/****************************************************************************
* *
* GNAT COMPILER COMPONENTS *
* *
* T R A N S *
* *
* C Implementation File *
* *
* Copyright (C) 1992-2019, Free Software Foundation, Inc. *
* *
* GNAT is free software; you can redistribute it and/or modify it under *
* terms of the GNU General Public License as published by the Free Soft- *
* ware Foundation; either version 3, or (at your option) any later ver- *
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. You should have received a copy of the GNU General *
* Public License distributed with GNAT; see file COPYING3. If not see *
* . *
* *
* GNAT was originally developed by the GNAT team at New York University. *
* Extensive contributions were provided by Ada Core Technologies Inc. *
* *
****************************************************************************/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "bitmap.h"
#include "tree.h"
#include "gimple-expr.h"
#include "stringpool.h"
#include "cgraph.h"
#include "predict.h"
#include "diagnostic.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "stmt.h"
#include "varasm.h"
#include "output.h"
#include "debug.h"
#include "libfuncs.h" /* For set_stack_check_libfunc. */
#include "tree-iterator.h"
#include "gimplify.h"
#include "opts.h"
#include "common/common-target.h"
#include "gomp-constants.h"
#include "stringpool.h"
#include "attribs.h"
#include "ada.h"
#include "adadecode.h"
#include "types.h"
#include "atree.h"
#include "namet.h"
#include "nlists.h"
#include "snames.h"
#include "stringt.h"
#include "uintp.h"
#include "urealp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "gadaint.h"
#include "ada-tree.h"
#include "gigi.h"
/* We should avoid allocating more than ALLOCA_THRESHOLD bytes via alloca,
for fear of running out of stack space. If we need more, we use xmalloc
instead. */
#define ALLOCA_THRESHOLD 1000
/* Pointers to front-end tables accessed through macros. */
struct Node *Nodes_Ptr;
struct Flags *Flags_Ptr;
Node_Id *Next_Node_Ptr;
Node_Id *Prev_Node_Ptr;
struct Elist_Header *Elists_Ptr;
struct Elmt_Item *Elmts_Ptr;
struct String_Entry *Strings_Ptr;
Char_Code *String_Chars_Ptr;
struct List_Header *List_Headers_Ptr;
/* Highest number in the front-end node table. */
int max_gnat_nodes;
/* True when gigi is being called on an analyzed but unexpanded
tree, and the only purpose of the call is to properly annotate
types with representation information. */
bool type_annotate_only;
/* List of N_Validate_Unchecked_Conversion nodes in the unit. */
static vec gnat_validate_uc_list;
/* When not optimizing, we cache the 'First, 'Last and 'Length attributes
of unconstrained array IN parameters to avoid emitting a great deal of
redundant instructions to recompute them each time. */
struct GTY (()) parm_attr_d {
int id; /* GTY doesn't like Entity_Id. */
int dim;
tree first;
tree last;
tree length;
};
typedef struct parm_attr_d *parm_attr;
struct GTY(()) language_function {
vec *parm_attr_cache;
bitmap named_ret_val;
vec *other_ret_val;
int gnat_ret;
};
#define f_parm_attr_cache \
DECL_STRUCT_FUNCTION (current_function_decl)->language->parm_attr_cache
#define f_named_ret_val \
DECL_STRUCT_FUNCTION (current_function_decl)->language->named_ret_val
#define f_other_ret_val \
DECL_STRUCT_FUNCTION (current_function_decl)->language->other_ret_val
#define f_gnat_ret \
DECL_STRUCT_FUNCTION (current_function_decl)->language->gnat_ret
/* A structure used to gather together information about a statement group.
We use this to gather related statements, for example the "then" part
of a IF. In the case where it represents a lexical scope, we may also
have a BLOCK node corresponding to it and/or cleanups. */
struct GTY((chain_next ("%h.previous"))) stmt_group {
struct stmt_group *previous; /* Previous code group. */
tree stmt_list; /* List of statements for this code group. */
tree block; /* BLOCK for this code group, if any. */
tree cleanups; /* Cleanups for this code group, if any. */
};
static GTY(()) struct stmt_group *current_stmt_group;
/* List of unused struct stmt_group nodes. */
static GTY((deletable)) struct stmt_group *stmt_group_free_list;
/* A structure used to record information on elaboration procedures
we've made and need to process.
??? gnat_node should be Node_Id, but gengtype gets confused. */
struct GTY((chain_next ("%h.next"))) elab_info {
struct elab_info *next; /* Pointer to next in chain. */
tree elab_proc; /* Elaboration procedure. */
int gnat_node; /* The N_Compilation_Unit. */
};
static GTY(()) struct elab_info *elab_info_list;
/* Stack of exception pointer variables. Each entry is the VAR_DECL
that stores the address of the raised exception. Nonzero means we
are in an exception handler. Not used in the zero-cost case. */
static GTY(()) vec *gnu_except_ptr_stack;
/* In ZCX case, current exception pointer. Used to re-raise it. */
static GTY(()) tree gnu_incoming_exc_ptr;
/* Stack for storing the current elaboration procedure decl. */
static GTY(()) vec *gnu_elab_proc_stack;
/* Stack of labels to be used as a goto target instead of a return in
some functions. See processing for N_Subprogram_Body. */
static GTY(()) vec *gnu_return_label_stack;
/* Stack of variable for the return value of a function with copy-in/copy-out
parameters. See processing for N_Subprogram_Body. */
static GTY(()) vec *gnu_return_var_stack;
/* Structure used to record information for a range check. */
struct GTY(()) range_check_info_d {
tree low_bound;
tree high_bound;
tree disp;
bool neg_p;
tree type;
tree invariant_cond;
tree inserted_cond;
};
typedef struct range_check_info_d *range_check_info;
/* Structure used to record information for a loop. */
struct GTY(()) loop_info_d {
tree stmt;
tree loop_var;
tree low_bound;
tree high_bound;
tree omp_loop_clauses;
tree omp_construct_clauses;
enum tree_code omp_code;
vec *checks;
};
typedef struct loop_info_d *loop_info;
/* Stack of loop_info structures associated with LOOP_STMT nodes. */
static GTY(()) vec *gnu_loop_stack;
/* The stacks for N_{Push,Pop}_*_Label. */
static vec gnu_constraint_error_label_stack;
static vec gnu_storage_error_label_stack;
static vec gnu_program_error_label_stack;
/* Map GNAT tree codes to GCC tree codes for simple expressions. */
static enum tree_code gnu_codes[Number_Node_Kinds];
static void init_code_table (void);
static tree get_elaboration_procedure (void);
static void Compilation_Unit_to_gnu (Node_Id);
static bool empty_stmt_list_p (tree);
static void record_code_position (Node_Id);
static void insert_code_for (Node_Id);
static void add_cleanup (tree, Node_Id);
static void add_stmt_list (List_Id);
static tree build_stmt_group (List_Id, bool);
static inline bool stmt_group_may_fallthru (void);
static enum gimplify_status gnat_gimplify_stmt (tree *);
static void elaborate_all_entities (Node_Id);
static void process_freeze_entity (Node_Id);
static void process_decls (List_Id, List_Id, Node_Id, bool, bool);
static tree emit_range_check (tree, Node_Id, Node_Id);
static tree emit_check (tree, tree, int, Node_Id);
static tree build_unary_op_trapv (enum tree_code, tree, tree, Node_Id);
static tree build_binary_op_trapv (enum tree_code, tree, tree, tree, Node_Id);
static tree convert_with_check (Entity_Id, tree, bool, bool, bool, Node_Id);
static bool addressable_p (tree, tree);
static tree assoc_to_constructor (Entity_Id, Node_Id, tree);
static tree pos_to_constructor (Node_Id, tree, Entity_Id);
static void validate_unchecked_conversion (Node_Id);
static Node_Id adjust_for_implicit_deref (Node_Id);
static tree maybe_implicit_deref (tree);
static void set_expr_location_from_node (tree, Node_Id, bool = false);
static void set_gnu_expr_location_from_node (tree, Node_Id);
static bool set_end_locus_from_node (tree, Node_Id);
static int lvalue_required_p (Node_Id, tree, bool, bool);
static tree build_raise_check (int, enum exception_info_kind);
static tree create_init_temporary (const char *, tree, tree *, Node_Id);
static bool maybe_make_gnu_thunk (Entity_Id gnat_thunk, tree gnu_thunk);
/* Hooks for debug info back-ends, only supported and used in a restricted set
of configurations. */
static const char *extract_encoding (const char *) ATTRIBUTE_UNUSED;
static const char *decode_name (const char *) ATTRIBUTE_UNUSED;
/* This makes gigi's file_info_ptr visible in this translation unit,
so that Sloc_to_locus can look it up when deciding whether to map
decls to instances. */
static struct File_Info_Type *file_map;
/* This is the main program of the back-end. It sets up all the table
structures and then generates code. */
void
gigi (Node_Id gnat_root,
int max_gnat_node,
int number_name ATTRIBUTE_UNUSED,
struct Node *nodes_ptr,
struct Flags *flags_ptr,
Node_Id *next_node_ptr,
Node_Id *prev_node_ptr,
struct Elist_Header *elists_ptr,
struct Elmt_Item *elmts_ptr,
struct String_Entry *strings_ptr,
Char_Code *string_chars_ptr,
struct List_Header *list_headers_ptr,
Nat number_file,
struct File_Info_Type *file_info_ptr,
Entity_Id standard_boolean,
Entity_Id standard_integer,
Entity_Id standard_character,
Entity_Id standard_long_long_float,
Entity_Id standard_exception_type,
Int gigi_operating_mode)
{
Node_Id gnat_iter;
Entity_Id gnat_literal;
tree t, ftype, int64_type;
struct elab_info *info;
int i;
max_gnat_nodes = max_gnat_node;
Nodes_Ptr = nodes_ptr;
Flags_Ptr = flags_ptr;
Next_Node_Ptr = next_node_ptr;
Prev_Node_Ptr = prev_node_ptr;
Elists_Ptr = elists_ptr;
Elmts_Ptr = elmts_ptr;
Strings_Ptr = strings_ptr;
String_Chars_Ptr = string_chars_ptr;
List_Headers_Ptr = list_headers_ptr;
type_annotate_only = (gigi_operating_mode == 1);
if (Generate_SCO_Instance_Table != 0)
{
file_map = file_info_ptr;
maybe_create_decl_to_instance_map (number_file);
}
for (i = 0; i < number_file; i++)
{
/* Use the identifier table to make a permanent copy of the filename as
the name table gets reallocated after Gigi returns but before all the
debugging information is output. The __gnat_to_canonical_file_spec
call translates filenames from pragmas Source_Reference that contain
host style syntax not understood by gdb. */
const char *filename
= IDENTIFIER_POINTER
(get_identifier
(__gnat_to_canonical_file_spec
(Get_Name_String (file_info_ptr[i].File_Name))));
/* We rely on the order isomorphism between files and line maps. */
gcc_assert ((int) LINEMAPS_ORDINARY_USED (line_table) == i);
/* We create the line map for a source file at once, with a fixed number
of columns chosen to avoid jumping over the next power of 2. */
linemap_add (line_table, LC_ENTER, 0, filename, 1);
linemap_line_start (line_table, file_info_ptr[i].Num_Source_Lines, 252);
linemap_position_for_column (line_table, 252 - 1);
linemap_add (line_table, LC_LEAVE, 0, NULL, 0);
}
gcc_assert (Nkind (gnat_root) == N_Compilation_Unit);
/* Declare the name of the compilation unit as the first global
name in order to make the middle-end fully deterministic. */
t = create_concat_name (Defining_Entity (Unit (gnat_root)), NULL);
first_global_object_name = ggc_strdup (IDENTIFIER_POINTER (t));
/* Initialize ourselves. */
init_code_table ();
init_gnat_decl ();
init_gnat_utils ();
/* If we are just annotating types, give VOID_TYPE zero sizes to avoid
errors. */
if (type_annotate_only)
{
TYPE_SIZE (void_type_node) = bitsize_zero_node;
TYPE_SIZE_UNIT (void_type_node) = size_zero_node;
}
/* Enable GNAT stack checking method if needed */
if (!Stack_Check_Probes_On_Target)
set_stack_check_libfunc ("_gnat_stack_check");
/* Retrieve alignment settings. */
double_float_alignment = get_target_double_float_alignment ();
double_scalar_alignment = get_target_double_scalar_alignment ();
/* Record the builtin types. Define `integer' and `character' first so that
dbx will output them first. */
record_builtin_type ("integer", integer_type_node, false);
record_builtin_type ("character", char_type_node, false);
record_builtin_type ("boolean", boolean_type_node, false);
record_builtin_type ("void", void_type_node, false);
/* Save the type we made for integer as the type for Standard.Integer. */
save_gnu_tree (Base_Type (standard_integer),
TYPE_NAME (integer_type_node),
false);
/* Likewise for character as the type for Standard.Character. */
finish_character_type (char_type_node);
save_gnu_tree (Base_Type (standard_character),
TYPE_NAME (char_type_node),
false);
/* Likewise for boolean as the type for Standard.Boolean. */
save_gnu_tree (Base_Type (standard_boolean),
TYPE_NAME (boolean_type_node),
false);
gnat_literal = First_Literal (Base_Type (standard_boolean));
t = UI_To_gnu (Enumeration_Rep (gnat_literal), boolean_type_node);
gcc_assert (t == boolean_false_node);
t = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
boolean_type_node, t, true, false, false, false, false,
true, false, NULL, gnat_literal);
save_gnu_tree (gnat_literal, t, false);
gnat_literal = Next_Literal (gnat_literal);
t = UI_To_gnu (Enumeration_Rep (gnat_literal), boolean_type_node);
gcc_assert (t == boolean_true_node);
t = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
boolean_type_node, t, true, false, false, false, false,
true, false, NULL, gnat_literal);
save_gnu_tree (gnat_literal, t, false);
/* Declare the building blocks of function nodes. */
void_list_node = build_tree_list (NULL_TREE, void_type_node);
void_ftype = build_function_type_list (void_type_node, NULL_TREE);
ptr_void_ftype = build_pointer_type (void_ftype);
/* Now declare run-time functions. */
malloc_decl
= create_subprog_decl (get_identifier ("__gnat_malloc"), NULL_TREE,
build_function_type_list (ptr_type_node, sizetype,
NULL_TREE),
NULL_TREE, is_default, true, true, true, false,
false, NULL, Empty);
DECL_IS_MALLOC (malloc_decl) = 1;
free_decl
= create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
build_function_type_list (void_type_node,
ptr_type_node, NULL_TREE),
NULL_TREE, is_default, true, true, true, false,
false, NULL, Empty);
realloc_decl
= create_subprog_decl (get_identifier ("__gnat_realloc"), NULL_TREE,
build_function_type_list (ptr_type_node,
ptr_type_node, sizetype,
NULL_TREE),
NULL_TREE, is_default, true, true, true, false,
false, NULL, Empty);
/* This is used for 64-bit multiplication with overflow checking. */
int64_type = gnat_type_for_size (64, 0);
mulv64_decl
= create_subprog_decl (get_identifier ("__gnat_mulv64"), NULL_TREE,
build_function_type_list (int64_type, int64_type,
int64_type, NULL_TREE),
NULL_TREE, is_default, true, true, true, false,
false, NULL, Empty);
/* Name of the _Parent field in tagged record types. */
parent_name_id = get_identifier (Get_Name_String (Name_uParent));
/* Name of the Exception_Data type defined in System.Standard_Library. */
exception_data_name_id
= get_identifier ("system__standard_library__exception_data");
/* Make the types and functions used for exception processing. */
except_type_node = gnat_to_gnu_type (Base_Type (standard_exception_type));
jmpbuf_type
= build_array_type (gnat_type_for_mode (Pmode, 0),
build_index_type (size_int (5)));
record_builtin_type ("JMPBUF_T", jmpbuf_type, true);
jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
/* Functions to get and set the jumpbuf pointer for the current thread. */
get_jmpbuf_decl
= create_subprog_decl
(get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
NULL_TREE, build_function_type_list (jmpbuf_ptr_type, NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
set_jmpbuf_decl
= create_subprog_decl
(get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
NULL_TREE, build_function_type_list (void_type_node, jmpbuf_ptr_type,
NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
get_excptr_decl
= create_subprog_decl
(get_identifier ("system__soft_links__get_gnat_exception"), NULL_TREE,
build_function_type_list (build_pointer_type (except_type_node),
NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
not_handled_by_others_decl = get_identifier ("not_handled_by_others");
for (t = TYPE_FIELDS (except_type_node); t; t = DECL_CHAIN (t))
if (DECL_NAME (t) == not_handled_by_others_decl)
{
not_handled_by_others_decl = t;
break;
}
gcc_assert (DECL_P (not_handled_by_others_decl));
/* setjmp returns an integer and has one operand, which is a pointer to
a jmpbuf. */
setjmp_decl
= create_subprog_decl
(get_identifier ("__builtin_setjmp"), NULL_TREE,
build_function_type_list (integer_type_node, jmpbuf_ptr_type,
NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
set_decl_built_in_function (setjmp_decl, BUILT_IN_NORMAL, BUILT_IN_SETJMP);
/* update_setjmp_buf updates a setjmp buffer from the current stack pointer
address. */
update_setjmp_buf_decl
= create_subprog_decl
(get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE,
build_function_type_list (void_type_node, jmpbuf_ptr_type, NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
set_decl_built_in_function (update_setjmp_buf_decl, BUILT_IN_NORMAL,
BUILT_IN_UPDATE_SETJMP_BUF);
/* Indicate that it never returns. */
ftype = build_function_type_list (void_type_node,
build_pointer_type (except_type_node),
NULL_TREE);
ftype = build_qualified_type (ftype, TYPE_QUAL_VOLATILE);
raise_nodefer_decl
= create_subprog_decl
(get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE, ftype,
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
set_exception_parameter_decl
= create_subprog_decl
(get_identifier ("__gnat_set_exception_parameter"), NULL_TREE,
build_function_type_list (void_type_node, ptr_type_node, ptr_type_node,
NULL_TREE),
NULL_TREE, is_default, true, true, true, false, false, NULL, Empty);
/* Hooks to call when entering/leaving an exception handler. */
ftype = build_function_type_list (ptr_type_node,
ptr_type_node, NULL_TREE);
begin_handler_decl
= create_subprog_decl (get_identifier ("__gnat_begin_handler_v1"),
NULL_TREE, ftype, NULL_TREE,
is_default, true, true, true, false, false, NULL,
Empty);
/* __gnat_begin_handler_v1 is not a dummy procedure, but we arrange
for it not to throw. */
TREE_NOTHROW (begin_handler_decl) = 1;
ftype = build_function_type_list (ptr_type_node,
ptr_type_node, ptr_type_node,
ptr_type_node, NULL_TREE);
end_handler_decl
= create_subprog_decl (get_identifier ("__gnat_end_handler_v1"), NULL_TREE,
ftype, NULL_TREE,
is_default, true, true, true, false, false, NULL,
Empty);
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
unhandled_except_decl
= create_subprog_decl (get_identifier ("__gnat_unhandled_except_handler"),
NULL_TREE, ftype, NULL_TREE,
is_default, true, true, true, false, false, NULL,
Empty);
/* Indicate that it never returns. */
ftype = build_qualified_type (ftype, TYPE_QUAL_VOLATILE);
reraise_zcx_decl
= create_subprog_decl (get_identifier ("__gnat_reraise_zcx"), NULL_TREE,
ftype, NULL_TREE,
is_default, true, true, true, false, false, NULL,
Empty);
/* Dummy objects to materialize "others" and "all others" in the exception
tables. These are exported by a-exexpr-gcc.adb, so see this unit for
the types to use. */
others_decl
= create_var_decl (get_identifier ("OTHERS"),
get_identifier ("__gnat_others_value"),
char_type_node, NULL_TREE,
true, false, true, false, false, true, false,
NULL, Empty);
all_others_decl
= create_var_decl (get_identifier ("ALL_OTHERS"),
get_identifier ("__gnat_all_others_value"),
char_type_node, NULL_TREE,
true, false, true, false, false, true, false,
NULL, Empty);
unhandled_others_decl
= create_var_decl (get_identifier ("UNHANDLED_OTHERS"),
get_identifier ("__gnat_unhandled_others_value"),
char_type_node, NULL_TREE,
true, false, true, false, false, true, false,
NULL, Empty);
/* If in no exception handlers mode, all raise statements are redirected to
__gnat_last_chance_handler. No need to redefine raise_nodefer_decl since
this procedure will never be called in this mode. */
if (No_Exception_Handlers_Set ())
{
/* Indicate that it never returns. */
ftype = build_function_type_list (void_type_node,
build_pointer_type (char_type_node),
integer_type_node, NULL_TREE);
ftype = build_qualified_type (ftype, TYPE_QUAL_VOLATILE);
tree decl
= create_subprog_decl
(get_identifier ("__gnat_last_chance_handler"), NULL_TREE, ftype,
NULL_TREE, is_default, true, true, true, false, false, NULL,
Empty);
for (i = 0; i < (int) ARRAY_SIZE (gnat_raise_decls); i++)
gnat_raise_decls[i] = decl;
}
else
{
/* Otherwise, make one decl for each exception reason. */
for (i = 0; i < (int) ARRAY_SIZE (gnat_raise_decls); i++)
gnat_raise_decls[i] = build_raise_check (i, exception_simple);
for (i = 0; i < (int) ARRAY_SIZE (gnat_raise_decls_ext); i++)
gnat_raise_decls_ext[i]
= build_raise_check (i,
i == CE_Index_Check_Failed
|| i == CE_Range_Check_Failed
|| i == CE_Invalid_Data
? exception_range : exception_column);
}
/* Build the special descriptor type and its null node if needed. */
if (TARGET_VTABLE_USES_DESCRIPTORS)
{
tree null_node = fold_convert (ptr_void_ftype, null_pointer_node);
tree field_list = NULL_TREE;
int j;
vec *null_vec = NULL;
constructor_elt *elt;
fdesc_type_node = make_node (RECORD_TYPE);
vec_safe_grow (null_vec, TARGET_VTABLE_USES_DESCRIPTORS);
elt = (null_vec->address () + TARGET_VTABLE_USES_DESCRIPTORS - 1);
for (j = 0; j < TARGET_VTABLE_USES_DESCRIPTORS; j++)
{
tree field
= create_field_decl (NULL_TREE, ptr_void_ftype, fdesc_type_node,
NULL_TREE, NULL_TREE, 0, 1);
DECL_CHAIN (field) = field_list;
field_list = field;
elt->index = field;
elt->value = null_node;
elt--;
}
finish_record_type (fdesc_type_node, nreverse (field_list), 0, false);
record_builtin_type ("descriptor", fdesc_type_node, true);
null_fdesc_node = gnat_build_constructor (fdesc_type_node, null_vec);
}
longest_float_type_node
= get_unpadded_type (Base_Type (standard_long_long_float));
main_identifier_node = get_identifier ("main");
/* If we are using the GCC exception mechanism, let GCC know. */
if (Back_End_Exceptions ())
gnat_init_gcc_eh ();
/* Initialize the GCC support for FP operations. */
gnat_init_gcc_fp ();
/* Install the builtins we might need, either internally or as user-available
facilities for Intrinsic imports. Note that this must be done after the
GCC exception mechanism is initialized. */
gnat_install_builtins ();
vec_safe_push (gnu_except_ptr_stack, NULL_TREE);
gnu_constraint_error_label_stack.safe_push (Empty);
gnu_storage_error_label_stack.safe_push (Empty);
gnu_program_error_label_stack.safe_push (Empty);
/* Process any Pragma Ident for the main unit. */
if (Present (Ident_String (Main_Unit)))
targetm.asm_out.output_ident
(TREE_STRING_POINTER (gnat_to_gnu (Ident_String (Main_Unit))));
/* Force -fno-strict-aliasing if the configuration pragma was seen. */
if (No_Strict_Aliasing_CP)
flag_strict_aliasing = 0;
/* Save the current optimization options again after the above possible
global_options changes. */
optimization_default_node = build_optimization_node (&global_options);
optimization_current_node = optimization_default_node;
/* Now translate the compilation unit proper. */
Compilation_Unit_to_gnu (gnat_root);
/* Then process the N_Validate_Unchecked_Conversion nodes. We do this at
the very end to avoid having to second-guess the front-end when we run
into dummy nodes during the regular processing. */
for (i = 0; gnat_validate_uc_list.iterate (i, &gnat_iter); i++)
validate_unchecked_conversion (gnat_iter);
gnat_validate_uc_list.release ();
/* Finally see if we have any elaboration procedures to deal with. */
for (info = elab_info_list; info; info = info->next)
{
tree gnu_body = DECL_SAVED_TREE (info->elab_proc);
/* We should have a BIND_EXPR but it may not have any statements in it.
If it doesn't have any, we have nothing to do except for setting the
flag on the GNAT node. Otherwise, process the function as others. */
tree gnu_stmts = gnu_body;
if (TREE_CODE (gnu_stmts) == BIND_EXPR)
gnu_stmts = BIND_EXPR_BODY (gnu_stmts);
if (!gnu_stmts || empty_stmt_list_p (gnu_stmts))
Set_Has_No_Elaboration_Code (info->gnat_node, 1);
else
{
begin_subprog_body (info->elab_proc);
end_subprog_body (gnu_body);
rest_of_subprog_body_compilation (info->elab_proc);
}
}
/* Destroy ourselves. */
file_map = NULL;
destroy_gnat_decl ();
destroy_gnat_utils ();
/* We cannot track the location of errors past this point. */
Current_Error_Node = Empty;
}
/* Return a subprogram decl corresponding to __gnat_rcheck_xx for the given
CHECK if KIND is EXCEPTION_SIMPLE, or else to __gnat_rcheck_xx_ext. */
static tree
build_raise_check (int check, enum exception_info_kind kind)
{
tree result, ftype;
const char pfx[] = "__gnat_rcheck_";
strcpy (Name_Buffer, pfx);
Name_Len = sizeof (pfx) - 1;
Get_RT_Exception_Name (check);
if (kind == exception_simple)
{
Name_Buffer[Name_Len] = 0;
ftype
= build_function_type_list (void_type_node,
build_pointer_type (char_type_node),
integer_type_node, NULL_TREE);
}
else
{
tree t = (kind == exception_column ? NULL_TREE : integer_type_node);
strcpy (Name_Buffer + Name_Len, "_ext");
Name_Buffer[Name_Len + 4] = 0;
ftype
= build_function_type_list (void_type_node,
build_pointer_type (char_type_node),
integer_type_node, integer_type_node,
t, t, NULL_TREE);
}
/* Indicate that it never returns. */
ftype = build_qualified_type (ftype, TYPE_QUAL_VOLATILE);
result
= create_subprog_decl (get_identifier (Name_Buffer), NULL_TREE, ftype,
NULL_TREE, is_default, true, true, true, false,
false, NULL, Empty);
return result;
}
/* Return a positive value if an lvalue is required for GNAT_NODE, which is
an N_Attribute_Reference. */
static int
lvalue_required_for_attribute_p (Node_Id gnat_node)
{
switch (Get_Attribute_Id (Attribute_Name (gnat_node)))
{
case Attr_Pos:
case Attr_Val:
case Attr_Pred:
case Attr_Succ:
case Attr_First:
case Attr_Last:
case Attr_Range_Length:
case Attr_Length:
case Attr_Object_Size:
case Attr_Size:
case Attr_Value_Size:
case Attr_Component_Size:
case Attr_Descriptor_Size:
case Attr_Max_Size_In_Storage_Elements:
case Attr_Min:
case Attr_Max:
case Attr_Null_Parameter:
case Attr_Passed_By_Reference:
case Attr_Mechanism_Code:
case Attr_Machine:
case Attr_Model:
return 0;
case Attr_Address:
case Attr_Access:
case Attr_Unchecked_Access:
case Attr_Unrestricted_Access:
case Attr_Code_Address:
case Attr_Pool_Address:
case Attr_Alignment:
case Attr_Bit_Position:
case Attr_Position:
case Attr_First_Bit:
case Attr_Last_Bit:
case Attr_Bit:
case Attr_Asm_Input:
case Attr_Asm_Output:
default:
return 1;
}
}
/* Return a positive value if an lvalue is required for GNAT_NODE. GNU_TYPE
is the type that will be used for GNAT_NODE in the translated GNU tree.
CONSTANT indicates whether the underlying object represented by GNAT_NODE
is constant in the Ada sense. If it is, ADDRESS_OF_CONSTANT indicates
whether its value is the address of another constant. If it isn't, then
ADDRESS_OF_CONSTANT is ignored.
The function climbs up the GNAT tree starting from the node and returns 1
upon encountering a node that effectively requires an lvalue downstream.
