, if no arguments remain, return true, otherwise return false. */ res = (i == gimple_call_num_args (call)); goto end; default: /* If no parameters remain or the parameter's code does not match the specified code, return false. Otherwise continue checking any remaining arguments. */ arg = gimple_call_arg (call, i++); if (!validate_arg (arg, code)) goto end; break; } } while (1); /* We need gotos here since we can only have one VA_CLOSE in a function. */ end: ; va_end (ap); return res; } /* This function validates the types of a function call argument list against a specified list of tree_codes. If the last specifier is a 0, that represents an ellipses, otherwise the last specifier must be a VOID_TYPE. */ bool validate_arglist (const_tree callexpr, ...) { enum tree_code code; bool res = 0; va_list ap; const_call_expr_arg_iterator iter; const_tree arg; va_start (ap, callexpr); init_const_call_expr_arg_iterator (callexpr, &iter); do { code = (enum tree_code) va_arg (ap, int); switch (code) { case 0: /* This signifies an ellipses, any further arguments are all ok. */ res = true; goto end; case VOID_TYPE: /* This signifies an endlink, if no arguments remain, return true, otherwise return false. */ res = !more_const_call_expr_args_p (&iter); goto end; default: /* If no parameters remain or the parameter's code does not match the specified code, return false. Otherwise continue checking any remaining arguments. */ arg = next_const_call_expr_arg (&iter); if (!validate_arg (arg, code)) goto end; break; } } while (1); /* We need gotos here since we can only have one VA_CLOSE in a function. */ end: ; va_end (ap); return res; } /* Default target-specific builtin expander that does nothing. */ rtx default_expand_builtin (tree exp ATTRIBUTE_UNUSED, rtx target ATTRIBUTE_UNUSED, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { return NULL_RTX; } /* Returns true is EXP represents data that would potentially reside in a readonly section. */ static bool readonly_data_expr (tree exp) { STRIP_NOPS (exp); if (TREE_CODE (exp) != ADDR_EXPR) return false; exp = get_base_address (TREE_OPERAND (exp, 0)); if (!exp) return false; /* Make sure we call decl_readonly_section only for trees it can handle (since it returns true for everything it doesn't understand). */ if (TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR || (TREE_CODE (exp) == VAR_DECL && TREE_STATIC (exp))) return decl_readonly_section (exp, 0); else return false; } /* Simplify a call to the strstr builtin. S1 and S2 are the arguments to the call, and TYPE is its return type. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strstr (location_t loc, tree s1, tree s2, tree type) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, POINTER_TYPE)) return NULL_TREE; else { tree fn; const char *p1, *p2; p2 = c_getstr (s2); if (p2 == NULL) return NULL_TREE; p1 = c_getstr (s1); if (p1 != NULL) { const char *r = strstr (p1, p2); tree tem; if (r == NULL) return build_int_cst (TREE_TYPE (s1), 0); /* Return an offset into the constant string argument. */ tem = fold_build_pointer_plus_hwi_loc (loc, s1, r - p1); return fold_convert_loc (loc, type, tem); } /* The argument is const char *, and the result is char *, so we need a type conversion here to avoid a warning. */ if (p2[0] == '\0') return fold_convert_loc (loc, type, s1); if (p2[1] != '\0') return NULL_TREE; fn = builtin_decl_implicit (BUILT_IN_STRCHR); if (!fn) return NULL_TREE; /* New argument list transforming strstr(s1, s2) to strchr(s1, s2[0]). */ return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (integer_type_node, p2[0])); } } /* Simplify a call to the strchr builtin. S1 and S2 are the arguments to the call, and TYPE is its return type. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strchr (location_t loc, tree s1, tree s2, tree type) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, INTEGER_TYPE)) return NULL_TREE; else { const char *p1; if (TREE_CODE (s2) != INTEGER_CST) return NULL_TREE; p1 = c_getstr (s1); if (p1 != NULL) { char c; const char *r; tree tem; if (target_char_cast (s2, &c)) return NULL_TREE; r = strchr (p1, c); if (r == NULL) return build_int_cst (TREE_TYPE (s1), 0); /* Return an offset into the constant string argument. */ tem = fold_build_pointer_plus_hwi_loc (loc, s1, r - p1); return fold_convert_loc (loc, type, tem); } return NULL_TREE; } } /* Simplify a call to the strrchr builtin. S1 and S2 are the arguments to the call, and TYPE is its return type. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strrchr (location_t loc, tree s1, tree s2, tree type) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, INTEGER_TYPE)) return NULL_TREE; else { tree fn; const char *p1; if (TREE_CODE (s2) != INTEGER_CST) return NULL_TREE; p1 = c_getstr (s1); if (p1 != NULL) { char c; const char *r; tree tem; if (target_char_cast (s2, &c)) return NULL_TREE; r = strrchr (p1, c); if (r == NULL) return build_int_cst (TREE_TYPE (s1), 0); /* Return an offset into the constant string argument. */ tem = fold_build_pointer_plus_hwi_loc (loc, s1, r - p1); return fold_convert_loc (loc, type, tem); } if (! integer_zerop (s2)) return NULL_TREE; fn = builtin_decl_implicit (BUILT_IN_STRCHR); if (!fn) return NULL_TREE; /* Transform strrchr(s1, '\0') to strchr(s1, '\0'). */ return build_call_expr_loc (loc, fn, 2, s1, s2); } } /* Simplify a call to the strpbrk builtin. S1 and S2 are the arguments to the call, and TYPE is its return type. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strpbrk (location_t loc, tree s1, tree s2, tree type) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, POINTER_TYPE)) return NULL_TREE; else { tree fn; const char *p1, *p2; p2 = c_getstr (s2); if (p2 == NULL) return NULL_TREE; p1 = c_getstr (s1); if (p1 != NULL) { const char *r = strpbrk (p1, p2); tree tem; if (r == NULL) return build_int_cst (TREE_TYPE (s1), 0); /* Return an offset into the constant string argument. */ tem = fold_build_pointer_plus_hwi_loc (loc, s1, r - p1); return fold_convert_loc (loc, type, tem); } if (p2[0] == '\0') /* strpbrk(x, "") == NULL. Evaluate and ignore s1 in case it had side-effects. */ return omit_one_operand_loc (loc, TREE_TYPE (s1), integer_zero_node, s1); if (p2[1] != '\0') return NULL_TREE; /* Really call strpbrk. */ fn = builtin_decl_implicit (BUILT_IN_STRCHR); if (!fn) return NULL_TREE; /* New argument list transforming strpbrk(s1, s2) to strchr(s1, s2[0]). */ return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (integer_type_node, p2[0])); } } /* Simplify a call to the strcat builtin. DST and SRC are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strcat (location_t loc ATTRIBUTE_UNUSED, tree dst, tree src) { if (!validate_arg (dst, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE)) return NULL_TREE; else { const char *p = c_getstr (src); /* If the string length is zero, return the dst parameter. */ if (p && *p == '\0') return dst; if (optimize_insn_for_speed_p ()) { /* See if we can store by pieces into (dst + strlen(dst)). */ tree newdst, call; tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN); tree strcpy_fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!strlen_fn || !strcpy_fn) return NULL_TREE; /* If we don't have a movstr we don't want to emit an strcpy call. We have to do that if the length of the source string isn't computable (in that case we can use memcpy probably later expanding to a sequence of mov instructions). If we have movstr instructions we can emit strcpy calls. */ if (!HAVE_movstr) { tree len = c_strlen (src, 1); if (! len || TREE_SIDE_EFFECTS (len)) return NULL_TREE; } /* Stabilize the argument list. */ dst = builtin_save_expr (dst); /* Create strlen (dst). */ newdst = build_call_expr_loc (loc, strlen_fn, 1, dst); /* Create (dst p+ strlen (dst)). */ newdst = fold_build_pointer_plus_loc (loc, dst, newdst); newdst = builtin_save_expr (newdst); call = build_call_expr_loc (loc, strcpy_fn, 2, newdst, src); return build2 (COMPOUND_EXPR, TREE_TYPE (dst), call, dst); } return NULL_TREE; } } /* Simplify a call to the strncat builtin. DST, SRC, and LEN are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strncat (location_t loc, tree dst, tree src, tree len) { if (!validate_arg (dst, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (len, INTEGER_TYPE)) return NULL_TREE; else { const char *p = c_getstr (src); /* If the requested length is zero, or the src parameter string length is zero, return the dst parameter. */ if (integer_zerop (len) || (p && *p == '\0')) return omit_two_operands_loc (loc, TREE_TYPE (dst), dst, src, len); /* If the requested len is greater than or equal to the string length, call strcat. */ if (TREE_CODE (len) == INTEGER_CST && p && compare_tree_int (len, strlen (p)) >= 0) { tree fn = builtin_decl_implicit (BUILT_IN_STRCAT); /* If the replacement _DECL isn't initialized, don't do the transformation. */ if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 2, dst, src); } return NULL_TREE; } } /* Simplify a call to the strspn builtin. S1 and S2 are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strspn (location_t loc, tree s1, tree s2) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, POINTER_TYPE)) return NULL_TREE; else { const char *p1 = c_getstr (s1), *p2 = c_getstr (s2); /* If both arguments are constants, evaluate at compile-time. */ if (p1 && p2) { const size_t r = strspn (p1, p2); return build_int_cst (size_type_node, r); } /* If either argument is "", return NULL_TREE. */ if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0')) /* Evaluate and ignore both arguments in case either one has side-effects. */ return omit_two_operands_loc (loc, size_type_node, size_zero_node, s1, s2); return NULL_TREE; } } /* Simplify a call to the strcspn builtin. S1 and S2 are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static tree fold_builtin_strcspn (location_t loc, tree s1, tree s2) { if (!validate_arg (s1, POINTER_TYPE) || !validate_arg (s2, POINTER_TYPE)) return NULL_TREE; else { const char *p1 = c_getstr (s1), *p2 = c_getstr (s2); /* If both arguments are constants, evaluate at compile-time. */ if (p1 && p2) { const size_t r = strcspn (p1, p2); return build_int_cst (size_type_node, r); } /* If the first argument is "", return NULL_TREE. */ if (p1 && *p1 == '\0') { /* Evaluate and ignore argument s2 in case it has side-effects. */ return omit_one_operand_loc (loc, size_type_node, size_zero_node, s2); } /* If the second argument is "", return __builtin_strlen(s1). */ if (p2 && *p2 == '\0') { tree fn = builtin_decl_implicit (BUILT_IN_STRLEN); /* If the replacement _DECL isn't initialized, don't do the transformation. */ if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 1, s1); } return NULL_TREE; } } /* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments to the call. IGNORE is true if the value returned by the builtin will be ignored. UNLOCKED is true is true if this actually a call to fputs_unlocked. If LEN in non-NULL, it represents the known length of the string. Return NULL_TREE if no simplification was possible. */ tree fold_builtin_fputs (location_t loc, tree arg0, tree arg1, bool ignore, bool unlocked, tree len) { /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ tree const fn_fputc = (unlocked ? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FPUTC)); tree const fn_fwrite = (unlocked ? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FWRITE)); /* If the return value is used, don't do the transformation. */ if (!ignore) return NULL_TREE; /* Verify the arguments in the original call. */ if (!validate_arg (arg0, POINTER_TYPE) || !validate_arg (arg1, POINTER_TYPE)) return NULL_TREE; if (! len) len = c_strlen (arg0, 0); /* Get the length of the string passed to fputs. If the length can't be determined, punt. */ if (!len || TREE_CODE (len) != INTEGER_CST) return NULL_TREE; switch (compare_tree_int (len, 1)) { case -1: /* length is 0, delete the call entirely . */ return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, arg1);; case 0: /* length is 1, call fputc. */ { const char *p = c_getstr (arg0); if (p != NULL) { if (fn_fputc) return build_call_expr_loc (loc, fn_fputc, 2, build_int_cst (integer_type_node, p[0]), arg1); else return NULL_TREE; } } /* FALLTHROUGH */ case 1: /* length is greater than 1, call fwrite. */ { /* If optimizing for size keep fputs. */ if (optimize_function_for_size_p (cfun)) return NULL_TREE; /* New argument list transforming fputs(string, stream) to fwrite(string, 1, len, stream). */ if (fn_fwrite) return build_call_expr_loc (loc, fn_fwrite, 4, arg0, size_one_node, len, arg1); else return NULL_TREE; } default: gcc_unreachable (); } return NULL_TREE; } /* Fold the next_arg or va_start call EXP. Returns true if there was an error produced. False otherwise. This is done so that we don't output the error or warning twice or three times. */ bool fold_builtin_next_arg (tree exp, bool va_start_p) { tree fntype = TREE_TYPE (current_function_decl); int nargs = call_expr_nargs (exp); tree arg; /* There is good chance the current input_location points inside the definition of the va_start macro (perhaps on the token for builtin) in a system header, so warnings will not be emitted. Use the location in real source code. */ source_location current_location = linemap_unwind_to_first_non_reserved_loc (line_table, input_location, NULL); if (!stdarg_p (fntype)) { error ("% used in function with fixed args"); return true; } if (va_start_p) { if (va_start_p && (nargs != 2)) { error ("wrong number of arguments to function %"); return true; } arg = CALL_EXPR_ARG (exp, 1); } /* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0) when we checked the arguments and if needed issued a warning. */ else { if (nargs == 0) { /* Evidently an out of date version of ; can't validate va_start's second argument, but can still work as intended. */ warning_at (current_location, OPT_Wvarargs, "%<__builtin_next_arg%> called without an argument"); return true; } else if (nargs > 1) { error ("wrong number of arguments to function %<__builtin_next_arg%>"); return true; } arg = CALL_EXPR_ARG (exp, 0); } if (TREE_CODE (arg) == SSA_NAME) arg = SSA_NAME_VAR (arg); /* We destructively modify the call to be __builtin_va_start (ap, 0) or __builtin_next_arg (0) the first time we see it, after checking the arguments and if needed issuing a warning. */ if (!integer_zerop (arg)) { tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl)); /* Strip off all nops for the sake of the comparison. This is not quite the same as STRIP_NOPS. It does more. We must also strip off INDIRECT_EXPR for C++ reference parameters. */ while (CONVERT_EXPR_P (arg) || TREE_CODE (arg) == INDIRECT_REF) arg = TREE_OPERAND (arg, 0); if (arg != last_parm) { /* FIXME: Sometimes with the tree optimizers we can get the not the last argument even though the user used the last argument. We just warn and set the arg to be the last argument so that we will get wrong-code because of it. */ warning_at (current_location, OPT_Wvarargs, "second parameter of % not last named argument"); } /* Undefined by C99 7.15.1.4p4 (va_start): "If the parameter parmN is declared with the register storage class, with a function or array type, or with a type that is not compatible with the type that results after application of the default argument promotions, the behavior is undefined." */ else if (DECL_REGISTER (arg)) { warning_at (current_location, OPT_Wvarargs, "undefined behaviour when second parameter of " "% is declared with % storage"); } /* We want to verify the second parameter just once before the tree optimizers are run and then avoid keeping it in the tree, as otherwise we could warn even for correct code like: void foo (int i, ...) { va_list ap; i++; va_start (ap, i); va_end (ap); } */ if (va_start_p) CALL_EXPR_ARG (exp, 1) = integer_zero_node; else CALL_EXPR_ARG (exp, 0) = integer_zero_node; } return false; } /* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG. ORIG may be null if this is a 2-argument call. We don't attempt to simplify calls with more than 3 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static tree fold_builtin_sprintf (location_t loc, tree dest, tree fmt, tree orig, int ignored) { tree call, retval; const char *fmt_str = NULL; /* Verify the required arguments in the original call. We deal with two types of sprintf() calls: 'sprintf (str, fmt)' and 'sprintf (dest, "%s", orig)'. */ if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; if (orig && !validate_arg (orig, POINTER_TYPE)) return NULL_TREE; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return NULL_TREE; call = NULL_TREE; retval = NULL_TREE; if (!init_target_chars ()) return NULL_TREE; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return NULL_TREE; /* Don't optimize sprintf (buf, "abc", ptr++). */ if (orig) return NULL_TREE; /* Convert sprintf (str, fmt) into strcpy (str, fmt) when 'format' is known to contain no % formats. */ call = build_call_expr_loc (loc, fn, 2, dest, fmt); if (!ignored) retval = build_int_cst (integer_type_node, strlen (fmt_str)); } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn; fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return NULL_TREE; /* Don't crash on sprintf (str1, "%s"). */ if (!orig) return NULL_TREE; /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */ if (!ignored) { retval = c_strlen (orig, 1); if (!retval || TREE_CODE (retval) != INTEGER_CST) return NULL_TREE; } call = build_call_expr_loc (loc, fn, 2, dest, orig); } if (call && retval) { retval = fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (builtin_decl_implicit (BUILT_IN_SPRINTF))), retval); return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval); } else return call; } /* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE, FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't attempt to simplify calls with more than 4 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static tree fold_builtin_snprintf (location_t loc, tree dest, tree destsize, tree fmt, tree orig, int ignored) { tree call, retval; const char *fmt_str = NULL; unsigned HOST_WIDE_INT destlen; /* Verify the required arguments in the original call. We deal with two types of snprintf() calls: 'snprintf (str, cst, fmt)' and 'snprintf (dest, cst, "%s", orig)'. */ if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (destsize, INTEGER_TYPE) || !validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; if (orig && !validate_arg (orig, POINTER_TYPE)) return NULL_TREE; if (!host_integerp (destsize, 1)) return NULL_TREE; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return NULL_TREE; call = NULL_TREE; retval = NULL_TREE; if (!init_target_chars ()) return NULL_TREE; destlen = tree_low_cst (destsize, 1); /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); size_t len = strlen (fmt_str); /* Don't optimize snprintf (buf, 4, "abc", ptr++). */ if (orig) return NULL_TREE; /* We could expand this as memcpy (str, fmt, cst - 1); str[cst - 1] = '\0'; or to memcpy (str, fmt_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ if (len >= destlen) return NULL_TREE; if (!fn) return NULL_TREE; /* Convert snprintf (str, cst, fmt) into strcpy (str, fmt) when 'format' is known to contain no % formats and strlen (fmt) < cst. */ call = build_call_expr_loc (loc, fn, 2, dest, fmt); if (!ignored) retval = build_int_cst (integer_type_node, strlen (fmt_str)); } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); unsigned HOST_WIDE_INT origlen; /* Don't crash on snprintf (str1, cst, "%s"). */ if (!orig) return NULL_TREE; retval = c_strlen (orig, 1); if (!retval || !host_integerp (retval, 1)) return NULL_TREE; origlen = tree_low_cst (retval, 1); /* We could expand this as memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0'; or to memcpy (str1, str2_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ if (origlen >= destlen) return NULL_TREE; /* Convert snprintf (str1, cst, "%s", str2) into strcpy (str1, str2) if strlen (str2) < cst. */ if (!fn) return NULL_TREE; call = build_call_expr_loc (loc, fn, 2, dest, orig); if (ignored) retval = NULL_TREE; } if (call && retval) { tree fn = builtin_decl_explicit (BUILT_IN_SNPRINTF); retval = fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fn)), retval); return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval); } else return call; } /* Expand a call EXP to __builtin_object_size. */ rtx expand_builtin_object_size (tree exp) { tree ost; int object_size_type; tree fndecl = get_callee_fndecl (exp); if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) { error ("%Kfirst argument of %D must be a pointer, second integer constant", exp, fndecl); expand_builtin_trap (); return const0_rtx; } ost = CALL_EXPR_ARG (exp, 1); STRIP_NOPS (ost); if (TREE_CODE (ost) != INTEGER_CST || tree_int_cst_sgn (ost) < 0 || compare_tree_int (ost, 3) > 0) { error ("%Klast argument of %D is not integer constant between 0 and 3", exp, fndecl); expand_builtin_trap (); return const0_rtx; } object_size_type = tree_low_cst (ost, 0); return object_size_type < 2 ? constm1_rtx : const0_rtx; } /* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin. FCODE is the BUILT_IN_* to use. Return NULL_RTX if we failed; the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_memory_chk (tree exp, rtx target, enum machine_mode mode, enum built_in_function fcode) { tree dest, src, len, size; if (!validate_arglist (exp, POINTER_TYPE, fcode == BUILT_IN_MEMSET_CHK ? INTEGER_TYPE : POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; dest = CALL_EXPR_ARG (exp, 0); src = CALL_EXPR_ARG (exp, 1); len = CALL_EXPR_ARG (exp, 2); size = CALL_EXPR_ARG (exp, 3); if (! host_integerp (size, 1)) return NULL_RTX; if (host_integerp (len, 1) || integer_all_onesp (size)) { tree fn; if (! integer_all_onesp (size) && tree_int_cst_lt (size, len)) { warning_at (tree_nonartificial_location (exp), 0, "%Kcall to %D will always overflow destination buffer", exp, get_callee_fndecl (exp)); return NULL_RTX; } fn = NULL_TREE; /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume mem{cpy,pcpy,move,set} is available. */ switch (fcode) { case BUILT_IN_MEMCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMCPY); break; case BUILT_IN_MEMPCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMPCPY); break; case BUILT_IN_MEMMOVE_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMMOVE); break; case BUILT_IN_MEMSET_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMSET); break; default: break; } if (! fn) return NULL_RTX; fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 3, dest, src, len); gcc_assert (TREE_CODE (fn) == CALL_EXPR); CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp); return expand_expr (fn, target, mode, EXPAND_NORMAL); } else if (fcode == BUILT_IN_MEMSET_CHK) return NULL_RTX; else { unsigned int dest_align = get_pointer_alignment (dest); /* If DEST is not a pointer type, call the normal function. */ if (dest_align == 0) return NULL_RTX; /* If SRC and DEST are the same (and not volatile), do nothing. */ if (operand_equal_p (src, dest, 0)) { tree expr; if (fcode != BUILT_IN_MEMPCPY_CHK) { /* Evaluate and ignore LEN in case it has side-effects. */ expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL); return expand_expr (dest, target, mode, EXPAND_NORMAL); } expr = fold_build_pointer_plus (dest, len); return expand_expr (expr, target, mode, EXPAND_NORMAL); } /* __memmove_chk special case. */ if (fcode == BUILT_IN_MEMMOVE_CHK) { unsigned int src_align = get_pointer_alignment (src); if (src_align == 0) return NULL_RTX; /* If src is categorized for a readonly section we can use normal __memcpy_chk. */ if (readonly_data_expr (src)) { tree fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return NULL_RTX; fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 4, dest, src, len, size); gcc_assert (TREE_CODE (fn) == CALL_EXPR); CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp); return expand_expr (fn, target, mode, EXPAND_NORMAL); } } return NULL_RTX; } } /* Emit warning if a buffer overflow is detected at compile time. */ static void maybe_emit_chk_warning (tree exp, enum built_in_function fcode) { int is_strlen = 0; tree len, size; location_t loc = tree_nonartificial_location (exp); switch (fcode) { case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: /* For __strcat_chk the warning will be emitted only if overflowing by at least strlen (dest) + 1 bytes. */ case BUILT_IN_STRCAT_CHK: len = CALL_EXPR_ARG (exp, 1); size = CALL_EXPR_ARG (exp, 2); is_strlen = 1; break; case BUILT_IN_STRNCAT_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_STPNCPY_CHK: len = CALL_EXPR_ARG (exp, 2); size = CALL_EXPR_ARG (exp, 3); break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: len = CALL_EXPR_ARG (exp, 1); size = CALL_EXPR_ARG (exp, 3); break; default: gcc_unreachable (); } if (!len || !size) return; if (! host_integerp (size, 1) || integer_all_onesp (size)) return; if (is_strlen) { len = c_strlen (len, 1); if (! len || ! host_integerp (len, 1) || tree_int_cst_lt (len, size)) return; } else if (fcode == BUILT_IN_STRNCAT_CHK) { tree src = CALL_EXPR_ARG (exp, 1); if (! src || ! host_integerp (len, 1) || tree_int_cst_lt (len, size)) return; src = c_strlen (src, 1); if (! src || ! host_integerp (src, 1)) { warning_at (loc, 0, "%Kcall to %D might overflow destination buffer", exp, get_callee_fndecl (exp)); return; } else if (tree_int_cst_lt (src, size)) return; } else if (! host_integerp (len, 1) || ! tree_int_cst_lt (size, len)) return; warning_at (loc, 0, "%Kcall to %D will always overflow destination buffer", exp, get_callee_fndecl (exp)); } /* Emit warning if a buffer overflow is detected at compile time in __sprintf_chk/__vsprintf_chk calls. */ static void maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode) { tree size, len, fmt; const char *fmt_str; int nargs = call_expr_nargs (exp); /* Verify the required arguments in the original call. */ if (nargs < 4) return; size = CALL_EXPR_ARG (exp, 2); fmt = CALL_EXPR_ARG (exp, 3); if (! host_integerp (size, 1) || integer_all_onesp (size)) return; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return; if (!init_target_chars ()) return; /* If the format doesn't contain % args or %%, we know its size. */ if (strchr (fmt_str, target_percent) == 0) len = build_int_cstu (size_type_node, strlen (fmt_str)); /* If the format is "%s" and first ... argument is a string literal, we know it too. */ else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0) { tree arg; if (nargs < 5) return; arg = CALL_EXPR_ARG (exp, 4); if (! POINTER_TYPE_P (TREE_TYPE (arg))) return; len = c_strlen (arg, 1); if (!len || ! host_integerp (len, 1)) return; } else return; if (! tree_int_cst_lt (len, size)) warning_at (tree_nonartificial_location (exp), 0, "%Kcall to %D will always overflow destination buffer", exp, get_callee_fndecl (exp)); } /* Emit warning if a free is called with address of a variable. */ static void maybe_emit_free_warning (tree exp) { tree arg = CALL_EXPR_ARG (exp, 0); STRIP_NOPS (arg); if (TREE_CODE (arg) != ADDR_EXPR) return; arg = get_base_address (TREE_OPERAND (arg, 0)); if (arg == NULL || INDIRECT_REF_P (arg) || TREE_CODE (arg) == MEM_REF) return; if (SSA_VAR_P (arg)) warning_at (tree_nonartificial_location (exp), OPT_Wfree_nonheap_object, "%Kattempt to free a non-heap object %qD", exp, arg); else warning_at (tree_nonartificial_location (exp), OPT_Wfree_nonheap_object, "%Kattempt to free a non-heap object", exp); } /* Fold a call to __builtin_object_size with arguments PTR and OST, if possible. */ tree fold_builtin_object_size (tree ptr, tree ost) { unsigned HOST_WIDE_INT bytes; int object_size_type; if (!validate_arg (ptr, POINTER_TYPE) || !validate_arg (ost, INTEGER_TYPE)) return NULL_TREE; STRIP_NOPS (ost); if (TREE_CODE (ost) != INTEGER_CST || tree_int_cst_sgn (ost) < 0 || compare_tree_int (ost, 3) > 0) return NULL_TREE; object_size_type = tree_low_cst (ost, 0); /* __builtin_object_size doesn't evaluate side-effects in its arguments; if there are any side-effects, it returns (size_t) -1 for types 0 and 1 and (size_t) 0 for types 2 and 3. */ if (TREE_SIDE_EFFECTS (ptr)) return build_int_cst_type (size_type_node, object_size_type < 2 ? -1 : 0); if (TREE_CODE (ptr) == ADDR_EXPR) { bytes = compute_builtin_object_size (ptr, object_size_type); if (double_int_fits_to_tree_p (size_type_node, double_int::from_uhwi (bytes))) return build_int_cstu (size_type_node, bytes); } else if (TREE_CODE (ptr) == SSA_NAME) { /* If object size is not known yet, delay folding until later. Maybe subsequent passes will help determining it. */ bytes = compute_builtin_object_size (ptr, object_size_type); if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2 ? -1 : 0) && double_int_fits_to_tree_p (size_type_node, double_int::from_uhwi (bytes))) return build_int_cstu (size_type_node, bytes); } return NULL_TREE; } /* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length passed as third argument. */ tree fold_builtin_memory_chk (location_t loc, tree fndecl, tree dest, tree src, tree len, tree size, tree maxlen, bool ignore, enum built_in_function fcode) { tree fn; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, (fcode == BUILT_IN_MEMSET_CHK ? INTEGER_TYPE : POINTER_TYPE)) || !validate_arg (len, INTEGER_TYPE) || !validate_arg (size, INTEGER_TYPE)) return NULL_TREE; /* If SRC and DEST are the same (and not volatile), return DEST (resp. DEST+LEN for __mempcpy_chk). */ if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0)) { if (fcode != BUILT_IN_MEMPCPY_CHK) return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, len); else { tree temp = fold_build_pointer_plus_loc (loc, dest, len); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), temp); } } if (! host_integerp (size, 1)) return NULL_TREE; if (! integer_all_onesp (size)) { if (! host_integerp (len, 1)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1)) { if (fcode == BUILT_IN_MEMPCPY_CHK && ignore) { /* (void) __mempcpy_chk () can be optimized into (void) __memcpy_chk (). */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 4, dest, src, len, size); } return NULL_TREE; } } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return NULL_TREE; } fn = NULL_TREE; /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume mem{cpy,pcpy,move,set} is available. */ switch (fcode) { case BUILT_IN_MEMCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMCPY); break; case BUILT_IN_MEMPCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMPCPY); break; case BUILT_IN_MEMMOVE_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMMOVE); break; case BUILT_IN_MEMSET_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMSET); break; default: break; } if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } /* Fold a call to the __st[rp]cpy_chk builtin. DEST, SRC, and SIZE are the arguments to the call. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length of strings passed as second argument. */ tree fold_builtin_stxcpy_chk (location_t loc, tree fndecl, tree dest, tree src, tree size, tree maxlen, bool ignore, enum built_in_function fcode) { tree len, fn; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (size, INTEGER_TYPE)) return NULL_TREE; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0)) return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest); if (! host_integerp (size, 1)) return NULL_TREE; if (! integer_all_onesp (size)) { len = c_strlen (src, 1); if (! len || ! host_integerp (len, 1)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1)) { if (fcode == BUILT_IN_STPCPY_CHK) { if (! ignore) return NULL_TREE; /* If return value of __stpcpy_chk is ignored, optimize into __strcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, size); } if (! len || TREE_SIDE_EFFECTS (len)) return NULL_TREE; /* If c_strlen returned something, but not a constant, transform __strcpy_chk into __memcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return NULL_TREE; len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), build_call_expr_loc (loc, fn, 4, dest, src, len, size)); } } else maxlen = len; if (! tree_int_cst_lt (maxlen, size)) return NULL_TREE; } /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK ? BUILT_IN_STPCPY : BUILT_IN_STRCPY); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 2, dest, src); } /* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. If MAXLEN is not NULL, it is maximum length passed as third argument. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. */ tree fold_builtin_stxncpy_chk (location_t loc, tree dest, tree src, tree len, tree size, tree maxlen, bool ignore, enum built_in_function fcode) { tree fn; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (len, INTEGER_TYPE) || !validate_arg (size, INTEGER_TYPE)) return NULL_TREE; if (fcode == BUILT_IN_STPNCPY_CHK && ignore) { /* If return value of __stpncpy_chk is ignored, optimize into __strncpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK); if (fn) return build_call_expr_loc (loc, fn, 4, dest, src, len, size); } if (! host_integerp (size, 1)) return NULL_TREE; if (! integer_all_onesp (size)) { if (! host_integerp (len, 1)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1)) return NULL_TREE; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return NULL_TREE; } /* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK ? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } /* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE are the arguments to the call. */ static tree fold_builtin_strcat_chk (location_t loc, tree fndecl, tree dest, tree src, tree size) { tree fn; const char *p; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (size, INTEGER_TYPE)) return NULL_TREE; p = c_getstr (src); /* If the SRC parameter is "", return DEST. */ if (p && *p == '\0') return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src); if (! host_integerp (size, 1) || ! integer_all_onesp (size)) return NULL_TREE; /* If __builtin_strcat_chk is used, assume strcat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 2, dest, src); } /* Fold a call to the __strncat_chk builtin with arguments DEST, SRC, LEN, and SIZE. */ static tree fold_builtin_strncat_chk (location_t loc, tree fndecl, tree dest, tree src, tree len, tree size) { tree fn; const char *p; if (!validate_arg (dest, POINTER_TYPE) || !validate_arg (src, POINTER_TYPE) || !validate_arg (size, INTEGER_TYPE) || !validate_arg (size, INTEGER_TYPE)) return NULL_TREE; p = c_getstr (src); /* If the SRC parameter is "" or if LEN is 0, return DEST. */ if (p && *p == '\0') return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, len); else if (integer_zerop (len)) return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src); if (! host_integerp (size, 1)) return NULL_TREE; if (! integer_all_onesp (size)) { tree src_len = c_strlen (src, 1); if (src_len && host_integerp (src_len, 1) && host_integerp (len, 1) && ! tree_int_cst_lt (len, src_len)) { /* If LEN >= strlen (SRC), optimize into __strcat_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, size); } return NULL_TREE; } /* If __builtin_strncat_chk is