------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- -- -- -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2005, Free Software Foundation, Inc. -- -- -- -- GNARL is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNARL is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNARL; see file COPYING. If not, write -- -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, -- -- Boston, MA 02110-1301, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNARL was developed by the GNARL team at Florida State University. -- -- Extensive contributions were provided by Ada Core Technologies, Inc. -- -- -- ------------------------------------------------------------------------------ -- This is a LynxOS version of this file, adapted to make -- SCHED_FIFO and ceiling locking (Annex D compliance) work properly -- This package contains all the GNULL primitives that interface directly -- with the underlying OS. pragma Polling (Off); -- Turn off polling, we do not want ATC polling to take place during -- tasking operations. It causes infinite loops and other problems. with System.Tasking.Debug; -- used for Known_Tasks with System.Task_Info; -- used for Task_Info_Type with Interfaces.C; -- used for int -- size_t with System.Interrupt_Management; -- used for Keep_Unmasked -- Abort_Task_Interrupt -- Interrupt_ID with System.Parameters; -- used for Size_Type with System.Tasking; -- used for Ada_Task_Control_Block -- Task_Id with System.Soft_Links; -- used for Defer/Undefer_Abort -- Note that we do not use System.Tasking.Initialization directly since -- this is a higher level package that we shouldn't depend on. For example -- when using the restricted run time, it is replaced by -- System.Tasking.Restricted.Stages. with System.OS_Primitives; -- used for Delay_Modes with Unchecked_Deallocation; package body System.Task_Primitives.Operations is use System.Tasking.Debug; use System.Tasking; use Interfaces.C; use System.OS_Interface; use System.Parameters; use System.OS_Primitives; package SSL renames System.Soft_Links; ---------------- -- Local Data -- ---------------- -- The followings are logically constants, but need to be initialized -- at run time. Single_RTS_Lock : aliased RTS_Lock; -- This is a lock to allow only one thread of control in the RTS at -- a time; it is used to execute in mutual exclusion from all other tasks. -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List ATCB_Key : aliased pthread_key_t; -- Key used to find the Ada Task_Id associated with a thread Environment_Task_Id : Task_Id; -- A variable to hold Task_Id for the environment task Locking_Policy : Character; pragma Import (C, Locking_Policy, "__gl_locking_policy"); -- Value of the pragma Locking_Policy: -- 'C' for Ceiling_Locking -- 'I' for Inherit_Locking -- ' ' for none. Unblocked_Signal_Mask : aliased sigset_t; -- The set of signals that should unblocked in all tasks -- The followings are internal configuration constants needed Next_Serial_Number : Task_Serial_Number := 100; -- We start at 100, to reserve some special values for -- using in error checking. Time_Slice_Val : Integer; pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); Dispatching_Policy : Character; pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F'; -- Indicates whether FIFO_Within_Priorities is set Foreign_Task_Elaborated : aliased Boolean := True; -- Used to identified fake tasks (i.e., non-Ada Threads) -------------------- -- Local Packages -- -------------------- package Specific is procedure Initialize (Environment_Task : Task_Id); pragma Inline (Initialize); -- Initialize various data needed by this package function Is_Valid_Task return Boolean; pragma Inline (Is_Valid_Task); -- Does the current thread have an ATCB? procedure Set (Self_Id : Task_Id); pragma Inline (Set); -- Set the self id for the current task function Self return Task_Id; pragma Inline (Self); -- Return a pointer to the Ada Task Control Block of the calling task end Specific; package body Specific is separate; -- The body of this package is target specific --------------------------------- -- Support for foreign threads -- --------------------------------- function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id; -- Allocate and Initialize a new ATCB for the current Thread function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id is separate; ----------------------- -- Local Subprograms -- ----------------------- procedure Abort_Handler (Sig : Signal); -- Signal handler used to implement asynchronous abort procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority); -- This