It returns int instead of bool to facilitate usage in non-purely binary
logic contexts. */
static int
lvalue_required_p (Node_Id gnat_node, tree gnu_type, bool constant,
bool address_of_constant)
{
Node_Id gnat_parent = Parent (gnat_node), gnat_temp;
switch (Nkind (gnat_parent))
{
case N_Reference:
return 1;
case N_Attribute_Reference:
return lvalue_required_for_attribute_p (gnat_parent);
case N_Parameter_Association:
case N_Function_Call:
case N_Procedure_Call_Statement:
/* If the parameter is by reference, an lvalue is required. */
return (!constant
|| must_pass_by_ref (gnu_type)
|| default_pass_by_ref (gnu_type));
case N_Indexed_Component:
/* Only the array expression can require an lvalue. */
if (Prefix (gnat_parent) != gnat_node)
return 0;
/* ??? Consider that referencing an indexed component with a variable
index forces the whole aggregate to memory. Note that testing only
for literals is conservative, any static expression in the RM sense
could probably be accepted with some additional work. */
for (gnat_temp = First (Expressions (gnat_parent));
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
if (Nkind (gnat_temp) != N_Character_Literal
&& Nkind (gnat_temp) != N_Integer_Literal
&& !(Is_Entity_Name (gnat_temp)
&& Ekind (Entity (gnat_temp)) == E_Enumeration_Literal))
return 1;
/* ... fall through ... */
case N_Slice:
/* Only the array expression can require an lvalue. */
if (Prefix (gnat_parent) != gnat_node)
return 0;
return lvalue_required_p (gnat_parent, gnu_type, constant,
address_of_constant);
case N_Selected_Component:
return lvalue_required_p (gnat_parent, gnu_type, constant,
address_of_constant);
case N_Object_Renaming_Declaration:
/* We need to preserve addresses through a renaming. */
return 1;
case N_Object_Declaration:
/* We cannot use a constructor if this is an atomic object because
the actual assignment might end up being done component-wise. */
return (!constant
||(Is_Composite_Type (Underlying_Type (Etype (gnat_node)))
&& Is_Atomic_Or_VFA (Defining_Entity (gnat_parent)))
/* We don't use a constructor if this is a class-wide object
because the effective type of the object is the equivalent
type of the class-wide subtype and it smashes most of the
data into an array of bytes to which we cannot convert. */
|| Ekind ((Etype (Defining_Entity (gnat_parent))))
== E_Class_Wide_Subtype);
case N_Assignment_Statement:
/* We cannot use a constructor if the LHS is an atomic object because
the actual assignment might end up being done component-wise. */
return (!constant
|| Name (gnat_parent) == gnat_node
|| (Is_Composite_Type (Underlying_Type (Etype (gnat_node)))
&& Is_Entity_Name (Name (gnat_parent))
&& Is_Atomic_Or_VFA (Entity (Name (gnat_parent)))));
case N_Unchecked_Type_Conversion:
if (!constant)
return 1;
/* ... fall through ... */
case N_Type_Conversion:
case N_Qualified_Expression:
/* We must look through all conversions because we may need to bypass
an intermediate conversion that is meant to be purely formal. */
return lvalue_required_p (gnat_parent,
get_unpadded_type (Etype (gnat_parent)),
constant, address_of_constant);
case N_Allocator:
/* We should only reach here through the N_Qualified_Expression case.
Force an lvalue for composite types since a block-copy to the newly
allocated area of memory is made. */
return Is_Composite_Type (Underlying_Type (Etype (gnat_node)));
case N_Explicit_Dereference:
/* We look through dereferences for address of constant because we need
to handle the special cases listed above. */
if (constant && address_of_constant)
return lvalue_required_p (gnat_parent,
get_unpadded_type (Etype (gnat_parent)),
true, false);
/* ... fall through ... */
default:
return 0;
}
gcc_unreachable ();
}
/* Return true if T is a constant DECL node that can be safely replaced
by its initializer. */
static bool
constant_decl_with_initializer_p (tree t)
{
if (!TREE_CONSTANT (t) || !DECL_P (t) || !DECL_INITIAL (t))
return false;
/* Return false for aggregate types that contain a placeholder since
their initializers cannot be manipulated easily. */
if (AGGREGATE_TYPE_P (TREE_TYPE (t))
&& !TYPE_IS_FAT_POINTER_P (TREE_TYPE (t))
&& type_contains_placeholder_p (TREE_TYPE (t)))
return false;
return true;
}
/* Return an expression equivalent to EXP but where constant DECL nodes
have been replaced by their initializer. */
static tree
fold_constant_decl_in_expr (tree exp)
{
enum tree_code code = TREE_CODE (exp);
tree op0;
switch (code)
{
case CONST_DECL:
case VAR_DECL:
if (!constant_decl_with_initializer_p (exp))
return exp;
return DECL_INITIAL (exp);
case COMPONENT_REF:
op0 = fold_constant_decl_in_expr (TREE_OPERAND (exp, 0));
if (op0 == TREE_OPERAND (exp, 0))
return exp;
return fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0,
TREE_OPERAND (exp, 1), NULL_TREE);
case BIT_FIELD_REF:
op0 = fold_constant_decl_in_expr (TREE_OPERAND (exp, 0));
if (op0 == TREE_OPERAND (exp, 0))
return exp;
return fold_build3 (BIT_FIELD_REF, TREE_TYPE (exp), op0,
TREE_OPERAND (exp, 1), TREE_OPERAND (exp, 2));
case ARRAY_REF:
case ARRAY_RANGE_REF:
/* If the index is not itself constant, then nothing can be folded. */
if (!TREE_CONSTANT (TREE_OPERAND (exp, 1)))
return exp;
op0 = fold_constant_decl_in_expr (TREE_OPERAND (exp, 0));
if (op0 == TREE_OPERAND (exp, 0))
return exp;
return fold (build4 (code, TREE_TYPE (exp), op0, TREE_OPERAND (exp, 1),
TREE_OPERAND (exp, 2), NULL_TREE));
case REALPART_EXPR:
case IMAGPART_EXPR:
case VIEW_CONVERT_EXPR:
op0 = fold_constant_decl_in_expr (TREE_OPERAND (exp, 0));
if (op0 == TREE_OPERAND (exp, 0))
return exp;
return fold_build1 (code, TREE_TYPE (exp), op0);
default:
return exp;
}
gcc_unreachable ();
}
/* Return true if TYPE and DEF_TYPE are compatible GNAT types for Gigi. */
static bool
Gigi_Types_Compatible (Entity_Id type, Entity_Id def_type)
{
/* The trivial case. */
if (type == def_type)
return true;
/* A class-wide type is equivalent to a subtype of itself. */
if (Is_Class_Wide_Type (type))
return true;
/* A packed array type is compatible with its implementation type. */
if (Is_Packed (def_type) && type == Packed_Array_Impl_Type (def_type))
return true;
/* If both types are Itypes, one may be a copy of the other. */
if (Is_Itype (def_type) && Is_Itype (type))
return true;
/* If the type is incomplete and comes from a limited context, then also
consider its non-limited view. */
if (Is_Incomplete_Type (def_type)
&& From_Limited_With (def_type)
&& Present (Non_Limited_View (def_type)))
return Gigi_Types_Compatible (type, Non_Limited_View (def_type));
/* If the type is incomplete/private, then also consider its full view. */
if (Is_Incomplete_Or_Private_Type (def_type)
&& Present (Full_View (def_type)))
return Gigi_Types_Compatible (type, Full_View (def_type));
return false;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Identifier,
to a GCC tree, which is returned. GNU_RESULT_TYPE_P is a pointer
to where we should place the result type. */
static tree
Identifier_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p)
{
/* The entity of GNAT_NODE and its type. */
Node_Id gnat_entity = (Nkind (gnat_node) == N_Defining_Identifier
|| Nkind (gnat_node) == N_Defining_Operator_Symbol)
? gnat_node : Entity (gnat_node);
Node_Id gnat_entity_type = Etype (gnat_entity);
/* If GNAT_NODE is a constant, whether we should use the initialization
value instead of the constant entity, typically for scalars with an
address clause when the parent doesn't require an lvalue. */
bool use_constant_initializer = false;
/* Whether we should require an lvalue for GNAT_NODE. Needed in
specific circumstances only, so evaluated lazily. < 0 means
unknown, > 0 means known true, 0 means known false. */
int require_lvalue = -1;
Node_Id gnat_result_type;
tree gnu_result, gnu_result_type;
/* If the Etype of this node is not the same as that of the Entity, then
something went wrong, probably in generic instantiation. However, this
does not apply to types. Since we sometime have strange Ekind's, just
do this test for objects, except for discriminants because their type
may have been changed to a subtype by Exp_Ch3.Adjust_Discriminants. */
gcc_assert (!Is_Object (gnat_entity)
|| Ekind (gnat_entity) == E_Discriminant
|| Etype (gnat_node) == gnat_entity_type
|| Gigi_Types_Compatible (Etype (gnat_node), gnat_entity_type));
/* If this is a reference to a deferred constant whose partial view is an
unconstrained private type, the proper type is on the full view of the
constant, not on the full view of the type, which may be unconstrained.
This may be a reference to a type, for example in the prefix of the
attribute Position, generated for dispatching code (see Make_DT in
exp_disp,adb). In that case we need the type itself, not is parent,
in particular if it is a derived type */
if (Ekind (gnat_entity) == E_Constant
&& Is_Private_Type (gnat_entity_type)
&& (Has_Unknown_Discriminants (gnat_entity_type)
|| (Present (Full_View (gnat_entity_type))
&& Has_Discriminants (Full_View (gnat_entity_type))))
&& Present (Full_View (gnat_entity)))
{
gnat_entity = Full_View (gnat_entity);
gnat_result_type = Etype (gnat_entity);
}
else
{
/* We use the Actual_Subtype only if it has already been elaborated,
as we may be invoked precisely during its elaboration, otherwise
the Etype. Avoid using it for packed arrays to simplify things,
except in a return statement because we need the actual size and
the front-end does not make it explicit in this case. */
if ((Ekind (gnat_entity) == E_Constant
|| Ekind (gnat_entity) == E_Variable
|| Is_Formal (gnat_entity))
&& !(Is_Array_Type (Etype (gnat_entity))
&& Present (Packed_Array_Impl_Type (Etype (gnat_entity)))
&& Nkind (Parent (gnat_node)) != N_Simple_Return_Statement)
&& Present (Actual_Subtype (gnat_entity))
&& present_gnu_tree (Actual_Subtype (gnat_entity)))
gnat_result_type = Actual_Subtype (gnat_entity);
else
gnat_result_type = Etype (gnat_node);
}
/* Expand the type of this identifier first, in case it is an enumeral
literal, which only get made when the type is expanded. There is no
order-of-elaboration issue here. */
gnu_result_type = get_unpadded_type (gnat_result_type);
/* If this is a non-imported elementary constant with an address clause,
retrieve the value instead of a pointer to be dereferenced unless
an lvalue is required. This is generally more efficient and actually
required if this is a static expression because it might be used
in a context where a dereference is inappropriate, such as a case
statement alternative or a record discriminant. There is no possible
volatile-ness short-circuit here since Volatile constants must be
imported per C.6. */
if (Ekind (gnat_entity) == E_Constant
&& Is_Elementary_Type (gnat_result_type)
&& !Is_Imported (gnat_entity)
&& Present (Address_Clause (gnat_entity)))
{
require_lvalue
= lvalue_required_p (gnat_node, gnu_result_type, true, false);
use_constant_initializer = !require_lvalue;
}
if (use_constant_initializer)
{
/* If this is a deferred constant, the initializer is attached to
the full view. */
if (Present (Full_View (gnat_entity)))
gnat_entity = Full_View (gnat_entity);
gnu_result = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
}
else
gnu_result = gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
/* Some objects (such as parameters passed by reference, globals of
variable size, and renamed objects) actually represent the address
of the object. In that case, we must do the dereference. Likewise,
deal with parameters to foreign convention subprograms. */
if (DECL_P (gnu_result)
&& (DECL_BY_REF_P (gnu_result)
|| (TREE_CODE (gnu_result) == PARM_DECL
&& DECL_BY_COMPONENT_PTR_P (gnu_result))))
{
const bool read_only = DECL_POINTS_TO_READONLY_P (gnu_result);
/* If it's a PARM_DECL to foreign convention subprogram, convert it. */
if (TREE_CODE (gnu_result) == PARM_DECL
&& DECL_BY_COMPONENT_PTR_P (gnu_result))
gnu_result
= convert (build_pointer_type (gnu_result_type), gnu_result);
/* If it's a CONST_DECL, return the underlying constant like below. */
else if (TREE_CODE (gnu_result) == CONST_DECL
&& !(DECL_CONST_ADDRESS_P (gnu_result)
&& lvalue_required_p (gnat_node, gnu_result_type, true,
true)))
gnu_result = DECL_INITIAL (gnu_result);
/* If it's a renaming pointer, get to the renamed object. */
if (TREE_CODE (gnu_result) == VAR_DECL
&& !DECL_LOOP_PARM_P (gnu_result)
&& DECL_RENAMED_OBJECT (gnu_result))
gnu_result = DECL_RENAMED_OBJECT (gnu_result);
/* Otherwise, do the final dereference. */
else
{
gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result);
if ((TREE_CODE (gnu_result) == INDIRECT_REF
|| TREE_CODE (gnu_result) == UNCONSTRAINED_ARRAY_REF)
&& No (Address_Clause (gnat_entity)))
TREE_THIS_NOTRAP (gnu_result) = 1;
if (read_only)
TREE_READONLY (gnu_result) = 1;
}
}
/* If we have a constant declaration and its initializer, try to return the
latter to avoid the need to call fold in lots of places and the need for
elaboration code if this identifier is used as an initializer itself. */
if (constant_decl_with_initializer_p (gnu_result))
{
bool constant_only = (TREE_CODE (gnu_result) == CONST_DECL
&& !DECL_CONST_CORRESPONDING_VAR (gnu_result));
bool address_of_constant = (TREE_CODE (gnu_result) == CONST_DECL
&& DECL_CONST_ADDRESS_P (gnu_result));
/* If there is a (corresponding) variable or this is the address of a
constant, we only want to return the initializer if an lvalue isn't
required. Evaluate this now if we have not already done so. */
if ((!constant_only || address_of_constant) && require_lvalue < 0)
require_lvalue
= lvalue_required_p (gnat_node, gnu_result_type, true,
address_of_constant);
/* Finally retrieve the initializer if this is deemed valid. */
if ((constant_only && !address_of_constant) || !require_lvalue)
gnu_result = DECL_INITIAL (gnu_result);
}
/* But for a constant renaming we couldn't do that incrementally for its
definition because of the need to return an lvalue so, if the present
context doesn't itself require an lvalue, we try again here. */
else if (Ekind (gnat_entity) == E_Constant
&& Is_Elementary_Type (gnat_result_type)
&& Present (Renamed_Object (gnat_entity)))
{
if (require_lvalue < 0)
require_lvalue
= lvalue_required_p (gnat_node, gnu_result_type, true, false);
if (!require_lvalue)
gnu_result = fold_constant_decl_in_expr (gnu_result);
}
/* The GNAT tree has the type of a function set to its result type, so we
adjust here. Also use the type of the result if the Etype is a subtype
that is nominally unconstrained. Likewise if this is a deferred constant
of a discriminated type whose full view can be elaborated statically, to
avoid problematic conversions to the nominal subtype. But remove any
padding from the resulting type. */
if (FUNC_OR_METHOD_TYPE_P (TREE_TYPE (gnu_result))
|| Is_Constr_Subt_For_UN_Aliased (gnat_result_type)
|| (Ekind (gnat_entity) == E_Constant
&& Present (Full_View (gnat_entity))
&& Has_Discriminants (gnat_result_type)
&& TREE_CODE (gnu_result) == CONSTRUCTOR))
{
gnu_result_type = TREE_TYPE (gnu_result);
if (TYPE_IS_PADDING_P (gnu_result_type))
gnu_result_type = TREE_TYPE (TYPE_FIELDS (gnu_result_type));
}
*gnu_result_type_p = gnu_result_type;
return gnu_result;
}
/* If GNAT_EXPR is an N_Identifier, N_Integer_Literal or N_Operator_Symbol,
call FN on it. If GNAT_EXPR is an aggregate, call FN on each of its
elements. In both cases, pass GNU_EXPR and DATA as additional arguments.
This function is used everywhere OpenAcc pragmas are processed if these
pragmas can accept aggregates. */
static tree
Iterate_Acc_Clause_Arg (Node_Id gnat_expr, tree gnu_expr,
tree (*fn)(Node_Id, tree, void*),
void* data)
{
switch (Nkind (gnat_expr))
{
case N_Aggregate:
if (Present (Expressions (gnat_expr)))
{
for (Node_Id gnat_list_expr = First (Expressions (gnat_expr));
Present (gnat_list_expr);
gnat_list_expr = Next (gnat_list_expr))
gnu_expr = fn (gnat_list_expr, gnu_expr, data);
}
else if (Present (Component_Associations (gnat_expr)))
{
for (Node_Id gnat_list_expr = First (Component_Associations
(gnat_expr));
Present (gnat_list_expr);
gnat_list_expr = Next (gnat_list_expr))
gnu_expr = fn (Expression (gnat_list_expr), gnu_expr, data);
}
else
gcc_unreachable ();
break;
case N_Identifier:
case N_Integer_Literal:
case N_Operator_Symbol:
gnu_expr = fn (gnat_expr, gnu_expr, data);
break;
default:
gcc_unreachable ();
}
return gnu_expr;
}
/* Same as gnat_to_gnu for a GNAT_NODE referenced within an OpenAcc directive,
undoing transformations that are inappropriate for such context. */
tree
Acc_gnat_to_gnu (Node_Id gnat_node)
{
tree gnu_result = gnat_to_gnu (gnat_node);
/* If gnat_node is an identifier for a boolean, gnat_to_gnu might have
turned it into `identifier != 0`. Since arguments to OpenAcc pragmas
need to be writable, we need to return the identifier residing in such
expressions rather than the expression itself. */
if (Nkind (gnat_node) == N_Identifier
&& TREE_CODE (gnu_result) == NE_EXPR
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_result, 0))) == BOOLEAN_TYPE
&& integer_zerop (TREE_OPERAND (gnu_result, 1)))
gnu_result = TREE_OPERAND (gnu_result, 0);
return gnu_result;
}
/* Turn GNAT_EXPR into a tree node representing an OMP data clause and chain
it to GNU_CLAUSES, a list of pre-existing OMP clauses. GNAT_EXPR should be
a N_Identifier, this is enforced by the frontend.
This function is called every time translation of an argument for an OpenAcc
clause (e.g. Acc_Parallel(Copy => My_Identifier)) is needed. */
static tree
Acc_Data_to_gnu (Node_Id gnat_expr, tree gnu_clauses, void* data)
{
const enum gomp_map_kind kind = *((enum gomp_map_kind*) data);
tree gnu_clause
= build_omp_clause (EXPR_LOCATION(gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_MAP);
gcc_assert (Nkind (gnat_expr) == N_Identifier);
OMP_CLAUSE_DECL (gnu_clause)
= gnat_to_gnu_entity (Entity (gnat_expr), NULL_TREE, false);
TREE_ADDRESSABLE (OMP_CLAUSE_DECL (gnu_clause)) = 1;
OMP_CLAUSE_SET_MAP_KIND (gnu_clause, kind);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
return gnu_clause;
}
/* Turn GNAT_EXPR into a tree node representing an OMP clause and chain it to
GNU_CLAUSES, a list of existing OMP clauses.
This function is used for parsing arguments of non-data clauses (e.g.
Acc_Parallel(Wait => gnatexpr)). */
static tree
Acc_Var_to_gnu (Node_Id gnat_expr, tree gnu_clauses, void* data)
{
const enum omp_clause_code kind = *((enum omp_clause_code*) data);
tree gnu_clause
= build_omp_clause (EXPR_LOCATION (gnu_loop_stack->last ()->stmt), kind);
OMP_CLAUSE_DECL (gnu_clause) = Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
return gnu_clause;
}
/* Turn GNAT_EXPR into a tree OMP clause representing a reduction clause.
GNAT_EXPR has to be a N_Identifier, this is enforced by the frontend.
For example, GNAT_EXPR could be My_Identifier in the following pragma:
Acc_Parallel(Reduction => ("+" => My_Identifier)). */
static tree
Acc_Reduc_Var_to_gnu (Node_Id gnat_expr, tree gnu_clauses, void* data)
{
const tree_code code = *((tree_code*) data);
tree gnu_clause
= build_omp_clause (EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_REDUCTION);
OMP_CLAUSE_DECL (gnu_clause) = Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_REDUCTION_CODE (gnu_clause) = code;
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
return gnu_clause;
}
/* Turn GNAT_EXPR into a list of OMP reduction clauses. GNAT_EXPR has to
follow the structure of a reduction clause, e.g. ("+" => Identifier). */
static tree
Acc_Reduc_to_gnu (Node_Id gnat_expr)
{
tree gnu_clauses = NULL_TREE;
for (Node_Id gnat_op = First (Component_Associations (gnat_expr));
Present (gnat_op);
gnat_op = Next (gnat_op))
{
tree_code code = ERROR_MARK;
String_Id str = Strval (First (Choices (gnat_op)));
switch (Get_String_Char (str, 1))
{
case '+':
code = PLUS_EXPR;
break;
case '*':
code = MULT_EXPR;
break;
case 'm':
if (Get_String_Char (str, 2) == 'i'
&& Get_String_Char (str, 3) == 'n')
code = MIN_EXPR;
else if (Get_String_Char (str, 2) == 'a'
&& Get_String_Char (str, 3) == 'x')
code = MAX_EXPR;
break;
case 'a':
if (Get_String_Char (str, 2) == 'n'
&& Get_String_Char (str, 3) == 'd')
code = TRUTH_ANDIF_EXPR;
break;
case 'o':
if (Get_String_Char (str, 2) == 'r')
code = TRUTH_ORIF_EXPR;
break;
default:
gcc_unreachable ();
}
/* Unsupported reduction operation. This should have been
caught in sem_prag.adb. */
gcc_assert (code != ERROR_MARK);
gnu_clauses = Iterate_Acc_Clause_Arg (Expression (gnat_op),
gnu_clauses,
Acc_Reduc_Var_to_gnu,
&code);
}
return gnu_clauses;
}
/* Turn GNAT_EXPR, either '*' or an integer literal, into a tree_cons. This is
only used by Acc_Size_List_to_gnu. */
static tree
Acc_Size_Expr_to_gnu (Node_Id gnat_expr, tree gnu_clauses, void *)
{
tree gnu_expr;
if (Nkind (gnat_expr) == N_Operator_Symbol
&& Get_String_Char (Strval (gnat_expr), 1) == '*')
gnu_expr = integer_zero_node;
else
gnu_expr = Acc_gnat_to_gnu (gnat_expr);
return tree_cons (NULL_TREE, gnu_expr, gnu_clauses);
}
/* Turn GNAT_EXPR, an aggregate of either '*' or integer literals, into an OMP
clause node.