used, assume strncat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRNCAT); if (!fn) return NULL_TREE; return build_call_expr_loc (loc, fn, 3, dest, src, len); } /* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK. */ static tree fold_builtin_sprintf_chk_1 (location_t loc, int nargs, tree *args, enum built_in_function fcode) { tree dest, size, len, fn, fmt, flag; const char *fmt_str; /* Verify the required arguments in the original call. */ if (nargs < 4) return NULL_TREE; dest = args[0]; if (!validate_arg (dest, POINTER_TYPE)) return NULL_TREE; flag = args[1]; if (!validate_arg (flag, INTEGER_TYPE)) return NULL_TREE; size = args[2]; if (!validate_arg (size, INTEGER_TYPE)) return NULL_TREE; fmt = args[3]; if (!validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; if (! host_integerp (size, 1)) return NULL_TREE; len = NULL_TREE; if (!init_target_chars ()) return NULL_TREE; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str != NULL) { /* If the format doesn't contain % args or %%, we know the size. */ if (strchr (fmt_str, target_percent) == 0) { if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4) len = build_int_cstu (size_type_node, strlen (fmt_str)); } /* If the format is "%s" and first ... argument is a string literal, we know the size too. */ else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0) { tree arg; if (nargs == 5) { arg = args[4]; if (validate_arg (arg, POINTER_TYPE)) { len = c_strlen (arg, 1); if (! len || ! host_integerp (len, 1)) len = NULL_TREE; } } } } if (! integer_all_onesp (size)) { if (! len || ! tree_int_cst_lt (len, size)) return NULL_TREE; } /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { if (fmt_str == NULL) return NULL_TREE; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return NULL_TREE; } /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF); if (!fn) return NULL_TREE; return rewrite_call_expr_array (loc, nargs, args, 4, fn, 2, dest, fmt); } /* Fold a call EXP to __{,v}sprintf_chk. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK. */ static tree fold_builtin_sprintf_chk (location_t loc, tree exp, enum built_in_function fcode) { return fold_builtin_sprintf_chk_1 (loc, call_expr_nargs (exp), CALL_EXPR_ARGP (exp), fcode); } /* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length passed as second argument. */ static tree fold_builtin_snprintf_chk_1 (location_t loc, int nargs, tree *args, tree maxlen, enum built_in_function fcode) { tree dest, size, len, fn, fmt, flag; const char *fmt_str; /* Verify the required arguments in the original call. */ if (nargs < 5) return NULL_TREE; dest = args[0]; if (!validate_arg (dest, POINTER_TYPE)) return NULL_TREE; len = args[1]; if (!validate_arg (len, INTEGER_TYPE)) return NULL_TREE; flag = args[2]; if (!validate_arg (flag, INTEGER_TYPE)) return NULL_TREE; size = args[3]; if (!validate_arg (size, INTEGER_TYPE)) return NULL_TREE; fmt = args[4]; if (!validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; if (! host_integerp (size, 1)) return NULL_TREE; if (! integer_all_onesp (size)) { if (! host_integerp (len, 1)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1)) return NULL_TREE; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return NULL_TREE; } if (!init_target_chars ()) return NULL_TREE; /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { fmt_str = c_getstr (fmt); if (fmt_str == NULL) return NULL_TREE; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return NULL_TREE; } /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF); if (!fn) return NULL_TREE; return rewrite_call_expr_array (loc, nargs, args, 5, fn, 3, dest, len, fmt); } /* Fold a call EXP to {,v}snprintf. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length passed as second argument. */ tree fold_builtin_snprintf_chk (location_t loc, tree exp, tree maxlen, enum built_in_function fcode) { return fold_builtin_snprintf_chk_1 (loc, call_expr_nargs (exp), CALL_EXPR_ARGP (exp), maxlen, fcode); } /* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins. FMT and ARG are the arguments to the call; we don't fold cases with more than 2 arguments, and ARG may be null if this is a 1-argument case. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. FCODE is the BUILT_IN_* code of the function to be simplified. */ static tree fold_builtin_printf (location_t loc, tree fndecl, tree fmt, tree arg, bool ignore, enum built_in_function fcode) { tree fn_putchar, fn_puts, newarg, call = NULL_TREE; const char *fmt_str = NULL; /* If the return value is used, don't do the transformation. */ if (! ignore) return NULL_TREE; /* Verify the required arguments in the original call. */ if (!validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return NULL_TREE; if (fcode == BUILT_IN_PRINTF_UNLOCKED) { /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ fn_putchar = builtin_decl_explicit (BUILT_IN_PUTCHAR_UNLOCKED); fn_puts = builtin_decl_explicit (BUILT_IN_PUTS_UNLOCKED); } else { fn_putchar = builtin_decl_implicit (BUILT_IN_PUTCHAR); fn_puts = builtin_decl_implicit (BUILT_IN_PUTS); } if (!init_target_chars ()) return NULL_TREE; if (strcmp (fmt_str, target_percent_s) == 0 || strchr (fmt_str, target_percent) == NULL) { const char *str; if (strcmp (fmt_str, target_percent_s) == 0) { if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK) return NULL_TREE; if (!arg || !validate_arg (arg, POINTER_TYPE)) return NULL_TREE; str = c_getstr (arg); if (str == NULL) return NULL_TREE; } else { /* The format specifier doesn't contain any '%' characters. */ if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK && arg) return NULL_TREE; str = fmt_str; } /* If the string was "", printf does nothing. */ if (str[0] == '\0') return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0); /* If the string has length of 1, call putchar. */ if (str[1] == '\0') { /* Given printf("c"), (where c is any one character,) convert "c"[0] to an int and pass that to the replacement function. */ newarg = build_int_cst (integer_type_node, str[0]); if (fn_putchar) call = build_call_expr_loc (loc, fn_putchar, 1, newarg); } else { /* If the string was "string\n", call puts("string"). */ size_t len = strlen (str); if ((unsigned char)str[len - 1] == target_newline && (size_t) (int) len == len && (int) len > 0) { char *newstr; tree offset_node, string_cst; /* Create a NUL-terminated string that's one char shorter than the original, stripping off the trailing '\n'. */ newarg = build_string_literal (len, str); string_cst = string_constant (newarg, &offset_node); gcc_checking_assert (string_cst && (TREE_STRING_LENGTH (string_cst) == (int) len) && integer_zerop (offset_node) && (unsigned char) TREE_STRING_POINTER (string_cst)[len - 1] == target_newline); /* build_string_literal creates a new STRING_CST, modify it in place to avoid double copying. */ newstr = CONST_CAST (char *, TREE_STRING_POINTER (string_cst)); newstr[len - 1] = '\0'; if (fn_puts) call = build_call_expr_loc (loc, fn_puts, 1, newarg); } else /* We'd like to arrange to call fputs(string,stdout) here, but we need stdout and don't have a way to get it yet. */ return NULL_TREE; } } /* The other optimizations can be done only on the non-va_list variants. */ else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK) return NULL_TREE; /* If the format specifier was "%s\n", call __builtin_puts(arg). */ else if (strcmp (fmt_str, target_percent_s_newline) == 0) { if (!arg || !validate_arg (arg, POINTER_TYPE)) return NULL_TREE; if (fn_puts) call = build_call_expr_loc (loc, fn_puts, 1, arg); } /* If the format specifier was "%c", call __builtin_putchar(arg). */ else if (strcmp (fmt_str, target_percent_c) == 0) { if (!arg || !validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; if (fn_putchar) call = build_call_expr_loc (loc, fn_putchar, 1, arg); } if (!call) return NULL_TREE; return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call); } /* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins. FP, FMT, and ARG are the arguments to the call. We don't fold calls with more than 3 arguments, and ARG may be null in the 2-argument case. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. FCODE is the BUILT_IN_* code of the function to be simplified. */ static tree fold_builtin_fprintf (location_t loc, tree fndecl, tree fp, tree fmt, tree arg, bool ignore, enum built_in_function fcode) { tree fn_fputc, fn_fputs, call = NULL_TREE; const char *fmt_str = NULL; /* If the return value is used, don't do the transformation. */ if (! ignore) return NULL_TREE; /* Verify the required arguments in the original call. */ if (!validate_arg (fp, POINTER_TYPE)) return NULL_TREE; if (!validate_arg (fmt, POINTER_TYPE)) return NULL_TREE; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return NULL_TREE; if (fcode == BUILT_IN_FPRINTF_UNLOCKED) { /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ fn_fputc = builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED); fn_fputs = builtin_decl_explicit (BUILT_IN_FPUTS_UNLOCKED); } else { fn_fputc = builtin_decl_implicit (BUILT_IN_FPUTC); fn_fputs = builtin_decl_implicit (BUILT_IN_FPUTS); } if (!init_target_chars ()) return NULL_TREE; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK && arg) return NULL_TREE; /* If the format specifier was "", fprintf does nothing. */ if (fmt_str[0] == '\0') { /* If FP has side-effects, just wait until gimplification is done. */ if (TREE_SIDE_EFFECTS (fp)) return NULL_TREE; return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0); } /* When "string" doesn't contain %, replace all cases of fprintf (fp, string) with fputs (string, fp). The fputs builtin will take care of special cases like length == 1. */ if (fn_fputs) call = build_call_expr_loc (loc, fn_fputs, 2, fmt, fp); } /* The other optimizations can be done only on the non-va_list variants. */ else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK) return NULL_TREE; /* If the format specifier was "%s", call __builtin_fputs (arg, fp). */ else if (strcmp (fmt_str, target_percent_s) == 0) { if (!arg || !validate_arg (arg, POINTER_TYPE)) return NULL_TREE; if (fn_fputs) call = build_call_expr_loc (loc, fn_fputs, 2, arg, fp); } /* If the format specifier was "%c", call __builtin_fputc (arg, fp). */ else if (strcmp (fmt_str, target_percent_c) == 0) { if (!arg || !validate_arg (arg, INTEGER_TYPE)) return NULL_TREE; if (fn_fputc) call = build_call_expr_loc (loc, fn_fputc, 2, arg, fp); } if (!call) return NULL_TREE; return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call); } /* Initialize format string characters in the target charset. */ static bool init_target_chars (void) { static bool init; if (!init) { target_newline = lang_hooks.to_target_charset ('\n'); target_percent = lang_hooks.to_target_charset ('%'); target_c = lang_hooks.to_target_charset ('c'); target_s = lang_hooks.to_target_charset ('s'); if (target_newline == 0 || target_percent == 0 || target_c == 0 || target_s == 0) return false; target_percent_c[0] = target_percent; target_percent_c[1] = target_c; target_percent_c[2] = '\0'; target_percent_s[0] = target_percent; target_percent_s[1] = target_s; target_percent_s[2] = '\0'; target_percent_s_newline[0] = target_percent; target_percent_s_newline[1] = target_s; target_percent_s_newline[2] = target_newline; target_percent_s_newline[3] = '\0'; init = true; } return true; } /* Helper function for do_mpfr_arg*(). Ensure M is a normal number and no overflow/underflow occurred. INEXACT is true if M was not exactly calculated. TYPE is the tree type for the result. This function assumes that you cleared the MPFR flags and then calculated M to see if anything subsequently set a flag prior to entering this function. Return NULL_TREE if any checks fail. */ static tree do_mpfr_ckconv (mpfr_srcptr m, tree type, int inexact) { /* Proceed iff we get a normal number, i.e. not NaN or Inf and no overflow/underflow occurred. If -frounding-math, proceed iff the result of calling FUNC was exact. */ if (mpfr_number_p (m) && !mpfr_overflow_p () && !mpfr_underflow_p () && (!flag_rounding_math || !inexact)) { REAL_VALUE_TYPE rr; real_from_mpfr (&rr, m, type, GMP_RNDN); /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR value, check for overflow/underflow. If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we underflowed in the conversion. */ if (real_isfinite (&rr) && (rr.cl == rvc_zero) == (mpfr_zero_p (m) != 0)) { REAL_VALUE_TYPE rmode; real_convert (&rmode, TYPE_MODE (type), &rr); /* Proceed iff the specified mode can hold the value. */ if (real_identical (&rmode, &rr)) return build_real (type, rmode); } } return NULL_TREE; } /* Helper function for do_mpc_arg*(). Ensure M is a normal complex number and no overflow/underflow occurred. INEXACT is true if M was not exactly calculated. TYPE is the tree type for the result. This function assumes that you cleared the MPFR flags and then calculated M to see if anything subsequently set a flag prior to entering this function. Return NULL_TREE if any checks fail, if FORCE_CONVERT is true, then bypass the checks. */ static tree do_mpc_ckconv (mpc_srcptr m, tree type, int inexact, int force_convert) { /* Proceed iff we get a normal number, i.e. not NaN or Inf and no overflow/underflow occurred. If -frounding-math, proceed iff the result of calling FUNC was exact. */ if (force_convert || (mpfr_number_p (mpc_realref (m)) && mpfr_number_p (mpc_imagref (m)) && !mpfr_overflow_p () && !mpfr_underflow_p () && (!flag_rounding_math || !inexact))) { REAL_VALUE_TYPE re, im; real_from_mpfr (&re, mpc_realref (m), TREE_TYPE (type), GMP_RNDN); real_from_mpfr (&im, mpc_imagref (m), TREE_TYPE (type), GMP_RNDN); /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values, check for overflow/underflow. If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we underflowed in the conversion. */ if (force_convert || (real_isfinite (&re) && real_isfinite (&im) && (re.cl == rvc_zero) == (mpfr_zero_p (mpc_realref (m)) != 0) && (im.cl == rvc_zero) == (mpfr_zero_p (mpc_imagref (m)) != 0))) { REAL_VALUE_TYPE re_mode, im_mode; real_convert (&re_mode, TYPE_MODE (TREE_TYPE (type)), &re); real_convert (&im_mode, TYPE_MODE (TREE_TYPE (type)), &im); /* Proceed iff the specified mode can hold the value. */ if (force_convert || (real_identical (&re_mode, &re) && real_identical (&im_mode, &im))) return build_complex (type, build_real (TREE_TYPE (type), re_mode), build_real (TREE_TYPE (type), im_mode)); } } return NULL_TREE; } /* If argument ARG is a REAL_CST, call the one-argument mpfr function FUNC on it and return the resulting value as a tree with type TYPE. If MIN and/or MAX are not NULL, then the supplied ARG must be within those bounds. If INCLUSIVE is true, then MIN/MAX are acceptable values, otherwise they are not. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. */ static tree do_mpfr_arg1 (tree arg, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t), const REAL_VALUE_TYPE *min, const REAL_VALUE_TYPE *max, bool inclusive) { tree result = NULL_TREE; STRIP_NOPS (arg); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg); if (real_isfinite (ra) && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min)) && (!max || real_compare (inclusive ? LE_EXPR: LT_EXPR , ra, max))) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; int inexact; mpfr_t m; mpfr_init2 (m, prec); mpfr_from_real (m, ra, GMP_RNDN); mpfr_clear_flags (); inexact = func (m, m, rnd); result = do_mpfr_ckconv (m, type, inexact); mpfr_clear (m); } } return result; } /* If argument ARG is a REAL_CST, call the two-argument mpfr function FUNC on it and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. */ static tree do_mpfr_arg2 (tree arg1, tree arg2, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)) { tree result = NULL_TREE; STRIP_NOPS (arg1); STRIP_NOPS (arg2); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1) && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2)) { const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1); const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2); if (real_isfinite (ra1) && real_isfinite (ra2)) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; int inexact; mpfr_t m1, m2; mpfr_inits2 (prec, m1, m2, NULL); mpfr_from_real (m1, ra1, GMP_RNDN); mpfr_from_real (m2, ra2, GMP_RNDN); mpfr_clear_flags (); inexact = func (m1, m1, m2, rnd); result = do_mpfr_ckconv (m1, type, inexact); mpfr_clears (m1, m2, NULL); } } return result; } /* If argument ARG is a REAL_CST, call the three-argument mpfr function FUNC on it and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. */ static tree do_mpfr_arg3 (tree arg1, tree arg2, tree arg3, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)) { tree result = NULL_TREE; STRIP_NOPS (arg1); STRIP_NOPS (arg2); STRIP_NOPS (arg3); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1) && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2) && TREE_CODE (arg3) == REAL_CST && !TREE_OVERFLOW (arg3)) { const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1); const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2); const REAL_VALUE_TYPE *const ra3 = &TREE_REAL_CST (arg3); if (real_isfinite (ra1) && real_isfinite (ra2) && real_isfinite (ra3)) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; int inexact; mpfr_t m1, m2, m3; mpfr_inits2 (prec, m1, m2, m3, NULL); mpfr_from_real (m1, ra1, GMP_RNDN); mpfr_from_real (m2, ra2, GMP_RNDN); mpfr_from_real (m3, ra3, GMP_RNDN); mpfr_clear_flags (); inexact = func (m1, m1, m2, m3, rnd); result = do_mpfr_ckconv (m1, type, inexact); mpfr_clears (m1, m2, m3, NULL); } } return result; } /* If argument ARG is a REAL_CST, call mpfr_sin_cos() on it and set the pointers *(ARG_SINP) and *(ARG_COSP) to the resulting values. If ARG_SINP and ARG_COSP are NULL then the result is returned as a complex value. The type is taken from the type of ARG and is used for setting the precision of the calculation and results. */ static tree do_mpfr_sincos (tree arg, tree arg_sinp, tree arg_cosp) { tree const type = TREE_TYPE (arg); tree result = NULL_TREE; STRIP_NOPS (arg); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)) { const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg); if (real_isfinite (ra)) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; tree result_s, result_c; int inexact; mpfr_t m, ms, mc; mpfr_inits2 (prec, m, ms, mc, NULL); mpfr_from_real (m, ra, GMP_RNDN); mpfr_clear_flags (); inexact = mpfr_sin_cos (ms, mc, m, rnd); result_s = do_mpfr_ckconv (ms, type, inexact); result_c = do_mpfr_ckconv (mc, type, inexact); mpfr_clears (m, ms, mc, NULL); if (result_s && result_c) { /* If we are to return in a complex value do so. */ if (!arg_sinp && !arg_cosp) return build_complex (build_complex_type (type), result_c, result_s); /* Dereference the sin/cos pointer arguments. */ arg_sinp = build_fold_indirect_ref (arg_sinp); arg_cosp = build_fold_indirect_ref (arg_cosp); /* Proceed if valid pointer type were passed in. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_sinp)) == TYPE_MAIN_VARIANT (type) && TYPE_MAIN_VARIANT (TREE_TYPE (arg_cosp)) == TYPE_MAIN_VARIANT (type)) { /* Set the values. */ result_s = fold_build2 (MODIFY_EXPR, type, arg_sinp, result_s); TREE_SIDE_EFFECTS (result_s) = 1; result_c = fold_build2 (MODIFY_EXPR, type, arg_cosp, result_c); TREE_SIDE_EFFECTS (result_c) = 1; /* Combine the assignments into a compound expr. */ result = non_lvalue (fold_build2 (COMPOUND_EXPR, type, result_s, result_c)); } } } } return result; } /* If argument ARG1 is an INTEGER_CST and ARG2 is a REAL_CST, call the two-argument mpfr order N Bessel function FUNC on them and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. */ static tree do_mpfr_bessel_n (tree arg1, tree arg2, tree type, int (*func)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t), const REAL_VALUE_TYPE *min, bool inclusive) { tree result = NULL_TREE; STRIP_NOPS (arg1); STRIP_NOPS (arg2); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && host_integerp (arg1, 0) && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2)) { const HOST_WIDE_INT n = tree_low_cst(arg1, 0); const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg2); if (n == (long)n && real_isfinite (ra) && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min))) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; int inexact; mpfr_t m; mpfr_init2 (m, prec); mpfr_from_real (m, ra, GMP_RNDN); mpfr_clear_flags (); inexact = func (m, n, m, rnd); result = do_mpfr_ckconv (m, type, inexact); mpfr_clear (m); } } return result; } /* If arguments ARG0 and ARG1 are REAL_CSTs, call mpfr_remquo() to set the pointer *(ARG_QUO) and return the result. The type is taken from the type of ARG0 and is used for setting the precision of the calculation and results. */ static tree do_mpfr_remquo (tree arg0, tree arg1, tree arg_quo) { tree const type = TREE_TYPE (arg0); tree result = NULL_TREE; STRIP_NOPS (arg0); STRIP_NOPS (arg1); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0) && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)) { const REAL_VALUE_TYPE *const ra0 = TREE_REAL_CST_PTR (arg0); const REAL_VALUE_TYPE *const ra1 = TREE_REAL_CST_PTR (arg1); if (real_isfinite (ra0) && real_isfinite (ra1)) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; tree result_rem; long integer_quo; mpfr_t m0, m1; mpfr_inits2 (prec, m0, m1, NULL); mpfr_from_real (m0, ra0, GMP_RNDN); mpfr_from_real (m1, ra1, GMP_RNDN); mpfr_clear_flags (); mpfr_remquo (m0, &integer_quo, m0, m1, rnd); /* Remquo is independent of the rounding mode, so pass inexact=0 to do_mpfr_ckconv(). */ result_rem = do_mpfr_ckconv (m0, type, /*inexact=*/ 0); mpfr_clears (m0, m1, NULL); if (result_rem) { /* MPFR calculates quo in the host's long so it may return more bits in quo than the target int can hold if sizeof(host long) > sizeof(target int). This can happen even for native compilers in LP64 mode. In these cases, modulo the quo value with the largest number that the target int can hold while leaving one bit for the sign. */ if (sizeof (integer_quo) * CHAR_BIT > INT_TYPE_SIZE) integer_quo %= (long)(1UL << (INT_TYPE_SIZE - 1)); /* Dereference the quo pointer argument. */ arg_quo = build_fold_indirect_ref (arg_quo); /* Proceed iff a valid pointer type was passed in. */ if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_quo)) == integer_type_node) { /* Set the value. */ tree result_quo = fold_build2 (MODIFY_EXPR, TREE_TYPE (arg_quo), arg_quo, build_int_cst (TREE_TYPE (arg_quo), integer_quo)); TREE_SIDE_EFFECTS (result_quo) = 1; /* Combine the quo assignment with the rem. */ result = non_lvalue (fold_build2 (COMPOUND_EXPR, type, result_quo, result_rem)); } } } } return result; } /* If ARG is a REAL_CST, call mpfr_lgamma() on it and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that this mpfr function returns zero if the result could be calculated exactly within the requested precision. In addition, the integer pointer represented by ARG_SG will be dereferenced and set to the appropriate signgam (-1,1) value. */ static tree do_mpfr_lgamma_r (tree arg, tree arg_sg, tree type) { tree result = NULL_TREE; STRIP_NOPS (arg); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. Also verify ARG is a constant and that ARG_SG is an int pointer. */ if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2 && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg) && TREE_CODE (TREE_TYPE (arg_sg)) == POINTER_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg_sg))) == integer_type_node) { const REAL_VALUE_TYPE *const ra = TREE_REAL_CST_PTR (arg); /* In addition to NaN and Inf, the argument cannot be zero or a negative integer. */ if (real_isfinite (ra) && ra->cl != rvc_zero && !(real_isneg(ra) && real_isinteger(ra, TYPE_MODE (type)))) { const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type)); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN; int inexact, sg; mpfr_t m; tree result_lg; mpfr_init2 (m, prec); mpfr_from_real (m, ra, GMP_RNDN); mpfr_clear_flags (); inexact = mpfr_lgamma (m, &sg, m, rnd); result_lg = do_mpfr_ckconv (m, type, inexact); mpfr_clear (m); if (result_lg) { tree result_sg; /* Dereference the arg_sg pointer argument. */ arg_sg = build_fold_indirect_ref (arg_sg); /* Assign the signgam value into *arg_sg. */ result_sg = fold_build2 (MODIFY_EXPR, TREE_TYPE (arg_sg), arg_sg, build_int_cst (TREE_TYPE (arg_sg), sg)); TREE_SIDE_EFFECTS (result_sg) = 1; /* Combine the signgam assignment with the lgamma result. */ result = non_lvalue (fold_build2 (COMPOUND_EXPR, type, result_sg, result_lg)); } } } return result; } /* If argument ARG is a COMPLEX_CST, call the one-argument mpc function FUNC on it and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. */ static tree do_mpc_arg1 (tree arg, tree type, int (*func)(mpc_ptr, mpc_srcptr, mpc_rnd_t)) { tree result = NULL_TREE; STRIP_NOPS (arg); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (TREE_CODE (arg) == COMPLEX_CST && !TREE_OVERFLOW (arg) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg))))->b == 2) { const REAL_VALUE_TYPE *const re = TREE_REAL_CST_PTR (TREE_REALPART (arg)); const REAL_VALUE_TYPE *const im = TREE_REAL_CST_PTR (TREE_IMAGPART (arg)); if (real_isfinite (re) && real_isfinite (im)) { const struct real_format *const fmt = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type))); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN; const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; int inexact; mpc_t m; mpc_init2 (m, prec); mpfr_from_real (mpc_realref(m), re, rnd); mpfr_from_real (mpc_imagref(m), im, rnd); mpfr_clear_flags (); inexact = func (m, m, crnd); result = do_mpc_ckconv (m, type, inexact, /*force_convert=*/ 0); mpc_clear (m); } } return result; } /* If arguments ARG0 and ARG1 are a COMPLEX_CST, call the two-argument mpc function FUNC on it and return the resulting value as a tree with type TYPE. The mpfr precision is set to the precision of TYPE. We assume that function FUNC returns zero if the result could be calculated exactly within the requested precision. If DO_NONFINITE is true, then fold expressions containing Inf or NaN in the arguments and/or results. */ tree do_mpc_arg2 (tree arg0, tree arg1, tree type, int do_nonfinite, int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t)) { tree result = NULL_TREE; STRIP_NOPS (arg0); STRIP_NOPS (arg1); /* To