procedure calls the scheduler of the OS to set thread's priority ------------------- -- Abort_Handler -- ------------------- procedure Abort_Handler (Sig : Signal) is pragma Unreferenced (Sig); T : constant Task_Id := Self; Result : Interfaces.C.int; Old_Set : aliased sigset_t; begin -- It is not safe to raise an exception when using ZCX and the GCC -- exception handling mechanism. if ZCX_By_Default and then GCC_ZCX_Support then return; end if; if T.Deferral_Level = 0 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then not T.Aborting then T.Aborting := True; -- Make sure signals used for RTS internal purpose are unmasked Result := pthread_sigmask (SIG_UNBLOCK, Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access); pragma Assert (Result = 0); raise Standard'Abort_Signal; end if; end Abort_Handler; ----------------- -- Stack_Guard -- ----------------- procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread); Guard_Page_Address : Address; Res : Interfaces.C.int; begin if Stack_Base_Available then -- Compute the guard page address Guard_Page_Address := Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size; if On then Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON); else Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF); end if; pragma Assert (Res = 0); end if; end Stack_Guard; -------------------- -- Get_Thread_Id -- -------------------- function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is begin return T.Common.LL.Thread; end Get_Thread_Id; ---------- -- Self -- ---------- function Self return Task_Id renames Specific.Self; --------------------- -- Initialize_Lock -- --------------------- procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; if Locking_Policy = 'C' then L.Ceiling := Prio; end if; Result := pthread_mutex_init (L.Mutex'Access, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is pragma Unreferenced (Level); Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then Result := pthread_mutexattr_destroy (Attributes'Access); raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; ------------------- -- Finalize_Lock -- ------------------- procedure Finalize_Lock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L.Mutex'Access); pragma Assert (Result = 0); end Finalize_Lock; procedure Finalize_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; ---------------- -- Write_Lock -- ---------------- procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is Result : Interfaces.C.int; T : constant Task_Id := Self; begin if Locking_Policy = 'C' then if T.Common.Current_Priority > L.Ceiling then Ceiling_Violation := True; return; end if; L.Saved_Priority := T.Common.Current_Priority; if T.Common.Current_Priority < L.Ceiling then Set_OS_Priority (T, L.Ceiling); end if; end if; Result := pthread_mutex_lock (L.Mutex'Access); -- Assume that the cause of EINVAL is a priority ceiling violation Ceiling_Violation := (Result = EINVAL); pragma Assert (Result = 0 or else Result = EINVAL); end Write_Lock; -- No tricks on RTS_Locks procedure Write_Lock (L : access RTS_Lock; Global_Lock : Boolean := False) is Result : Interfaces.C.int; begin if not Single_Lock or else Global_Lock then Result := pthread_mutex_lock (L); pragma Assert (Result = 0); end if; end Write_Lock; procedure Write_Lock (T : Task_Id) is Result : Interfaces.C.int; begin if not Single_Lock then Result := pthread_mutex_lock (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; end Write_Lock; --------------- -- Read_Lock -- --------------- procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is begin Write_Lock (L, Ceiling_Violation); end Read_Lock; ------------ -- Unlock -- ------------ procedure Unlock (L : access Lock) is Result : Interfaces.C.int; T : constant Task_Id := Self; begin Result := pthread_mutex_unlock (L.Mutex'Access); pragma Assert (Result = 0); if Locking_Policy = 'C' then if T.Common.Current_Priority > L.Saved_Priority then Set_OS_Priority (T, L.Saved_Priority); end if; end if; end Unlock; procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is Result : Interfaces.C.int; begin if not Single_Lock or else Global_Lock then Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end if; end Unlock; procedure Unlock (T : Task_Id) is Result : Interfaces.C.int; begin if not Single_Lock then Result := pthread_mutex_unlock (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; end Unlock; ----------- -- Sleep -- ----------- procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is pragma Unreferenced (Reason); Result : Interfaces.C.int; begin