This function is used for the Tile clause of the Loop directive. This is
what GNAT_EXPR might look like: (1, 1, '*'). */
static tree
Acc_Size_List_to_gnu (Node_Id gnat_expr)
{
tree gnu_clause
= build_omp_clause (EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_TILE);
tree gnu_list = Iterate_Acc_Clause_Arg (gnat_expr, NULL_TREE,
Acc_Size_Expr_to_gnu,
NULL);
OMP_CLAUSE_TILE_LIST (gnu_clause) = nreverse (gnu_list);
return gnu_clause;
}
/* Subroutine of gnat_to_gnu to process gnat_node, an N_Pragma. Return
any statements we generate. */
static tree
Pragma_to_gnu (Node_Id gnat_node)
{
tree gnu_result = alloc_stmt_list ();
unsigned char pragma_id;
Node_Id gnat_temp;
/* Do nothing if we are just annotating types and check for (and ignore)
unrecognized pragmas. */
if (type_annotate_only
|| !Is_Pragma_Name (Chars (Pragma_Identifier (gnat_node))))
return gnu_result;
pragma_id = Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)));
switch (pragma_id)
{
case Pragma_Inspection_Point:
/* Do nothing at top level: all such variables are already viewable. */
if (global_bindings_p ())
break;
for (gnat_temp = First (Pragma_Argument_Associations (gnat_node));
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
{
Node_Id gnat_expr = Expression (gnat_temp);
tree gnu_expr = gnat_to_gnu (gnat_expr);
tree asm_constraint = NULL_TREE;
#ifdef ASM_COMMENT_START
char *comment;
#endif
gnu_expr = maybe_unconstrained_array (gnu_expr);
gnat_mark_addressable (gnu_expr);
#ifdef ASM_COMMENT_START
comment = concat (ASM_COMMENT_START,
" inspection point: ",
Get_Name_String (Chars (gnat_expr)),
" is at %0",
NULL);
asm_constraint = build_string (strlen (comment), comment);
free (comment);
#endif
gnu_expr = build5 (ASM_EXPR, void_type_node,
asm_constraint,
NULL_TREE,
tree_cons
(build_tree_list (NULL_TREE,
build_string (1, "m")),
gnu_expr, NULL_TREE),
NULL_TREE, NULL_TREE);
ASM_VOLATILE_P (gnu_expr) = 1;
set_expr_location_from_node (gnu_expr, gnat_node);
append_to_statement_list (gnu_expr, &gnu_result);
}
break;
case Pragma_Acc_Loop:
{
if (!flag_openacc)
break;
tree gnu_clauses = gnu_loop_stack->last ()->omp_loop_clauses;
if (!Present (Pragma_Argument_Associations (gnat_node)))
break;
for (gnat_temp = First (Pragma_Argument_Associations (gnat_node));
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
{
Node_Id gnat_expr = Expression (gnat_temp);
tree gnu_clause = NULL_TREE;
enum omp_clause_code kind;
if (Chars (gnat_temp) == No_Name)
{
/* The clause is an identifier without a parameter. */
switch (Chars (gnat_expr))
{
case Name_Auto:
kind = OMP_CLAUSE_AUTO;
break;
case Name_Gang:
kind = OMP_CLAUSE_GANG;
break;
case Name_Independent:
kind = OMP_CLAUSE_INDEPENDENT;
break;
case Name_Seq:
kind = OMP_CLAUSE_SEQ;
break;
case Name_Vector:
kind = OMP_CLAUSE_VECTOR;
break;
case Name_Worker:
kind = OMP_CLAUSE_WORKER;
break;
default:
gcc_unreachable ();
}
gnu_clause = build_omp_clause (EXPR_LOCATION
(gnu_loop_stack->last ()->stmt),
kind);
}
else
{
/* The clause is an identifier parameter(s). */
switch (Chars (gnat_temp))
{
case Name_Collapse:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_COLLAPSE);
OMP_CLAUSE_COLLAPSE_EXPR (gnu_clause) =
Acc_gnat_to_gnu (gnat_expr);
break;
case Name_Device_Type:
/* Unimplemented by GCC yet. */
gcc_unreachable ();
break;
case Name_Independent:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_INDEPENDENT);
break;
case Name_Acc_Private:
kind = OMP_CLAUSE_PRIVATE;
gnu_clause = Iterate_Acc_Clause_Arg (gnat_expr, 0,
Acc_Var_to_gnu,
&kind);
break;
case Name_Reduction:
gnu_clause = Acc_Reduc_to_gnu (gnat_expr);
break;
case Name_Tile:
gnu_clause = Acc_Size_List_to_gnu (gnat_expr);
break;
case Name_Gang:
case Name_Vector:
case Name_Worker:
/* These are for the Loop+Kernel combination, which is
unimplemented by the frontend for now. */
default:
gcc_unreachable ();
}
}
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
}
gnu_loop_stack->last ()->omp_loop_clauses = gnu_clauses;
}
break;
/* Grouping the transformation of these pragmas together makes sense
because they are mutually exclusive, share most of their clauses and
the verification that each clause can legally appear for the pragma has
been done in the frontend. */
case Pragma_Acc_Data:
case Pragma_Acc_Kernels:
case Pragma_Acc_Parallel:
{
if (!flag_openacc)
break;
tree gnu_clauses = gnu_loop_stack->last ()->omp_construct_clauses;
if (pragma_id == Pragma_Acc_Data)
gnu_loop_stack->last ()->omp_code = OACC_DATA;
else if (pragma_id == Pragma_Acc_Kernels)
gnu_loop_stack->last ()->omp_code = OACC_KERNELS;
else if (pragma_id == Pragma_Acc_Parallel)
gnu_loop_stack->last ()->omp_code = OACC_PARALLEL;
else
gcc_unreachable ();
if (!Present (Pragma_Argument_Associations (gnat_node)))
break;
for (gnat_temp = First (Pragma_Argument_Associations (gnat_node));
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
{
Node_Id gnat_expr = Expression (gnat_temp);
tree gnu_clause;
enum omp_clause_code clause_code;
enum gomp_map_kind map_kind;
switch (Chars (gnat_temp))
{
case Name_Async:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_ASYNC);
OMP_CLAUSE_ASYNC_EXPR (gnu_clause) =
Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Num_Gangs:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_NUM_GANGS);
OMP_CLAUSE_NUM_GANGS_EXPR (gnu_clause) =
Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Num_Workers:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_NUM_WORKERS);
OMP_CLAUSE_NUM_WORKERS_EXPR (gnu_clause) =
Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Vector_Length:
gnu_clause = build_omp_clause
(EXPR_LOCATION (gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_VECTOR_LENGTH);
OMP_CLAUSE_VECTOR_LENGTH_EXPR (gnu_clause) =
Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Wait:
clause_code = OMP_CLAUSE_WAIT;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Var_to_gnu,
&clause_code);
break;
case Name_Acc_If:
gnu_clause = build_omp_clause (EXPR_LOCATION
(gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_IF);
OMP_CLAUSE_IF_MODIFIER (gnu_clause) = ERROR_MARK;
OMP_CLAUSE_IF_EXPR (gnu_clause) = Acc_gnat_to_gnu (gnat_expr);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Copy:
map_kind = GOMP_MAP_FORCE_TOFROM;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Copy_In:
map_kind = GOMP_MAP_FORCE_TO;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Copy_Out:
map_kind = GOMP_MAP_FORCE_FROM;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Present:
map_kind = GOMP_MAP_FORCE_PRESENT;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Create:
map_kind = GOMP_MAP_FORCE_ALLOC;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Device_Ptr:
map_kind = GOMP_MAP_FORCE_DEVICEPTR;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Data_to_gnu,
&map_kind);
break;
case Name_Acc_Private:
clause_code = OMP_CLAUSE_PRIVATE;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Var_to_gnu,
&clause_code);
break;
case Name_First_Private:
clause_code = OMP_CLAUSE_FIRSTPRIVATE;
gnu_clauses = Iterate_Acc_Clause_Arg (gnat_expr, gnu_clauses,
Acc_Var_to_gnu,
&clause_code);
break;
case Name_Default:
gnu_clause = build_omp_clause (EXPR_LOCATION
(gnu_loop_stack->last ()->stmt),
OMP_CLAUSE_DEFAULT);
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
/* The standard also accepts "present" but this isn't
implemented in GCC yet. */
OMP_CLAUSE_DEFAULT_KIND (gnu_clause) = OMP_CLAUSE_DEFAULT_NONE;
OMP_CLAUSE_CHAIN (gnu_clause) = gnu_clauses;
gnu_clauses = gnu_clause;
break;
case Name_Reduction:
gnu_clauses = Acc_Reduc_to_gnu(gnat_expr);
break;
case Name_Detach:
case Name_Attach:
case Name_Device_Type:
/* Unimplemented by GCC. */
default:
gcc_unreachable ();
}
}
gnu_loop_stack->last ()->omp_construct_clauses = gnu_clauses;
}
break;
case Pragma_Loop_Optimize:
for (gnat_temp = First (Pragma_Argument_Associations (gnat_node));
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
{
tree gnu_loop_stmt = gnu_loop_stack->last ()->stmt;
switch (Chars (Expression (gnat_temp)))
{
case Name_Ivdep:
LOOP_STMT_IVDEP (gnu_loop_stmt) = 1;
break;
case Name_No_Unroll:
LOOP_STMT_NO_UNROLL (gnu_loop_stmt) = 1;
break;
case Name_Unroll:
LOOP_STMT_UNROLL (gnu_loop_stmt) = 1;
break;
case Name_No_Vector:
LOOP_STMT_NO_VECTOR (gnu_loop_stmt) = 1;
break;
case Name_Vector:
LOOP_STMT_VECTOR (gnu_loop_stmt) = 1;
break;
default:
gcc_unreachable ();
}
}
break;
case Pragma_Optimize:
switch (Chars (Expression
(First (Pragma_Argument_Associations (gnat_node)))))
{
case Name_Off:
if (optimize)
post_error ("must specify -O0?", gnat_node);
break;
case Name_Space:
if (!optimize_size)
post_error ("must specify -Os?", gnat_node);
break;
case Name_Time:
if (!optimize)
post_error ("insufficient -O value?", gnat_node);
break;
default:
gcc_unreachable ();
}
break;
case Pragma_Reviewable:
if (write_symbols == NO_DEBUG)
post_error ("must specify -g?", gnat_node);
break;
case Pragma_Warning_As_Error:
case Pragma_Warnings:
{
Node_Id gnat_expr;
/* Preserve the location of the pragma. */
const location_t location = input_location;
struct cl_option_handlers handlers;
unsigned int option_index;
diagnostic_t kind;
bool imply;
gnat_temp = First (Pragma_Argument_Associations (gnat_node));
/* This is the String form: pragma Warning{s|_As_Error}(String). */
if (Nkind (Expression (gnat_temp)) == N_String_Literal)
{
switch (pragma_id)
{
case Pragma_Warning_As_Error:
kind = DK_ERROR;
imply = false;
break;
case Pragma_Warnings:
kind = DK_WARNING;
imply = true;
break;
default:
gcc_unreachable ();
}
gnat_expr = Expression (gnat_temp);
}
/* This is the On/Off form: pragma Warnings (On | Off [,String]). */
else if (Nkind (Expression (gnat_temp)) == N_Identifier)
{
switch (Chars (Expression (gnat_temp)))
{
case Name_Off:
kind = DK_IGNORED;
break;
case Name_On:
kind = DK_WARNING;
break;
default:
gcc_unreachable ();
}
/* Deal with optional pattern (but ignore Reason => "..."). */
if (Present (Next (gnat_temp))
&& Chars (Next (gnat_temp)) != Name_Reason)
{
/* pragma Warnings (On | Off, Name) is handled differently. */
if (Nkind (Expression (Next (gnat_temp))) != N_String_Literal)
break;
gnat_expr = Expression (Next (gnat_temp));
}
else
gnat_expr = Empty;
imply = false;
}
else
gcc_unreachable ();
/* This is the same implementation as in the C family of compilers. */
const unsigned int lang_mask = CL_Ada | CL_COMMON;
const char *arg = NULL;
if (Present (gnat_expr))
{
tree gnu_expr = gnat_to_gnu (gnat_expr);
const char *option_string = TREE_STRING_POINTER (gnu_expr);
const int len = TREE_STRING_LENGTH (gnu_expr);
if (len < 3 || option_string[0] != '-' || option_string[1] != 'W')
break;
option_index = find_opt (option_string + 1, lang_mask);
if (option_index == OPT_SPECIAL_unknown)
{
post_error ("?unknown -W switch", gnat_node);
break;
}
else if (!(cl_options[option_index].flags & CL_WARNING))
{
post_error ("?-W switch does not control warning", gnat_node);
break;
}
else if (!(cl_options[option_index].flags & lang_mask))
{
post_error ("?-W switch not valid for Ada", gnat_node);
break;
}
if (cl_options[option_index].flags & CL_JOINED)
arg = option_string + 1 + cl_options[option_index].opt_len;
}
else
option_index = 0;
set_default_handlers (&handlers, NULL);
control_warning_option (option_index, (int) kind, arg, imply, location,
lang_mask, &handlers, &global_options,
&global_options_set, global_dc);
}
break;
default:
break;
}
return gnu_result;
}
/* Check the inline status of nested function FNDECL wrt its parent function.
If a non-inline nested function is referenced from an inline external
function, we cannot honor both requests at the same time without cloning
the nested function in the current unit since it is private to its unit.
We could inline it as well but it's probably better to err on the side
of too little inlining.
This must be done only on nested functions present in the source code
and not on nested functions generated by the compiler, e.g. finalizers,
because they may be not marked inline and we don't want them to block
the inlining of the parent function. */
static void
check_inlining_for_nested_subprog (tree fndecl)
{
if (DECL_IGNORED_P (current_function_decl) || DECL_IGNORED_P (fndecl))
return;
if (DECL_DECLARED_INLINE_P (fndecl))
return;
tree parent_decl = decl_function_context (fndecl);
if (DECL_EXTERNAL (parent_decl) && DECL_DECLARED_INLINE_P (parent_decl))
{
const location_t loc1 = DECL_SOURCE_LOCATION (fndecl);
const location_t loc2 = DECL_SOURCE_LOCATION (parent_decl);
if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (parent_decl)))
{
error_at (loc1, "subprogram %q+F not marked %",
fndecl);
error_at (loc2, "parent subprogram cannot be inlined");
}
else
{
warning_at (loc1, OPT_Winline, "subprogram %q+F not marked %",
fndecl);
warning_at (loc2, OPT_Winline, "parent subprogram cannot be inlined");
}
DECL_DECLARED_INLINE_P (parent_decl) = 0;
DECL_UNINLINABLE (parent_decl) = 1;
}
}
/* Return an expression for the length of TYPE, an integral type, computed in
RESULT_TYPE, another integral type.
We used to compute the length as MAX (hb - lb + 1, 0) which could overflow
when lb == TYPE'First. We now compute it as (hb >= lb) ? hb - lb + 1 : 0
which would only overflow in much rarer cases, for extremely large arrays
we expect never to encounter in practice. Besides, the former computation
required the use of potentially constraining signed arithmetics while the
latter does not. Note that the comparison must be done in the original
base index type in order to avoid any overflow during the conversion. */
static tree
get_type_length (tree type, tree result_type)
{
tree comp_type = get_base_type (result_type);
tree base_type = maybe_character_type (get_base_type (type));
tree lb = convert (base_type, TYPE_MIN_VALUE (type));
tree hb = convert (base_type, TYPE_MAX_VALUE (type));
tree length
= build_binary_op (PLUS_EXPR, comp_type,
build_binary_op (MINUS_EXPR, comp_type,
convert (comp_type, hb),
convert (comp_type, lb)),
build_int_cst (comp_type, 1));
length
= build_cond_expr (result_type,
build_binary_op (GE_EXPR, boolean_type_node, hb, lb),
convert (result_type, length),
build_int_cst (result_type, 0));
return length;
}
/* Subroutine of gnat_to_gnu to translate GNAT_NODE, an N_Attribute node,
to a GCC tree, which is returned. GNU_RESULT_TYPE_P is a pointer to
where we should place the result type. ATTRIBUTE is the attribute ID. */
static tree
Attribute_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p, int attribute)
{
const Node_Id gnat_prefix = Prefix (gnat_node);
tree gnu_prefix = gnat_to_gnu (gnat_prefix);
tree gnu_type = TREE_TYPE (gnu_prefix);
tree gnu_expr, gnu_result_type, gnu_result = error_mark_node;
bool prefix_unused = false;
/* If the input is a NULL_EXPR, make a new one. */
if (TREE_CODE (gnu_prefix) == NULL_EXPR)
{
gnu_result_type = get_unpadded_type (Etype (gnat_node));
*gnu_result_type_p = gnu_result_type;
return build1 (NULL_EXPR, gnu_result_type, TREE_OPERAND (gnu_prefix, 0));
}
switch (attribute)
{
case Attr_Pos:
case Attr_Val:
/* These are just conversions since representation clauses for
enumeration types are handled in the front-end. */
gnu_expr = gnat_to_gnu (First (Expressions (gnat_node)));
if (attribute == Attr_Pos)
gnu_expr = maybe_character_value (gnu_expr);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result = convert (gnu_result_type, gnu_expr);
break;
case Attr_Pred:
case Attr_Succ:
/* These just add or subtract the constant 1 since representation
clauses for enumeration types are handled in the front-end. */
gnu_expr = gnat_to_gnu (First (Expressions (gnat_node)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_type = maybe_character_type (gnu_result_type);
if (TREE_TYPE (gnu_expr) != gnu_type)
gnu_expr = convert (gnu_type, gnu_expr);
gnu_result
= build_binary_op (attribute == Attr_Pred ? MINUS_EXPR : PLUS_EXPR,
gnu_type, gnu_expr, build_int_cst (gnu_type, 1));
break;
case Attr_Address:
case Attr_Unrestricted_Access:
/* Conversions don't change the address of references but can cause
build_unary_op to miss the references below, so strip them off.
On the contrary, if the address-of operation causes a temporary
to be created, then it must be created with the proper type. */
gnu_expr = remove_conversions (gnu_prefix,
!Must_Be_Byte_Aligned (gnat_node));
if (REFERENCE_CLASS_P (gnu_expr))
gnu_prefix = gnu_expr;
/* If we are taking 'Address of an unconstrained object, this is the
pointer to the underlying array. */
if (attribute == Attr_Address)
gnu_prefix = maybe_unconstrained_array (gnu_prefix);
/* If we are building a static dispatch table, we have to honor
TARGET_VTABLE_USES_DESCRIPTORS if we want to be compatible
with the C++ ABI. We do it in the non-static case as well,
see gnat_to_gnu_entity, case E_Access_Subprogram_Type. */
else if (TARGET_VTABLE_USES_DESCRIPTORS
&& Is_Dispatch_Table_Entity (Etype (gnat_node)))
{
tree gnu_field, t;
/* Descriptors can only be built here for top-level functions. */
bool build_descriptor = (global_bindings_p () != 0);
int i;
vec *gnu_vec = NULL;
constructor_elt *elt;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If we're not going to build the descriptor, we have to retrieve
the one which will be built by the linker (or by the compiler
later if a static chain is requested). */
if (!build_descriptor)
{
gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_prefix);
gnu_result = fold_convert (build_pointer_type (gnu_result_type),
gnu_result);
gnu_result = build1 (INDIRECT_REF, gnu_result_type, gnu_result);
}
vec_safe_grow (gnu_vec, TARGET_VTABLE_USES_DESCRIPTORS);
elt = (gnu_vec->address () + TARGET_VTABLE_USES_DESCRIPTORS - 1);
for (gnu_field = TYPE_FIELDS (gnu_result_type), i = 0;
i < TARGET_VTABLE_USES_DESCRIPTORS;
gnu_field = DECL_CHAIN (gnu_field), i++)
{
if (build_descriptor)
{
t = build2 (FDESC_EXPR, TREE_TYPE (gnu_field), gnu_prefix,
build_int_cst (NULL_TREE, i));
TREE_CONSTANT (t) = 1;
}
else
t = build3 (COMPONENT_REF, ptr_void_ftype, gnu_result,
gnu_field, NULL_TREE);
elt->index = gnu_field;
elt->value = t;
elt--;
}
gnu_result = gnat_build_constructor (gnu_result_type, gnu_vec);
break;
}
/* ... fall through ... */
case Attr_Access:
case Attr_Unchecked_Access:
case Attr_Code_Address:
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result
= build_unary_op (((attribute == Attr_Address
|| attribute == Attr_Unrestricted_Access)
&& !Must_Be_Byte_Aligned (gnat_node))
? ATTR_ADDR_EXPR : ADDR_EXPR,
gnu_result_type, gnu_prefix);
/* For 'Code_Address, find an inner ADDR_EXPR and mark it so that we
don't try to build a trampoline. */
if (attribute == Attr_Code_Address)
{
gnu_expr = remove_conversions (gnu_result, false);
if (TREE_CODE (gnu_expr) == ADDR_EXPR)
TREE_NO_TRAMPOLINE (gnu_expr) = TREE_CONSTANT (gnu_expr) = 1;
/* On targets for which function symbols denote a descriptor, the
code address is stored within the first slot of the descriptor
so we do an additional dereference:
result = *((result_type *) result)
where we expect result to be of some pointer type already. */
if (targetm.calls.custom_function_descriptors == 0)
gnu_result
= build_unary_op (INDIRECT_REF, NULL_TREE,
convert (build_pointer_type (gnu_result_type),
gnu_result));
}
/* For 'Access, issue an error message if the prefix is a C++ method
since it can use a special calling convention on some platforms,
which cannot be propagated to the access type. */
else if (attribute == Attr_Access
&& TREE_CODE (TREE_TYPE (gnu_prefix)) == METHOD_TYPE)
post_error ("access to C++ constructor or member function not allowed",
gnat_node);
/* For other address attributes applied to a nested function,
find an inner ADDR_EXPR and annotate it so that we can issue
a useful warning with -Wtrampolines. */
else if (FUNC_OR_METHOD_TYPE_P (TREE_TYPE (gnu_prefix)))
{
gnu_expr = remove_conversions (gnu_result, false);
if (TREE_CODE (gnu_expr) == ADDR_EXPR
&& decl_function_context (TREE_OPERAND (gnu_expr, 0)))
{
set_expr_location_from_node (gnu_expr, gnat_node);
/* Also check the inlining status. */
check_inlining_for_nested_subprog (TREE_OPERAND (gnu_expr, 0));
/* Moreover, for 'Access or 'Unrestricted_Access with non-
foreign-compatible representation, mark the ADDR_EXPR so
that we can build a descriptor instead of a trampoline. */
if ((attribute == Attr_Access
|| attribute == Attr_Unrestricted_Access)
&& targetm.calls.custom_function_descriptors > 0
&& Can_Use_Internal_Rep (Etype (gnat_node)))
FUNC_ADDR_BY_DESCRIPTOR (gnu_expr) = 1;
/* Otherwise, we need to check that we are not violating the
No_Implicit_Dynamic_Code restriction. */
else if (targetm.calls.custom_function_descriptors != 0)
Check_Implicit_Dynamic_Code_Allowed (gnat_node);
}
}
break;
case Attr_Pool_Address:
{
tree gnu_ptr = gnu_prefix;
tree gnu_obj_type;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If this is fat pointer, the object must have been allocated with the
template in front of the array. So compute the template address; do
it by converting to a thin pointer. */
if (TYPE_IS_FAT_POINTER_P (TREE_TYPE (gnu_ptr)))
gnu_ptr
= convert (build_pointer_type
(TYPE_OBJECT_RECORD_TYPE
(TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))),
gnu_ptr);
gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr));
/* If this is a thin pointer, the object must have been allocated with
the template in front of the array. So compute the template address
and return it. */
if (TYPE_IS_THIN_POINTER_P (TREE_TYPE (gnu_ptr)))
gnu_ptr
= build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (gnu_ptr),
gnu_ptr,
fold_build1 (NEGATE_EXPR, sizetype,
byte_position
(DECL_CHAIN
TYPE_FIELDS ((gnu_obj_type)))));
gnu_result = convert (gnu_result_type, gnu_ptr);
}
break;
case Attr_Size:
case Attr_Object_Size:
case Attr_Value_Size:
case Attr_Max_Size_In_Storage_Elements:
/* Strip NOPs, conversions between original and packable versions, and
unpadding from GNU_PREFIX. Note that we cannot simply strip every
VIEW_CONVERT_EXPR because some of them may give the actual size, e.g.
for nominally unconstrained packed array. We use GNU_EXPR to see
if a COMPONENT_REF was involved. */
while (CONVERT_EXPR_P (gnu_prefix)
|| TREE_CODE (gnu_prefix) == NON_LVALUE_EXPR
|| (TREE_CODE (gnu_prefix) == VIEW_CONVERT_EXPR
&& TREE_CODE (TREE_TYPE (gnu_prefix)) == RECORD_TYPE
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0)))
== RECORD_TYPE
&& TYPE_NAME (TREE_TYPE (gnu_prefix))
== TYPE_NAME (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0)))))
gnu_prefix = TREE_OPERAND (gnu_prefix, 0);
gnu_expr = gnu_prefix;
if (TREE_CODE (gnu_prefix) == COMPONENT_REF
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))
gnu_prefix = TREE_OPERAND (gnu_prefix, 0);
prefix_unused = true;
gnu_type = TREE_TYPE (gnu_prefix);
/* Replace an unconstrained array type with the type of the underlying
array, except for 'Max_Size_In_Storage_Elements because we need to
return the (maximum) size requested for an allocator. */
if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
{
gnu_type = TYPE_OBJECT_RECORD_TYPE (gnu_type);
if (attribute != Attr_Max_Size_In_Storage_Elements)
gnu_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type)));
}
/* If we're looking for the size of a field, return the field size. */
if (TREE_CODE (gnu_prefix) == COMPONENT_REF)
gnu_result = DECL_SIZE (TREE_OPERAND (gnu_prefix, 1));
/* Otherwise, if the prefix is an object, or if we are looking for
'Object_Size or 'Max_Size_In_Storage_Elements, the result is the
GCC size of the type. We make an exception for padded objects,
as we do not take into account alignment promotions for the size.
This is in keeping with the object case of gnat_to_gnu_entity. */
else if ((TREE_CODE (gnu_prefix) != TYPE_DECL
&& !(TYPE_IS_PADDING_P (gnu_type)
&& TREE_CODE (gnu_expr) == COMPONENT_REF
&& pad_type_has_rm_size (gnu_type)))
|| attribute == Attr_Object_Size
|| attribute == Attr_Max_Size_In_Storage_Elements)
{
/* If this is a dereference and we have a special dynamic constrained
subtype on the prefix, use it to compute the size; otherwise, use
the designated subtype. */
if (Nkind (gnat_prefix) == N_Explicit_Dereference)
{
Node_Id gnat_actual_subtype
= Actual_Designated_Subtype (gnat_prefix);
tree gnu_ptr_type
= TREE_TYPE (gnat_to_gnu (Prefix (gnat_prefix)));
if (TYPE_IS_FAT_OR_THIN_POINTER_P (gnu_ptr_type)
&& Present (gnat_actual_subtype))
{
tree gnu_actual_obj_type
= gnat_to_gnu_type (gnat_actual_subtype);
gnu_type
= build_unc_object_type_from_ptr (gnu_ptr_type,
gnu_actual_obj_type,
get_identifier ("SIZE"),
false);
}
}
gnu_result = TYPE_SIZE (gnu_type);
}
/* Otherwise, the result is the RM size of the type. */
else
gnu_result = rm_size (gnu_type);
/* Deal with a self-referential size by qualifying the size with the
object or returning the maximum size for a type. */
if (TREE_CODE (gnu_prefix) != TYPE_DECL)
gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix);
else if (CONTAINS_PLACEHOLDER_P (gnu_result))
gnu_result = max_size (gnu_result, true);
/* If the type contains a template, subtract the padded size of the
template, except for 'Max_Size_In_Storage_Elements because we need
to return the (maximum) size requested for an allocator. */
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type)
&& attribute != Attr_Max_Size_In_Storage_Elements)
gnu_result
= size_binop (MINUS_EXPR, gnu_result,
bit_position (DECL_CHAIN (TYPE_FIELDS (gnu_type))));
/* For 'Max_Size_In_Storage_Elements, adjust the unit. */
if (attribute == Attr_Max_Size_In_Storage_Elements)
gnu_result = size_binop (CEIL_DIV_EXPR, gnu_result, bitsize_unit_node);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case Attr_Alignment:
{
unsigned int align;
if (TREE_CODE (gnu_prefix) == COMPONENT_REF
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))
gnu_prefix = TREE_OPERAND (gnu_prefix, 0);
gnu_type = TREE_TYPE (gnu_prefix);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
prefix_unused = true;
if (TREE_CODE (gnu_prefix) == COMPONENT_REF)
align = DECL_ALIGN (TREE_OPERAND (gnu_prefix, 1)) / BITS_PER_UNIT;
else
{
Entity_Id gnat_type = Etype (gnat_prefix);
unsigned int double_align;
bool is_capped_double, align_clause;
/* If the default alignment of "double" or larger scalar types is
specifically capped and there is an alignment clause neither
on the type nor on the prefix itself, return the cap. */
if ((double_align = double_float_alignment) > 0)
is_capped_double
= is_double_float_or_array (gnat_type, &align_clause);
else if ((double_align = double_scalar_alignment) > 0)
is_capped_double
= is_double_scalar_or_array (gnat_type, &align_clause);
else
is_capped_double = align_clause = false;
if (is_capped_double
&& Nkind (gnat_prefix) == N_Identifier
&& Present (Alignment_Clause (Entity (gnat_prefix))))
align_clause = true;
if (is_capped_double && !align_clause)
align = double_align;
else
align = TYPE_ALIGN (gnu_type) / BITS_PER_UNIT;
}
gnu_result = size_int (align);
}
break;
case Attr_First:
case Attr_Last:
case Attr_Range_Length:
prefix_unused = true;
if (INTEGRAL_TYPE_P (gnu_type) || TREE_CODE (gnu_type) == REAL_TYPE)
{
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (attribute == Attr_First)
gnu_result = TYPE_MIN_VALUE (gnu_type);
else if (attribute == Attr_Last)
gnu_result = TYPE_MAX_VALUE (gnu_type);
else
gnu_result = get_type_length (gnu_type, gnu_result_type);
break;
}
/* ... fall through ... */
case Attr_Length:
{
int Dimension = (Present (Expressions (gnat_node))
? UI_To_Int (Intval (First (Expressions (gnat_node))))
: 1), i;
struct parm_attr_d *pa = NULL;
Entity_Id gnat_param = Empty;
bool unconstrained_ptr_deref = false;
/* Make sure any implicit dereference gets done. */
gnu_prefix = maybe_implicit_deref (gnu_prefix);
gnu_prefix = maybe_unconstrained_array (gnu_prefix);
/* We treat unconstrained array In parameters specially. We also note
whether we are dereferencing a pointer to unconstrained array. */
if (!Is_Constrained (Etype (gnat_prefix)))
switch (Nkind (gnat_prefix))
{
case N_Identifier:
/* This is the direct case. */
if (Ekind (Entity (gnat_prefix)) == E_In_Parameter)
gnat_param = Entity (gnat_prefix);
break;
case N_Explicit_Dereference:
/* This is the indirect case. Note that we need to be sure that
the access value cannot be null as we'll hoist the load. */
if (Nkind (Prefix (gnat_prefix)) == N_Identifier
&& Ekind (Entity (Prefix (gnat_prefix))) == E_In_Parameter)
{
if (Can_Never_Be_Null (Entity (Prefix (gnat_prefix))))
gnat_param = Entity (Prefix (gnat_prefix));
}
else
unconstrained_ptr_deref = true;
break;
default:
break;
}
/* If the prefix is the view conversion of a constrained array to an
unconstrained form, we retrieve the constrained array because we
might not be able to substitute the PLACEHOLDER_EXPR coming from
the conversion. This can occur with the 'Old attribute applied
to a parameter with an unconstrained type, which gets rewritten
into a constrained local variable very late in the game. */
if (TREE_CODE (gnu_prefix) == VIEW_CONVERT_EXPR
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (gnu_prefix)))
&& !CONTAINS_PLACEHOLDER_P
(TYPE_SIZE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0)))))
gnu_type = TREE_TYPE (TREE_OPERAND (gnu_prefix, 0));
else
gnu_type = TREE_TYPE (gnu_prefix);
prefix_unused = true;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (TYPE_CONVENTION_FORTRAN_P (gnu_type))
{
int ndim;
tree gnu_type_temp;
for (ndim = 1, gnu_type_temp = gnu_type;
TREE_CODE (TREE_TYPE (gnu_type_temp)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type_temp));
ndim++, gnu_type_temp = TREE_TYPE (gnu_type_temp))
;
Dimension = ndim + 1 - Dimension;
}
for (i = 1; i < Dimension; i++)
gnu_type = TREE_TYPE (gnu_type);
gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE);
/* When not optimizing, look up the slot associated with the parameter
and the dimension in the cache and create a new one on failure.
