/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * I N I T * * * * C Implementation File * * * * Copyright (C) 1992-2009, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 3, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. * * * * As a special exception under Section 7 of GPL version 3, you are granted * * additional permissions described in the GCC Runtime Library Exception, * * version 3.1, as published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License and * * a copy of the GCC Runtime Library Exception along with this program; * * see the files COPYING3 and COPYING.RUNTIME respectively. If not, see * * . * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ /* This unit contains initialization circuits that are system dependent. A major part of the functionality involves stack overflow checking. The GCC backend generates probe instructions to test for stack overflow. For details on the exact approach used to generate these probes, see the "Using and Porting GCC" manual, in particular the "Stack Checking" section and the subsection "Specifying How Stack Checking is Done". The handlers installed by this file are used to catch the resulting signals that come from these probes failing (i.e. touching protected pages). */ /* This file should be kept synchronized with 2sinit.ads, 2sinit.adb, s-init-ae653-cert.adb and s-init-xi-sparc.adb. All these files implement the required functionality for different targets. */ /* The following include is here to meet the published VxWorks requirement that the __vxworks header appear before any other include. */ #ifdef __vxworks #include "vxWorks.h" #endif #ifdef IN_RTS #include "tconfig.h" #include "tsystem.h" #include /* We don't have libiberty, so us malloc. */ #define xmalloc(S) malloc (S) #else #include "config.h" #include "system.h" #endif #include "adaint.h" #include "raise.h" extern void __gnat_raise_program_error (const char *, int); /* Addresses of exception data blocks for predefined exceptions. Tasking_Error is not used in this unit, and the abort signal is only used on IRIX. */ extern struct Exception_Data constraint_error; extern struct Exception_Data numeric_error; extern struct Exception_Data program_error; extern struct Exception_Data storage_error; /* For the Cert run time we use the regular raise exception routine because Raise_From_Signal_Handler is not available. */ #ifdef CERT #define Raise_From_Signal_Handler \ __gnat_raise_exception extern void Raise_From_Signal_Handler (struct Exception_Data *, const char *); #else #define Raise_From_Signal_Handler \ ada__exceptions__raise_from_signal_handler extern void Raise_From_Signal_Handler (struct Exception_Data *, const char *); #endif /* Global values computed by the binder. */ int __gl_main_priority = -1; int __gl_time_slice_val = -1; char __gl_wc_encoding = 'n'; char __gl_locking_policy = ' '; char __gl_queuing_policy = ' '; char __gl_task_dispatching_policy = ' '; char *__gl_priority_specific_dispatching = 0; int __gl_num_specific_dispatching = 0; char *__gl_interrupt_states = 0; int __gl_num_interrupt_states = 0; int __gl_unreserve_all_interrupts = 0; int __gl_exception_tracebacks = 0; int __gl_zero_cost_exceptions = 0; int __gl_detect_blocking = 0; int __gl_default_stack_size = -1; int __gl_leap_seconds_support = 0; int __gl_canonical_streams = 0; /* Indication of whether synchronous signal handler has already been installed by a previous call to adainit. */ int __gnat_handler_installed = 0; #ifndef IN_RTS int __gnat_inside_elab_final_code = 0; /* ??? This variable is obsolete since 2001-08-29 but is kept to allow bootstrap from old GNAT versions (< 3.15). */ #endif /* HAVE_GNAT_INIT_FLOAT must be set on every targets where a __gnat_init_float is defined. If this is not set then a void implementation will be defined at the end of this unit. */ #undef HAVE_GNAT_INIT_FLOAT /******************************/ /* __gnat_get_interrupt_state */ /******************************/ char __gnat_get_interrupt_state (int); /* This routine is called from the runtime as needed to determine the state of an interrupt, as set by an Interrupt_State pragma appearing anywhere in the current partition. The input argument is the interrupt number, and the result is one of the following: 'n' this interrupt not set by any Interrupt_State pragma 'u' Interrupt_State pragma set state to User 'r' Interrupt_State pragma set state to Runtime 's' Interrupt_State pragma set state to System */ char __gnat_get_interrupt_state (int intrup) { if (intrup >= __gl_num_interrupt_states) return 'n'; else return __gl_interrupt_states [intrup]; } /***********************************/ /* __gnat_get_specific_dispatching */ /***********************************/ char __gnat_get_specific_dispatching (int); /* This routine is called from the runtime as needed to determine the priority specific dispatching policy, as set by a Priority_Specific_Dispatching pragma appearing anywhere in the current partition. The input argument is the priority number, and the result is the upper case first character of the policy name, e.g. 