------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S Y S T E M . V A L _ R E A L -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2015, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with System.Powten_Table; use System.Powten_Table; with System.Val_Util; use System.Val_Util; with System.Float_Control; package body System.Val_Real is --------------- -- Scan_Real -- --------------- function Scan_Real (Str : String; Ptr : not null access Integer; Max : Integer) return Long_Long_Float is P : Integer; -- Local copy of string pointer Base : Long_Long_Float; -- Base value Uval : Long_Long_Float; -- Accumulated float result subtype Digs is Character range '0' .. '9'; -- Used to check for decimal digit Scale : Integer := 0; -- Power of Base to multiply result by Start : Positive; -- Position of starting non-blank character Minus : Boolean; -- Set to True if minus sign is present, otherwise to False Bad_Base : Boolean := False; -- Set True if Base out of range or if out of range digit After_Point : Natural := 0; -- Set to 1 after the point Num_Saved_Zeroes : Natural := 0; -- This counts zeroes after the decimal point. A non-zero value means -- that this number of previously scanned digits are zero. If the end -- of the number is reached, these zeroes are simply discarded, which -- ensures that trailing zeroes after the point never affect the value -- (which might otherwise happen as a result of rounding). With this -- processing in place, we can ensure that, for example, we get the -- same exact result from 1.0E+49 and 1.0000000E+49. This is not -- necessarily required in a case like this where the result is not -- a machine number, but it is certainly a desirable behavior. procedure Scanf; -- Scans integer literal value starting at current character position. -- For each digit encountered, Uval is multiplied by 10.0, and the new -- digit value is incremented. In addition Scale is decremented for each -- digit encountered if we are after the point (After_Point = 1). The -- longest possible syntactically valid numeral is scanned out, and on -- return P points past the last character. On entry, the current -- character is known to be a digit, so a numeral is definitely present. ----------- -- Scanf -- ----------- procedure Scanf is Digit : Natural; begin loop Digit := Character'Pos (Str (P)) - Character'Pos ('0'); P := P + 1; -- Save up trailing zeroes after the decimal point if Digit = 0 and then After_Point = 1 then Num_Saved_Zeroes := Num_Saved_Zeroes + 1; -- Here for a non-zero digit else -- First deal with any previously saved zeroes if Num_Saved_Zeroes /= 0 then while Num_Saved_Zeroes > Maxpow loop Uval := Uval * Powten (Maxpow); Num_Saved_Zeroes := Num_Saved_Zeroes - Maxpow; Scale := Scale - Maxpow; end loop; Uval := Uval * Powten (Num_Saved_Zeroes); Scale := Scale - Num_Saved_Zeroes; Num_Saved_Zeroes := 0; end if; -- Accumulate new digit Uval := Uval * 10.0 + Long_Long_Float (Digit); Scale := Scale - After_Point; end if; -- Done if end of input field if P > Max then return; -- Check next character elsif Str (P) not in Digs then if Str (P) = '_' then Scan_Underscore (Str, P, Ptr, Max, False); else return; end if; end if; end loop; end Scanf; -- Start of processing for System.Scan_Real begin -- We do not tolerate strings with Str'Last = Positive'Last if Str'Last = Positive'Last then raise Program_Error with "string upper bound is Positive'Last, not supported"; end if; -- We call the floating-point processor reset routine so that we can -- be sure the floating-point processor is properly set for conversion -- calls. This is notably need on Windows, where calls to the operating -- system randomly reset the processor into 64-bit mode. System.Float_Control.Reset; Scan_Sign (Str, Ptr, Max, Minus, Start); P := Ptr.all; Ptr.all := Start; -- If digit, scan numeral before point if Str (P) in Digs then Uval := 0.0; Scanf; -- Initial point, allowed only if followed by digit (RM 3.5(47)) elsif Str (P) = '.' and then P < Max and then Str (P + 1) in Digs then Uval := 0.0; -- Any other initial character is an error else Bad_Value (Str); end if; -- Deal with based case. We reognize either the standard '#' or the -- allowed alternative replacement ':' (see RM J.2(3)). if P < Max and then (Str (P) = '#' or else Str (P) = ':') then declare Base_Char : constant Character := Str (P); Digit : Natural; Fdigit : Long_Long_Float; begin -- Set bad base if out of range, and use safe base of 16.0, -- to guard against division by zero in the loop below. if Uval < 2.0 or else Uval > 16.0 then Bad_Base := True; Uval := 16.0; end if; Base := Uval; Uval := 0.0; P := P + 1; -- Special check to allow initial point (RM 3.5(49)) if Str (P) = '.' then After_Point := 1; P := P + 1; end if; -- Loop to scan digits of based number. On entry to the loop we -- must have a valid digit. If we don't, then we have an illegal -- floating-point value, and we raise Constraint_Error, note that -- Ptr at this stage was reset to the proper (Start) value. loop if P > Max then Bad_Value (Str); elsif Str (P) in Digs then Digit := Character'Pos (Str (P)) - Character'Pos ('0'); elsif Str (P) in 'A' .. 