Don't do this when the actual subtype needs debug info (this happens
with -gnatD): in elaborate_expression_1, we create variables that
hold the bounds, so caching attributes isn't very interesting and
causes dependency issues between these variables and cached
expressions. */
if (!optimize
&& Present (gnat_param)
&& !(Present (Actual_Subtype (gnat_param))
&& Needs_Debug_Info (Actual_Subtype (gnat_param))))
{
FOR_EACH_VEC_SAFE_ELT (f_parm_attr_cache, i, pa)
if (pa->id == gnat_param && pa->dim == Dimension)
break;
if (!pa)
{
pa = ggc_cleared_alloc ();
pa->id = gnat_param;
pa->dim = Dimension;
vec_safe_push (f_parm_attr_cache, pa);
}
}
/* Return the cached expression or build a new one. */
if (attribute == Attr_First)
{
if (pa && pa->first)
{
gnu_result = pa->first;
break;
}
gnu_result
= TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)));
}
else if (attribute == Attr_Last)
{
if (pa && pa->last)
{
gnu_result = pa->last;
break;
}
gnu_result
= TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)));
}
else /* attribute == Attr_Range_Length || attribute == Attr_Length */
{
if (pa && pa->length)
{
gnu_result = pa->length;
break;
}
gnu_result
= get_type_length (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)),
gnu_result_type);
}
/* If this has a PLACEHOLDER_EXPR, qualify it by the object we are
handling. Note that these attributes could not have been used on
an unconstrained array type. */
gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix);
/* Cache the expression we have just computed. Since we want to do it
at run time, we force the use of a SAVE_EXPR and let the gimplifier
create the temporary in the outermost binding level. We will make
sure in Subprogram_Body_to_gnu that it is evaluated on all possible
paths by forcing its evaluation on entry of the function. */
if (pa)
{
gnu_result
= build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result);
switch (attribute)
{
case Attr_First:
pa->first = gnu_result;
break;
case Attr_Last:
pa->last = gnu_result;
break;
case Attr_Length:
case Attr_Range_Length:
pa->length = gnu_result;
break;
default:
gcc_unreachable ();
}
}
/* Otherwise, evaluate it each time it is referenced. */
else
switch (attribute)
{
case Attr_First:
case Attr_Last:
/* If we are dereferencing a pointer to unconstrained array, we
need to capture the value because the pointed-to bounds may
subsequently be released. */
if (unconstrained_ptr_deref)
gnu_result
= build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result);
break;
case Attr_Length:
case Attr_Range_Length:
/* Set the source location onto the predicate of the condition
but not if the expression is cached to avoid messing up the
debug info. */
if (TREE_CODE (gnu_result) == COND_EXPR
&& EXPR_P (TREE_OPERAND (gnu_result, 0)))
set_expr_location_from_node (TREE_OPERAND (gnu_result, 0),
gnat_node);
break;
default:
gcc_unreachable ();
}
break;
}
case Attr_Bit_Position:
case Attr_Position:
case Attr_First_Bit:
case Attr_Last_Bit:
case Attr_Bit:
{
poly_int64 bitsize;
poly_int64 bitpos;
tree gnu_offset;
tree gnu_field_bitpos;
tree gnu_field_offset;
tree gnu_inner;
machine_mode mode;
int unsignedp, reversep, volatilep;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_prefix = remove_conversions (gnu_prefix, true);
prefix_unused = true;
/* We can have 'Bit on any object, but if it isn't a COMPONENT_REF,
the result is 0. Don't allow 'Bit on a bare component, though. */
if (attribute == Attr_Bit
&& TREE_CODE (gnu_prefix) != COMPONENT_REF
&& TREE_CODE (gnu_prefix) != FIELD_DECL)
{
gnu_result = integer_zero_node;
break;
}
else
gcc_assert (TREE_CODE (gnu_prefix) == COMPONENT_REF
|| (attribute == Attr_Bit_Position
&& TREE_CODE (gnu_prefix) == FIELD_DECL));
get_inner_reference (gnu_prefix, &bitsize, &bitpos, &gnu_offset,
&mode, &unsignedp, &reversep, &volatilep);
if (TREE_CODE (gnu_prefix) == COMPONENT_REF)
{
gnu_field_bitpos = bit_position (TREE_OPERAND (gnu_prefix, 1));
gnu_field_offset = byte_position (TREE_OPERAND (gnu_prefix, 1));
for (gnu_inner = TREE_OPERAND (gnu_prefix, 0);
TREE_CODE (gnu_inner) == COMPONENT_REF
&& DECL_INTERNAL_P (TREE_OPERAND (gnu_inner, 1));
gnu_inner = TREE_OPERAND (gnu_inner, 0))
{
gnu_field_bitpos
= size_binop (PLUS_EXPR, gnu_field_bitpos,
bit_position (TREE_OPERAND (gnu_inner, 1)));
gnu_field_offset
= size_binop (PLUS_EXPR, gnu_field_offset,
byte_position (TREE_OPERAND (gnu_inner, 1)));
}
}
else if (TREE_CODE (gnu_prefix) == FIELD_DECL)
{
gnu_field_bitpos = bit_position (gnu_prefix);
gnu_field_offset = byte_position (gnu_prefix);
}
else
{
gnu_field_bitpos = bitsize_zero_node;
gnu_field_offset = size_zero_node;
}
switch (attribute)
{
case Attr_Position:
gnu_result = gnu_field_offset;
break;
case Attr_First_Bit:
case Attr_Bit:
gnu_result = size_int (num_trailing_bits (bitpos));
break;
case Attr_Last_Bit:
gnu_result = bitsize_int (num_trailing_bits (bitpos));
gnu_result = size_binop (PLUS_EXPR, gnu_result,
TYPE_SIZE (TREE_TYPE (gnu_prefix)));
/* ??? Avoid a large unsigned result that will overflow when
converted to the signed universal_integer. */
if (integer_zerop (gnu_result))
gnu_result = integer_minus_one_node;
else
gnu_result
= size_binop (MINUS_EXPR, gnu_result, bitsize_one_node);
break;
case Attr_Bit_Position:
gnu_result = gnu_field_bitpos;
break;
}
/* If this has a PLACEHOLDER_EXPR, qualify it by the object we are
handling. */
gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix);
break;
}
case Attr_Min:
case Attr_Max:
{
tree gnu_lhs = gnat_to_gnu (First (Expressions (gnat_node)));
tree gnu_rhs = gnat_to_gnu (Next (First (Expressions (gnat_node))));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* The result of {MIN,MAX}_EXPR is unspecified if either operand is
a NaN so we implement the semantics of C99 f{min,max} to make it
predictable in this case: if either operand is a NaN, the other
is returned; if both operands are NaN's, a NaN is returned. */
if (SCALAR_FLOAT_TYPE_P (gnu_result_type)
&& !Machine_Overflows_On_Target)
{
const bool lhs_side_effects_p = TREE_SIDE_EFFECTS (gnu_lhs);
const bool rhs_side_effects_p = TREE_SIDE_EFFECTS (gnu_rhs);
tree t = builtin_decl_explicit (BUILT_IN_ISNAN);
tree lhs_is_nan, rhs_is_nan;
/* If the operands have side-effects, they need to be evaluated
only once in spite of the multiple references in the result. */
if (lhs_side_effects_p)
gnu_lhs = gnat_protect_expr (gnu_lhs);
if (rhs_side_effects_p)
gnu_rhs = gnat_protect_expr (gnu_rhs);
lhs_is_nan = fold_build2 (NE_EXPR, boolean_type_node,
build_call_expr (t, 1, gnu_lhs),
integer_zero_node);
rhs_is_nan = fold_build2 (NE_EXPR, boolean_type_node,
build_call_expr (t, 1, gnu_rhs),
integer_zero_node);
gnu_result = build_binary_op (attribute == Attr_Min
? MIN_EXPR : MAX_EXPR,
gnu_result_type, gnu_lhs, gnu_rhs);
gnu_result = fold_build3 (COND_EXPR, gnu_result_type,
rhs_is_nan, gnu_lhs, gnu_result);
gnu_result = fold_build3 (COND_EXPR, gnu_result_type,
lhs_is_nan, gnu_rhs, gnu_result);
/* If the operands have side-effects, they need to be evaluated
before doing the tests above since the place they otherwise
would end up being evaluated at run time could be wrong. */
if (lhs_side_effects_p)
gnu_result
= build2 (COMPOUND_EXPR, gnu_result_type, gnu_lhs, gnu_result);
if (rhs_side_effects_p)
gnu_result
= build2 (COMPOUND_EXPR, gnu_result_type, gnu_rhs, gnu_result);
}
else
gnu_result = build_binary_op (attribute == Attr_Min
? MIN_EXPR : MAX_EXPR,
gnu_result_type, gnu_lhs, gnu_rhs);
}
break;
case Attr_Passed_By_Reference:
gnu_result = size_int (default_pass_by_ref (gnu_type)
|| must_pass_by_ref (gnu_type));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case Attr_Component_Size:
if (TREE_CODE (gnu_prefix) == COMPONENT_REF
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))
gnu_prefix = TREE_OPERAND (gnu_prefix, 0);
gnu_prefix = maybe_implicit_deref (gnu_prefix);
gnu_type = TREE_TYPE (gnu_prefix);
if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
gnu_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_type))));
while (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)))
gnu_type = TREE_TYPE (gnu_type);
gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE);
/* Note this size cannot be self-referential. */
gnu_result = TYPE_SIZE (TREE_TYPE (gnu_type));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
prefix_unused = true;
break;
case Attr_Descriptor_Size:
gnu_type = TREE_TYPE (gnu_prefix);
gcc_assert (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE);
/* Return the padded size of the template in the object record type. */
gnu_type = TYPE_OBJECT_RECORD_TYPE (gnu_type);
gnu_result = bit_position (DECL_CHAIN (TYPE_FIELDS (gnu_type)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
prefix_unused = true;
break;
case Attr_Null_Parameter:
/* This is just a zero cast to the pointer type for our prefix and
dereferenced. */
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result
= build_unary_op (INDIRECT_REF, NULL_TREE,
convert (build_pointer_type (gnu_result_type),
integer_zero_node));
TREE_PRIVATE (gnu_result) = 1;
break;
case Attr_Mechanism_Code:
{
Entity_Id gnat_obj = Entity (gnat_prefix);
int code;
prefix_unused = true;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (Present (Expressions (gnat_node)))
{
int i = UI_To_Int (Intval (First (Expressions (gnat_node))));
for (gnat_obj = First_Formal (gnat_obj); i > 1;
i--, gnat_obj = Next_Formal (gnat_obj))
;
}
code = Mechanism (gnat_obj);
if (code == Default)
code = ((present_gnu_tree (gnat_obj)
&& (DECL_BY_REF_P (get_gnu_tree (gnat_obj))
|| ((TREE_CODE (get_gnu_tree (gnat_obj))
== PARM_DECL)
&& (DECL_BY_COMPONENT_PTR_P
(get_gnu_tree (gnat_obj))))))
? By_Reference : By_Copy);
gnu_result = convert (gnu_result_type, size_int (- code));
}
break;
case Attr_Model:
/* We treat Model as identical to Machine. This is true for at least
IEEE and some other nice floating-point systems. */
/* ... fall through ... */
case Attr_Machine:
/* The trick is to force the compiler to store the result in memory so
that we do not have extra precision used. But do this only when this
is necessary, i.e. if FP_ARITH_MAY_WIDEN is true and the precision of
the type is lower than that of the longest floating-point type. */
prefix_unused = true;
gnu_expr = gnat_to_gnu (First (Expressions (gnat_node)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result = convert (gnu_result_type, gnu_expr);
if (TREE_CODE (gnu_result) != REAL_CST
&& fp_arith_may_widen
&& TYPE_PRECISION (gnu_result_type)
< TYPE_PRECISION (longest_float_type_node))
{
tree rec_type = make_node (RECORD_TYPE);
tree field
= create_field_decl (get_identifier ("OBJ"), gnu_result_type,
rec_type, NULL_TREE, NULL_TREE, 0, 0);
tree rec_val, asm_expr;
finish_record_type (rec_type, field, 0, false);
rec_val = build_constructor_single (rec_type, field, gnu_result);
rec_val = build1 (SAVE_EXPR, rec_type, rec_val);
asm_expr
= build5 (ASM_EXPR, void_type_node,
build_string (0, ""),
tree_cons (build_tree_list (NULL_TREE,
build_string (2, "=m")),
rec_val, NULL_TREE),
tree_cons (build_tree_list (NULL_TREE,
build_string (1, "m")),
rec_val, NULL_TREE),
NULL_TREE, NULL_TREE);
ASM_VOLATILE_P (asm_expr) = 1;
gnu_result
= build_compound_expr (gnu_result_type, asm_expr,
build_component_ref (rec_val, field,
false));
}
break;
case Attr_Deref:
prefix_unused = true;
gnu_expr = gnat_to_gnu (First (Expressions (gnat_node)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* This can be a random address so build an alias-all pointer type. */
gnu_expr
= convert (build_pointer_type_for_mode (gnu_result_type, ptr_mode,
true),
gnu_expr);
gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_expr);
break;
default:
/* This abort means that we have an unimplemented attribute. */
gcc_unreachable ();
}
/* If this is an attribute where the prefix was unused, force a use of it if
it has a side-effect. But don't do it if the prefix is just an entity
name. However, if an access check is needed, we must do it. See second
example in AARM 11.6(5.e). */
if (prefix_unused
&& TREE_SIDE_EFFECTS (gnu_prefix)
&& !Is_Entity_Name (gnat_prefix))
gnu_result
= build_compound_expr (TREE_TYPE (gnu_result), gnu_prefix, gnu_result);
*gnu_result_type_p = gnu_result_type;
return gnu_result;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Case_Statement,
to a GCC tree, which is returned. */
static tree
Case_Statement_to_gnu (Node_Id gnat_node)
{
tree gnu_result, gnu_expr, gnu_type, gnu_label;
Node_Id gnat_when;
location_t end_locus;
bool may_fallthru = false;
gnu_expr = gnat_to_gnu (Expression (gnat_node));
gnu_expr = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr);
gnu_expr = maybe_character_value (gnu_expr);
gnu_type = TREE_TYPE (gnu_expr);
/* We build a SWITCH_EXPR that contains the code with interspersed
CASE_LABEL_EXPRs for each label. */
if (!Sloc_to_locus (End_Location (gnat_node), &end_locus))
end_locus = input_location;
gnu_label = create_artificial_label (end_locus);
start_stmt_group ();
for (gnat_when = First_Non_Pragma (Alternatives (gnat_node));
Present (gnat_when);
gnat_when = Next_Non_Pragma (gnat_when))
{
bool choices_added_p = false;
Node_Id gnat_choice;
/* First compile all the different case choices for the current WHEN
alternative. */
for (gnat_choice = First (Discrete_Choices (gnat_when));
Present (gnat_choice);
gnat_choice = Next (gnat_choice))
{
tree gnu_low = NULL_TREE, gnu_high = NULL_TREE;
tree label = create_artificial_label (input_location);
switch (Nkind (gnat_choice))
{
case N_Range:
gnu_low = gnat_to_gnu (Low_Bound (gnat_choice));
gnu_high = gnat_to_gnu (High_Bound (gnat_choice));
break;
case N_Subtype_Indication:
gnu_low = gnat_to_gnu (Low_Bound (Range_Expression
(Constraint (gnat_choice))));
gnu_high = gnat_to_gnu (High_Bound (Range_Expression
(Constraint (gnat_choice))));
break;
case N_Identifier:
case N_Expanded_Name:
/* This represents either a subtype range or a static value of
some kind; Ekind says which. */
if (Is_Type (Entity (gnat_choice)))
{
tree gnu_type = get_unpadded_type (Entity (gnat_choice));
gnu_low = TYPE_MIN_VALUE (gnu_type);
gnu_high = TYPE_MAX_VALUE (gnu_type);
break;
}
/* ... fall through ... */
case N_Character_Literal:
case N_Integer_Literal:
gnu_low = gnat_to_gnu (gnat_choice);
break;
case N_Others_Choice:
break;
default:
gcc_unreachable ();
}
/* Everything should be folded into constants at this point. */
gcc_assert (!gnu_low || TREE_CODE (gnu_low) == INTEGER_CST);
gcc_assert (!gnu_high || TREE_CODE (gnu_high) == INTEGER_CST);
if (gnu_low && TREE_TYPE (gnu_low) != gnu_type)
gnu_low = convert (gnu_type, gnu_low);
if (gnu_high && TREE_TYPE (gnu_high) != gnu_type)
gnu_high = convert (gnu_type, gnu_high);
add_stmt_with_node (build_case_label (gnu_low, gnu_high, label),
gnat_choice);
choices_added_p = true;
}
/* This construct doesn't define a scope so we shouldn't push a binding
level around the statement list. Except that we have always done so
historically and this makes it possible to reduce stack usage. As a
compromise, we keep doing it for case statements, for which this has
never been problematic, but not for case expressions in Ada 2012. */
if (choices_added_p)
{
const bool is_case_expression
= (Nkind (Parent (gnat_node)) == N_Expression_With_Actions);
tree group
= build_stmt_group (Statements (gnat_when), !is_case_expression);
bool group_may_fallthru = block_may_fallthru (group);
add_stmt (group);
if (group_may_fallthru)
{
tree stmt = build1 (GOTO_EXPR, void_type_node, gnu_label);
SET_EXPR_LOCATION (stmt, end_locus);
add_stmt (stmt);
may_fallthru = true;
}
}
}
/* Now emit a definition of the label the cases branch to, if any. */
if (may_fallthru)
add_stmt (build1 (LABEL_EXPR, void_type_node, gnu_label));
gnu_result = build2 (SWITCH_EXPR, gnu_type, gnu_expr, end_stmt_group ());
return gnu_result;
}
/* Return true if we are in the body of a loop. */
static inline bool
inside_loop_p (void)
{
return !vec_safe_is_empty (gnu_loop_stack);
}
/* Find out whether EXPR is a simple additive expression based on the iteration
variable of some enclosing loop in the current function. If so, return the
loop and set *DISP to the displacement and *NEG_P to true if this is for a
subtraction; otherwise, return NULL. */
static struct loop_info_d *
find_loop_for (tree expr, tree *disp, bool *neg_p)
{
tree var, add, cst;
bool minus_p;
struct loop_info_d *iter = NULL;
unsigned int i;
if (is_simple_additive_expression (expr, &add, &cst, &minus_p))
{
var = add;
if (disp)
*disp = cst;
if (neg_p)
*neg_p = minus_p;
}
else
{
var = expr;
if (disp)
*disp = NULL_TREE;
if (neg_p)
*neg_p = false;
}
var = remove_conversions (var, false);
if (TREE_CODE (var) != VAR_DECL)
return NULL;
if (decl_function_context (var) != current_function_decl)
return NULL;
gcc_assert (vec_safe_length (gnu_loop_stack) > 0);
FOR_EACH_VEC_ELT_REVERSE (*gnu_loop_stack, i, iter)
if (var == iter->loop_var)
break;
return iter;
}
/* Return true if VAL (of type TYPE) can equal the minimum value if MAX is
false, or the maximum value if MAX is true, of TYPE. */
static bool
can_equal_min_or_max_val_p (tree val, tree type, bool max)
{
tree min_or_max_val = (max ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type));
if (TREE_CODE (min_or_max_val) != INTEGER_CST)
return true;
if (TREE_CODE (val) == NOP_EXPR)
val = (max
? TYPE_MAX_VALUE (TREE_TYPE (TREE_OPERAND (val, 0)))
: TYPE_MIN_VALUE (TREE_TYPE (TREE_OPERAND (val, 0))));
if (TREE_CODE (val) != INTEGER_CST)
return true;
if (max)
return tree_int_cst_lt (val, min_or_max_val) == 0;
else
return tree_int_cst_lt (min_or_max_val, val) == 0;
}
/* Return true if VAL (of type TYPE) can equal the minimum value of TYPE.
If REVERSE is true, minimum value is taken as maximum value. */
static inline bool
can_equal_min_val_p (tree val, tree type, bool reverse)
{
return can_equal_min_or_max_val_p (val, type, reverse);
}
/* Return true if VAL (of type TYPE) can equal the maximum value of TYPE.
If REVERSE is true, maximum value is taken as minimum value. */
static inline bool
can_equal_max_val_p (tree val, tree type, bool reverse)
{
return can_equal_min_or_max_val_p (val, type, !reverse);
}
/* Return true if VAL1 can be lower than VAL2. */
static bool
can_be_lower_p (tree val1, tree val2)
{
if (TREE_CODE (val1) == NOP_EXPR)
{
tree type = TREE_TYPE (TREE_OPERAND (val1, 0));
if (can_be_lower_p (TYPE_MAX_VALUE (type), TYPE_MIN_VALUE (type)))
return true;
val1 = TYPE_MIN_VALUE (type);
}
if (TREE_CODE (val1) != INTEGER_CST)
return true;
if (TREE_CODE (val2) == NOP_EXPR)
{
tree type = TREE_TYPE (TREE_OPERAND (val2, 0));
if (can_be_lower_p (TYPE_MAX_VALUE (type), TYPE_MIN_VALUE (type)))
return true;
val2 = TYPE_MAX_VALUE (type);
}
if (TREE_CODE (val2) != INTEGER_CST)
return true;
return tree_int_cst_lt (val1, val2);
}
/* Replace EXPR1 and EXPR2 by invariant expressions if possible. Return
true if both expressions have been replaced and false otherwise. */
static bool
make_invariant (tree *expr1, tree *expr2)
{
tree inv_expr1 = gnat_invariant_expr (*expr1);
tree inv_expr2 = gnat_invariant_expr (*expr2);
if (inv_expr1)
*expr1 = inv_expr1;
if (inv_expr2)
*expr2 = inv_expr2;
return inv_expr1 && inv_expr2;
}
/* Helper function for walk_tree, used by independent_iterations_p below. */
static tree
scan_rhs_r (tree *tp, int *walk_subtrees, void *data)
{
bitmap *params = (bitmap *)data;
tree t = *tp;
/* No need to walk into types or decls. */
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
if (TREE_CODE (t) == PARM_DECL && bitmap_bit_p (*params, DECL_UID (t)))
return t;
return NULL_TREE;
}
/* Return true if STMT_LIST generates independent iterations in a loop. */
static bool
independent_iterations_p (tree stmt_list)
{
tree_stmt_iterator tsi;
bitmap params = BITMAP_GGC_ALLOC();
auto_vec rhs;
tree iter;
int i;
if (TREE_CODE (stmt_list) == BIND_EXPR)
stmt_list = BIND_EXPR_BODY (stmt_list);
/* Scan the list and return false on anything that is not either a check
or an assignment to a parameter with restricted aliasing. */
for (tsi = tsi_start (stmt_list); !tsi_end_p (tsi); tsi_next (&tsi))
{
tree stmt = tsi_stmt (tsi);
switch (TREE_CODE (stmt))
{
case COND_EXPR:
{
if (COND_EXPR_ELSE (stmt))
return false;
if (TREE_CODE (COND_EXPR_THEN (stmt)) != CALL_EXPR)
return false;
tree func = get_callee_fndecl (COND_EXPR_THEN (stmt));
if (!(func && TREE_THIS_VOLATILE (func)))
return false;
break;
}
case MODIFY_EXPR:
{
tree lhs = TREE_OPERAND (stmt, 0);
while (handled_component_p (lhs))
lhs = TREE_OPERAND (lhs, 0);
if (TREE_CODE (lhs) != INDIRECT_REF)
return false;
lhs = TREE_OPERAND (lhs, 0);
if (!(TREE_CODE (lhs) == PARM_DECL
&& DECL_RESTRICTED_ALIASING_P (lhs)))
return false;
bitmap_set_bit (params, DECL_UID (lhs));
rhs.safe_push (TREE_OPERAND (stmt, 1));
break;
}
default:
return false;
}
}
/* At this point we know that the list contains only statements that will
modify parameters with restricted aliasing. Check that the statements
don't at the time read from these parameters. */
FOR_EACH_VEC_ELT (rhs, i, iter)
if (walk_tree_without_duplicates (&iter, scan_rhs_r, ¶ms))
return false;
return true;
}
/* Helper for Loop_Statement_to_gnu to translate the body of a loop,
designated by GNAT_LOOP, to which an Acc_Loop pragma applies. The pragma
arguments might instruct us to collapse a nest of loops, where computation
statements are expected only within the innermost loop, as in:
for I in 1 .. 5 loop
pragma Acc_Parallel;
pragma Acc_Loop(Collapse => 3);
for J in 1 .. 8 loop
for K in 1 .. 4 loop
X (I, J, K) := Y (I, J, K) + 2;
end loop;
end loop;
end loop;
We expect the top of gnu_loop_stack to hold a pointer to the loop info
setup for the translation of GNAT_LOOP, which holds a pointer to the
initial gnu loop stmt node. We return the new gnu loop statement to
use. */
static tree
Acc_Loop_to_gnu (Node_Id gnat_loop)
{
const struct loop_info_d * const gnu_loop_info = gnu_loop_stack->last ();
tree gnu_loop_stmt = gnu_loop_info->stmt;
tree acc_loop = make_node (OACC_LOOP);
tree acc_bind_expr = NULL_TREE;
Node_Id cur_loop = gnat_loop;
int collapse_count = 1;
tree initv;
tree condv;
tree incrv;
/* Parse the pragmas, adding clauses to the current gnu_loop_stack through
side effects. */
for (Node_Id tmp = First (Statements (gnat_loop));
Present (tmp) && Nkind (tmp) == N_Pragma;
tmp = Next (tmp))
Pragma_to_gnu(tmp);
/* Find the number of loops that should be collapsed. */
for (tree tmp = gnu_loop_stack->last ()->omp_loop_clauses; tmp ;
tmp = OMP_CLAUSE_CHAIN (tmp))
if (OMP_CLAUSE_CODE (tmp) == OMP_CLAUSE_COLLAPSE)
collapse_count = tree_to_shwi (OMP_CLAUSE_COLLAPSE_EXPR (tmp));
else if (OMP_CLAUSE_CODE (tmp) == OMP_CLAUSE_TILE)
collapse_count = list_length (OMP_CLAUSE_TILE_LIST (tmp));
initv = make_tree_vec (collapse_count);
condv = make_tree_vec (collapse_count);
incrv = make_tree_vec (collapse_count);
start_stmt_group ();
gnat_pushlevel ();
/* For each nested loop that should be collapsed ... */
for (int count = 0; count < collapse_count; ++count)
{
Node_Id lps =
Loop_Parameter_Specification (Iteration_Scheme (cur_loop));
tree low =
Acc_gnat_to_gnu (Low_Bound (Discrete_Subtype_Definition (lps)));
tree high =
Acc_gnat_to_gnu (High_Bound (Discrete_Subtype_Definition (lps)));
tree variable =
gnat_to_gnu_entity (Defining_Identifier (lps), NULL_TREE, true);
/* Build the initial value of the variable of the invariant. */
TREE_VEC_ELT (initv, count) = build2 (MODIFY_EXPR,
TREE_TYPE (variable),
variable,
low);
add_stmt (TREE_VEC_ELT (initv, count));
/* Build the invariant of the loop. */
TREE_VEC_ELT (condv, count) = build2 (LE_EXPR,
boolean_type_node,
variable,
high);
/* Build the incrementation expression of the loop. */
TREE_VEC_ELT (incrv, count) =
build2 (MODIFY_EXPR,
TREE_TYPE (variable),
variable,
build2 (PLUS_EXPR,
TREE_TYPE (variable),
variable,
build_int_cst (TREE_TYPE (variable), 1)));
/* Don't process the innermost loop because its statements belong to
another statement group. */
if (count < collapse_count - 1)
/* Process the current loop's body. */
for (Node_Id stmt = First (Statements (cur_loop));
Present (stmt); stmt = Next (stmt))
{
/* If we are processsing the outermost loop, it is ok for it to
contain pragmas. */
if (Nkind (stmt) == N_Pragma && count == 0)
;
/* The frontend might have inserted a N_Object_Declaration in the
loop's body to declare the iteration variable of the next loop.
It will need to be hoisted before the collapsed loops. */
else if (Nkind (stmt) == N_Object_Declaration)
Acc_gnat_to_gnu (stmt);
else if (Nkind (stmt) == N_Loop_Statement)
cur_loop = stmt;
/* Every other kind of statement is prohibited in collapsed
loops. */
else if (count < collapse_count - 1)
gcc_unreachable();
}
}
gnat_poplevel ();
acc_bind_expr = end_stmt_group ();
/* Parse the innermost loop. */
start_stmt_group();
for (Node_Id stmt = First (Statements (cur_loop));
Present (stmt);
stmt = Next (stmt))
{
/* When the innermost loop is the only loop, do not parse the pragmas
again. */
if (Nkind (stmt) == N_Pragma && collapse_count == 1)
continue;
add_stmt (Acc_gnat_to_gnu (stmt));
}
TREE_TYPE (acc_loop) = void_type_node;
OMP_FOR_INIT (acc_loop) = initv;
OMP_FOR_COND (acc_loop) = condv;
OMP_FOR_INCR (acc_loop) = incrv;
OMP_FOR_BODY (acc_loop) = end_stmt_group ();
OMP_FOR_PRE_BODY (acc_loop) = NULL;
OMP_FOR_ORIG_DECLS (acc_loop) = NULL;
OMP_FOR_CLAUSES (acc_loop) = gnu_loop_stack->last ()->omp_loop_clauses;
BIND_EXPR_BODY (acc_bind_expr) = acc_loop;
return gnu_loop_stmt;
}
/* Helper for Loop_Statement_to_gnu, to translate the body of a loop not
subject to any sort of parallelization directive or restriction, designated
by GNAT_NODE.
We expect the top of gnu_loop_stack to hold a pointer to the loop info
setup for the translation, which holds a pointer to the initial gnu loop
stmt node. We return the new gnu loop statement to use.
We might also set *GNU_COND_EXPR_P to request a variant of the translation
scheme in Loop_Statement_to_gnu. */
static tree
Regular_Loop_to_gnu (Node_Id gnat_node, tree *gnu_cond_expr_p)
{
const Node_Id gnat_iter_scheme = Iteration_Scheme (gnat_node);
struct loop_info_d *const gnu_loop_info = gnu_loop_stack->last ();
tree gnu_loop_stmt = gnu_loop_info->stmt;
tree gnu_loop_label = LOOP_STMT_LABEL (gnu_loop_stmt);
tree gnu_cond_expr = *gnu_cond_expr_p;
tree gnu_low = NULL_TREE, gnu_high = NULL_TREE;
/* Set the condition under which the loop must keep going. If we have an
explicit condition, use it to set the location information throughout
the translation of the loop statement to avoid having multiple SLOCs.