'F' for FIFO_Within_Priorities. A space ' ' is returned if no Priority_Specific_Dispatching pragma is used in the partition. */ char __gnat_get_specific_dispatching (int priority) { if (__gl_num_specific_dispatching == 0) return ' '; else if (priority >= __gl_num_specific_dispatching) return 'F'; else return __gl_priority_specific_dispatching [priority]; } #ifndef IN_RTS /**********************/ /* __gnat_set_globals */ /**********************/ /* This routine is kept for bootstrapping purposes, since the binder generated file now sets the __gl_* variables directly. */ void __gnat_set_globals () { } #endif /***************/ /* AIX Section */ /***************/ #if defined (_AIX) #include #include /* Some versions of AIX don't define SA_NODEFER. */ #ifndef SA_NODEFER #define SA_NODEFER 0 #endif /* SA_NODEFER */ /* Versions of AIX before 4.3 don't have nanosleep but provide nsleep instead. */ #ifndef _AIXVERSION_430 extern int nanosleep (struct timestruc_t *, struct timestruc_t *); int nanosleep (struct timestruc_t *Rqtp, struct timestruc_t *Rmtp) { return nsleep (Rqtp, Rmtp); } #endif /* _AIXVERSION_430 */ static void __gnat_error_handler (int sig, siginfo_t * si, void * uc); static void __gnat_error_handler (int sig, siginfo_t * si, void * uc) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: /* FIXME: we need to detect the case of a *real* SIGSEGV. */ exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; act.sa_sigaction = __gnat_error_handler; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*****************/ /* Tru64 section */ /*****************/ #elif defined(__alpha__) && defined(__osf__) #include #include static void __gnat_error_handler (int, siginfo_t *, struct sigcontext *); extern char *__gnat_get_code_loc (struct sigcontext *); extern void __gnat_set_code_loc (struct sigcontext *, char *); extern size_t __gnat_machine_state_length (void); /* __gnat_adjust_context_for_raise - see comments along with the default version later in this file. */ #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo, void *context) { struct sigcontext * sigcontext = (struct sigcontext *) context; /* The fallback code fetches the faulting insn address from sc_pc, so adjust that when need be. For SIGFPE, the required adjustment depends on the trap shadow situation (see man ieee). */ if (signo == SIGFPE) { /* ??? We never adjust here, considering that sc_pc always designates the instruction following the one which trapped. This is not necessarily true but corresponds to what we have always observed. */ } else sigcontext->sc_pc ++; } static void __gnat_error_handler (int sig, siginfo_t *sip, struct sigcontext *context) { struct Exception_Data *exception; static int recurse = 0; const char *msg; /* Adjusting is required for every fault context, so adjust for this one now, before we possibly trigger a recursive fault below. */ __gnat_adjust_context_for_raise (sig, context); /* If this was an explicit signal from a "kill", just resignal it. */ if (SI_FROMUSER (sip)) { signal (sig, SIG_DFL); kill (getpid(), sig); } /* Otherwise, treat it as something we handle. */ switch (sig) { case SIGSEGV: /* If the problem was permissions, this is a constraint error. Likewise if the failing address isn't maximally aligned or if we've recursed. ??? Using a static variable here isn't task-safe, but it's much too hard to do anything else and we're just determining which exception to raise. */ if (sip->si_code == SEGV_ACCERR || (((long) sip->si_addr) & 3) != 0 || recurse) { exception = &constraint_error; msg = "SIGSEGV"; } else { /* See if the page before the faulting page is accessible. Do that by trying to access it. We'd like to simply try to access 4096 + the faulting address, but it's not guaranteed to be the actual address, just to be on the same page. */ recurse++; ((volatile char *) ((long) sip->si_addr & - getpagesize ()))[getpagesize ()]; msg = "stack overflow (or erroneous memory access)"; exception = &storage_error; } break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } recurse = 0; Raise_From_Signal_Handler (exception, (char *) msg); } void __gnat_install_handler (void) { struct sigaction act; /* Setup signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_handler = (void (*) (int)) __gnat_error_handler; act.sa_flags = SA_RESTART | SA_NODEFER | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /* Routines called by s-mastop-tru64.adb. */ #define SC_GP 29 char * __gnat_get_code_loc (struct sigcontext *context) { return (char *) context->sc_pc; } void __gnat_set_code_loc (struct sigcontext *context, char *pc) { context->sc_pc = (long) pc; } size_t __gnat_machine_state_length (void) { return sizeof (struct sigcontext); } /*****************/ /* HP-UX section */ /*****************/ #elif defined (__hpux__) #include #include static void __gnat_error_handler (int sig, siginfo_t *siginfo, void *ucontext); static void __gnat_error_handler (int sig, siginfo_t *siginfo ATTRIBUTE_UNUSED, void *ucontext) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: /* FIXME: we need to detect the case of a *real* SIGSEGV. */ exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ #if defined (__hppa__) char __gnat_alternate_stack[16 * 1024]; /* 2 * SIGSTKSZ */ #else char __gnat_alternate_stack[128 * 1024]; /* MINSIGSTKSZ */ #endif void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); act.sa_flags |= SA_ONSTACK; if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); __gnat_handler_installed = 1; } /*********************/ /* GNU/Linux Section */ /*********************/ #elif defined (linux) && (defined (i386) || defined (__x86_64__) \ || defined (__ia64__) || defined (__powerpc__)) #include #define __USE_GNU 1 /* required to get REG_EIP/RIP from glibc's ucontext.h */ #include /* GNU/Linux, which uses glibc, does not define NULL in included header files. */ #if !defined (NULL) #define NULL ((void *) 0) #endif #if defined (MaRTE) /* MaRTE OS provides its own version of sigaction, sigfillset, and sigemptyset (overriding these symbol names). We want to make sure that the versions provided by the underlying C library are used here (these versions are renamed by MaRTE to linux_sigaction, fake_linux_sigfillset, and fake_linux_sigemptyset, respectively). The MaRTE library will not always be present (it will not be linked if no tasking constructs are used), so we use the weak symbol mechanism to point always to the symbols defined within the C library. */ #pragma weak linux_sigaction int linux_sigaction (int signum, const struct sigaction *act, struct sigaction *oldact) { return sigaction (signum, act, oldact); } #define sigaction(signum, act, oldact) linux_sigaction (signum, act, oldact) #pragma weak fake_linux_sigfillset void fake_linux_sigfillset (sigset_t *set) { sigfillset (set); } #define sigfillset(set) fake_linux_sigfillset (set) #pragma weak fake_linux_sigemptyset void fake_linux_sigemptyset (sigset_t *set) { sigemptyset (set); } #define sigemptyset(set) fake_linux_sigemptyset (set) #endif static void __gnat_error_handler (int, siginfo_t *siginfo, void *ucontext); #if defined (i386) || defined (__x86_64__) || defined (__ia64__) #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { mcontext_t *mcontext = &((ucontext_t *) ucontext)->uc_mcontext; /* On the i386 and x86-64 architectures, stack checking is performed by means of probes with moving stack pointer, that is to say the probed address is always the value of the stack pointer. Upon hitting the guard page, the stack pointer therefore points to an inaccessible address and an alternate signal stack is needed to run the handler. But there is an additional twist: on these architectures, the EH return code writes the address of the handler at the target CFA's value on the stack before doing the jump. As a consequence, if there is an active handler in the frame whose stack has overflowed, the stack pointer must nevertheless point to an accessible address by the time the EH return is executed. We therefore adjust the saved value of the stack pointer by the size of one page, in order to make sure that it points to an accessible address in case it's used as the target CFA. The stack checking code guarantees that this page is unused by the time this happens. */ #if defined (i386) unsigned long pattern = *(unsigned long *)mcontext->gregs[REG_EIP]; /* The pattern is "orl $0x0,(%esp)" for a probe in 32-bit mode. */ if (signo == SIGSEGV && pattern == 0x00240c83) mcontext->gregs[REG_ESP] += 4096; #elif defined (__x86_64__) unsigned long pattern = *(unsigned long *)mcontext->gregs[REG_RIP]; /* The pattern is "orq $0x0,(%rsp)" for a probe in 64-bit mode. */ if (signo == SIGSEGV && (pattern & 0xffffffffff) == 0x00240c8348) mcontext->gregs[REG_RSP] += 4096; #elif defined (__ia64__) /* ??? The IA-64 unwinder doesn't compensate for signals. */ mcontext->sc_ip++; #endif } #endif static void __gnat_error_handler (int sig, siginfo_t *siginfo ATTRIBUTE_UNUSED, void *ucontext) { struct Exception_Data *exception; const char *msg; static int recurse = 0; switch (sig) { case SIGSEGV: /* If the problem was permissions, this is a constraint error. Likewise if the failing address isn't maximally aligned or if we've recursed. ??? Using a static variable here isn't task-safe, but it's much too hard to do anything else and we're just determining which exception to raise. */ if (recurse) { exception = &constraint_error; msg = "SIGSEGV"; } else { /* Here we would like a discrimination test to see whether the page before the faulting address is accessible. Unfortunately Linux seems to have no way of giving us the faulting address. In versions of a-init.c before 1.95, we had a test of the page before the stack pointer using: recurse++; ((volatile char *) ((long) info->esp_at_signal & - getpagesize ()))[getpagesize ()]; but that's wrong, since it tests the stack pointer location, and the current stack probe code does not move the stack pointer until all probes succeed. For now we simply do not attempt any discrimination at all. Note that this is quite acceptable, since a "real" SIGSEGV can only occur as the result of an erroneous program. */ msg = "stack overflow (or erroneous memory access)"; exception = &storage_error; } break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } recurse = 0; /* We adjust the interrupted context here (and not in the fallback unwinding routine) because recent versions of the Native POSIX Thread Library (NPTL) are compiled with unwind information, so the fallback routine is never executed for signal frames. */ __gnat_adjust_context_for_raise (sig, ucontext); Raise_From_Signal_Handler (exception, msg); } #if defined (i386) || defined (__x86_64__) /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ char __gnat_alternate_stack[16 * 1024]; /* 2 * SIGSTKSZ */ #endif #ifdef __XENO__ #include #include RT_TASK main_task; #endif void __gnat_install_handler (void) { struct sigaction act; #ifdef __XENO__ int prio; if (__gl_main_priority == -1) prio = 49; else prio = __gl_main_priority; /* Avoid memory swapping for this program */ mlockall (MCL_CURRENT|MCL_FUTURE); /* Turn the current Linux task into a native Xenomai task */ rt_task_shadow(&main_task, "environment_task", prio, T_FPU); #endif /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ #if defined (i386) || defined (__x86_64__) stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); #endif act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); #if defined (i386) || defined (__x86_64__) act.sa_flags |= SA_ONSTACK; #endif if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); __gnat_handler_installed = 1; } /****************/ /* IRIX Section */ /****************/ #elif defined (sgi) #include #include #ifndef NULL #define NULL 0 #endif #define SIGADAABORT 48 #define SIGNAL_STACK_SIZE 4096 #define SIGNAL_STACK_ALIGNMENT 64 #define Check_Abort_Status \ system__soft_links__check_abort_status extern int (*Check_Abort_Status) (void); extern struct Exception_Data _abort_signal; static void __gnat_error_handler (int, int, sigcontext_t *); /* We are not setting the SA_SIGINFO bit in the sigaction flags when connecting that handler, with the effects described in the sigaction man page: SA_SIGINFO [...] If cleared and the signal is caught, the first argument is also the signal number but the second argument is the signal code identifying the cause of the signal. The third argument points to a sigcontext_t structure containing