if Single_Lock then Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access); else Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access); end if; -- EINTR is not considered a failure pragma Assert (Result = 0 or else Result = EINTR); end Sleep; ----------------- -- Timed_Sleep -- ----------------- -- This is for use within the run-time system, so abort is -- assumed to be already deferred, and the caller should be -- holding its own ATCB lock. procedure Timed_Sleep (Self_ID : Task_Id; Time : Duration; Mode : ST.Delay_Modes; Reason : Task_States; Timedout : out Boolean; Yielded : out Boolean) is pragma Unreferenced (Reason); Check_Time : constant Duration := Monotonic_Clock; Rel_Time : Duration; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin Timedout := True; Yielded := False; if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time); end if; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time); end if; end if; if Abs_Time > Check_Time then if Relative_Timed_Wait then Request := To_Timespec (Rel_Time); else Request := To_Timespec (Abs_Time); end if; loop exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level or else Self_ID.Pending_Priority_Change; if Single_Lock then Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access, Request'Access); else Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); end if; exit when Abs_Time <= Monotonic_Clock; if Result = 0 or Result = EINTR then -- Somebody may have called Wakeup for us Timedout := False; exit; end if; pragma Assert (Result = ETIMEDOUT); end loop; end if; end Timed_Sleep; ----------------- -- Timed_Delay -- ----------------- -- This is for use in implementing delay statements, so we assume -- the caller is abort-deferred but is holding no locks. procedure Timed_Delay (Self_ID : Task_Id; Time : Duration; Mode : ST.Delay_Modes) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Rel_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin -- Only the little window between deferring abort and -- locking Self_ID is the reason we need to -- check for pending abort and priority change below! SSL.Abort_Defer.all; if Single_Lock then Lock_RTS; end if; -- Comments needed in code below ??? Write_Lock (Self_ID); if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time); end if; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time); end if; end if; if Abs_Time > Check_Time then if Relative_Timed_Wait then Request := To_Timespec (Rel_Time); else Request := To_Timespec (Abs_Time); end if; Self_ID.Common.State := Delay_Sleep; loop if Self_ID.Pending_Priority_Change then Self_ID.Pending_Priority_Change := False; Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority; Set_Priority (Self_ID, Self_ID.Common.Base_Priority); end if; exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; if Single_Lock then Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access, Request'Access); else Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); end if; exit when Abs_Time <= Monotonic_Clock; pragma Assert (Result = 0 or else Result = ETIMEDOUT or else Result = EINTR); end loop; Self_ID.Common.State := Runnable; end if; Unlock (Self_ID); if Single_Lock then Unlock_RTS; end if; Result := sched_yield; SSL.Abort_Undefer.all; end Timed_Delay; --------------------- -- Monotonic_Clock -- --------------------- function Monotonic_Clock return Duration is TS : aliased timespec; Result : Interfaces.C.int; begin Result := clock_gettime (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access); pragma Assert (Result = 0); return To_Duration (TS); end Monotonic_Clock; ------------------- -- RT_Resolution -- ------------------- function RT_Resolution return Duration is Res : aliased timespec; Result : Interfaces.C.int; begin Result := clock_getres (clock_id => CLOCK_REALTIME, Res => Res'Unchecked_Access); pragma Assert (Result = 0); return To_Duration (Res); end RT_Resolution; ------------ -- Wakeup -- ------------ procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is pragma Unreferenced (Reason); Result : Interfaces.C.int; begin Result := pthread_cond_signal (T.Common.LL.CV'Access); pragma Assert (Result = 0); end Wakeup; ----------- -- Yield -- ----------- procedure Yield (Do_Yield : Boolean := True) is Result : Interfaces.C.int; pragma Unreferenced (Result); begin if Do_Yield then Result := sched_yield; end if; end Yield; ------------------ -- Set_Priority -- ------------------ procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority) is Result : Interfaces.C.int; Param : aliased struct_sched_param; begin