For the case "LOOP .... END LOOP;" the condition is always true. */
if (No (gnat_iter_scheme))
;
/* For the case "WHILE condition LOOP ..... END LOOP;" it's immediate. */
else if (Present (Condition (gnat_iter_scheme)))
{
LOOP_STMT_COND (gnu_loop_stmt)
= gnat_to_gnu (Condition (gnat_iter_scheme));
set_expr_location_from_node (gnu_loop_stmt, gnat_iter_scheme);
}
/* Otherwise we have an iteration scheme and the condition is given by the
bounds of the subtype of the iteration variable. */
else
{
Node_Id gnat_loop_spec = Loop_Parameter_Specification (gnat_iter_scheme);
Entity_Id gnat_loop_var = Defining_Entity (gnat_loop_spec);
Entity_Id gnat_type = Etype (gnat_loop_var);
tree gnu_type = get_unpadded_type (gnat_type);
tree gnu_base_type = maybe_character_type (get_base_type (gnu_type));
tree gnu_one_node = build_int_cst (gnu_base_type, 1);
tree gnu_loop_var, gnu_loop_iv, gnu_first, gnu_last, gnu_stmt;
enum tree_code update_code, test_code, shift_code;
bool reverse = Reverse_Present (gnat_loop_spec), use_iv = false;
gnu_low = convert (gnu_base_type, TYPE_MIN_VALUE (gnu_type));
gnu_high = convert (gnu_base_type, TYPE_MAX_VALUE (gnu_type));
/* We must disable modulo reduction for the iteration variable, if any,
in order for the loop comparison to be effective. */
if (reverse)
{
gnu_first = gnu_high;
gnu_last = gnu_low;
update_code = MINUS_NOMOD_EXPR;
test_code = GE_EXPR;
shift_code = PLUS_NOMOD_EXPR;
}
else
{
gnu_first = gnu_low;
gnu_last = gnu_high;
update_code = PLUS_NOMOD_EXPR;
test_code = LE_EXPR;
shift_code = MINUS_NOMOD_EXPR;
}
/* We use two different strategies to translate the loop, depending on
whether optimization is enabled.
If it is, we generate the canonical loop form expected by the loop
optimizer and the loop vectorizer, which is the do-while form:
ENTRY_COND
loop:
TOP_UPDATE
BODY
BOTTOM_COND
GOTO loop
This avoids an implicit dependency on loop header copying and makes
it possible to turn BOTTOM_COND into an inequality test.
If optimization is disabled, loop header copying doesn't come into
play and we try to generate the loop form with the fewer conditional
branches. First, the default form, which is:
loop:
TOP_COND
BODY
BOTTOM_UPDATE
GOTO loop
It should catch most loops with constant ending point. Then, if we
cannot, we try to generate the shifted form:
loop:
TOP_COND
TOP_UPDATE
BODY
GOTO loop
which should catch loops with constant starting point. Otherwise, if
we cannot, we generate the fallback form:
ENTRY_COND
loop:
BODY
BOTTOM_COND
BOTTOM_UPDATE
GOTO loop
which works in all cases. */
if (optimize)
{
/* We can use the do-while form directly if GNU_FIRST-1 doesn't
overflow. */
if (!can_equal_min_val_p (gnu_first, gnu_base_type, reverse))
;
/* Otherwise, use the do-while form with the help of a special
induction variable in the unsigned version of the base type
or the unsigned version of the size type, whichever is the
largest, in order to have wrap-around arithmetics for it. */
else
{
if (TYPE_PRECISION (gnu_base_type)
> TYPE_PRECISION (size_type_node))
gnu_base_type
= gnat_type_for_size (TYPE_PRECISION (gnu_base_type), 1);
else
gnu_base_type = size_type_node;
gnu_first = convert (gnu_base_type, gnu_first);
gnu_last = convert (gnu_base_type, gnu_last);
gnu_one_node = build_int_cst (gnu_base_type, 1);
use_iv = true;
}
gnu_first
= build_binary_op (shift_code, gnu_base_type, gnu_first,
gnu_one_node);
LOOP_STMT_TOP_UPDATE_P (gnu_loop_stmt) = 1;
LOOP_STMT_BOTTOM_COND_P (gnu_loop_stmt) = 1;
}
else
{
/* We can use the default form if GNU_LAST+1 doesn't overflow. */
if (!can_equal_max_val_p (gnu_last, gnu_base_type, reverse))
;
/* Otherwise, we can use the shifted form if neither GNU_FIRST-1 nor
GNU_LAST-1 does. */
else if (!can_equal_min_val_p (gnu_first, gnu_base_type, reverse)
&& !can_equal_min_val_p (gnu_last, gnu_base_type, reverse))
{
gnu_first
= build_binary_op (shift_code, gnu_base_type, gnu_first,
gnu_one_node);
gnu_last
= build_binary_op (shift_code, gnu_base_type, gnu_last,
gnu_one_node);
LOOP_STMT_TOP_UPDATE_P (gnu_loop_stmt) = 1;
}
/* Otherwise, use the fallback form. */
else
LOOP_STMT_BOTTOM_COND_P (gnu_loop_stmt) = 1;
}
/* If we use the BOTTOM_COND, we can turn the test into an inequality
test but we may have to add ENTRY_COND to protect the empty loop. */
if (LOOP_STMT_BOTTOM_COND_P (gnu_loop_stmt))
{
test_code = NE_EXPR;
if (can_be_lower_p (gnu_high, gnu_low))
{
gnu_cond_expr
= build3 (COND_EXPR, void_type_node,
build_binary_op (LE_EXPR, boolean_type_node,
gnu_low, gnu_high),
NULL_TREE, alloc_stmt_list ());
set_expr_location_from_node (gnu_cond_expr, gnat_iter_scheme);
}
}
/* Open a new nesting level that will surround the loop to declare the
iteration variable. */
start_stmt_group ();
gnat_pushlevel ();
/* If we use the special induction variable, create it and set it to
its initial value. Morever, the regular iteration variable cannot
itself be initialized, lest the initial value wrapped around. */
if (use_iv)
{
gnu_loop_iv
= create_init_temporary ("I", gnu_first, &gnu_stmt, gnat_loop_var);
add_stmt (gnu_stmt);
gnu_first = NULL_TREE;
}
else
gnu_loop_iv = NULL_TREE;
/* Declare the iteration variable and set it to its initial value. */
gnu_loop_var = gnat_to_gnu_entity (gnat_loop_var, gnu_first, true);
if (DECL_BY_REF_P (gnu_loop_var))
gnu_loop_var = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_loop_var);
else if (use_iv)
{
gcc_assert (DECL_LOOP_PARM_P (gnu_loop_var));
SET_DECL_INDUCTION_VAR (gnu_loop_var, gnu_loop_iv);
}
gnu_loop_info->loop_var = gnu_loop_var;
gnu_loop_info->low_bound = gnu_low;
gnu_loop_info->high_bound = gnu_high;
/* Do all the arithmetics in the base type. */
gnu_loop_var = convert (gnu_base_type, gnu_loop_var);
/* Set either the top or bottom exit condition. */
if (use_iv)
LOOP_STMT_COND (gnu_loop_stmt)
= build_binary_op (test_code, boolean_type_node, gnu_loop_iv,
gnu_last);
else
LOOP_STMT_COND (gnu_loop_stmt)
= build_binary_op (test_code, boolean_type_node, gnu_loop_var,
gnu_last);
/* Set either the top or bottom update statement and give it the source
location of the iteration for better coverage info. */
if (use_iv)
{
gnu_stmt
= build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_loop_iv,
build_binary_op (update_code, gnu_base_type,
gnu_loop_iv, gnu_one_node));
set_expr_location_from_node (gnu_stmt, gnat_iter_scheme);
append_to_statement_list (gnu_stmt,
&LOOP_STMT_UPDATE (gnu_loop_stmt));
gnu_stmt
= build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_loop_var,
gnu_loop_iv);
set_expr_location_from_node (gnu_stmt, gnat_iter_scheme);
append_to_statement_list (gnu_stmt,
&LOOP_STMT_UPDATE (gnu_loop_stmt));
}
else
{
gnu_stmt
= build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_loop_var,
build_binary_op (update_code, gnu_base_type,
gnu_loop_var, gnu_one_node));
set_expr_location_from_node (gnu_stmt, gnat_iter_scheme);
LOOP_STMT_UPDATE (gnu_loop_stmt) = gnu_stmt;
}
set_expr_location_from_node (gnu_loop_stmt, gnat_iter_scheme);
}
/* If the loop was named, have the name point to this loop. In this case,
the association is not a DECL node, but the end label of the loop. */
if (Present (Identifier (gnat_node)))
save_gnu_tree (Entity (Identifier (gnat_node)), gnu_loop_label, true);
/* Make the loop body into its own block, so any allocated storage will be
released every iteration. This is needed for stack allocation. */
LOOP_STMT_BODY (gnu_loop_stmt)
= build_stmt_group (Statements (gnat_node), true);
TREE_SIDE_EFFECTS (gnu_loop_stmt) = 1;
/* If we have an iteration scheme, then we are in a statement group. Add
the LOOP_STMT to it, finish it and make it the "loop". */
if (Present (gnat_iter_scheme) && No (Condition (gnat_iter_scheme)))
{
/* First, if we have computed invariant conditions for range (or index)
checks applied to the iteration variable, find out whether they can
be evaluated to false at compile time; otherwise, if there are not
too many of them, combine them with the original checks. If loop
unswitching is enabled, do not require the loop bounds to be also
invariant, as their evaluation will still be ahead of the loop. */
if (vec_safe_length (gnu_loop_info->checks) > 0
&& (make_invariant (&gnu_low, &gnu_high) || optimize >= 3))
{
struct range_check_info_d *rci;
unsigned int i, n_remaining_checks = 0;
FOR_EACH_VEC_ELT (*gnu_loop_info->checks, i, rci)
{
tree low_ok, high_ok;
if (rci->low_bound)
{
tree gnu_adjusted_low = convert (rci->type, gnu_low);
if (rci->disp)
gnu_adjusted_low
= fold_build2 (rci->neg_p ? MINUS_EXPR : PLUS_EXPR,
rci->type, gnu_adjusted_low, rci->disp);
low_ok
= build_binary_op (GE_EXPR, boolean_type_node,
gnu_adjusted_low, rci->low_bound);
}
else
low_ok = boolean_true_node;
if (rci->high_bound)
{
tree gnu_adjusted_high = convert (rci->type, gnu_high);
if (rci->disp)
gnu_adjusted_high
= fold_build2 (rci->neg_p ? MINUS_EXPR : PLUS_EXPR,
rci->type, gnu_adjusted_high, rci->disp);
high_ok
= build_binary_op (LE_EXPR, boolean_type_node,
gnu_adjusted_high, rci->high_bound);
}
else
high_ok = boolean_true_node;
tree range_ok
= build_binary_op (TRUTH_ANDIF_EXPR, boolean_type_node,
low_ok, high_ok);
rci->invariant_cond
= build_unary_op (TRUTH_NOT_EXPR, boolean_type_node, range_ok);
if (rci->invariant_cond == boolean_false_node)
TREE_OPERAND (rci->inserted_cond, 0) = rci->invariant_cond;
else
n_remaining_checks++;
}
/* Note that loop unswitching can only be applied a small number of
times to a given loop (PARAM_MAX_UNSWITCH_LEVEL default to 3). */
if (IN_RANGE (n_remaining_checks, 1, 3)
&& optimize >= 2
&& !optimize_size)
FOR_EACH_VEC_ELT (*gnu_loop_info->checks, i, rci)
if (rci->invariant_cond != boolean_false_node)
{
TREE_OPERAND (rci->inserted_cond, 0) = rci->invariant_cond;
if (optimize >= 3)
add_stmt_with_node_force (rci->inserted_cond, gnat_node);
}
}
/* Second, if loop vectorization is enabled and the iterations of the
loop can easily be proved as independent, mark the loop. */
if (optimize >= 3
&& independent_iterations_p (LOOP_STMT_BODY (gnu_loop_stmt)))
LOOP_STMT_IVDEP (gnu_loop_stmt) = 1;
add_stmt (gnu_loop_stmt);
gnat_poplevel ();
gnu_loop_stmt = end_stmt_group ();
}
*gnu_cond_expr_p = gnu_cond_expr;
return gnu_loop_stmt;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Loop_Statement,
to a GCC tree, which is returned. */
static tree
Loop_Statement_to_gnu (Node_Id gnat_node)
{
struct loop_info_d *gnu_loop_info = ggc_cleared_alloc ();
tree gnu_loop_stmt = build4 (LOOP_STMT, void_type_node, NULL_TREE,
NULL_TREE, NULL_TREE, NULL_TREE);
tree gnu_cond_expr = NULL_TREE;
tree gnu_loop_label = create_artificial_label (input_location);
tree gnu_result;
/* Push the loop_info structure associated with the LOOP_STMT. */
vec_safe_push (gnu_loop_stack, gnu_loop_info);
/* Set location information for statement and end label. */
set_expr_location_from_node (gnu_loop_stmt, gnat_node);
Sloc_to_locus (Sloc (End_Label (gnat_node)),
&DECL_SOURCE_LOCATION (gnu_loop_label));
LOOP_STMT_LABEL (gnu_loop_stmt) = gnu_loop_label;
/* Save the statement for later reuse. */
gnu_loop_info->stmt = gnu_loop_stmt;
/* Perform the core loop body translation. */
if (Is_OpenAcc_Loop (gnat_node))
gnu_loop_stmt = Acc_Loop_to_gnu (gnat_node);
else
gnu_loop_stmt = Regular_Loop_to_gnu (gnat_node, &gnu_cond_expr);
/* A gnat_node that has its OpenAcc_Environment flag set needs to be
offloaded. Note that the OpenAcc_Loop flag is not necessarily set. */
if (Is_OpenAcc_Environment (gnat_node))
{
tree_code code = gnu_loop_stack->last ()->omp_code;
tree tmp = make_node (code);
TREE_TYPE (tmp) = void_type_node;
if (code == OACC_PARALLEL || code == OACC_KERNELS)
{
OMP_BODY (tmp) = gnu_loop_stmt;
OMP_CLAUSES (tmp) = gnu_loop_stack->last ()->omp_construct_clauses;
}
else if (code == OACC_DATA)
{
OACC_DATA_BODY (tmp) = gnu_loop_stmt;
OACC_DATA_CLAUSES (tmp) =
gnu_loop_stack->last ()->omp_construct_clauses;
}
else
gcc_unreachable();
set_expr_location_from_node (tmp, gnat_node);
gnu_loop_stmt = tmp;
}
/* If we have an outer COND_EXPR, that's our result and this loop is its
"true" statement. Otherwise, the result is the LOOP_STMT. */
if (gnu_cond_expr)
{
COND_EXPR_THEN (gnu_cond_expr) = gnu_loop_stmt;
TREE_SIDE_EFFECTS (gnu_cond_expr) = 1;
gnu_result = gnu_cond_expr;
}
else
gnu_result = gnu_loop_stmt;
gnu_loop_stack->pop ();
return gnu_result;
}
/* This page implements a form of Named Return Value optimization modelled
on the C++ optimization of the same name. The main difference is that
we disregard any semantical considerations when applying it here, the
counterpart being that we don't try to apply it to semantically loaded
return types, i.e. types with the TYPE_BY_REFERENCE_P flag set.
We consider a function body of the following GENERIC form:
return_type R1;
[...]
RETURN_EXPR [ = ...]
[...]
RETURN_EXPR [ = R1]
[...]
return_type Ri;
[...]
RETURN_EXPR [ = ...]
[...]
RETURN_EXPR [ = Ri]
[...]
where the Ri are not addressable and we try to fulfill a simple criterion
that would make it possible to replace one or several Ri variables by the
single RESULT_DECL of the function.
The first observation is that RETURN_EXPRs that don't directly reference
any of the Ri variables on the RHS of their assignment are transparent wrt
the optimization. This is because the Ri variables aren't addressable so
any transformation applied to them doesn't affect the RHS; moreover, the
assignment writes the full object so existing values are entirely
discarded.
This property can be extended to some forms of RETURN_EXPRs that reference
the Ri variables, for example CONSTRUCTORs, but isn't true in the general
case, in particular when function calls are involved.
Therefore the algorithm is as follows:
1. Collect the list of candidates for a Named Return Value (Ri variables
on the RHS of assignments of RETURN_EXPRs) as well as the list of the
other expressions on the RHS of such assignments.
2. Prune the members of the first list (candidates) that are referenced
by a member of the second list (expressions).
3. Extract a set of candidates with non-overlapping live ranges from the
first list. These are the Named Return Values.
4. Adjust the relevant RETURN_EXPRs and replace the occurrences of the
Named Return Values in the function with the RESULT_DECL.
If the function returns an unconstrained type, things are a bit different
because the anonymous return object is allocated on the secondary stack
and RESULT_DECL is only a pointer to it. Each return object can be of a
different size and is allocated separately so we need not care about the
addressability and the aforementioned overlapping issues. Therefore, we
don't collect the other expressions and skip step #2 in the algorithm. */
struct nrv_data
{
bitmap nrv;
tree result;
Node_Id gnat_ret;
hash_set *visited;
};
/* Return true if T is a Named Return Value. */
static inline bool
is_nrv_p (bitmap nrv, tree t)
{
return TREE_CODE (t) == VAR_DECL && bitmap_bit_p (nrv, DECL_UID (t));
}
/* Helper function for walk_tree, used by finalize_nrv below. */
static tree
prune_nrv_r (tree *tp, int *walk_subtrees, void *data)
{
struct nrv_data *dp = (struct nrv_data *)data;
tree t = *tp;
/* No need to walk into types or decls. */
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
if (is_nrv_p (dp->nrv, t))
bitmap_clear_bit (dp->nrv, DECL_UID (t));
return NULL_TREE;
}
/* Prune Named Return Values in BLOCK and return true if there is still a
Named Return Value in BLOCK or one of its sub-blocks. */
static bool
prune_nrv_in_block (bitmap nrv, tree block)
{
bool has_nrv = false;
tree t;
/* First recurse on the sub-blocks. */
for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
has_nrv |= prune_nrv_in_block (nrv, t);
/* Then make sure to keep at most one NRV per block. */
for (t = BLOCK_VARS (block); t; t = DECL_CHAIN (t))
if (is_nrv_p (nrv, t))
{
if (has_nrv)
bitmap_clear_bit (nrv, DECL_UID (t));
else
has_nrv = true;
}
return has_nrv;
}
/* Helper function for walk_tree, used by finalize_nrv below. */
static tree
finalize_nrv_r (tree *tp, int *walk_subtrees, void *data)
{
struct nrv_data *dp = (struct nrv_data *)data;
tree t = *tp;
/* No need to walk into types. */
if (TYPE_P (t))
*walk_subtrees = 0;
/* Change RETURN_EXPRs of NRVs to just refer to the RESULT_DECL; this is a
nop, but differs from using NULL_TREE in that it indicates that we care
about the value of the RESULT_DECL. */
else if (TREE_CODE (t) == RETURN_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == INIT_EXPR)
{
tree ret_val = TREE_OPERAND (TREE_OPERAND (t, 0), 1);
/* Strip useless conversions around the return value. */
if (gnat_useless_type_conversion (ret_val))
ret_val = TREE_OPERAND (ret_val, 0);
if (is_nrv_p (dp->nrv, ret_val))
TREE_OPERAND (t, 0) = dp->result;
}
/* Replace the DECL_EXPR of NRVs with an initialization of the RESULT_DECL,
if needed. */
else if (TREE_CODE (t) == DECL_EXPR
&& is_nrv_p (dp->nrv, DECL_EXPR_DECL (t)))
{
tree var = DECL_EXPR_DECL (t), init;
if (DECL_INITIAL (var))
{
init = build_binary_op (INIT_EXPR, NULL_TREE, dp->result,
DECL_INITIAL (var));
SET_EXPR_LOCATION (init, EXPR_LOCATION (t));
DECL_INITIAL (var) = NULL_TREE;
}
else
init = build_empty_stmt (EXPR_LOCATION (t));
*tp = init;
/* Identify the NRV to the RESULT_DECL for debugging purposes. */
SET_DECL_VALUE_EXPR (var, dp->result);
DECL_HAS_VALUE_EXPR_P (var) = 1;
/* ??? Kludge to avoid an assertion failure during inlining. */
DECL_SIZE (var) = bitsize_unit_node;
DECL_SIZE_UNIT (var) = size_one_node;
}
/* And replace all uses of NRVs with the RESULT_DECL. */
else if (is_nrv_p (dp->nrv, t))
*tp = convert (TREE_TYPE (t), dp->result);
/* Avoid walking into the same tree more than once. Unfortunately, we
can't just use walk_tree_without_duplicates because it would only
call us for the first occurrence of NRVs in the function body. */
if (dp->visited->add (*tp))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Likewise, but used when the function returns an unconstrained type. */
static tree
finalize_nrv_unc_r (tree *tp, int *walk_subtrees, void *data)
{
struct nrv_data *dp = (struct nrv_data *)data;
tree t = *tp;
/* No need to walk into types. */
if (TYPE_P (t))
*walk_subtrees = 0;
/* We need to see the DECL_EXPR of NRVs before any other references so we
walk the body of BIND_EXPR before walking its variables. */
else if (TREE_CODE (t) == BIND_EXPR)
walk_tree (&BIND_EXPR_BODY (t), finalize_nrv_unc_r, data, NULL);
/* Change RETURN_EXPRs of NRVs to assign to the RESULT_DECL only the final
return value built by the allocator instead of the whole construct. */
else if (TREE_CODE (t) == RETURN_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == INIT_EXPR)
{
tree ret_val = TREE_OPERAND (TREE_OPERAND (t, 0), 1);
/* This is the construct returned by the allocator. */
if (TREE_CODE (ret_val) == COMPOUND_EXPR
&& TREE_CODE (TREE_OPERAND (ret_val, 0)) == INIT_EXPR)
{
tree rhs = TREE_OPERAND (TREE_OPERAND (ret_val, 0), 1);
if (TYPE_IS_FAT_POINTER_P (TREE_TYPE (ret_val)))
ret_val = CONSTRUCTOR_ELT (rhs, 1)->value;
else
ret_val = rhs;
}
/* Strip useless conversions around the return value. */
if (gnat_useless_type_conversion (ret_val)
|| TREE_CODE (ret_val) == VIEW_CONVERT_EXPR)
ret_val = TREE_OPERAND (ret_val, 0);
/* Strip unpadding around the return value. */
if (TREE_CODE (ret_val) == COMPONENT_REF
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (ret_val, 0))))
ret_val = TREE_OPERAND (ret_val, 0);
/* Assign the new return value to the RESULT_DECL. */
if (is_nrv_p (dp->nrv, ret_val))
TREE_OPERAND (TREE_OPERAND (t, 0), 1)
= TREE_OPERAND (DECL_INITIAL (ret_val), 0);
}
/* Adjust the DECL_EXPR of NRVs to call the allocator and save the result
into a new variable. */
else if (TREE_CODE (t) == DECL_EXPR
&& is_nrv_p (dp->nrv, DECL_EXPR_DECL (t)))
{
tree saved_current_function_decl = current_function_decl;
tree var = DECL_EXPR_DECL (t);
tree alloc, p_array, new_var, new_ret;
vec *v;
vec_alloc (v, 2);
/* Create an artificial context to build the allocation. */
current_function_decl = decl_function_context (var);
start_stmt_group ();
gnat_pushlevel ();
/* This will return a COMPOUND_EXPR with the allocation in the first
arm and the final return value in the second arm. */
alloc = build_allocator (TREE_TYPE (var), DECL_INITIAL (var),
TREE_TYPE (dp->result),
Procedure_To_Call (dp->gnat_ret),
Storage_Pool (dp->gnat_ret),
Empty, false);
/* The new variable is built as a reference to the allocated space. */
new_var
= build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, DECL_NAME (var),
build_reference_type (TREE_TYPE (var)));
DECL_BY_REFERENCE (new_var) = 1;
if (TYPE_IS_FAT_POINTER_P (TREE_TYPE (alloc)))
{
tree cst = TREE_OPERAND (alloc, 1);
/* The new initial value is a COMPOUND_EXPR with the allocation in
the first arm and the value of P_ARRAY in the second arm. */
DECL_INITIAL (new_var)
= build2 (COMPOUND_EXPR, TREE_TYPE (new_var),
TREE_OPERAND (alloc, 0),
CONSTRUCTOR_ELT (cst, 0)->value);
/* Build a modified CONSTRUCTOR that references NEW_VAR. */
p_array = TYPE_FIELDS (TREE_TYPE (alloc));
CONSTRUCTOR_APPEND_ELT (v, p_array,
fold_convert (TREE_TYPE (p_array), new_var));
CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (p_array),
CONSTRUCTOR_ELT (cst, 1)->value);
new_ret = build_constructor (TREE_TYPE (alloc), v);
}
else
{
/* The new initial value is just the allocation. */
DECL_INITIAL (new_var) = alloc;
new_ret = fold_convert (TREE_TYPE (alloc), new_var);
}
gnat_pushdecl (new_var, Empty);
/* Destroy the artificial context and insert the new statements. */
gnat_zaplevel ();
*tp = end_stmt_group ();
current_function_decl = saved_current_function_decl;
/* Chain NEW_VAR immediately after VAR and ignore the latter. */
DECL_CHAIN (new_var) = DECL_CHAIN (var);
DECL_CHAIN (var) = new_var;
DECL_IGNORED_P (var) = 1;
/* Save the new return value and the dereference of NEW_VAR. */
DECL_INITIAL (var)
= build2 (COMPOUND_EXPR, TREE_TYPE (var), new_ret,
build1 (INDIRECT_REF, TREE_TYPE (var), new_var));
/* ??? Kludge to avoid messing up during inlining. */
DECL_CONTEXT (var) = NULL_TREE;
}
/* And replace all uses of NRVs with the dereference of NEW_VAR. */
else if (is_nrv_p (dp->nrv, t))
*tp = TREE_OPERAND (DECL_INITIAL (t), 1);
/* Avoid walking into the same tree more than once. Unfortunately, we
can't just use walk_tree_without_duplicates because it would only
call us for the first occurrence of NRVs in the function body. */
if (dp->visited->add (*tp))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Apply FUNC to all the sub-trees of nested functions in NODE. FUNC is called
with the DATA and the address of each sub-tree. If FUNC returns a non-NULL
value, the traversal is stopped. */
static void
walk_nesting_tree (struct cgraph_node *node, walk_tree_fn func, void *data)
{
for (node = node->nested; node; node = node->next_nested)
{
walk_tree_without_duplicates (&DECL_SAVED_TREE (node->decl), func, data);
walk_nesting_tree (node, func, data);
}
}
/* Finalize the Named Return Value optimization for FNDECL. The NRV bitmap
contains the candidates for Named Return Value and OTHER is a list of
the other return values. GNAT_RET is a representative return node. */
static void
finalize_nrv (tree fndecl, bitmap nrv, vec *other, Node_Id gnat_ret)
{
struct nrv_data data;
walk_tree_fn func;
unsigned int i;
tree iter;
/* We shouldn't be applying the optimization to return types that we aren't
allowed to manipulate freely. */
gcc_assert (!TYPE_IS_BY_REFERENCE_P (TREE_TYPE (TREE_TYPE (fndecl))));
/* Prune the candidates that are referenced by other return values. */
data.nrv = nrv;
data.result = NULL_TREE;
data.gnat_ret = Empty;
data.visited = NULL;
FOR_EACH_VEC_SAFE_ELT (other, i, iter)
walk_tree_without_duplicates (&iter, prune_nrv_r, &data);
if (bitmap_empty_p (nrv))
return;
/* Prune also the candidates that are referenced by nested functions. */
walk_nesting_tree (cgraph_node::get_create (fndecl), prune_nrv_r, &data);
if (bitmap_empty_p (nrv))
return;
/* Extract a set of NRVs with non-overlapping live ranges. */
if (!prune_nrv_in_block (nrv, DECL_INITIAL (fndecl)))
return;
/* Adjust the relevant RETURN_EXPRs and replace the occurrences of NRVs. */
data.nrv = nrv;
data.result = DECL_RESULT (fndecl);
data.gnat_ret = gnat_ret;
data.visited = new hash_set;
if (TYPE_RETURN_UNCONSTRAINED_P (TREE_TYPE (fndecl)))
func = finalize_nrv_unc_r;
else
func = finalize_nrv_r;
walk_tree (&DECL_SAVED_TREE (fndecl), func, &data, NULL);
delete data.visited;
}
/* Return true if RET_VAL can be used as a Named Return Value for the
anonymous return object RET_OBJ. */
static bool
return_value_ok_for_nrv_p (tree ret_obj, tree ret_val)
{
if (TREE_CODE (ret_val) != VAR_DECL)
return false;
if (TREE_THIS_VOLATILE (ret_val))
return false;
if (DECL_CONTEXT (ret_val) != current_function_decl)
return false;
if (TREE_STATIC (ret_val))
return false;
/* For the constrained case, test for addressability. */
if (ret_obj && TREE_ADDRESSABLE (ret_val))
return false;
/* For the constrained case, test for overalignment. */
if (ret_obj && DECL_ALIGN (ret_val) > DECL_ALIGN (ret_obj))
return false;
/* For the unconstrained case, test for bogus initialization. */
if (!ret_obj
&& DECL_INITIAL (ret_val)
&& TREE_CODE (DECL_INITIAL (ret_val)) == NULL_EXPR)
return false;
return true;
}
/* Build a RETURN_EXPR. If RET_VAL is non-null, build a RETURN_EXPR around
the assignment of RET_VAL to RET_OBJ. Otherwise build a bare RETURN_EXPR
around RESULT_OBJ, which may be null in this case. */
static tree
build_return_expr (tree ret_obj, tree ret_val)
{
tree result_expr;
if (ret_val)
{
/* The gimplifier explicitly enforces the following invariant:
RETURN_EXPR
|
INIT_EXPR
/ \
/ \
RET_OBJ ...