the receiving process's context when the signal was delivered. */ static void __gnat_error_handler (int sig, int code, sigcontext_t *sc ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: if (code == EFAULT) { exception = &program_error; msg = "SIGSEGV: (Invalid virtual address)"; } else if (code == ENXIO) { exception = &program_error; msg = "SIGSEGV: (Read beyond mapped object)"; } else if (code == ENOSPC) { exception = &program_error; /* ??? storage_error ??? */ msg = "SIGSEGV: (Autogrow for file failed)"; } else if (code == EACCES || code == EEXIST) { /* ??? We handle stack overflows here, some of which do trigger SIGSEGV + EEXIST on Irix 6.5 although EEXIST is not part of the documented valid codes for SEGV in the signal(5) man page. */ /* ??? Re-add smarts to further verify that we launched the stack into a guard page, not an attempt to write to .text or something. */ exception = &storage_error; msg = "SIGSEGV: (stack overflow or erroneous memory access)"; } else { /* Just in case the OS guys did it to us again. Sometimes they fail to document all of the valid codes that are passed to signal handlers, just in case someone depends on knowing all the codes. */ exception = &program_error; msg = "SIGSEGV: (Undocumented reason)"; } break; case SIGBUS: /* Map all bus errors to Program_Error. */ exception = &program_error; msg = "SIGBUS"; break; case SIGFPE: /* Map all fpe errors to Constraint_Error. */ exception = &constraint_error; msg = "SIGFPE"; break; case SIGADAABORT: if ((*Check_Abort_Status) ()) { exception = &_abort_signal; msg = ""; } else return; break; default: /* Everything else is a Program_Error. */ exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Setup signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER + SA_RESTART; sigfillset (&act.sa_mask); sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); if (__gnat_get_interrupt_state (SIGADAABORT) != 's') sigaction (SIGADAABORT, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* LynxOS Section */ /*******************/ #elif defined (__Lynx__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler(exception, msg); } void __gnat_install_handler(void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = 0x0; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* Solaris Section */ /*******************/ #elif defined (sun) && defined (__SVR4) && !defined (__vxworks) #include #include #include #include /* The code below is common to SPARC and x86. Beware of the delay slot differences for signal context adjustments. */ #if defined (__sparc) #define RETURN_ADDR_OFFSET 8 #else #define RETURN_ADDR_OFFSET 0 #endif /* Likewise regarding how the "instruction pointer" register slot can be identified in signal machine contexts. We have either "REG_PC" or "PC" at hand, depending on the target CPU and Solaris version. */ #if !defined (REG_PC) #define REG_PC PC #endif static void __gnat_error_handler (int, siginfo_t *, ucontext_t *); static void __gnat_error_handler (int sig, siginfo_t *sip, ucontext_t *uctx) { struct Exception_Data *exception; static int recurse = 0; const char *msg; /* If this was an explicit signal from a "kill", just resignal it. */ if (SI_FROMUSER (sip)) { signal (sig, SIG_DFL); kill (getpid(), sig); } /* Otherwise, treat it as something we handle. */ switch (sig) { case SIGSEGV: /* If the problem was permissions, this is a constraint error. Likewise if the failing address isn't maximally aligned or if we've recursed. ??? Using a static variable here isn't task-safe, but it's much too hard to do anything else and we're just determining which exception to raise. */ if (sip->si_code == SEGV_ACCERR || (((long) sip->si_addr) & 3) != 0 || recurse) { exception = &constraint_error; msg = "SIGSEGV"; } else { /* See if the page before the faulting page is accessible. Do that by trying to access it. We'd like to simply try to access 4096 + the faulting address, but it's not guaranteed to be the actual address, just to be on the same page. */ recurse++; ((volatile char *) ((long) sip->si_addr & - getpagesize ()))[getpagesize ()]; exception = &storage_error; msg = "stack overflow (or erroneous memory access)"; } break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } recurse = 0; Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /***************/ /* VMS Section */ /***************/ #elif defined (VMS) /* Routine called from binder to override default feature values. */ void __gnat_set_features (); int __gnat_features_set = 0; long __gnat_error_handler (int *, void *); #ifdef __IA64 #define lib_get_curr_invo_context LIB$I64_GET_CURR_INVO_CONTEXT #define lib_get_prev_invo_context LIB$I64_GET_PREV_INVO_CONTEXT #define lib_get_invo_handle LIB$I64_GET_INVO_HANDLE #else #define lib_get_curr_invo_context LIB$GET_CURR_INVO_CONTEXT #define lib_get_prev_invo_context LIB$GET_PREV_INVO_CONTEXT #define lib_get_invo_handle LIB$GET_INVO_HANDLE #endif #if defined (IN_RTS) && !defined (__IA64) /* The prehandler actually gets control first on a condition. It swaps the stack pointer and calls the handler (__gnat_error_handler). */ extern long __gnat_error_prehandler (void); extern char *__gnat_error_prehandler_stack; /* Alternate signal stack */ #endif /* Define macro symbols for the VMS conditions that become Ada exceptions. Most of these are also defined in the header file ssdef.h which has not yet been converted to be recognized by GNU C. */ /* Defining these as macros, as opposed to external addresses, allows them to be used in a case statement below. */ #define SS$_ACCVIO 12 #define SS$_HPARITH 1284 #define SS$_STKOVF 1364 #define SS$_RESIGNAL 2328 /* These codes are in standard message libraries. */ extern int CMA$_EXIT_THREAD; extern int SS$_DEBUG; extern int SS$_INTDIV; extern int LIB$_KEYNOTFOU; extern int LIB$_ACTIMAGE; extern int MTH$_FLOOVEMAT; /* Some ACVC_21 CXA