'F' then Digit := Character'Pos (Str (P)) - (Character'Pos ('A') - 10); elsif Str (P) in 'a' .. 'f' then Digit := Character'Pos (Str (P)) - (Character'Pos ('a') - 10); else Bad_Value (Str); end if; -- Save up trailing zeroes after the decimal point if Digit = 0 and then After_Point = 1 then Num_Saved_Zeroes := Num_Saved_Zeroes + 1; -- Here for a non-zero digit else -- First deal with any previously saved zeroes if Num_Saved_Zeroes /= 0 then Uval := Uval * Base ** Num_Saved_Zeroes; Scale := Scale - Num_Saved_Zeroes; Num_Saved_Zeroes := 0; end if; -- Now accumulate the new digit Fdigit := Long_Long_Float (Digit); if Fdigit >= Base then Bad_Base := True; else Scale := Scale - After_Point; Uval := Uval * Base + Fdigit; end if; end if; P := P + 1; if P > Max then Bad_Value (Str); elsif Str (P) = '_' then Scan_Underscore (Str, P, Ptr, Max, True); else -- Skip past period after digit. Note that the processing -- here will permit either a digit after the period, or the -- terminating base character, as allowed in (RM 3.5(48)) if Str (P) = '.' and then After_Point = 0 then P := P + 1; After_Point := 1; if P > Max then Bad_Value (Str); end if; end if; exit when Str (P) = Base_Char; end if; end loop; -- Based number successfully scanned out (point was found) Ptr.all := P + 1; end; -- Non-based case, check for being at decimal point now. Note that -- in Ada 95, we do not insist on a decimal point being present else Base := 10.0; After_Point := 1; if P <= Max and then Str (P) = '.' then P := P + 1; -- Scan digits after point if any are present (RM 3.5(46)) if P <= Max and then Str (P) in Digs then Scanf; end if; end if; Ptr.all := P; end if; -- At this point, we have Uval containing the digits of the value as -- an integer, and Scale indicates the negative of the number of digits -- after the point. Base contains the base value (an integral value in -- the range 2.0 .. 16.0). Test for exponent, must be at least one -- character after the E for the exponent to be valid. Scale := Scale + Scan_Exponent (Str, Ptr, Max, Real => True); -- At this point the exponent has been scanned if one is present and -- Scale is adjusted to include the exponent value. Uval contains the -- the integral value which is to be multiplied by Base ** Scale. -- If base is not 10, use exponentiation for scaling if Base /= 10.0 then Uval := Uval * Base ** Scale; -- For base 10, use power of ten table, repeatedly if necessary elsif Scale > 0 then while Scale > Maxpow loop Uval := Uval * Powten (Maxpow); Scale := Scale - Maxpow; end loop; -- Note that we still know that Scale > 0, since the loop -- above leaves Scale in the range 1 .. Maxpow. Uval := Uval * Powten (Scale); elsif Scale < 0 then while (-Scale) > Maxpow loop Uval := Uval / Powten (Maxpow); Scale := Scale + Maxpow; end loop; -- Note that we still know that Scale < 0, since the loop -- above leaves Scale in the range -Maxpow .. -1. Uval := Uval / Powten (-Scale); end if; -- Here is where we check for a bad based number if Bad_Base then Bad_Value (Str); -- If OK, then deal with initial minus sign, note that this processing -- is done even if Uval is zero, so that -0.0 is correctly interpreted. else if Minus then return -Uval; else return Uval; end if; end if; end Scan_Real; ---------------- -- Value_Real -- ---------------- function Value_Real (Str : String) return Long_Long_Float is begin -- We have to special case Str'Last = Positive'Last because the normal -- circuit ends up setting P to Str'Last + 1 which is out of bounds. We -- deal with this by converting to a subtype which fixes the bounds. if Str'Last = Positive'Last then declare subtype NT is String (1 .. Str'Length); begin return Value_Real (NT (Str)); end; -- Normal case where Str'Last < Positive'Last else declare V : Long_Long_Float; P : aliased Integer := Str'First; begin V := Scan_Real (Str, P'Access, Str'Last); Scan_Trailing_Blanks (Str, P); return V; end; end if; end Value_Real; end System.Val_Real;