As a consequence, type consistency dictates that we use the type
of the RET_OBJ as the operation type. */
tree operation_type = TREE_TYPE (ret_obj);
/* Convert the right operand to the operation type. Note that this is
the transformation applied in the INIT_EXPR case of build_binary_op,
with the assumption that the type cannot involve a placeholder. */
if (operation_type != TREE_TYPE (ret_val))
ret_val = convert (operation_type, ret_val);
/* We always can use an INIT_EXPR for the return object. */
result_expr = build2 (INIT_EXPR, void_type_node, ret_obj, ret_val);
/* If the function returns an aggregate type, find out whether this is
a candidate for Named Return Value. If so, record it. Otherwise,
if this is an expression of some kind, record it elsewhere. */
if (optimize
&& AGGREGATE_TYPE_P (operation_type)
&& !TYPE_IS_FAT_POINTER_P (operation_type)
&& TYPE_MODE (operation_type) == BLKmode
&& aggregate_value_p (operation_type, current_function_decl))
{
/* Strip useless conversions around the return value. */
if (gnat_useless_type_conversion (ret_val))
ret_val = TREE_OPERAND (ret_val, 0);
/* Now apply the test to the return value. */
if (return_value_ok_for_nrv_p (ret_obj, ret_val))
{
if (!f_named_ret_val)
f_named_ret_val = BITMAP_GGC_ALLOC ();
bitmap_set_bit (f_named_ret_val, DECL_UID (ret_val));
}
/* Note that we need not care about CONSTRUCTORs here, as they are
totally transparent given the read-compose-write semantics of
assignments from CONSTRUCTORs. */
else if (EXPR_P (ret_val))
vec_safe_push (f_other_ret_val, ret_val);
}
}
else
result_expr = ret_obj;
return build1 (RETURN_EXPR, void_type_node, result_expr);
}
/* Subroutine of gnat_to_gnu to process gnat_node, an N_Subprogram_Body. We
don't return anything. */
static void
Subprogram_Body_to_gnu (Node_Id gnat_node)
{
/* Defining identifier of a parameter to the subprogram. */
Entity_Id gnat_param;
/* The defining identifier for the subprogram body. Note that if a
specification has appeared before for this body, then the identifier
occurring in that specification will also be a defining identifier and all
the calls to this subprogram will point to that specification. */
Entity_Id gnat_subprog_id
= (Present (Corresponding_Spec (gnat_node))
? Corresponding_Spec (gnat_node) : Defining_Entity (gnat_node));
/* The FUNCTION_DECL node corresponding to the subprogram spec. */
tree gnu_subprog_decl;
/* Its RESULT_DECL node. */
tree gnu_result_decl;
/* Its FUNCTION_TYPE node. */
tree gnu_subprog_type;
/* The TYPE_CI_CO_LIST of its FUNCTION_TYPE node, if any. */
tree gnu_cico_list;
/* The entry in the CI_CO_LIST that represents a function return, if any. */
tree gnu_return_var_elmt = NULL_TREE;
tree gnu_result;
location_t locus;
struct language_function *gnu_subprog_language;
vec *cache;
/* If this is a generic object or if it has been eliminated,
ignore it. */
if (Ekind (gnat_subprog_id) == E_Generic_Procedure
|| Ekind (gnat_subprog_id) == E_Generic_Function
|| Is_Eliminated (gnat_subprog_id))
return;
/* If this subprogram acts as its own spec, define it. Otherwise, just get
the already-elaborated tree node. However, if this subprogram had its
elaboration deferred, we will already have made a tree node for it. So
treat it as not being defined in that case. Such a subprogram cannot
have an address clause or a freeze node, so this test is safe, though it
does disable some otherwise-useful error checking. */
gnu_subprog_decl
= gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE,
Acts_As_Spec (gnat_node)
&& !present_gnu_tree (gnat_subprog_id));
DECL_FUNCTION_IS_DEF (gnu_subprog_decl) = true;
gnu_result_decl = DECL_RESULT (gnu_subprog_decl);
gnu_subprog_type = TREE_TYPE (gnu_subprog_decl);
gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type);
if (gnu_cico_list && TREE_VALUE (gnu_cico_list) == void_type_node)
gnu_return_var_elmt = gnu_cico_list;
/* If the function returns by invisible reference, make it explicit in the
function body. See gnat_to_gnu_entity, E_Subprogram_Type case. */
if (TREE_ADDRESSABLE (gnu_subprog_type))
{
TREE_TYPE (gnu_result_decl)
= build_reference_type (TREE_TYPE (gnu_result_decl));
relayout_decl (gnu_result_decl);
}
/* Set the line number in the decl to correspond to that of the body. */
if (!Sloc_to_locus (Sloc (gnat_node), &locus, false, gnu_subprog_decl))
locus = input_location;
DECL_SOURCE_LOCATION (gnu_subprog_decl) = locus;
/* If the body comes from an expression function, arrange it to be inlined
in almost all cases. */
if (Was_Expression_Function (gnat_node))
DECL_DISREGARD_INLINE_LIMITS (gnu_subprog_decl) = 1;
/* Try to create a bona-fide thunk and hand it over to the middle-end. */
if (Is_Thunk (gnat_subprog_id)
&& maybe_make_gnu_thunk (gnat_subprog_id, gnu_subprog_decl))
return;
/* Initialize the information structure for the function. */
allocate_struct_function (gnu_subprog_decl, false);
gnu_subprog_language = ggc_cleared_alloc ();
DECL_STRUCT_FUNCTION (gnu_subprog_decl)->language = gnu_subprog_language;
DECL_STRUCT_FUNCTION (gnu_subprog_decl)->function_start_locus = locus;
set_cfun (NULL);
begin_subprog_body (gnu_subprog_decl);
/* If there are copy-in/copy-out parameters, we need to ensure that they are
properly copied out by the return statement. We do this by making a new
block and converting any return into a goto to a label at the end of the
block. */
if (gnu_cico_list)
{
tree gnu_return_var = NULL_TREE;
vec_safe_push (gnu_return_label_stack,
create_artificial_label (input_location));
start_stmt_group ();
gnat_pushlevel ();
/* If this is a function with copy-in/copy-out parameters and which does
not return by invisible reference, we also need a variable for the
return value to be placed. */
if (gnu_return_var_elmt && !TREE_ADDRESSABLE (gnu_subprog_type))
{
tree gnu_return_type
= TREE_TYPE (TREE_PURPOSE (gnu_return_var_elmt));
gnu_return_var
= create_var_decl (get_identifier ("RETVAL"), NULL_TREE,
gnu_return_type, NULL_TREE,
false, false, false, false, false,
true, false, NULL, gnat_subprog_id);
TREE_VALUE (gnu_return_var_elmt) = gnu_return_var;
}
vec_safe_push (gnu_return_var_stack, gnu_return_var);
/* See whether there are parameters for which we don't have a GCC tree
yet. These must be Out parameters. Make a VAR_DECL for them and
put it into TYPE_CI_CO_LIST, which must contain an empty entry too.
We can match up the entries because TYPE_CI_CO_LIST is in the order
of the parameters. */
for (gnat_param = First_Formal_With_Extras (gnat_subprog_id);
Present (gnat_param);
gnat_param = Next_Formal_With_Extras (gnat_param))
if (!present_gnu_tree (gnat_param))
{
tree gnu_cico_entry = gnu_cico_list;
tree gnu_decl;
/* Skip any entries that have been already filled in; they must
correspond to In Out parameters. */
while (gnu_cico_entry && TREE_VALUE (gnu_cico_entry))
gnu_cico_entry = TREE_CHAIN (gnu_cico_entry);
/* Do any needed dereferences for by-ref objects. */
gnu_decl = gnat_to_gnu_entity (gnat_param, NULL_TREE, true);
gcc_assert (DECL_P (gnu_decl));
if (DECL_BY_REF_P (gnu_decl))
gnu_decl = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_decl);
/* Do any needed references for padded types. */
TREE_VALUE (gnu_cico_entry)
= convert (TREE_TYPE (TREE_PURPOSE (gnu_cico_entry)), gnu_decl);
}
}
else
vec_safe_push (gnu_return_label_stack, NULL_TREE);
/* Get a tree corresponding to the code for the subprogram. */
start_stmt_group ();
gnat_pushlevel ();
process_decls (Declarations (gnat_node), Empty, Empty, true, true);
/* Generate the code of the subprogram itself. A return statement will be
present and any Out parameters will be handled there. */
add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node)));
gnat_poplevel ();
gnu_result = end_stmt_group ();
/* If we populated the parameter attributes cache, we need to make sure that
the cached expressions are evaluated on all the possible paths leading to
their uses. So we force their evaluation on entry of the function. */
cache = gnu_subprog_language->parm_attr_cache;
if (cache)
{
struct parm_attr_d *pa;
int i;
start_stmt_group ();
FOR_EACH_VEC_ELT (*cache, i, pa)
{
if (pa->first)
add_stmt_with_node_force (pa->first, gnat_node);
if (pa->last)
add_stmt_with_node_force (pa->last, gnat_node);
if (pa->length)
add_stmt_with_node_force (pa->length, gnat_node);
}
add_stmt (gnu_result);
gnu_result = end_stmt_group ();
gnu_subprog_language->parm_attr_cache = NULL;
}
/* If we are dealing with a return from an Ada procedure with parameters
passed by copy-in/copy-out, we need to return a record containing the
final values of these parameters. If the list contains only one entry,
return just that entry though.
For a full description of the copy-in/copy-out parameter mechanism, see
the part of the gnat_to_gnu_entity routine dealing with the translation
of subprograms.
We need to make a block that contains the definition of that label and
the copying of the return value. It first contains the function, then
the label and copy statement. */
if (gnu_cico_list)
{
const Node_Id gnat_end_label
= End_Label (Handled_Statement_Sequence (gnat_node));
gnu_return_var_stack->pop ();
add_stmt (gnu_result);
add_stmt (build1 (LABEL_EXPR, void_type_node,
gnu_return_label_stack->last ()));
/* If this is a function which returns by invisible reference, the
return value has already been dealt with at the return statements,
so we only need to indirectly copy out the parameters. */
if (TREE_ADDRESSABLE (gnu_subprog_type))
{
tree gnu_ret_deref
= build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result_decl);
tree t;
gcc_assert (TREE_VALUE (gnu_cico_list) == void_type_node);
for (t = TREE_CHAIN (gnu_cico_list); t; t = TREE_CHAIN (t))
{
tree gnu_field_deref
= build_component_ref (gnu_ret_deref, TREE_PURPOSE (t), true);
gnu_result = build2 (MODIFY_EXPR, void_type_node,
gnu_field_deref, TREE_VALUE (t));
add_stmt_with_node (gnu_result, gnat_end_label);
}
}
/* Otherwise, if this is a procedure or a function which does not return
by invisible reference, we can do a direct block-copy out. */
else
{
tree gnu_retval;
if (list_length (gnu_cico_list) == 1)
gnu_retval = TREE_VALUE (gnu_cico_list);
else
gnu_retval
= build_constructor_from_list (TREE_TYPE (gnu_subprog_type),
gnu_cico_list);
gnu_result = build_return_expr (gnu_result_decl, gnu_retval);
add_stmt_with_node (gnu_result, gnat_end_label);
}
gnat_poplevel ();
gnu_result = end_stmt_group ();
}
gnu_return_label_stack->pop ();
/* Attempt setting the end_locus of our GCC body tree, typically a
BIND_EXPR or STATEMENT_LIST, then the end_locus of our GCC subprogram
declaration tree. */
set_end_locus_from_node (gnu_result, gnat_node);
set_end_locus_from_node (gnu_subprog_decl, gnat_node);
/* On SEH targets, install an exception handler around the main entry
point to catch unhandled exceptions. */
if (DECL_NAME (gnu_subprog_decl) == main_identifier_node
&& targetm_common.except_unwind_info (&global_options) == UI_SEH)
{
tree t;
tree etype;
t = build_call_expr (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1, integer_zero_node);
t = build_call_n_expr (unhandled_except_decl, 1, t);
etype = build_unary_op (ADDR_EXPR, NULL_TREE, unhandled_others_decl);
etype = tree_cons (NULL_TREE, etype, NULL_TREE);
t = build2 (CATCH_EXPR, void_type_node, etype, t);
gnu_result = build2 (TRY_CATCH_EXPR, TREE_TYPE (gnu_result),
gnu_result, t);
}
end_subprog_body (gnu_result);
/* Finally annotate the parameters and disconnect the trees for parameters
that we have turned into variables since they are now unusable. */
for (gnat_param = First_Formal_With_Extras (gnat_subprog_id);
Present (gnat_param);
gnat_param = Next_Formal_With_Extras (gnat_param))
{
tree gnu_param = get_gnu_tree (gnat_param);
bool is_var_decl = (TREE_CODE (gnu_param) == VAR_DECL);
annotate_object (gnat_param, TREE_TYPE (gnu_param), NULL_TREE,
DECL_BY_REF_P (gnu_param));
if (is_var_decl)
save_gnu_tree (gnat_param, NULL_TREE, false);
}
/* Disconnect the variable created for the return value. */
if (gnu_return_var_elmt)
TREE_VALUE (gnu_return_var_elmt) = void_type_node;
/* If the function returns an aggregate type and we have candidates for
a Named Return Value, finalize the optimization. */
if (optimize && gnu_subprog_language->named_ret_val)
{
finalize_nrv (gnu_subprog_decl,
gnu_subprog_language->named_ret_val,
gnu_subprog_language->other_ret_val,
gnu_subprog_language->gnat_ret);
gnu_subprog_language->named_ret_val = NULL;
gnu_subprog_language->other_ret_val = NULL;
}
/* If this is an inlined external function that has been marked uninlinable,
drop the body and stop there. Otherwise compile the body. */
if (DECL_EXTERNAL (gnu_subprog_decl) && DECL_UNINLINABLE (gnu_subprog_decl))
DECL_SAVED_TREE (gnu_subprog_decl) = NULL_TREE;
else
rest_of_subprog_body_compilation (gnu_subprog_decl);
}
/* Return true if GNAT_NODE references an Atomic entity. */
static bool
node_is_atomic (Node_Id gnat_node)
{
Entity_Id gnat_entity;
switch (Nkind (gnat_node))
{
case N_Identifier:
case N_Expanded_Name:
gnat_entity = Entity (gnat_node);
if (Ekind (gnat_entity) != E_Variable)
break;
return Is_Atomic (gnat_entity) || Is_Atomic (Etype (gnat_entity));
case N_Selected_Component:
gnat_entity = Entity (Selector_Name (gnat_node));
return Is_Atomic (gnat_entity) || Is_Atomic (Etype (gnat_entity));
case N_Indexed_Component:
if (Has_Atomic_Components (Etype (Prefix (gnat_node))))
return true;
if (Is_Entity_Name (Prefix (gnat_node))
&& Has_Atomic_Components (Entity (Prefix (gnat_node))))
return true;
/* ... fall through ... */
case N_Explicit_Dereference:
return Is_Atomic (Etype (gnat_node));
default:
break;
}
return false;
}
/* Return true if GNAT_NODE references a Volatile_Full_Access entity. */
static bool
node_has_volatile_full_access (Node_Id gnat_node)
{
Entity_Id gnat_entity;
switch (Nkind (gnat_node))
{
case N_Identifier:
case N_Expanded_Name:
gnat_entity = Entity (gnat_node);
if (!Is_Object (gnat_entity))
break;
return Is_Volatile_Full_Access (gnat_entity)
|| Is_Volatile_Full_Access (Etype (gnat_entity));
case N_Selected_Component:
gnat_entity = Entity (Selector_Name (gnat_node));
return Is_Volatile_Full_Access (gnat_entity)
|| Is_Volatile_Full_Access (Etype (gnat_entity));
case N_Indexed_Component:
case N_Explicit_Dereference:
return Is_Volatile_Full_Access (Etype (gnat_node));
default:
break;
}
return false;
}
/* Strip any type conversion on GNAT_NODE and return the result. */
static Node_Id
gnat_strip_type_conversion (Node_Id gnat_node)
{
Node_Kind kind = Nkind (gnat_node);
if (kind == N_Type_Conversion || kind == N_Unchecked_Type_Conversion)
gnat_node = Expression (gnat_node);
return gnat_node;
}
/* Return true if GNAT_NODE requires outer atomic access, i.e. atomic access
of an object of which GNAT_NODE is a component. */
static bool
outer_atomic_access_required_p (Node_Id gnat_node)
{
gnat_node = gnat_strip_type_conversion (gnat_node);
while (true)
{
switch (Nkind (gnat_node))
{
case N_Identifier:
case N_Expanded_Name:
if (No (Renamed_Object (Entity (gnat_node))))
return false;
gnat_node
= gnat_strip_type_conversion (Renamed_Object (Entity (gnat_node)));
break;
case N_Indexed_Component:
case N_Selected_Component:
case N_Slice:
gnat_node = gnat_strip_type_conversion (Prefix (gnat_node));
if (node_has_volatile_full_access (gnat_node))
return true;
break;
default:
return false;
}
}
gcc_unreachable ();
}
/* Return true if GNAT_NODE requires atomic access and set SYNC according to
the associated synchronization setting. */
static bool
atomic_access_required_p (Node_Id gnat_node, bool *sync)
{
const Node_Id gnat_parent = Parent (gnat_node);
unsigned char attr_id;
bool as_a_whole = true;
/* First, scan the parent to find out cases where the flag is irrelevant. */
switch (Nkind (gnat_parent))
{
case N_Attribute_Reference:
attr_id = Get_Attribute_Id (Attribute_Name (gnat_parent));
/* Do not mess up machine code insertions. */
if (attr_id == Attr_Asm_Input || attr_id == Attr_Asm_Output)
return false;
/* Nothing to do if we are the prefix of an attribute, since we do not
want an atomic access for things like 'Size. */
/* ... fall through ... */
case N_Reference:
/* The N_Reference node is like an attribute. */
if (Prefix (gnat_parent) == gnat_node)
return false;
break;
case N_Indexed_Component:
case N_Selected_Component:
case N_Slice:
/* If we are the prefix, then the access is only partial. */
if (Prefix (gnat_parent) == gnat_node)
as_a_whole = false;
break;
case N_Object_Renaming_Declaration:
/* Nothing to do for the identifier in an object renaming declaration,
the renaming itself does not need atomic access. */
return false;
default:
break;
}
/* Then, scan the node to find the atomic object. */
gnat_node = gnat_strip_type_conversion (gnat_node);
/* For Atomic itself, only reads and updates of the object as a whole require
atomic access (RM C.6 (15)). But for Volatile_Full_Access, all reads and
updates require atomic access. */
if (!(as_a_whole && node_is_atomic (gnat_node))
&& !node_has_volatile_full_access (gnat_node))
return false;
/* If an outer atomic access will also be required, it cancels this one. */
if (outer_atomic_access_required_p (gnat_node))
return false;
*sync = Atomic_Sync_Required (gnat_node);
return true;
}
/* Create a temporary variable with PREFIX and TYPE, and return it. */
static tree
create_temporary (const char *prefix, tree type)
{
tree gnu_temp
= create_var_decl (create_tmp_var_name (prefix), NULL_TREE,
type, NULL_TREE,
false, false, false, false, false,
true, false, NULL, Empty);
return gnu_temp;
}
/* Create a temporary variable with PREFIX and initialize it with GNU_INIT.
Put the initialization statement into GNU_INIT_STMT and annotate it with
the SLOC of GNAT_NODE. Return the temporary variable. */
static tree
create_init_temporary (const char *prefix, tree gnu_init, tree *gnu_init_stmt,
Node_Id gnat_node)
{
tree gnu_temp = create_temporary (prefix, TREE_TYPE (gnu_init));
*gnu_init_stmt = build_binary_op (INIT_EXPR, NULL_TREE, gnu_temp, gnu_init);
set_expr_location_from_node (*gnu_init_stmt, gnat_node);
return gnu_temp;
}
/* Return whether ACTUAL parameter corresponding to FORMAL_TYPE must be passed
by copy in a call as per RM C.6(19). Note that we use the same predicates
as in the front-end for RM C.6(12) because it's purely a legality issue. */
static bool
atomic_or_volatile_copy_required_p (Node_Id actual, Entity_Id formal_type)
{
/* We should not have a scalar type here because such a type is passed
by copy. But the Interlocked routines in System.Aux_DEC force some
of the their scalar parameters to be passed by reference so we need
to preserve that if we do not want to break the interface. */
if (Is_Scalar_Type (formal_type))
return false;
if (Is_Atomic_Object (actual) && !Is_Atomic (formal_type))
{
post_error ("?atomic actual passed by copy (RM C.6(19))", actual);
return true;
}
if (Is_Volatile_Object (actual) && !Is_Volatile (formal_type))
{
post_error ("?volatile actual passed by copy (RM C.6(19))", actual);
return true;
}
return false;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, either an N_Function_Call
or an N_Procedure_Call_Statement, to a GCC tree, which is returned.
GNU_RESULT_TYPE_P is a pointer to where we should place the result type.
If GNU_TARGET is non-null, this must be a function call on the RHS of a
N_Assignment_Statement and the result is to be placed into that object.
If OUTER_ATOMIC_ACCESS is true, then the assignment to GNU_TARGET must be a
load-modify-store sequence. Otherwise, if ATOMIC_ACCESS is true, then the
assignment to GNU_TARGET must be atomic. If, in addition, ATOMIC_SYNC is
true, then the assignment to GNU_TARGET requires atomic synchronization. */
static tree
Call_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p, tree gnu_target,
bool outer_atomic_access, bool atomic_access, bool atomic_sync)
{
const bool function_call = (Nkind (gnat_node) == N_Function_Call);
const bool returning_value = (function_call && !gnu_target);
/* The GCC node corresponding to the GNAT subprogram name. This can either
be a FUNCTION_DECL node if we are dealing with a standard subprogram call,
or an indirect reference expression (an INDIRECT_REF node) pointing to a
subprogram. */
tree gnu_subprog = gnat_to_gnu (Name (gnat_node));
/* The FUNCTION_TYPE node giving the GCC type of the subprogram. */
tree gnu_subprog_type = TREE_TYPE (gnu_subprog);
/* The return type of the FUNCTION_TYPE. */
tree gnu_result_type = TREE_TYPE (gnu_subprog_type);
const bool frontend_builtin
= (TREE_CODE (gnu_subprog) == FUNCTION_DECL
&& DECL_BUILT_IN_CLASS (gnu_subprog) == BUILT_IN_FRONTEND);
auto_vec gnu_actual_vec;
tree gnu_name_list = NULL_TREE;
tree gnu_stmt_list = NULL_TREE;
tree gnu_after_list = NULL_TREE;
tree gnu_retval = NULL_TREE;
tree gnu_call, gnu_result;
bool by_descriptor = false;
bool went_into_elab_proc = false;
bool pushed_binding_level = false;
Entity_Id gnat_formal;
Node_Id gnat_actual;
bool sync;
gcc_assert (FUNC_OR_METHOD_TYPE_P (gnu_subprog_type));
/* If we are calling a stubbed function, raise Program_Error, but Elaborate
all our args first. */
if (TREE_CODE (gnu_subprog) == FUNCTION_DECL && DECL_STUBBED_P (gnu_subprog))
{
tree call_expr = build_call_raise (PE_Stubbed_Subprogram_Called,
gnat_node, N_Raise_Program_Error);
for (gnat_actual = First_Actual (gnat_node);
Present (gnat_actual);
gnat_actual = Next_Actual (gnat_actual))
add_stmt (gnat_to_gnu (gnat_actual));
if (returning_value)
{
*gnu_result_type_p = gnu_result_type;
return build1 (NULL_EXPR, gnu_result_type, call_expr);
}
return call_expr;
}
if (TREE_CODE (gnu_subprog) == FUNCTION_DECL)
{
/* For a call to a nested function, check the inlining status. */
if (decl_function_context (gnu_subprog))
check_inlining_for_nested_subprog (gnu_subprog);
/* For a recursive call, avoid explosion due to recursive inlining. */
if (gnu_subprog == current_function_decl)
DECL_DISREGARD_INLINE_LIMITS (gnu_subprog) = 0;
}
/* The only way we can be making a call via an access type is if Name is an
explicit dereference. In that case, get the list of formal args from the
type the access type is pointing to. Otherwise, get the formals from the
entity being called. */
if (Nkind (Name (gnat_node)) == N_Explicit_Dereference)
{
gnat_formal = First_Formal_With_Extras (Etype (Name (gnat_node)));
/* If the access type doesn't require foreign-compatible representation,
be prepared for descriptors. */
if (targetm.calls.custom_function_descriptors > 0
&& Can_Use_Internal_Rep (Etype (Prefix (Name (gnat_node)))))
by_descriptor = true;
}
else if (Nkind (Name (gnat_node)) == N_Attribute_Reference)
/* Assume here that this must be 'Elab_Body or 'Elab_Spec. */
gnat_formal = Empty;
else
gnat_formal = First_Formal_With_Extras (Entity (Name (gnat_node)));
/* The lifetime of the temporaries created for the call ends right after the
return value is copied, so we can give them the scope of the elaboration
routine at top level. */
if (!current_function_decl)
{
current_function_decl = get_elaboration_procedure ();
went_into_elab_proc = true;
}
/* First, create the temporary for the return value when:
1. There is no target and the function has copy-in/copy-out parameters,
because we need to preserve the return value before copying back the
parameters.
2. There is no target and the call is made for neither an object, nor a
renaming declaration, nor a return statement, nor an allocator, and
the return type has variable size because in this case the gimplifier
cannot create the temporary, or more generally is an aggregate type,
because the gimplifier would create the temporary in the outermost
scope instead of locally. But there is an exception for an allocator
of an unconstrained record type with default discriminant because we
allocate the actual size in this case, unlike the other 3 cases, so
we need a temporary to fetch the discriminant and we create it here.
3. There is a target and it is a slice or an array with fixed size,
and the return type has variable size, because the gimplifier
doesn't handle these cases.
4. There is no target and we have misaligned In Out or Out parameters
passed by reference, because we need to preserve the return value
before copying back the parameters. However, in this case, we'll
defer creating the temporary, see below.