tests */ /* These codes are non standard, which is to say the author is not sure if they are defined in the standard message libraries so keep them as macros for now. */ #define RDB$_STREAM_EOF 20480426 #define FDL$_UNPRIKW 11829410 struct cond_except { const int *cond; const struct Exception_Data *except; }; struct descriptor_s {unsigned short len, mbz; __char_ptr32 adr; }; /* Conditions that don't have an Ada exception counterpart must raise Non_Ada_Error. Since this is defined in s-auxdec, it should only be referenced by user programs, not the compiler or tools. Hence the #ifdef IN_RTS. */ #ifdef IN_RTS #define Status_Error ada__io_exceptions__status_error extern struct Exception_Data Status_Error; #define Mode_Error ada__io_exceptions__mode_error extern struct Exception_Data Mode_Error; #define Name_Error ada__io_exceptions__name_error extern struct Exception_Data Name_Error; #define Use_Error ada__io_exceptions__use_error extern struct Exception_Data Use_Error; #define Device_Error ada__io_exceptions__device_error extern struct Exception_Data Device_Error; #define End_Error ada__io_exceptions__end_error extern struct Exception_Data End_Error; #define Data_Error ada__io_exceptions__data_error extern struct Exception_Data Data_Error; #define Layout_Error ada__io_exceptions__layout_error extern struct Exception_Data Layout_Error; #define Non_Ada_Error system__aux_dec__non_ada_error extern struct Exception_Data Non_Ada_Error; #define Coded_Exception system__vms_exception_table__coded_exception extern struct Exception_Data *Coded_Exception (Exception_Code); #define Base_Code_In system__vms_exception_table__base_code_in extern Exception_Code Base_Code_In (Exception_Code); /* DEC Ada exceptions are not defined in a header file, so they must be declared as external addresses. */ extern int ADA$_PROGRAM_ERROR; extern int ADA$_LOCK_ERROR; extern int ADA$_EXISTENCE_ERROR; extern int ADA$_KEY_ERROR; extern int ADA$_KEYSIZERR; extern int ADA$_STAOVF; extern int ADA$_CONSTRAINT_ERRO; extern int ADA$_IOSYSFAILED; extern int ADA$_LAYOUT_ERROR; extern int ADA$_STORAGE_ERROR; extern int ADA$_DATA_ERROR; extern int ADA$_DEVICE_ERROR; extern int ADA$_END_ERROR; extern int ADA$_MODE_ERROR; extern int ADA$_NAME_ERROR; extern int ADA$_STATUS_ERROR; extern int ADA$_NOT_OPEN; extern int ADA$_ALREADY_OPEN; extern int ADA$_USE_ERROR; extern int ADA$_UNSUPPORTED; extern int ADA$_FAC_MODE_MISMAT; extern int ADA$_ORG_MISMATCH; extern int ADA$_RFM_MISMATCH; extern int ADA$_RAT_MISMATCH; extern int ADA$_MRS_MISMATCH; extern int ADA$_MRN_MISMATCH; extern int ADA$_KEY_MISMATCH; extern int ADA$_MAXLINEXC; extern int ADA$_LINEXCMRS; /* DEC Ada specific conditions. */ static const struct cond_except dec_ada_cond_except_table [] = { {&ADA$_PROGRAM_ERROR, &program_error}, {&ADA$_USE_ERROR, &Use_Error}, {&ADA$_KEYSIZERR, &program_error}, {&ADA$_STAOVF, &storage_error}, {&ADA$_CONSTRAINT_ERRO, &constraint_error}, {&ADA$_IOSYSFAILED, &Device_Error}, {&ADA$_LAYOUT_ERROR, &Layout_Error}, {&ADA$_STORAGE_ERROR, &storage_error}, {&ADA$_DATA_ERROR, &Data_Error}, {&ADA$_DEVICE_ERROR, &Device_Error}, {&ADA$_END_ERROR, &End_Error}, {&ADA$_MODE_ERROR, &Mode_Error}, {&ADA$_NAME_ERROR, &Name_Error}, {&ADA$_STATUS_ERROR, &Status_Error}, {&ADA$_NOT_OPEN, &Use_Error}, {&ADA$_ALREADY_OPEN, &Use_Error}, {&ADA$_USE_ERROR, &Use_Error}, {&ADA$_UNSUPPORTED, &Use_Error}, {&ADA$_FAC_MODE_MISMAT, &Use_Error}, {&ADA$_ORG_MISMATCH, &Use_Error}, {&ADA$_RFM_MISMATCH, &Use_Error}, {&ADA$_RAT_MISMATCH, &Use_Error}, {&ADA$_MRS_MISMATCH, &Use_Error}, {&ADA$_MRN_MISMATCH, &Use_Error}, {&ADA$_KEY_MISMATCH, &Use_Error}, {&ADA$_MAXLINEXC, &constraint_error}, {&ADA$_LINEXCMRS, &constraint_error}, {0, 0} }; #if 0 /* Already handled by a pragma Import_Exception in Aux_IO_Exceptions */ {&ADA$_LOCK_ERROR, &Lock_Error}, {&ADA$_EXISTENCE_ERROR, &Existence_Error}, {&ADA$_KEY_ERROR, &Key_Error}, #endif #endif /* IN_RTS */ /* Non-DEC Ada specific conditions. We could probably also put SS$_HPARITH here and possibly SS$_ACCVIO, SS$_STKOVF. */ static const struct cond_except cond_except_table [] = { {&MTH$_FLOOVEMAT, &constraint_error}, {&SS$_INTDIV, &constraint_error}, {0, 0} }; /* To deal with VMS conditions and their mapping to Ada exceptions, the __gnat_error_handler routine below is installed as an exception vector having precedence over DEC frame handlers. Some conditions still need to be handled by such handlers, however, in which case __gnat_error_handler needs to return SS$_RESIGNAL. Consider for instance the use of a third party library compiled with DECAda and performing its own exception handling internally. To allow some user-level flexibility, which conditions should be resignaled is controlled by a predicate function, provided with the condition value and returning a boolean indication stating whether this condition should be resignaled or not. That predicate function is called indirectly, via a function pointer, by __gnat_error_handler, and changing that pointer is allowed to the the user code by way of the __gnat_set_resignal_predicate interface. The user level function may then implement what it likes, including for instance the maintenance of a dynamic data structure if the set of to be resignalled conditions has to change over the program's lifetime. ??? This is not a perfect solution to deal with the possible interactions between the GNAT and the DECAda exception handling models and better (more general) schemes are studied. This is so just provided as a convenient workaround in the meantime, and should be use with caution since the implementation has been kept very simple. */ typedef int resignal_predicate (int code); const int *cond_resignal_table [] = { &CMA$_EXIT_THREAD, &SS$_DEBUG, &LIB$_KEYNOTFOU, &LIB$_ACTIMAGE, (int *) RDB$_STREAM_EOF, (int *) FDL$_UNPRIKW, 0 }; const int facility_resignal_table [] = { 0x1380000, /* RDB */ 0x2220000, /* SQL */ 0 }; /* Default GNAT predicate for resignaling conditions. */ static int __gnat_default_resignal_p (int code) { int i, iexcept; for (i = 0; facility_resignal_table [i]; i++) if ((code & 0xfff0000) == facility_resignal_table [i]) return 1; for (i = 0, iexcept = 0; cond_resignal_table [i] && !