proceed, MPFR must exactly represent the target floating point format, which only happens when the target base equals two. */ if (TREE_CODE (arg0) == COMPLEX_CST && !TREE_OVERFLOW (arg0) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE && TREE_CODE (arg1) == COMPLEX_CST && !TREE_OVERFLOW (arg1) && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))))->b == 2) { const REAL_VALUE_TYPE *const re0 = TREE_REAL_CST_PTR (TREE_REALPART (arg0)); const REAL_VALUE_TYPE *const im0 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg0)); const REAL_VALUE_TYPE *const re1 = TREE_REAL_CST_PTR (TREE_REALPART (arg1)); const REAL_VALUE_TYPE *const im1 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg1)); if (do_nonfinite || (real_isfinite (re0) && real_isfinite (im0) && real_isfinite (re1) && real_isfinite (im1))) { const struct real_format *const fmt = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type))); const int prec = fmt->p; const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN; const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; int inexact; mpc_t m0, m1; mpc_init2 (m0, prec); mpc_init2 (m1, prec); mpfr_from_real (mpc_realref(m0), re0, rnd); mpfr_from_real (mpc_imagref(m0), im0, rnd); mpfr_from_real (mpc_realref(m1), re1, rnd); mpfr_from_real (mpc_imagref(m1), im1, rnd); mpfr_clear_flags (); inexact = func (m0, m0, m1, crnd); result = do_mpc_ckconv (m0, type, inexact, do_nonfinite); mpc_clear (m0); mpc_clear (m1); } } return result; } /* Fold a call STMT to __{,v}sprintf_chk. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK. */ static tree gimple_fold_builtin_sprintf_chk (gimple stmt, enum built_in_function fcode) { int nargs = gimple_call_num_args (stmt); return fold_builtin_sprintf_chk_1 (gimple_location (stmt), nargs, (nargs > 0 ? gimple_call_arg_ptr (stmt, 0) : &error_mark_node), fcode); } /* Fold a call STMT to {,v}snprintf. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length passed as second argument. */ tree gimple_fold_builtin_snprintf_chk (gimple stmt, tree maxlen, enum built_in_function fcode) { int nargs = gimple_call_num_args (stmt); return fold_builtin_snprintf_chk_1 (gimple_location (stmt), nargs, (nargs > 0 ? gimple_call_arg_ptr (stmt, 0) : &error_mark_node), maxlen, fcode); } /* Builtins with folding operations that operate on "..." arguments need special handling; we need to store the arguments in a convenient data structure before attempting any folding. Fortunately there are only a few builtins that fall into this category. FNDECL is the function, EXP is the CALL_EXPR for the call, and IGNORE is true if the result of the function call is ignored. */ static tree gimple_fold_builtin_varargs (tree fndecl, gimple stmt, bool ignore ATTRIBUTE_UNUSED) { enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); tree ret = NULL_TREE; switch (fcode) { case BUILT_IN_SPRINTF_CHK: case BUILT_IN_VSPRINTF_CHK: ret = gimple_fold_builtin_sprintf_chk (stmt, fcode); break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: ret = gimple_fold_builtin_snprintf_chk (stmt, NULL_TREE, fcode); default: break; } if (ret) { ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret); TREE_NO_WARNING (ret) = 1; return ret; } return NULL_TREE; } /* A wrapper function for builtin folding that prevents warnings for "statement without effect" and the like, caused by removing the call node earlier than the warning is generated. */ tree fold_call_stmt (gimple stmt, bool ignore) { tree ret = NULL_TREE; tree fndecl = gimple_call_fndecl (stmt); location_t loc = gimple_location (stmt); if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL && DECL_BUILT_IN (fndecl) && !gimple_call_va_arg_pack_p (stmt)) { int nargs = gimple_call_num_args (stmt); tree *args = (nargs > 0 ? gimple_call_arg_ptr (stmt, 0) : &error_mark_node); if (avoid_folding_inline_builtin (fndecl)) return NULL_TREE; if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) { return targetm.fold_builtin (fndecl, nargs, args, ignore); } else { if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN) ret = fold_builtin_n (loc, fndecl, args, nargs, ignore); if (!ret) ret = gimple_fold_builtin_varargs (fndecl, stmt, ignore); if (ret) { /* Propagate location information from original call to expansion of builtin. Otherwise things like maybe_emit_chk_warning, that operate on the expansion of a builtin, will use the wrong location information. */ if (gimple_has_location (stmt)) { tree realret = ret; if (TREE_CODE (ret) == NOP_EXPR) realret = TREE_OPERAND (ret, 0); if (CAN_HAVE_LOCATION_P (realret) && !EXPR_HAS_LOCATION (realret)) SET_EXPR_LOCATION (realret, loc); return realret; } return ret; } } } return NULL_TREE; } /* Look up the function in builtin_decl that corresponds to DECL and set ASMSPEC as its user assembler name. DECL must be a function decl that declares a builtin. */ void set_builtin_user_assembler_name (tree decl, const char *asmspec) { tree builtin; gcc_assert (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL && asmspec != 0); builtin = builtin_decl_explicit (DECL_FUNCTION_CODE (decl)); set_user_assembler_name (builtin, asmspec); switch (DECL_FUNCTION_CODE (decl)) { case BUILT_IN_MEMCPY: init_block_move_fn (asmspec); memcpy_libfunc = set_user_assembler_libfunc ("memcpy", asmspec); break; case BUILT_IN_MEMSET: init_block_clear_fn (asmspec); memset_libfunc = set_user_assembler_libfunc ("memset", asmspec); break; case BUILT_IN_MEMMOVE: memmove_libfunc = set_user_assembler_libfunc ("memmove", asmspec); break; case BUILT_IN_MEMCMP: memcmp_libfunc = set_user_assembler_libfunc ("memcmp", asmspec); break; case BUILT_IN_ABORT: abort_libfunc = set_user_assembler_libfunc ("abort", asmspec); break; case BUILT_IN_FFS: if (INT_TYPE_SIZE < BITS_PER_WORD) { set_user_assembler_libfunc ("ffs", asmspec); set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0), "ffs"); } break; default: break; } } /* Return true if DECL is a builtin that expands to a constant or similarly simple code. */ bool is_simple_builtin (tree decl) { if (decl && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL) switch (DECL_FUNCTION_CODE (decl)) { /* Builtins that expand to constants. */ case BUILT_IN_CONSTANT_P: case BUILT_IN_EXPECT: case BUILT_IN_OBJECT_SIZE: case BUILT_IN_UNREACHABLE: /* Simple register moves or loads from stack. */ case BUILT_IN_ASSUME_ALIGNED: case BUILT_IN_RETURN_ADDRESS: case BUILT_IN_EXTRACT_RETURN_ADDR: case BUILT_IN_FROB_RETURN_ADDR: case BUILT_IN_RETURN: case BUILT_IN_AGGREGATE_INCOMING_ADDRESS: case BUILT_IN_FRAME_ADDRESS: case BUILT_IN_VA_END: case BUILT_IN_STACK_SAVE: case BUILT_IN_STACK_RESTORE: /* Exception state returns or moves registers around. */ case BUILT_IN_EH_FILTER: case BUILT_IN_EH_POINTER: case BUILT_IN_EH_COPY_VALUES: return true; default: return false; } return false; } /* Return true if DECL is a builtin that is not expensive, i.e., they are most probably expanded inline into reasonably simple code. This is a superset of is_simple_builtin. */ bool is_inexpensive_builtin (tree decl) { if (!decl) return false; else if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_MD) return true; else if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL) switch (DECL_FUNCTION_CODE (decl)) { case BUILT_IN_ABS: case BUILT_IN_ALLOCA: case BUILT_IN_ALLOCA_WITH_ALIGN: case BUILT_IN_BSWAP16: case BUILT_IN_BSWAP32: case BUILT_IN_BSWAP64: case BUILT_IN_CLZ: case BUILT_IN_CLZIMAX: case BUILT_IN_CLZL: case BUILT_IN_CLZLL: case BUILT_IN_CTZ: case BUILT_IN_CTZIMAX: case BUILT_IN_CTZL: case BUILT_IN_CTZLL: case BUILT_IN_FFS: case BUILT_IN_FFSIMAX: case BUILT_IN_FFSL: case BUILT_IN_FFSLL: case BUILT_IN_IMAXABS: case BUILT_IN_FINITE: case BUILT_IN_FINITEF: case BUILT_IN_FINITEL: case BUILT_IN_FINITED32: case BUILT_IN_FINITED64: case BUILT_IN_FINITED128: case BUILT_IN_FPCLASSIFY: case BUILT_IN_ISFINITE: case BUILT_IN_ISINF_SIGN: case BUILT_IN_ISINF: case BUILT_IN_ISINFF: case BUILT_IN_ISINFL: case BUILT_IN_ISINFD32: case BUILT_IN_ISINFD64: case BUILT_IN_ISINFD128: case BUILT_IN_ISNAN: case BUILT_IN_ISNANF: case BUILT_IN_ISNANL: case BUILT_IN_ISNAND32: case BUILT_IN_ISNAND64: case BUILT_IN_ISNAND128: case BUILT_IN_ISNORMAL: case BUILT_IN_ISGREATER: case BUILT_IN_ISGREATEREQUAL: case BUILT_IN_ISLESS: case BUILT_IN_ISLESSEQUAL: case BUILT_IN_ISLESSGREATER: case BUILT_IN_ISUNORDERED: case BUILT_IN_VA_ARG_PACK: case BUILT_IN_VA_ARG_PACK_LEN: case BUILT_IN_VA_COPY: case BUILT_IN_TRAP: case BUILT_IN_SAVEREGS: case BUILT_IN_POPCOUNTL: case BUILT_IN_POPCOUNTLL: case BUILT_IN_POPCOUNTIMAX: case BUILT_IN_POPCOUNT: case BUILT_IN_PARITYL: case BUILT_IN_PARITYLL: case BUILT_IN_PARITYIMAX: case BUILT_IN_PARITY: case BUILT_IN_LABS: case BUILT_IN_LLABS: case BUILT_IN_PREFETCH: return true; default: return is_simple_builtin (decl); } return false; }