This must be done before we push a binding level around the call, since
we will pop it before copying the return value. */
if (function_call
&& ((!gnu_target && TYPE_CI_CO_LIST (gnu_subprog_type))
|| (!gnu_target
&& Nkind (Parent (gnat_node)) != N_Object_Declaration
&& Nkind (Parent (gnat_node)) != N_Object_Renaming_Declaration
&& Nkind (Parent (gnat_node)) != N_Simple_Return_Statement
&& (!(Nkind (Parent (gnat_node)) == N_Qualified_Expression
&& Nkind (Parent (Parent (gnat_node))) == N_Allocator)
|| type_is_padding_self_referential (gnu_result_type))
&& AGGREGATE_TYPE_P (gnu_result_type)
&& !TYPE_IS_FAT_POINTER_P (gnu_result_type))
|| (gnu_target
&& (TREE_CODE (gnu_target) == ARRAY_RANGE_REF
|| (TREE_CODE (TREE_TYPE (gnu_target)) == ARRAY_TYPE
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_target)))
== INTEGER_CST))
&& TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST)))
{
gnu_retval = create_temporary ("R", gnu_result_type);
DECL_RETURN_VALUE_P (gnu_retval) = 1;
}
/* If we don't need a value or have already created it, push a binding level
around the call. This will narrow the lifetime of the temporaries we may
need to make when translating the parameters as much as possible. */
if (!returning_value || gnu_retval)
{
start_stmt_group ();
gnat_pushlevel ();
pushed_binding_level = true;
}
/* Create the list of the actual parameters as GCC expects it, namely a
chain of TREE_LIST nodes in which the TREE_VALUE field of each node
is an expression and the TREE_PURPOSE field is null. But skip Out
parameters not passed by reference and that need not be copied in. */
for (gnat_actual = First_Actual (gnat_node);
Present (gnat_actual);
gnat_formal = Next_Formal_With_Extras (gnat_formal),
gnat_actual = Next_Actual (gnat_actual))
{
Entity_Id gnat_formal_type = Etype (gnat_formal);
tree gnu_formal_type = gnat_to_gnu_type (gnat_formal_type);
tree gnu_formal = present_gnu_tree (gnat_formal)
? get_gnu_tree (gnat_formal) : NULL_TREE;
const bool in_param = (Ekind (gnat_formal) == E_In_Parameter);
const bool is_true_formal_parm
= gnu_formal && TREE_CODE (gnu_formal) == PARM_DECL;
const bool is_by_ref_formal_parm
= is_true_formal_parm
&& (DECL_BY_REF_P (gnu_formal)
|| DECL_BY_COMPONENT_PTR_P (gnu_formal));
/* In the In Out or Out case, we must suppress conversions that yield
an lvalue but can nevertheless cause the creation of a temporary,
because we need the real object in this case, either to pass its
address if it's passed by reference or as target of the back copy
done after the call if it uses the copy-in/copy-out mechanism.
We do it in the In case too, except for an unchecked conversion
to an elementary type or a constrained composite type because it
alone can cause the actual to be misaligned and the addressability
test is applied to the real object. */
const bool suppress_type_conversion
= ((Nkind (gnat_actual) == N_Unchecked_Type_Conversion
&& (!in_param
|| !is_by_ref_formal_parm
|| (Is_Composite_Type (Underlying_Type (gnat_formal_type))
&& !Is_Constrained (Underlying_Type (gnat_formal_type)))))
|| (Nkind (gnat_actual) == N_Type_Conversion
&& Is_Composite_Type (Underlying_Type (gnat_formal_type))));
Node_Id gnat_name = suppress_type_conversion
? Expression (gnat_actual) : gnat_actual;
tree gnu_name = gnat_to_gnu (gnat_name), gnu_name_type;
/* If it's possible we may need to use this expression twice, make sure
that any side-effects are handled via SAVE_EXPRs; likewise if we need
to force side-effects before the call. */
if (!in_param && !is_by_ref_formal_parm)
{
tree init = NULL_TREE;
gnu_name = gnat_stabilize_reference (gnu_name, true, &init);
if (init)
gnu_name
= build_compound_expr (TREE_TYPE (gnu_name), init, gnu_name);
}
/* If we are passing a non-addressable actual parameter by reference,
pass the address of a copy and, in the In Out or Out case, set up
to copy back after the call. We also need to do that if the actual
parameter is atomic or volatile but the formal parameter is not. */
if (is_by_ref_formal_parm
&& (gnu_name_type = gnat_to_gnu_type (Etype (gnat_name)))
&& (!addressable_p (gnu_name, gnu_name_type)
|| (Comes_From_Source (gnat_node)
&& atomic_or_volatile_copy_required_p (gnat_actual,
gnat_formal_type))))
{
const bool atomic_p = atomic_access_required_p (gnat_actual, &sync);
tree gnu_orig = gnu_name, gnu_temp, gnu_stmt;
/* Do not issue warnings for CONSTRUCTORs since this is not a copy
but sort of an instantiation for them. */
if (TREE_CODE (gnu_name) == CONSTRUCTOR)
;
/* If the type is passed by reference, a copy is not allowed. */
else if (TYPE_IS_BY_REFERENCE_P (gnu_formal_type))
post_error ("misaligned actual cannot be passed by reference",
gnat_actual);
/* For users of Starlet we issue a warning because the interface
apparently assumes that by-ref parameters outlive the procedure
invocation. The code still will not work as intended, but we
cannot do much better since low-level parts of the back-end
would allocate temporaries at will because of the misalignment
if we did not do so here. */
else if (Is_Valued_Procedure (Entity (Name (gnat_node))))
{
post_error
("?possible violation of implicit assumption", gnat_actual);
post_error_ne
("?made by pragma Import_Valued_Procedure on &", gnat_actual,
Entity (Name (gnat_node)));
post_error_ne ("?because of misalignment of &", gnat_actual,
gnat_formal);
}
/* If the actual type of the object is already the nominal type,
we have nothing to do, except if the size is self-referential
in which case we'll remove the unpadding below. */
if (TREE_TYPE (gnu_name) == gnu_name_type
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_name_type)))
;
/* Otherwise remove the unpadding from all the objects. */
else if (TREE_CODE (gnu_name) == COMPONENT_REF
&& TYPE_IS_PADDING_P
(TREE_TYPE (TREE_OPERAND (gnu_name, 0))))
gnu_orig = gnu_name = TREE_OPERAND (gnu_name, 0);
/* Otherwise convert to the nominal type of the object if needed.
There are several cases in which we need to make the temporary
using this type instead of the actual type of the object when
they are distinct, because the expectations of the callee would
otherwise not be met:
- if it's a justified modular type,
- if the actual type is a smaller form of it,
- if it's a smaller form of the actual type. */
else if ((TREE_CODE (gnu_name_type) == RECORD_TYPE
&& (TYPE_JUSTIFIED_MODULAR_P (gnu_name_type)
|| smaller_form_type_p (TREE_TYPE (gnu_name),
gnu_name_type)))
|| (INTEGRAL_TYPE_P (gnu_name_type)
&& smaller_form_type_p (gnu_name_type,
TREE_TYPE (gnu_name))))
gnu_name = convert (gnu_name_type, gnu_name);
/* If this is an In Out or Out parameter and we're returning a value,
we need to create a temporary for the return value because we must
preserve it before copying back at the very end. */
if (!in_param && returning_value && !gnu_retval)
{
gnu_retval = create_temporary ("R", gnu_result_type);
DECL_RETURN_VALUE_P (gnu_retval) = 1;
}
/* If we haven't pushed a binding level, push it now. This will
narrow the lifetime of the temporary we are about to make as
much as possible. */
if (!pushed_binding_level && (!returning_value || gnu_retval))
{
start_stmt_group ();
gnat_pushlevel ();
pushed_binding_level = true;
}
/* Create an explicit temporary holding the copy. */
if (atomic_p)
gnu_name = build_atomic_load (gnu_name, sync);
/* Do not initialize it for the _Init parameter of an initialization
procedure since no data is meant to be passed in. */
if (Ekind (gnat_formal) == E_Out_Parameter
&& Is_Entity_Name (Name (gnat_node))
&& Is_Init_Proc (Entity (Name (gnat_node))))
gnu_name = gnu_temp = create_temporary ("A", TREE_TYPE (gnu_name));
/* Initialize it on the fly like for an implicit temporary in the
other cases, as we don't necessarily have a statement list. */
else
{
gnu_temp = create_init_temporary ("A", gnu_name, &gnu_stmt,
gnat_actual);
gnu_name = build_compound_expr (TREE_TYPE (gnu_name), gnu_stmt,
gnu_temp);
}
/* Set up to move the copy back to the original if needed. */
if (!in_param)
{
/* If the original is a COND_EXPR whose first arm isn't meant to
be further used, just deal with the second arm. This is very
likely the conditional expression built for a check. */
if (TREE_CODE (gnu_orig) == COND_EXPR
&& TREE_CODE (TREE_OPERAND (gnu_orig, 1)) == COMPOUND_EXPR
&& integer_zerop
(TREE_OPERAND (TREE_OPERAND (gnu_orig, 1), 1)))
gnu_orig = TREE_OPERAND (gnu_orig, 2);
if (atomic_p)
gnu_stmt
= build_atomic_store (gnu_orig, gnu_temp, sync);
else
gnu_stmt
= build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_orig,
gnu_temp);
set_expr_location_from_node (gnu_stmt, gnat_node);
append_to_statement_list (gnu_stmt, &gnu_after_list);
}
}
/* Start from the real object and build the actual. */
tree gnu_actual = gnu_name;
/* If atomic access is required for an In or In Out actual parameter,
build the atomic load. */
if (is_true_formal_parm
&& !is_by_ref_formal_parm
&& Ekind (gnat_formal) != E_Out_Parameter
&& atomic_access_required_p (gnat_actual, &sync))
gnu_actual = build_atomic_load (gnu_actual, sync);
/* If this was a procedure call, we may not have removed any padding.
So do it here for the part we will use as an input, if any. */
if (Ekind (gnat_formal) != E_Out_Parameter
&& TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual)))
gnu_actual
= convert (get_unpadded_type (Etype (gnat_actual)), gnu_actual);
/* Put back the conversion we suppressed above in the computation of the
real object. And even if we didn't suppress any conversion there, we
may have suppressed a conversion to the Etype of the actual earlier,
since the parent is a procedure call, so put it back here. Note that
we might have a dummy type here if the actual is the dereference of a
pointer to it, but that's OK if the formal is passed by reference. */
tree gnu_actual_type = get_unpadded_type (Etype (gnat_actual));
if (TYPE_IS_DUMMY_P (gnu_actual_type))
gcc_assert (is_true_formal_parm && DECL_BY_REF_P (gnu_formal));
else if (suppress_type_conversion
&& Nkind (gnat_actual) == N_Unchecked_Type_Conversion)
gnu_actual = unchecked_convert (gnu_actual_type, gnu_actual,
No_Truncation (gnat_actual));
else
gnu_actual = convert (gnu_actual_type, gnu_actual);
/* Make sure that the actual is in range of the formal's type. */
if (Ekind (gnat_formal) != E_Out_Parameter
&& Do_Range_Check (gnat_actual))
gnu_actual
= emit_range_check (gnu_actual, gnat_formal_type, gnat_actual);
/* First see if the parameter is passed by reference. */
if (is_true_formal_parm && DECL_BY_REF_P (gnu_formal))
{
if (!in_param)
{
/* In Out or Out parameters passed by reference don't use the
copy-in/copy-out mechanism so the address of the real object
must be passed to the function. */
gnu_actual = gnu_name;
/* If we have a padded type, be sure we've removed padding. */
if (TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual)))
gnu_actual = convert (get_unpadded_type (Etype (gnat_actual)),
gnu_actual);
/* If we have the constructed subtype of an aliased object
with an unconstrained nominal subtype, the type of the
actual includes the template, although it is formally
constrained. So we need to convert it back to the real
constructed subtype to retrieve the constrained part
and takes its address. */
if (TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (gnu_actual))
&& Is_Constr_Subt_For_UN_Aliased (Etype (gnat_actual))
&& Is_Array_Type (Underlying_Type (Etype (gnat_actual))))
gnu_actual = convert (gnu_actual_type, gnu_actual);
}
/* There is no need to convert the actual to the formal's type before
taking its address. The only exception is for unconstrained array
types because of the way we build fat pointers. */
if (TREE_CODE (gnu_formal_type) == UNCONSTRAINED_ARRAY_TYPE)
{
/* Put back the conversion we suppressed above for In Out or Out
parameters, since it may set the bounds of the actual. */
if (!in_param && suppress_type_conversion)
gnu_actual = convert (gnu_actual_type, gnu_actual);
gnu_actual = convert (gnu_formal_type, gnu_actual);
}
/* Take the address of the object and convert to the proper pointer
type. */
gnu_formal_type = TREE_TYPE (gnu_formal);
gnu_actual = build_unary_op (ADDR_EXPR, gnu_formal_type, gnu_actual);
}
/* Then see if the parameter is an array passed to a foreign convention
subprogram. */
else if (is_true_formal_parm && DECL_BY_COMPONENT_PTR_P (gnu_formal))
{
gnu_actual = maybe_implicit_deref (gnu_actual);
gnu_actual = maybe_unconstrained_array (gnu_actual);
/* Take the address of the object and convert to the proper pointer
type. We'd like to actually compute the address of the beginning
of the array using an ADDR_EXPR of an ARRAY_REF, but there's a
possibility that the ARRAY_REF might return a constant and we'd be
getting the wrong address. Neither approach is exactly correct,
but this is the most likely to work in all cases. */
gnu_formal_type = TREE_TYPE (gnu_formal);
gnu_actual = build_unary_op (ADDR_EXPR, gnu_formal_type, gnu_actual);
}
/* Otherwise the parameter is passed by copy. */
else
{
tree gnu_size;
if (!in_param)
gnu_name_list = tree_cons (NULL_TREE, gnu_name, gnu_name_list);
/* If we didn't create a PARM_DECL for the formal, this means that
it is an Out parameter not passed by reference and that need not
be copied in. In this case, the value of the actual need not be
read. However, we still need to make sure that its side-effects
are evaluated before the call, so we evaluate its address. */
if (!is_true_formal_parm)
{
if (TREE_SIDE_EFFECTS (gnu_name))
{
tree addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_name);
append_to_statement_list (addr, &gnu_stmt_list);
}
continue;
}
gnu_actual = convert (gnu_formal_type, gnu_actual);
/* If this is 'Null_Parameter, pass a zero even though we are
dereferencing it. */
if (TREE_CODE (gnu_actual) == INDIRECT_REF
&& TREE_PRIVATE (gnu_actual)
&& (gnu_size = TYPE_SIZE (TREE_TYPE (gnu_actual)))
&& TREE_CODE (gnu_size) == INTEGER_CST
&& compare_tree_int (gnu_size, BITS_PER_WORD) <= 0)
{
tree type_for_size
= gnat_type_for_size (TREE_INT_CST_LOW (gnu_size), 1);
gnu_actual
= unchecked_convert (DECL_ARG_TYPE (gnu_formal),
build_int_cst (type_for_size, 0),
false);
}
/* If this is a front-end built-in function, there is no need to
convert to the type used to pass the argument. */
else if (!frontend_builtin)
gnu_actual = convert (DECL_ARG_TYPE (gnu_formal), gnu_actual);
}
gnu_actual_vec.safe_push (gnu_actual);
}
if (frontend_builtin)
{
tree pred_cst = build_int_cst (integer_type_node, PRED_BUILTIN_EXPECT);
enum internal_fn icode = IFN_BUILTIN_EXPECT;
switch (DECL_FE_FUNCTION_CODE (gnu_subprog))
{
case BUILT_IN_EXPECT:
break;
case BUILT_IN_LIKELY:
gnu_actual_vec.safe_push (boolean_true_node);
break;
case BUILT_IN_UNLIKELY:
gnu_actual_vec.safe_push (boolean_false_node);
break;
default:
gcc_unreachable ();
}
gnu_actual_vec.safe_push (pred_cst);
gnu_call
= build_call_expr_internal_loc_array (UNKNOWN_LOCATION,
icode,
gnu_result_type,
gnu_actual_vec.length (),
gnu_actual_vec.begin ());
}
else
{
gnu_call
= build_call_array_loc (UNKNOWN_LOCATION,
gnu_result_type,
build_unary_op (ADDR_EXPR, NULL_TREE,
gnu_subprog),
gnu_actual_vec.length (),
gnu_actual_vec.begin ());
CALL_EXPR_BY_DESCRIPTOR (gnu_call) = by_descriptor;
}
set_expr_location_from_node (gnu_call, gnat_node);
/* If we have created a temporary for the return value, initialize it. */
if (gnu_retval)
{
tree gnu_stmt
= build_binary_op (INIT_EXPR, NULL_TREE, gnu_retval, gnu_call);
set_expr_location_from_node (gnu_stmt, gnat_node);
append_to_statement_list (gnu_stmt, &gnu_stmt_list);
gnu_call = gnu_retval;
}
/* If this is a subprogram with copy-in/copy-out parameters, we need to
unpack the valued returned from the function into the In Out or Out
parameters. We deal with the function return (if this is an Ada
function) below. */
if (TYPE_CI_CO_LIST (gnu_subprog_type))
{
/* List of FIELD_DECLs associated with the PARM_DECLs of the copy-in/
copy-out parameters. */
tree gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type);
const int length = list_length (gnu_cico_list);
/* The call sequence must contain one and only one call, even though the
function is pure. Save the result into a temporary if needed. */
if (length > 1)
{
if (!gnu_retval)
{
tree gnu_stmt;
gnu_call
= create_init_temporary ("P", gnu_call, &gnu_stmt, gnat_node);
append_to_statement_list (gnu_stmt, &gnu_stmt_list);
}
gnu_name_list = nreverse (gnu_name_list);
}
/* The first entry is for the actual return value if this is a
function, so skip it. */
if (function_call)
gnu_cico_list = TREE_CHAIN (gnu_cico_list);
if (Nkind (Name (gnat_node)) == N_Explicit_Dereference)
gnat_formal = First_Formal_With_Extras (Etype (Name (gnat_node)));
else
gnat_formal = First_Formal_With_Extras (Entity (Name (gnat_node)));
for (gnat_actual = First_Actual (gnat_node);
Present (gnat_actual);
gnat_formal = Next_Formal_With_Extras (gnat_formal),
gnat_actual = Next_Actual (gnat_actual))
/* If we are dealing with a copy-in/copy-out parameter, we must
retrieve its value from the record returned in the call. */
if (!(present_gnu_tree (gnat_formal)
&& TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL
&& (DECL_BY_REF_P (get_gnu_tree (gnat_formal))
|| DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_formal))))
&& Ekind (gnat_formal) != E_In_Parameter)
{
/* Get the value to assign to this In Out or Out parameter. It is
either the result of the function if there is only a single such
parameter or the appropriate field from the record returned. */
tree gnu_result
= length == 1
? gnu_call
: build_component_ref (gnu_call, TREE_PURPOSE (gnu_cico_list),
false);
/* If the actual is a conversion, get the inner expression, which
will be the real destination, and convert the result to the
type of the actual parameter. */
tree gnu_actual
= maybe_unconstrained_array (TREE_VALUE (gnu_name_list));
/* If the result is a padded type, remove the padding. */
if (TYPE_IS_PADDING_P (TREE_TYPE (gnu_result)))
gnu_result
= convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))),
gnu_result);
/* If the actual is a type conversion, the real target object is
denoted by the inner Expression and we need to convert the
result to the associated type.
We also need to convert our gnu assignment target to this type
if the corresponding GNU_NAME was constructed from the GNAT
conversion node and not from the inner Expression. */
if (Nkind (gnat_actual) == N_Type_Conversion)
{
gnu_result
= convert_with_check
(Etype (Expression (gnat_actual)), gnu_result,
Do_Overflow_Check (gnat_actual),
Do_Range_Check (Expression (gnat_actual)),
Float_Truncate (gnat_actual), gnat_actual);
if (!Is_Composite_Type (Underlying_Type (Etype (gnat_formal))))
gnu_actual = convert (TREE_TYPE (gnu_result), gnu_actual);
}
/* Unchecked conversions as actuals for Out parameters are not
allowed in user code because they are not variables, but do
occur in front-end expansions. The associated GNU_NAME is
always obtained from the inner expression in such cases. */
else if (Nkind (gnat_actual) == N_Unchecked_Type_Conversion)
gnu_result = unchecked_convert (TREE_TYPE (gnu_actual),
gnu_result,
No_Truncation (gnat_actual));
else
{
if (Do_Range_Check (gnat_actual))
gnu_result
= emit_range_check (gnu_result, Etype (gnat_actual),
gnat_actual);
if (!(!TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_actual)))
&& TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_result)))))
gnu_result = convert (TREE_TYPE (gnu_actual), gnu_result);
}
/* If an outer atomic access is required for an actual parameter,
build the load-modify-store sequence. */
if (outer_atomic_access_required_p (gnat_actual))
gnu_result
= build_load_modify_store (gnu_actual, gnu_result, gnat_node);
/* Or else, if simple atomic access is required, build the atomic
store. */
else if (atomic_access_required_p (gnat_actual, &sync))
gnu_result = build_atomic_store (gnu_actual, gnu_result, sync);
/* Otherwise build a regular assignment. */
else
gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE,
gnu_actual, gnu_result);
if (EXPR_P (gnu_result))
set_expr_location_from_node (gnu_result, gnat_node);
append_to_statement_list (gnu_result, &gnu_stmt_list);
gnu_cico_list = TREE_CHAIN (gnu_cico_list);
gnu_name_list = TREE_CHAIN (gnu_name_list);
}
}
/* If this is a function call, the result is the call expression unless a
target is specified, in which case we copy the result into the target
and return the assignment statement. */
if (function_call)
{
/* If this is a function with copy-in/copy-out parameters, extract the
return value from it and update the return type. */
if (TYPE_CI_CO_LIST (gnu_subprog_type))
{
tree gnu_elmt = TYPE_CI_CO_LIST (gnu_subprog_type);
gnu_call
= build_component_ref (gnu_call, TREE_PURPOSE (gnu_elmt), false);
gnu_result_type = TREE_TYPE (gnu_call);
}
/* If the function returns an unconstrained array or by direct reference,
we have to dereference the pointer. */
if (TYPE_RETURN_UNCONSTRAINED_P (gnu_subprog_type)
|| TYPE_RETURN_BY_DIRECT_REF_P (gnu_subprog_type))
gnu_call = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_call);
if (gnu_target)
{
Node_Id gnat_parent = Parent (gnat_node);
enum tree_code op_code;
/* If range check is needed, emit code to generate it. */
if (Do_Range_Check (gnat_node))
gnu_call
= emit_range_check (gnu_call, Etype (Name (gnat_parent)),
gnat_parent);
/* ??? If the return type has variable size, then force the return
slot optimization as we would not be able to create a temporary.
That's what has been done historically. */
if (return_type_with_variable_size_p (gnu_result_type))
op_code = INIT_EXPR;
else
op_code = MODIFY_EXPR;
/* Use the required method to move the result to the target. */
if (outer_atomic_access)
gnu_call
= build_load_modify_store (gnu_target, gnu_call, gnat_node);
else if (atomic_access)
gnu_call = build_atomic_store (gnu_target, gnu_call, atomic_sync);
else
gnu_call
= build_binary_op (op_code, NULL_TREE, gnu_target, gnu_call);
if (EXPR_P (gnu_call))
set_expr_location_from_node (gnu_call, gnat_parent);
append_to_statement_list (gnu_call, &gnu_stmt_list);
}
else
*gnu_result_type_p = get_unpadded_type (Etype (gnat_node));
}
/* Otherwise, if this is a procedure call statement without copy-in/copy-out
parameters, the result is just the call statement. */
else if (!TYPE_CI_CO_LIST (gnu_subprog_type))
append_to_statement_list (gnu_call, &gnu_stmt_list);
/* Finally, add the copy back statements, if any. */
append_to_statement_list (gnu_after_list, &gnu_stmt_list);
if (went_into_elab_proc)
current_function_decl = NULL_TREE;
/* If we have pushed a binding level, pop it and finish up the enclosing
statement group. */
if (pushed_binding_level)
{
add_stmt (gnu_stmt_list);
gnat_poplevel ();
gnu_result = end_stmt_group ();
}
/* Otherwise, retrieve the statement list, if any. */
else if (gnu_stmt_list)
gnu_result = gnu_stmt_list;
/* Otherwise, just return the call expression. */
else
return gnu_call;
/* If we nevertheless need a value, make a COMPOUND_EXPR to return it.
But first simplify if we have only one statement in the list. */
if (returning_value)
{
tree first = expr_first (gnu_result), last = expr_last (gnu_result);
if (first == last)
gnu_result = first;
gnu_result
= build_compound_expr (TREE_TYPE (gnu_call), gnu_result, gnu_call);
}
return gnu_result;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an
N_Handled_Sequence_Of_Statements, to a GCC tree, which is returned. */
static tree
Handled_Sequence_Of_Statements_to_gnu (Node_Id gnat_node)
{
/* If just annotating, ignore all EH and cleanups. */
const bool gcc_eh
= (!type_annotate_only
&& Present (Exception_Handlers (gnat_node))
&& Back_End_Exceptions ());
const bool fe_sjlj_eh
= (!type_annotate_only
&& Present (Exception_Handlers (gnat_node))
&& Exception_Mechanism == Front_End_SJLJ);
const bool at_end = !type_annotate_only && Present (At_End_Proc (gnat_node));
const bool binding_for_block = (at_end || gcc_eh || fe_sjlj_eh);
tree gnu_jmpsave_decl = NULL_TREE;
tree gnu_jmpbuf_decl = NULL_TREE;
tree gnu_inner_block; /* The statement(s) for the block itself. */
tree gnu_result;
tree gnu_expr;
Node_Id gnat_temp;
/* The GCC exception handling mechanism can handle both ZCX and SJLJ schemes
and the front-end has its own SJLJ mechanism. To call the GCC mechanism,
we call add_cleanup, and when we leave the binding, end_stmt_group will
create the TRY_FINALLY_EXPR construct.
??? The region level calls down there have been specifically put in place
for a ZCX context and currently the order in which things are emitted
(region/handlers) is different from the SJLJ case. Instead of putting
other calls with different conditions at other places for the SJLJ case,
it seems cleaner to reorder things for the SJLJ case and generalize the
condition to make it not ZCX specific.
If there are any exceptions or cleanup processing involved, we need an
outer statement group (for front-end SJLJ) and binding level. */
if (binding_for_block)
{
start_stmt_group ();
gnat_pushlevel ();
}
/* If using fe_sjlj_eh, make the variables for the setjmp buffer and save
area for address of previous buffer. Do this first since we need to have
the setjmp buf known for any decls in this block. */
if (fe_sjlj_eh)
{
gnu_jmpsave_decl
= create_var_decl (get_identifier ("JMPBUF_SAVE"), NULL_TREE,
jmpbuf_ptr_type,
build_call_n_expr (get_jmpbuf_decl, 0),
false, false, false, false, false, true, false,
NULL, gnat_node);
/* The __builtin_setjmp receivers will immediately reinstall it. Now
because of the unstructured form of EH used by fe_sjlj_eh, there
might be forward edges going to __builtin_setjmp receivers on which
it is uninitialized, although they will never be actually taken. */
TREE_NO_WARNING (gnu_jmpsave_decl) = 1;
gnu_jmpbuf_decl
= create_var_decl (get_identifier ("JMP_BUF"), NULL_TREE,
jmpbuf_type,
NULL_TREE,
false, false, false, false, false, true, false,
NULL, gnat_node);
set_block_jmpbuf_decl (gnu_jmpbuf_decl);
/* When we exit this block, restore the saved value. */
add_cleanup (build_call_n_expr (set_jmpbuf_decl, 1, gnu_jmpsave_decl),
Present (End_Label (gnat_node))
? End_Label (gnat_node) : gnat_node);
}
/* If we are to call a function when exiting this block, add a cleanup
to the binding level we made above. Note that add_cleanup is FIFO
so we must register this cleanup after the EH cleanup just above. */
if (at_end)
{
tree proc_decl = gnat_to_gnu (At_End_Proc (gnat_node));
/* When not optimizing, disable inlining of finalizers as this can
create a more complex CFG in the parent function. */
if (!optimize)
DECL_DECLARED_INLINE_P (proc_decl) = 0;
/* If there is no end label attached, we use the location of the At_End
procedure because Expand_Cleanup_Actions might reset the location of
the enclosing construct to that of an inner statement. */
add_cleanup (build_call_n_expr (proc_decl, 0),
Present (End_Label (gnat_node))
? End_Label (gnat_node) : At_End_Proc (gnat_node));
}
/* Now build the tree for the declarations and statements inside this block.