(iexcept = LIB$MATCH_COND (&code, &cond_resignal_table [i])); i++); return iexcept; } /* Static pointer to predicate that the __gnat_error_handler exception vector invokes to determine if it should resignal a condition. */ static resignal_predicate * __gnat_resignal_p = __gnat_default_resignal_p; /* User interface to change the predicate pointer to PREDICATE. Reset to the default if PREDICATE is null. */ void __gnat_set_resignal_predicate (resignal_predicate * predicate) { if (predicate == 0) __gnat_resignal_p = __gnat_default_resignal_p; else __gnat_resignal_p = predicate; } /* Should match System.Parameters.Default_Exception_Msg_Max_Length. */ #define Default_Exception_Msg_Max_Length 512 /* Action routine for SYS$PUTMSG. There may be multiple conditions, each with text to be appended to MESSAGE and separated by line termination. */ static int copy_msg (msgdesc, message) struct descriptor_s *msgdesc; char *message; { int len = strlen (message); int copy_len; /* Check for buffer overflow and skip. */ if (len > 0 && len <= Default_Exception_Msg_Max_Length - 3) { strcat (message, "\r\n"); len += 2; } /* Check for buffer overflow and truncate if necessary. */ copy_len = (len + msgdesc->len <= Default_Exception_Msg_Max_Length - 1 ? msgdesc->len : Default_Exception_Msg_Max_Length - 1 - len); strncpy (&message [len], msgdesc->adr, copy_len); message [len + copy_len] = 0; return 0; } long __gnat_handle_vms_condition (int *sigargs, void *mechargs) { struct Exception_Data *exception = 0; Exception_Code base_code; struct descriptor_s gnat_facility = {4,0,"GNAT"}; char message [Default_Exception_Msg_Max_Length]; const char *msg = ""; /* Check for conditions to resignal which aren't effected by pragma Import_Exception. */ if (__gnat_resignal_p (sigargs [1])) return SS$_RESIGNAL; #ifdef IN_RTS /* See if it's an imported exception. Beware that registered exceptions are bound to their base code, with the severity bits masked off. */ base_code = Base_Code_In ((Exception_Code) sigargs [1]); exception = Coded_Exception (base_code); if (exception) { message [0] = 0; /* Subtract PC & PSL fields which messes with PUTMSG. */ sigargs [0] -= 2; SYS$PUTMSG (sigargs, copy_msg, &gnat_facility, message); sigargs [0] += 2; msg = message; exception->Name_Length = 19; /* ??? The full name really should be get sys$getmsg returns. */ exception->Full_Name = "IMPORTED_EXCEPTION"; exception->Import_Code = base_code; #ifdef __IA64 /* Do not adjust the program counter as already points to the next instruction (just after the call to LIB$STOP). */ Raise_From_Signal_Handler (exception, msg); #endif } #endif if (exception == 0) switch (sigargs[1]) { case SS$_ACCVIO: if (sigargs[3] == 0) { exception = &constraint_error; msg = "access zero"; } else { exception = &storage_error; msg = "stack overflow (or erroneous memory access)"; } __gnat_adjust_context_for_raise (0, (void *)mechargs); break; case SS$_STKOVF: exception = &storage_error; msg = "stack overflow"; __gnat_adjust_context_for_raise (0, (void *)mechargs); break; case SS$_HPARITH: #ifndef IN_RTS return SS$_RESIGNAL; /* toplev.c handles for compiler */ #else exception = &constraint_error; msg = "arithmetic error"; #ifndef __alpha__ /* No need to adjust pc on Alpha: the pc is already on the instruction after the trapping one. */ __gnat_adjust_context_for_raise (0, (void *)mechargs); #endif #endif break; default: #ifdef IN_RTS { int i; /* Scan the DEC Ada exception condition table for a match and fetch the associated GNAT exception pointer. */ for (i = 0; dec_ada_cond_except_table [i].cond && !LIB$MATCH_COND (&sigargs [1], &dec_ada_cond_except_table [i].cond); i++); exception = (struct Exception_Data *) dec_ada_cond_except_table [i].except; if (!exception) { /* Scan the VMS standard condition table for a match and fetch the associated GNAT exception pointer. */ for (i = 0; cond_except_table [i].cond && !LIB$MATCH_COND (&sigargs [1], &cond_except_table [i].cond); i++); exception = (struct Exception_Data *) cond_except_table [i].except; if (!exception) /* User programs expect Non_Ada_Error to be raised, reference DEC Ada test CXCONDHAN. */ exception = &Non_Ada_Error; } } #else exception = &program_error; #endif message [0] = 0; /* Subtract PC & PSL fields which messes with PUTMSG. */ sigargs [0] -= 2; SYS$PUTMSG (sigargs, copy_msg, &gnat_facility, message); sigargs [0] += 2; msg = message; break; } Raise_From_Signal_Handler (exception, msg); } long __gnat_error_handler (int *sigargs, void *mechargs) { return __gnat_handle_vms_condition (sigargs, mechargs); } void __gnat_install_handler (void) { long prvhnd ATTRIBUTE_UNUSED; #if !defined (IN_RTS) SYS$SETEXV (1, __gnat_error_handler, 3, &prvhnd); #endif /* On alpha-vms, we avoid the global vector annoyance thanks to frame based handlers to turn conditions into exceptions since GCC 3.4. The global vector is still required for earlier GCC versions. We're resorting to the __gnat_error_prehandler assembly function in this case. */ #if defined (IN_RTS) && defined (__alpha__) if ((__GNUC__ * 10 + __GNUC_MINOR__) < 34) { char * c = (char *) xmalloc (2049); __gnat_error_prehandler_stack = &c[2048]; SYS$SETEXV (1, __gnat_error_prehandler, 3, &prvhnd); } #endif __gnat_handler_installed = 1; } /* __gnat_adjust_context_for_raise for Alpha - see comments along with the default version later in this file. */ #if defined (IN_RTS) && defined (__alpha__) #include #include #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { /* Add one to the address of