Param.sched_priority := Interfaces.C.int (Prio); if Time_Slice_Supported and then Time_Slice_Val > 0 then Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_RR, Param'Access); elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_FIFO, Param'Access); else Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_OTHER, Param'Access); end if; pragma Assert (Result = 0); end Set_OS_Priority; type Prio_Array_Type is array (System.Any_Priority) of Integer; pragma Atomic_Components (Prio_Array_Type); Prio_Array : Prio_Array_Type; -- Comments needed for these declarations ??? procedure Set_Priority (T : Task_Id; Prio : System.Any_Priority; Loss_Of_Inheritance : Boolean := False) is Array_Item : Integer; begin Set_OS_Priority (T, Prio); if Locking_Policy = 'C' then -- Annex D requirements: loss of inheritance puts task at the -- beginning of the queue for that prio; copied from 5ztaprop -- (VxWorks) if Loss_Of_Inheritance and then Prio < T.Common.Current_Priority then Array_Item := Prio_Array (T.Common.Base_Priority) + 1; Prio_Array (T.Common.Base_Priority) := Array_Item; loop Yield; exit when Array_Item = Prio_Array (T.Common.Base_Priority) or else Prio_Array (T.Common.Base_Priority) = 1; end loop; Prio_Array (T.Common.Base_Priority) := Prio_Array (T.Common.Base_Priority) - 1; end if; end if; T.Common.Current_Priority := Prio; end Set_Priority; ------------------ -- Get_Priority -- ------------------ function Get_Priority (T : Task_Id) return System.Any_Priority is begin return T.Common.Current_Priority; end Get_Priority; ---------------- -- Enter_Task -- ---------------- procedure Enter_Task (Self_ID : Task_Id) is begin Self_ID.Common.LL.Thread := pthread_self; Self_ID.Common.LL.LWP := lwp_self; Specific.Set (Self_ID); Lock_RTS; for J in Known_Tasks'Range loop if Known_Tasks (J) = null then Known_Tasks (J) := Self_ID; Self_ID.Known_Tasks_Index := J; exit; end if; end loop; Unlock_RTS; end Enter_Task; -------------- -- New_ATCB -- -------------- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is begin return new Ada_Task_Control_Block (Entry_Num); end New_ATCB; ------------------- -- Is_Valid_Task -- ------------------- function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; ----------------------------- -- Register_Foreign_Thread -- ----------------------------- function Register_Foreign_Thread return Task_Id is begin if Is_Valid_Task then return Self; else return Register_Foreign_Thread (pthread_self); end if; end Register_Foreign_Thread; -------------------- -- Initialize_TCB -- -------------------- procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is Mutex_Attr : aliased pthread_mutexattr_t; Result : Interfaces.C.int; Cond_Attr : aliased pthread_condattr_t; begin -- Give the task a unique serial number Self_ID.Serial_Number := Next_Serial_Number; Next_Serial_Number := Next_Serial_Number + 1; pragma Assert (Next_Serial_Number /= 0); if not Single_Lock then Result := pthread_mutexattr_init (Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = 0 then Result := pthread_mutex_init (Self_ID.Common.LL.L'Access, Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); end if; if Result /= 0 then Succeeded := False; return; end if; Result := pthread_mutexattr_destroy (Mutex_Attr'Access); pragma Assert (Result = 0); end if; Result := pthread_condattr_init (Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = 0 then Result := pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); end if; if Result = 0 then Succeeded := True; else if not Single_Lock then Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); end if; Succeeded := False; end if; Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); end Initialize_TCB; ----------------- -- Create_Task -- ----------------- procedure Create_Task (T : Task_Id; Wrapper : System.Address; Stack_Size : System.Parameters.Size_Type; Priority : System.Any_Priority; Succeeded : out Boolean) is Attributes : aliased pthread_attr_t; Adjusted_Stack_Size : Interfaces.C.size_t; Result : Interfaces.C.int; use System.Task_Info; begin if Stack_Size = Unspecified_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size); elsif Stack_Size < Minimum_Stack_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size); else Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size); end if; if Stack_Base_Available then -- If Stack Checking is supported then allocate 2 additional pages: -- -- In the worst case, stack is allocated at something like -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages -- to be sure the effective stack size is greater than what -- has been asked. Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size; end if; Result := pthread_attr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_attr_setdetachstate (Attributes'Access, PTHREAD_CREATE_DETACHED); pragma Assert (Result = 0); Result := pthread_attr_setstacksize (Attributes'Access, Adjusted_Stack_Size); pragma Assert (Result = 0); if T.Common.Task_Info /= Default_Scope then -- We are assuming that Scope_Type has the same values than the -- corresponding C macros Result := pthread_attr_setscope (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info)); pragma Assert (Result = 0); end if; -- Since the initial signal mask of a thread is inherited from the -- creator, and the Environment task has all its signals masked, we -- do not need to manipulate caller's signal mask at this point. -- All tasks in RTS will have All_Tasks_Mask initially. Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); pragma Assert (Result = 0 or else Result = EAGAIN); Succeeded := Result = 0; Result := pthread_attr_destroy (Attributes'Access); pragma Assert (Result = 0); Set_Priority (T, Priority); end Create_Task; ------------------ -- Finalize_TCB -- ------------------ procedure Finalize_TCB (T : Task_Id) is Result : Interfaces.C.int; Tmp : Task_Id := T; Is_Self : constant Boolean := T = Self; procedure Free is new Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id); begin if not Single_Lock then Result := pthread_mutex_destroy (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; Result := pthread_cond_destroy (T.Common.LL.CV'Access); pragma Assert (Result = 0); if T.Known_Tasks_Index /= -1 then Known_Tasks (T.Known_Tasks_Index) := null; end if; Free (Tmp); if Is_Self then Result := st_setspecific (ATCB_Key, System.Null_Address); pragma Assert (Result = 0); end if; end Finalize_TCB; --------------- -- Exit_Task -- --------------- procedure Exit_Task is begin Specific.Set (null); end Exit_Task; ---------------- -- Abort_Task -- ---------------- procedure Abort_Task (T : Task_Id) is Result : Interfaces.C.int; begin Result := pthread_kill (T.Common.LL.Thread, Signal (System.Interrupt_Management.Abort_Task_Interrupt)); pragma Assert (Result = 0); end Abort_Task; ---------------- -- Initialize -- ---------------- procedure Initialize (S : in out Suspension_Object) is Mutex_Attr : aliased pthread_mutexattr_t; Cond_Attr : aliased pthread_condattr_t; Result : Interfaces.C.int; begin -- Initialize internal state. It is always initialized to False (ARM -- D.10 par. 6). S.State := False; S.Waiting := False; -- Initialize internal mutex Result := pthread_mutexattr_init (Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then Result := pthread_mutexattr_destroy (Mutex_Attr'Access); pragma Assert (Result = 0); raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Mutex_Attr'Access); pragma Assert (Result = 0); -- Initialize internal condition variable Result := pthread_condattr_init (Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Result := pthread_mutex_destroy (S.L'Access); pragma Assert (Result = 0); if Result = ENOMEM then raise Storage_Error; end if; end if; Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Result := pthread_mutex_destroy (S.L'Access); pragma Assert (Result = 0); if Result = ENOMEM then Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); raise Storage_Error; end if; end if; Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); end Initialize; -------------- -- Finalize -- -------------- procedure Finalize (S : in out Suspension_Object) is Result : Interfaces.C.int; begin -- Destroy internal mutex Result := pthread_mutex_destroy (S.L'Access); pragma Assert (Result = 0); -- Destroy internal condition variable Result := pthread_cond_destroy (S.CV'Access); pragma Assert (Result = 0); end Finalize; ------------------- -- Current_State -- ------------------- function Current_State (S : Suspension_Object) return Boolean is begin -- We do not want to use lock on this read operation. State is marked -- as Atomic so that we ensure that the value retrieved is correct. return S.State; end Current_State; --------------- -- Set_False -- --------------- procedure Set_False (S : in out Suspension_Object) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (S.L'Access); pragma Assert (Result = 0); S.State := False; Result := pthread_mutex_unlock (S.L'Access); pragma Assert (Result = 0); end Set_False; -------------- -- Set_True -- -------------- procedure Set_True (S : in out Suspension_Object) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (S.L'Access); pragma Assert (Result = 0); -- If there is already a task waiting on this suspension object then -- we resume it, leaving the state of the suspension object to False, -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves -- the state to True. if S.Waiting then S.Waiting := False; S.State := False; Result := pthread_cond_signal (S.CV'Access); pragma Assert (Result = 0); else S.State := True; end if; Result := pthread_mutex_unlock (S.L'Access); pragma Assert (Result = 0); end Set_True; ------------------------ -- Suspend_Until_True -- ------------------------ procedure Suspend_Until_True (S : in out Suspension_Object) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (S.L'Access); pragma Assert (Result = 0); if S.Waiting then -- Program_Error must be raised upon calling Suspend_Until_True -- if another task is already waiting on that suspension object -- (ARM D.10 par. 10). Result := pthread_mutex_unlock (S.L'Access); pragma Assert (Result = 0); raise Program_Error; else -- Suspend the task if the state is False. Otherwise, the task -- continues its execution, and the state of the suspension object -- is set to False (ARM D.10 par. 9). if S.State then S.State := False; else S.Waiting := True; Result := pthread_cond_wait (S.CV'Access, S.L'Access); end if; end if; Result := pthread_mutex_unlock (S.L'Access); pragma Assert (Result = 0); end Suspend_Until_True; ---------------- -- Check_Exit -- ---------------- -- Dummy versions function Check_Exit (Self_ID : ST.Task_Id) return Boolean is pragma Unreferenced (Self_ID); begin return True; end Check_Exit; -------------------- -- Check_No_Locks -- -------------------- function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is pragma Unreferenced (Self_ID); begin return True; end Check_No_Locks; ---------------------- -- Environment_Task -- ---------------------- function Environment_Task return Task_Id is begin return Environment_Task_Id; end Environment_Task; -------------- -- Lock_RTS -- -------------- procedure Lock_RTS is begin Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); end Lock_RTS; ---------------- -- Unlock_RTS -- ---------------- procedure Unlock_RTS is begin Unlock (Single_RTS_Lock'Access, Global_Lock => True); end Unlock_RTS; ------------------ -- Suspend_Task -- ------------------ function Suspend_Task (T : ST.Task_Id; Thread_Self : Thread_Id) return Boolean is pragma Unreferenced (T); pragma Unreferenced (Thread_Self); begin return False; end Suspend_Task; ----------------- -- Resume_Task -- ----------------- function Resume_Task (T : ST.Task_Id; Thread_Self : Thread_Id) return Boolean is pragma Unreferenced (T); pragma Unreferenced (Thread_Self); begin return False; end Resume_Task; ---------------- -- Initialize -- ---------------- procedure Initialize (Environment_Task : Task_Id) is act : aliased struct_sigaction; old_act : aliased struct_sigaction; Tmp_Set : aliased sigset_t; Result : Interfaces.C.int; function State (Int : System.Interrupt_Management.Interrupt_ID) return Character; pragma Import (C, State, "__gnat_get_interrupt_state"); -- Get interrupt state. Defined in a-init.c -- The input argument is the interrupt number, -- and the result is one of the following: Default : constant Character := 's'; -- 'n' this interrupt not set by any Interrupt_State pragma -- 'u' Interrupt_State pragma set state to User -- 'r' Interrupt_State pragma set state to Runtime -- 's' Interrupt_State pragma set state to System (use "default" -- system handler) begin Environment_Task_Id := Environment_Task; -- Initialize the lock used to synchronize chain of all ATCBs Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); Specific.Initialize (Environment_Task); Enter_Task (Environment_Task); -- Install the abort-signal handler if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default then act.sa_flags := 0; act.sa_handler := Abort_Handler'Address; Result := sigemptyset (Tmp_Set'Access); pragma Assert (Result = 0); act.sa_mask := Tmp_Set; Result := sigaction (Signal (System.Interrupt_Management.Abort_Task_Interrupt), act'Unchecked_Access, old_act'Unchecked_Access); pragma Assert (Result = 0); end if; end Initialize; begin declare Result : Interfaces.C.int; begin -- Prepare the set of signals that should unblocked in all tasks Result := sigemptyset (Unblocked_Signal_Mask'Access); pragma Assert (Result = 0); for J in Interrupt_Management.Interrupt_ID loop if System.Interrupt_Management.Keep_Unmasked (J) then Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); pragma Assert (Result = 0); end if; end loop; end; end System.Task_Primitives.Operations;