the instruction signaling the condition, located in the sigargs array. */ CHF$MECH_ARRAY * mechargs = (CHF$MECH_ARRAY *) ucontext; CHF$SIGNAL_ARRAY * sigargs = (CHF$SIGNAL_ARRAY *) mechargs->chf$q_mch_sig_addr; int vcount = sigargs->chf$is_sig_args; int * pc_slot = & (&sigargs->chf$l_sig_name)[vcount-2]; (*pc_slot) ++; } #endif /* __gnat_adjust_context_for_raise for ia64. */ #if defined (IN_RTS) && defined (__IA64) #include #include #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE typedef unsigned long long u64; void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { /* Add one to the address of the instruction signaling the condition, located in the 64bits sigargs array. */ CHF$MECH_ARRAY * mechargs = (CHF$MECH_ARRAY *) ucontext; CHF64$SIGNAL_ARRAY *chfsig64 = (CHF64$SIGNAL_ARRAY *) mechargs->chf$ph_mch_sig64_addr; u64 * post_sigarray = (u64 *)chfsig64 + 1 + chfsig64->chf64$l_sig_args; u64 * ih_pc_loc = post_sigarray - 2; (*ih_pc_loc) ++; } #endif /* Feature logical name and global variable address pair */ struct feature {char *name; int* gl_addr;}; /* Default values for GNAT features set by environment. */ int __gl_no_malloc_64 = 0; /* Array feature logical names and global variable addresses */ static struct feature features[] = { {"GNAT$NO_MALLOC_64", &__gl_no_malloc_64}, {0, 0} }; void __gnat_set_features () { struct descriptor_s name_desc, result_desc; int i, status; unsigned short rlen; #define MAXEQUIV 10 char buff [MAXEQUIV]; /* Loop through features array and test name for enable/disable */ for (i=0; features [i].name; i++) { name_desc.len = strlen (features [i].name); name_desc.mbz = 0; name_desc.adr = features [i].name; result_desc.len = MAXEQUIV - 1; result_desc.mbz = 0; result_desc.adr = buff; status = LIB$GET_LOGICAL (&name_desc, &result_desc, &rlen); if (((status & 1) == 1) && (rlen < MAXEQUIV)) buff [rlen] = 0; else strcpy (buff, ""); if (strcmp (buff, "ENABLE") == 0) *features [i].gl_addr = 1; else if (strcmp (buff, "DISABLE") == 0) *features [i].gl_addr = 0; } __gnat_features_set = 1; } /*******************/ /* FreeBSD Section */ /*******************/ #elif defined (__FreeBSD__) #include #include #include static void __gnat_error_handler (int, siginfo_t *, ucontext_t *); static void __gnat_error_handler (int sig, siginfo_t *info __attribute__ ((unused)), ucontext_t *ucontext) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler () { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_sigaction = (void (*)(int, struct __siginfo *, void*)) __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; (void) sigemptyset (&act.sa_mask); (void) sigaction (SIGILL, &act, NULL); (void) sigaction (SIGFPE, &act, NULL); (void) sigaction (SIGSEGV, &act, NULL); (void) sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* VxWorks Section */ /*******************/ #elif defined(__vxworks) #include #include #ifndef __RTP__ #include #include #endif #ifdef VTHREADS #include "private/vThreadsP.h" #endif void __gnat_error_handler (int, void *, struct sigcontext *); #ifndef __RTP__ /* Directly vectored Interrupt routines are not supported when using RTPs. */ extern int __gnat_inum_to_ivec (int); /* This is needed by the GNAT run time to handle Vxworks interrupts. */ int __gnat_inum_to_ivec (int num) { return INUM_TO_IVEC (num); } #endif #if !defined(__alpha_vxworks) && (_WRS_VXWORKS_MAJOR != 6) && !defined(__RTP__) /* getpid is used by s-parint.adb, but is not defined by VxWorks, except on Alpha VxWorks and VxWorks 6.x (including RTPs). */ extern long getpid (void); long getpid (void) { return taskIdSelf (); } #endif /* VxWorks expects the field excCnt to be zeroed when a signal is handled. The VxWorks version of longjmp does this; GCC's builtin_longjmp doesn't. */ void __gnat_clear_exception_count (void) { #ifdef VTHREADS WIND_TCB *currentTask = (WIND_TCB *) taskIdSelf(); currentTask->vThreads.excCnt = 0; #endif } /* Handle different SIGnal to exception mappings in different VxWorks versions. */ static void __gnat_map_signal (int sig) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; #ifdef VTHREADS case SIGILL: exception = &constraint_error; msg = "Floating point exception or SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "SIGSEGV: possible stack overflow"; break; case SIGBUS: exception = &storage_error; msg = "SIGBUS: possible stack overflow"; break; #else #ifdef __RTP__ /* In RTP mode a SIGSEGV is most likely due to a stack overflow, since stack checking uses the probing mechanism. */ case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "SIGSEGV: possible stack overflow"; break; #else /* In kernel mode a SIGILL is most likely due to a stack overflow, since stack checking uses the stack limit mechanism. */ case SIGILL: exception = &storage_error; msg = "SIGILL: possible stack overflow"; break; case SIGSEGV: exception = &program_error; msg = "SIGSEGV"; break; #endif case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; #endif default: exception = &program_error; msg = "unhandled signal"; } __gnat_clear_exception_count (); Raise_From_Signal_Handler (exception, msg); } /* Tasking and Non-tasking signal handler. Map SIGnal to Ada exception propagation after the required low level adjustments. */ void __gnat_error_handler (int sig, void * si ATTRIBUTE_UNUSED, struct sigcontext * sc) { sigset_t mask; /* VxWorks will always mask out the signal during the signal handler and will reenable it on a longjmp. GNAT does not generate a longjmp to return from a signal handler so the signal will still be masked unless we unmask it. */ sigprocmask (SIG_SETMASK, NULL, &mask); sigdelset (&mask, sig); sigprocmask (SIG_SETMASK, &mask, NULL); __gnat_map_signal (sig); } void __gnat_install_handler (void) { struct sigaction act; /* Setup signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_handler = __gnat_error_handler; act.sa_flags = SA_SIGINFO | SA_ONSTACK; sigemptyset (&act.sa_mask); /* For VxWorks, install all signal handlers, since pragma Interrupt_State applies to vectored hardware interrupts, not signals. */ sigaction (SIGFPE, &act, NULL); sigaction (SIGILL, &act, NULL); sigaction (SIGSEGV, &act, NULL); sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } #define HAVE_GNAT_INIT_FLOAT void __gnat_init_float (void) { /* Disable overflow/underflow exceptions on the PPC processor, needed to get correct Ada semantics. Note that for AE653 vThreads, the HW overflow settings are an OS configuration issue. The instructions below have no effect. */ #if defined (_ARCH_PPC) && !defined (_SOFT_FLOAT) && !defined (VTHREADS) asm ("mtfsb0 25"); asm ("mtfsb0 26"); #endif #if (defined (__i386__) || defined (i386)) && !defined (VTHREADS) /* This is used to properly initialize the FPU on an x86 for each process thread. */ asm ("finit"); #endif /* Similarly for SPARC64. Achieved by masking bits in the Trap Enable Mask field of the Floating-point Status Register (see the SPARC Architecture Manual Version 9, p 48). */ #if defined (sparc64) #define FSR_TEM_NVM (1 << 27) /* Invalid operand */ #define FSR_TEM_OFM (1 << 26) /* Overflow */ #define FSR_TEM_UFM (1 << 25) /* Underflow */ #define FSR_TEM_DZM (1 << 24) /* Division by Zero */ #define FSR_TEM_NXM (1 << 23) /* Inexact result */ { unsigned int fsr; __asm__("st %%fsr, %0" : "=m" (fsr)); fsr &= ~(FSR_TEM_OFM | FSR_TEM_UFM); __asm__("ld %0, %%fsr" : : "m" (fsr)); } #endif } /* This subprogram is called by System.Task_Primitives.Operations.Enter_Task (if not null) when a new task is created. It is initialized by System.Stack_Checking.Operations.Initialize_Stack_Limit. The use of a hook avoids to drag stack checking subprograms if stack checking is not used. */ void (*__gnat_set_stack_limit_hook)(void) = (void (*)(void))0; /******************/ /* NetBSD Section */ /******************/ #elif defined(__NetBSD__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler(exception, msg); } void __gnat_install_handler(void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* OpenBSD Section */ /*******************/ #elif defined(__OpenBSD__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler(exception, msg); } void __gnat_install_handler(void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System" */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } #else /* For all other versions of GNAT, the handler does nothing. */ /*******************/ /* Default Section */ /*******************/ void __gnat_install_handler (void) { __gnat_handler_installed = 1; } #endif /*********************/ /* __gnat_init_float */ /*********************/ /* This routine is called as each process thread is created, for possible initialization of the FP processor. This version is used under INTERIX, WIN32 and could be used under OS/2. */ #if defined (_WIN32) || defined (__INTERIX) || defined (__EMX__) \ || defined (__Lynx__) || defined(__NetBSD__) || defined(__FreeBSD__) \ || defined (__OpenBSD__) #define HAVE_GNAT_INIT_FLOAT void __gnat_init_float (void) { #if defined (__i386__) || defined (i386) /* This is used to properly initialize the FPU on an x86 for each process thread. */ asm ("finit"); #endif /* Defined __i386__ */ } #endif #ifndef HAVE_GNAT_INIT_FLOAT /* All targets without a specific __gnat_init_float will use an empty one. */ void __gnat_init_float (void) { } #endif /***********************************/ /* __gnat_adjust_context_for_raise */ /***********************************/ #ifndef HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE /* All targets without a specific version will use an empty one. */ /* Given UCONTEXT a pointer to a context structure received by a signal handler for SIGNO, perform the necessary adjustments to let the handler raise an exception. Calls to this routine are not conditioned by the propagation scheme in use. */ void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext ATTRIBUTE_UNUSED) { /* We used to compensate here for the raised from call vs raised from signal exception discrepancy with the GCC ZCX scheme, but this is now dealt with generically (except for the Alpha and IA-64), see GCC PR other/26208. *** Call vs signal exception discrepancy with GCC ZCX scheme *** The GCC unwinder expects to be dealing with call return addresses, since this is the "nominal" case of what we retrieve while unwinding a regular call chain. To evaluate if a handler applies at some point identified by a return address, the propagation engine needs to determine what region the corresponding call instruction pertains to. Because the return address may not be attached to the same region as the call, the unwinder always subtracts "some" amount from a return address to search the region tables, amount chosen to ensure that the resulting address is inside the call instruction. When we raise an exception from a signal handler, e.g. to transform a SIGSEGV into Storage_Error, things need to appear as if the signal handler had been "called" by the instruction which triggered the signal, so that exception handlers that apply there are considered. What the unwinder will retrieve as the return address from the signal handler is what it will find as the faulting instruction address in the signal context pushed by the kernel. Leaving this address untouched looses, if the triggering instruction happens to be the very first of a region, as the later adjustments performed by the unwinder would yield an address outside that region. We need to compensate for the unwinder adjustments at some point, and this is what this routine is expected to do. signo is passed because on some targets for some signals the PC in context points to the instruction after the faulting one, in which case the unwinder adjustment is still desired. */ } #endif