If this is SJLJ, set our jmp_buf as the current buffer. */
start_stmt_group ();
if (fe_sjlj_eh)
{
gnu_expr = build_call_n_expr (set_jmpbuf_decl, 1,
build_unary_op (ADDR_EXPR, NULL_TREE,
gnu_jmpbuf_decl));
set_expr_location_from_node (gnu_expr, gnat_node);
add_stmt (gnu_expr);
}
if (Present (First_Real_Statement (gnat_node)))
process_decls (Statements (gnat_node), Empty,
First_Real_Statement (gnat_node), true, true);
/* Generate code for each statement in the block. */
for (gnat_temp = (Present (First_Real_Statement (gnat_node))
? First_Real_Statement (gnat_node)
: First (Statements (gnat_node)));
Present (gnat_temp); gnat_temp = Next (gnat_temp))
add_stmt (gnat_to_gnu (gnat_temp));
gnu_inner_block = end_stmt_group ();
/* Now generate code for the two exception models, if either is relevant for
this block. */
if (fe_sjlj_eh)
{
tree *gnu_else_ptr = 0;
tree gnu_handler;
/* Make a binding level for the exception handling declarations and code
and set up gnu_except_ptr_stack for the handlers to use. */
start_stmt_group ();
gnat_pushlevel ();
vec_safe_push (gnu_except_ptr_stack,
create_var_decl (get_identifier ("EXCEPT_PTR"), NULL_TREE,
build_pointer_type (except_type_node),
build_call_n_expr (get_excptr_decl, 0),
false, false, false, false, false,
true, false, NULL, gnat_node));
/* Generate code for each handler. The N_Exception_Handler case does the
real work and returns a COND_EXPR for each handler, which we chain
together here. */
for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node));
Present (gnat_temp); gnat_temp = Next_Non_Pragma (gnat_temp))
{
gnu_expr = gnat_to_gnu (gnat_temp);
/* If this is the first one, set it as the outer one. Otherwise,
point the "else" part of the previous handler to us. Then point
to our "else" part. */
if (!gnu_else_ptr)
add_stmt (gnu_expr);
else
*gnu_else_ptr = gnu_expr;
gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr);
}
/* If none of the exception handlers did anything, re-raise but do not
defer abortion. */
gnu_expr = build_call_n_expr (raise_nodefer_decl, 1,
gnu_except_ptr_stack->last ());
set_expr_location_from_node
(gnu_expr,
Present (End_Label (gnat_node)) ? End_Label (gnat_node) : gnat_node);
if (gnu_else_ptr)
*gnu_else_ptr = gnu_expr;
else
add_stmt (gnu_expr);
/* End the binding level dedicated to the exception handlers and get the
whole statement group. */
gnu_except_ptr_stack->pop ();
gnat_poplevel ();
gnu_handler = end_stmt_group ();
/* If the setjmp returns 1, we restore our incoming longjmp value and
then check the handlers. */
start_stmt_group ();
add_stmt_with_node (build_call_n_expr (set_jmpbuf_decl, 1,
gnu_jmpsave_decl),
gnat_node);
add_stmt (gnu_handler);
gnu_handler = end_stmt_group ();
/* This block is now "if (setjmp) ... else ". */
gnu_result = build3 (COND_EXPR, void_type_node,
(build_call_n_expr
(setjmp_decl, 1,
build_unary_op (ADDR_EXPR, NULL_TREE,
gnu_jmpbuf_decl))),
gnu_handler, gnu_inner_block);
}
else if (gcc_eh)
{
tree gnu_handlers;
location_t locus;
/* First make a block containing the handlers. */
start_stmt_group ();
for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node));
Present (gnat_temp);
gnat_temp = Next_Non_Pragma (gnat_temp))
add_stmt (gnat_to_gnu (gnat_temp));
gnu_handlers = end_stmt_group ();
/* Now make the TRY_CATCH_EXPR for the block. */
gnu_result = build2 (TRY_CATCH_EXPR, void_type_node,
gnu_inner_block, gnu_handlers);
/* Set a location. We need to find a unique location for the dispatching
code, otherwise we can get coverage or debugging issues. Try with
the location of the end label. */
if (Present (End_Label (gnat_node))
&& Sloc_to_locus (Sloc (End_Label (gnat_node)), &locus))
SET_EXPR_LOCATION (gnu_result, locus);
else
/* Clear column information so that the exception handler of an
implicit transient block does not incorrectly inherit the slocs
of a decision, which would otherwise confuse control flow based
coverage analysis tools. */
set_expr_location_from_node (gnu_result, gnat_node, true);
}
else
gnu_result = gnu_inner_block;
/* Now close our outer block, if we had to make one. */
if (binding_for_block)
{
add_stmt (gnu_result);
gnat_poplevel ();
gnu_result = end_stmt_group ();
}
return gnu_result;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Exception_Handler,
to a GCC tree, which is returned. This is the variant for front-end sjlj
exception handling. */
static tree
Exception_Handler_to_gnu_fe_sjlj (Node_Id gnat_node)
{
/* Unless this is "Others" or the special "Non-Ada" exception for Ada, make
an "if" statement to select the proper exceptions. For "Others", exclude
exceptions where Handled_By_Others is nonzero unless the All_Others flag
is set. For "Non-ada", accept an exception if "Lang" is 'V'. */
tree gnu_choice = boolean_false_node;
tree gnu_body = build_stmt_group (Statements (gnat_node), false);
Node_Id gnat_temp;
for (gnat_temp = First (Exception_Choices (gnat_node));
gnat_temp; gnat_temp = Next (gnat_temp))
{
tree this_choice;
if (Nkind (gnat_temp) == N_Others_Choice)
{
if (All_Others (gnat_temp))
this_choice = boolean_true_node;
else
this_choice
= build_binary_op
(EQ_EXPR, boolean_type_node,
convert
(integer_type_node,
build_component_ref
(build_unary_op
(INDIRECT_REF, NULL_TREE,
gnu_except_ptr_stack->last ()),
not_handled_by_others_decl,
false)),
integer_zero_node);
}
else if (Nkind (gnat_temp) == N_Identifier
|| Nkind (gnat_temp) == N_Expanded_Name)
{
Entity_Id gnat_ex_id = Entity (gnat_temp);
tree gnu_expr;
/* Exception may be a renaming. Recover original exception which is
the one elaborated and registered. */
if (Present (Renamed_Object (gnat_ex_id)))
gnat_ex_id = Renamed_Object (gnat_ex_id);
gnu_expr = gnat_to_gnu_entity (gnat_ex_id, NULL_TREE, false);
this_choice
= build_binary_op
(EQ_EXPR, boolean_type_node,
gnu_except_ptr_stack->last (),
convert (TREE_TYPE (gnu_except_ptr_stack->last ()),
build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr)));
}
else
gcc_unreachable ();
gnu_choice = build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node,
gnu_choice, this_choice);
}
return build3 (COND_EXPR, void_type_node, gnu_choice, gnu_body, NULL_TREE);
}
/* Return true if no statement in GNAT_LIST can alter the control flow. */
static bool
stmt_list_cannot_alter_control_flow_p (List_Id gnat_list)
{
if (No (gnat_list))
return true;
/* This is very conservative, we reject everything except for simple
assignments between identifiers or literals. */
for (Node_Id gnat_node = First (gnat_list);
Present (gnat_node);
gnat_node = Next (gnat_node))
{
if (Nkind (gnat_node) != N_Assignment_Statement)
return false;
if (Nkind (Name (gnat_node)) != N_Identifier)
return false;
Node_Kind nkind = Nkind (Expression (gnat_node));
if (nkind != N_Identifier
&& nkind != N_Integer_Literal
&& nkind != N_Real_Literal)
return false;
}
return true;
}
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Exception_Handler,
to a GCC tree, which is returned. This is the variant for GCC exception
schemes. */
static tree
Exception_Handler_to_gnu_gcc (Node_Id gnat_node)
{
tree gnu_etypes_list = NULL_TREE;
/* We build a TREE_LIST of nodes representing what exception types this
handler can catch, with special cases for others and all others cases.
Each exception type is actually identified by a pointer to the exception
id, or to a dummy object for "others" and "all others". */
for (Node_Id gnat_temp = First (Exception_Choices (gnat_node));
gnat_temp;
gnat_temp = Next (gnat_temp))
{
tree gnu_expr, gnu_etype;
if (Nkind (gnat_temp) == N_Others_Choice)
{
gnu_expr = All_Others (gnat_temp) ? all_others_decl : others_decl;
gnu_etype = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr);
}
else if (Nkind (gnat_temp) == N_Identifier
|| Nkind (gnat_temp) == N_Expanded_Name)
{
Entity_Id gnat_ex_id = Entity (gnat_temp);
/* Exception may be a renaming. Recover original exception which is
the one elaborated and registered. */
if (Present (Renamed_Object (gnat_ex_id)))
gnat_ex_id = Renamed_Object (gnat_ex_id);
gnu_expr = gnat_to_gnu_entity (gnat_ex_id, NULL_TREE, false);
gnu_etype = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr);
}
else
gcc_unreachable ();
/* The GCC interface expects NULL to be passed for catch all handlers, so
it would be quite tempting to set gnu_etypes_list to NULL if gnu_etype
is integer_zero_node. It would not work, however, because GCC's
notion of "catch all" is stronger than our notion of "others". Until
we correctly use the cleanup interface as well, doing that would
prevent the "all others" handlers from being seen, because nothing
can be caught beyond a catch all from GCC's point of view. */
gnu_etypes_list = tree_cons (NULL_TREE, gnu_etype, gnu_etypes_list);
}
start_stmt_group ();
gnat_pushlevel ();
/* Expand a call to the begin_handler hook at the beginning of the
handler, and arrange for a call to the end_handler hook to occur
on every possible exit path. GDB sets a breakpoint in the
begin_handler for catchpoints.
A v1 begin handler saves the cleanup from the exception object,
and marks the exception as in use, so that it will not be
released by other handlers. A v1 end handler restores the
cleanup and releases the exception object, unless it is still
claimed, or the exception is being propagated (reraised).
__builtin_eh_pointer references the exception occurrence being
handled or propagated. Within the handler region, it is the
former, but within the else branch of the EH_ELSE_EXPR, i.e. the
exceptional cleanup path, it is the latter, so we must save the
occurrence being handled early on, so that, should an exception
be (re)raised, we can release the current exception, or figure
out we're not to release it because we're propagating a reraise
thereof.
We use local variables to retrieve the incoming value at handler
entry time (EXPTR), the saved cleanup (EXCLN) and the token
(EXVTK), and reuse them to feed the end_handler hook's argument
at exit. */
/* CODE: void *EXPTR = __builtin_eh_pointer (0); */
tree gnu_current_exc_ptr
= build_call_expr (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1, integer_zero_node);
tree exc_ptr
= create_var_decl (get_identifier ("EXPTR"), NULL_TREE,
ptr_type_node, gnu_current_exc_ptr,
true, false, false, false, false, true, true,
NULL, gnat_node);
tree prev_gnu_incoming_exc_ptr = gnu_incoming_exc_ptr;
gnu_incoming_exc_ptr = exc_ptr;
/* begin_handler_decl must not throw, so we can use it as an
initializer for a variable used in cleanups.
CODE: void *EXCLN = __gnat_begin_handler_v1 (EXPTR); */
tree exc_cleanup
= create_var_decl (get_identifier ("EXCLN"), NULL_TREE,
ptr_type_node,
build_call_n_expr (begin_handler_decl, 1,
exc_ptr),
true, false, false, false, false,
true, true, NULL, gnat_node);
/* Declare and initialize the choice parameter, if present. */
if (Present (Choice_Parameter (gnat_node)))
{
tree gnu_param
= gnat_to_gnu_entity (Choice_Parameter (gnat_node), NULL_TREE, true);
/* CODE: __gnat_set_exception_parameter (&choice_param, EXPTR); */
add_stmt (build_call_n_expr
(set_exception_parameter_decl, 2,
build_unary_op (ADDR_EXPR, NULL_TREE, gnu_param),
gnu_incoming_exc_ptr));
}
/* CODE: */
add_stmt_list (Statements (gnat_node));
tree call = build_call_n_expr (end_handler_decl, 3,
exc_ptr,
exc_cleanup,
null_pointer_node);
/* If the handler can only end by falling off the end, don't bother
with cleanups. */
if (stmt_list_cannot_alter_control_flow_p (Statements (gnat_node)))
/* CODE: __gnat_end_handler_v1 (EXPTR, EXCLN, NULL); */
add_stmt_with_node (call, gnat_node);
/* Otherwise, all of the above is after
CODE: try {
The call above will appear after
CODE: } finally {
And the code below will appear after
CODE: } else {
The else block to a finally block is taken instead of the finally
block when an exception propagates out of the try block. */
else
{
start_stmt_group ();
gnat_pushlevel ();
/* CODE: void *EXPRP = __builtin_eh_handler (0); */
tree prop_ptr
= create_var_decl (get_identifier ("EXPRP"), NULL_TREE,
ptr_type_node,
build_call_expr (builtin_decl_explicit
(BUILT_IN_EH_POINTER),
1, integer_zero_node),
true, false, false, false, false,
true, true, NULL, gnat_node);
/* CODE: __gnat_end_handler_v1 (EXPTR, EXCLN, EXPRP); */
tree ecall = build_call_n_expr (end_handler_decl, 3,
exc_ptr,
exc_cleanup,
prop_ptr);
add_stmt_with_node (ecall, gnat_node);
/* CODE: } */
gnat_poplevel ();
tree eblk = end_stmt_group ();
tree ehls = build2 (EH_ELSE_EXPR, void_type_node, call, eblk);
add_cleanup (ehls, gnat_node);
}
gnat_poplevel ();
gnu_incoming_exc_ptr = prev_gnu_incoming_exc_ptr;
return
build2 (CATCH_EXPR, void_type_node, gnu_etypes_list, end_stmt_group ());
}
/* Subroutine of gnat_to_gnu to generate code for an N_Compilation unit. */
static void
Compilation_Unit_to_gnu (Node_Id gnat_node)
{
const Node_Id gnat_unit = Unit (gnat_node);
const bool body_p = (Nkind (gnat_unit) == N_Package_Body
|| Nkind (gnat_unit) == N_Subprogram_Body);
const Entity_Id gnat_unit_entity = Defining_Entity (gnat_unit);
Entity_Id gnat_entity;
Node_Id gnat_pragma;
/* Make the decl for the elaboration procedure. Emit debug info for it, so
that users can break into their elaboration code in debuggers. Kludge:
don't consider it as a definition so that we have a line map for its
body, but no subprogram description in debug info. In addition, don't
qualify it as artificial, even though it is not a user subprogram per se,
in particular for specs. Unlike, say, clones created internally by the
compiler, this subprogram materializes specific user code and flagging it
artificial would take elab code away from gcov's analysis. */
tree gnu_elab_proc_decl
= create_subprog_decl
(create_concat_name (gnat_unit_entity, body_p ? "elabb" : "elabs"),
NULL_TREE, void_ftype, NULL_TREE,
is_default, true, false, false, true, false, NULL, gnat_unit);
struct elab_info *info;
vec_safe_push (gnu_elab_proc_stack, gnu_elab_proc_decl);
DECL_ELABORATION_PROC_P (gnu_elab_proc_decl) = 1;
/* Initialize the information structure for the function. */
allocate_struct_function (gnu_elab_proc_decl, false);
set_cfun (NULL);
current_function_decl = NULL_TREE;
start_stmt_group ();
gnat_pushlevel ();
/* For a body, first process the spec if there is one. */
if (Nkind (gnat_unit) == N_Package_Body
|| (Nkind (gnat_unit) == N_Subprogram_Body && !Acts_As_Spec (gnat_node)))
add_stmt (gnat_to_gnu (Library_Unit (gnat_node)));
if (type_annotate_only && gnat_node == Cunit (Main_Unit))
{
elaborate_all_entities (gnat_node);
if (Nkind (gnat_unit) == N_Subprogram_Declaration
|| Nkind (gnat_unit) == N_Generic_Package_Declaration
|| Nkind (gnat_unit) == N_Generic_Subprogram_Declaration)
return;
}
/* Then process any pragmas and declarations preceding the unit. */
for (gnat_pragma = First (Context_Items (gnat_node));
Present (gnat_pragma);
gnat_pragma = Next (gnat_pragma))
if (Nkind (gnat_pragma) == N_Pragma)
add_stmt (gnat_to_gnu (gnat_pragma));
process_decls (Declarations (Aux_Decls_Node (gnat_node)), Empty, Empty,
true, true);
/* Process the unit itself. */
add_stmt (gnat_to_gnu (gnat_unit));
/* Generate code for all the inlined subprograms. */
for (gnat_entity = First_Inlined_Subprogram (gnat_node);
Present (gnat_entity);
gnat_entity = Next_Inlined_Subprogram (gnat_entity))
{
Node_Id gnat_body;
/* Without optimization, process only the required subprograms. */
if (!optimize && !Has_Pragma_Inline_Always (gnat_entity))
continue;
/* The set of inlined subprograms is computed from data recorded early
during expansion and it can be a strict superset of the final set
computed after semantic analysis, for example if a call to such a
subprogram occurs in a pragma Assert and assertions are disabled.
In that case, semantic analysis resets Is_Public to false but the
entry for the subprogram in the inlining tables is stalled. */
if (!Is_Public (gnat_entity))
continue;
gnat_body = Parent (Declaration_Node (gnat_entity));
if (Nkind (gnat_body) != N_Subprogram_Body)
{
/* ??? This happens when only the spec of a package is provided. */
if (No (Corresponding_Body (gnat_body)))
continue;
gnat_body
= Parent (Declaration_Node (Corresponding_Body (gnat_body)));
}
/* Define the entity first so we set DECL_EXTERNAL. */
gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
add_stmt (gnat_to_gnu (gnat_body));
}
/* Process any pragmas and actions following the unit. */
add_stmt_list (Pragmas_After (Aux_Decls_Node (gnat_node)));
add_stmt_list (Actions (Aux_Decls_Node (gnat_node)));
finalize_from_limited_with ();
/* Save away what we've made so far and finish it up. */
set_current_block_context (gnu_elab_proc_decl);
gnat_poplevel ();
DECL_SAVED_TREE (gnu_elab_proc_decl) = end_stmt_group ();
set_end_locus_from_node (gnu_elab_proc_decl, gnat_unit);
gnu_elab_proc_stack->pop ();
/* Record this potential elaboration procedure for later processing. */
info = ggc_alloc ();
info->next = elab_info_list;
info->elab_proc = gnu_elab_proc_decl;
info->gnat_node = gnat_node;
elab_info_list = info;
/* Force the processing for all nodes that remain in the queue. */
process_deferred_decl_context (true);
}
/* Mark COND, a boolean expression, as predicating a call to a noreturn
function, i.e. predict that it is very likely false, and return it.
The compiler will automatically predict the last edge leading to a call
to a noreturn function as very unlikely taken. This function makes it
possible to extend the prediction to predecessors in case the condition
is made up of several short-circuit operators. */
static tree
build_noreturn_cond (tree cond)
{
tree pred_cst = build_int_cst (integer_type_node, PRED_NORETURN);
return
build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_BUILTIN_EXPECT,
boolean_type_node, 3, cond,
boolean_false_node, pred_cst);
}
/* Subroutine of gnat_to_gnu to translate GNAT_RANGE, a node representing a
range of values, into GNU_LOW and GNU_HIGH bounds. */
static void
Range_to_gnu (Node_Id gnat_range, tree *gnu_low, tree *gnu_high)
{
/* GNAT_RANGE is either an N_Range or an identifier denoting a subtype. */
switch (Nkind (gnat_range))
{
case N_Range:
*gnu_low = gnat_to_gnu (Low_Bound (gnat_range));
*gnu_high = gnat_to_gnu (High_Bound (gnat_range));
break;
case N_Expanded_Name:
case N_Identifier:
{
tree gnu_range_type = get_unpadded_type (Entity (gnat_range));
tree gnu_range_base_type = get_base_type (gnu_range_type);
*gnu_low
= convert (gnu_range_base_type, TYPE_MIN_VALUE (gnu_range_type));
*gnu_high
= convert (gnu_range_base_type, TYPE_MAX_VALUE (gnu_range_type));
}
break;
default:
gcc_unreachable ();
}
}
/* Subroutine of gnat_to_gnu to translate GNAT_NODE, an N_Raise_xxx_Error,
to a GCC tree and return it. GNU_RESULT_TYPE_P is a pointer to where
we should place the result type. */
static tree
Raise_Error_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p)
{
const Node_Kind kind = Nkind (gnat_node);
const int reason = UI_To_Int (Reason (gnat_node));
const Node_Id gnat_cond = Condition (gnat_node);
const bool with_extra_info
= Exception_Extra_Info
&& !No_Exception_Handlers_Set ()
&& No (get_exception_label (kind));
tree gnu_result = NULL_TREE, gnu_cond = NULL_TREE;
/* The following processing is not required for correctness. Its purpose is
to give more precise error messages and to record some information. */
switch (reason)
{
case CE_Access_Check_Failed:
if (with_extra_info)
gnu_result = build_call_raise_column (reason, gnat_node, kind);
break;
case CE_Index_Check_Failed:
case CE_Range_Check_Failed:
case CE_Invalid_Data:
if (Present (gnat_cond) && Nkind (gnat_cond) == N_Op_Not)
{
Node_Id gnat_index, gnat_type;
tree gnu_type, gnu_index, gnu_low_bound, gnu_high_bound, disp;
bool neg_p;
struct loop_info_d *loop;
switch (Nkind (Right_Opnd (gnat_cond)))
{
case N_In:
Range_to_gnu (Right_Opnd (Right_Opnd (gnat_cond)),
&gnu_low_bound, &gnu_high_bound);
break;
case N_Op_Ge:
gnu_low_bound = gnat_to_gnu (Right_Opnd (Right_Opnd (gnat_cond)));
gnu_high_bound = NULL_TREE;
break;
case N_Op_Le:
gnu_low_bound = NULL_TREE;
gnu_high_bound = gnat_to_gnu (Right_Opnd (Right_Opnd (gnat_cond)));
break;
default:
goto common;
}
gnat_index = Left_Opnd (Right_Opnd (gnat_cond));
gnat_type = Etype (gnat_index);
gnu_type = maybe_character_type (get_unpadded_type (gnat_type));
gnu_index = gnat_to_gnu (gnat_index);
if (TREE_TYPE (gnu_index) != gnu_type)
{
if (gnu_low_bound)
gnu_low_bound = convert (gnu_type, gnu_low_bound);
if (gnu_high_bound)
gnu_high_bound = convert (gnu_type, gnu_high_bound);
gnu_index = convert (gnu_type, gnu_index);
}
if (with_extra_info
&& gnu_low_bound
&& gnu_high_bound
&& Known_Esize (gnat_type)
&& UI_To_Int (Esize (gnat_type)) <= 32)
gnu_result
= build_call_raise_range (reason, gnat_node, kind, gnu_index,
gnu_low_bound, gnu_high_bound);
/* If optimization is enabled and we are inside a loop, we try to
compute invariant conditions for checks applied to the iteration
variable, i.e. conditions that are independent of the variable
and necessary in order for the checks to fail in the course of
some iteration. If we succeed, we consider an alternative:
1. If loop unswitching is enabled, we prepend these conditions
to the original conditions of the checks. This will make it
possible for the loop unswitching pass to replace the loop
with two loops, one of which has the checks eliminated and
the other has the original checks reinstated, and a prologue
implementing a run-time selection. The former loop will be
for example suitable for vectorization.
2. Otherwise, we instead append the conditions to the original
conditions of the checks. At worse, if the conditions cannot
be evaluated at compile time, they will be evaluated as true
at run time only when the checks have already failed, thus
contributing negatively only to the size of the executable.
But the hope is that these invariant conditions be evaluated
at compile time to false, thus taking away the entire checks
with them. */
if (optimize
&& inside_loop_p ()
&& (!gnu_low_bound
|| (gnu_low_bound = gnat_invariant_expr (gnu_low_bound)))
&& (!gnu_high_bound
|| (gnu_high_bound = gnat_invariant_expr (gnu_high_bound)))
&& (loop = find_loop_for (gnu_index, &disp, &neg_p)))
{
struct range_check_info_d *rci = ggc_alloc ();
rci->low_bound = gnu_low_bound;
rci->high_bound = gnu_high_bound;
rci->disp = disp;
rci->neg_p = neg_p;
rci->type = gnu_type;
rci->inserted_cond
= build1 (SAVE_EXPR, boolean_type_node, boolean_true_node);
vec_safe_push (loop->checks, rci);
gnu_cond = build_noreturn_cond (gnat_to_gnu (gnat_cond));
if (optimize >= 3)
gnu_cond = build_binary_op (TRUTH_ANDIF_EXPR,
boolean_type_node,
rci->inserted_cond,
gnu_cond);
else
gnu_cond = build_binary_op (TRUTH_ANDIF_EXPR,
boolean_type_node,
gnu_cond,
rci->inserted_cond);
}
}
break;
default:
break;
}
/* The following processing does the common work. */
common:
if (!gnu_result)
gnu_result = build_call_raise (reason, gnat_node, kind);
set_expr_location_from_node (gnu_result, gnat_node);
*gnu_result_type_p = get_unpadded_type (Etype (gnat_node));
/* If the type is VOID, this is a statement, so we need to generate the code
for the call. Handle a condition, if there is one. */
if (VOID_TYPE_P (*gnu_result_type_p))
{
if (Present (gnat_cond))
{
if (!gnu_cond)
gnu_cond = gnat_to_gnu (gnat_cond);
gnu_result = build3 (COND_EXPR, void_type_node, gnu_cond, gnu_result,
alloc_stmt_list ());
}
}
else
gnu_result = build1 (NULL_EXPR, *gnu_result_type_p, gnu_result);
return gnu_result;
}
/* Return true if GNAT_NODE is on the LHS of an assignment or an actual
parameter of a call. */
static bool
lhs_or_actual_p (Node_Id gnat_node)
{
Node_Id gnat_parent = Parent (gnat_node);
Node_Kind kind = Nkind (gnat_parent);
if (kind == N_Assignment_Statement && Name (gnat_parent) == gnat_node)
return true;
if ((kind == N_Procedure_Call_Statement || kind == N_Function_Call)
&& Name (gnat_parent) != gnat_node)
return true;
if (kind == N_Parameter_Association)
return true;
return false;
}
/* Return true if either GNAT_NODE or a view of GNAT_NODE is on the LHS
of an assignment or an actual parameter of a call. */
static bool
present_in_lhs_or_actual_p (Node_Id gnat_node)
{
Node_Kind kind;
if (lhs_or_actual_p (gnat_node))
return true;
kind = Nkind (Parent (gnat_node));
if ((kind == N_Type_Conversion || kind == N_Unchecked_Type_Conversion)
&& lhs_or_actual_p (Parent (gnat_node)))
return true;
return false;
}
/* Return true if GNAT_NODE, an unchecked type conversion, is a no-op as far
as gigi is concerned. This is used to avoid conversions on the LHS. */
static bool
unchecked_conversion_nop (Node_Id gnat_node)
{
Entity_Id from_type, to_type;
/* The conversion must be on the LHS of an assignment or an actual parameter
of a call. Otherwise, even if the conversion was essentially a no-op, it
could de facto ensure type consistency and this should be preserved. */
if (!lhs_or_actual_p (gnat_node))
return false;
from_type = Etype (Expression (gnat_node));
/* We're interested in artificial conversions generated by the front-end
to make private types explicit, e.g. in Expand_Assign_Array. */
if (!Is_Private_Type (from_type))
return false;
from_type = Underlying_Type (from_type);
to_type = Etype (gnat_node);
/* The direct conversion to the underlying type is a no-op. */
if (to_type == from_type)
return true;
/* For an array subtype, the conversion to the PAIT is a no-op. */
if (Ekind (from_type) == E_Array_Subtype
&& to_type == Packed_Array_Impl_Type (from_type))
return true;
/* For a record subtype, the conversion to the type is a no-op. */
if (Ekind (from_type) == E_Record_Subtype
&& to_type == Etype (from_type))
return true;
return false;
}
/* Return true if GNAT_NODE represents a statement. */
static bool
statement_node_p (Node_Id gnat_node)
{
const Node_Kind kind = Nkind (gnat_node);
if (kind == N_Label)
return true;
if (IN (kind, N_Statement_Other_Than_Procedure_Call))
return true;
if (kind == N_Procedure_Call_Statement)
return true;
if (IN (kind, N_Raise_xxx_Error) && Ekind (Etype (gnat_node)) == E_Void)
return true;
return false;
}
/* This function is the driver of the GNAT to GCC tree transformation process.
It is the entry point of the tree transformer. GNAT_NODE is the root of
some GNAT tree. Return the root of the corresponding GCC tree. If this
is an expression, return the GCC equivalent of the expression. If this
is a statement, return the statement or add it to the current statement
group, in which case anything returned is to be interpreted as occurring
after anything added. */
tree
gnat_to_gnu (Node_Id gnat_node)
{
const Node_Kind kind = Nkind (gnat_node);
bool went_into_elab_proc = false;
tree gnu_result = error_mark_node; /* Default to no value. */
tree gnu_result_type = void_type_node;
tree gnu_expr, gnu_lhs, gnu_rhs;
Node_Id gnat_temp;
bool sync = false;
/* Save node number for error message and set location information. */
Current_Error_Node = gnat_node;
Sloc_to_locus (Sloc (gnat_node), &input_location);
/* If we are only annotating types and this node is a statement, return
an empty statement list. */
if (type_annotate_only && statement_node_p (gnat_node))
return alloc_stmt_list ();
/* If we are only annotating types and this node is a subexpression, return
a NULL_EXPR, but filter out nodes appearing in the expressions attached
to packed array implementation types. */
if (type_annotate_only
&& IN (kind, N_Subexpr)
&& !(((IN (kind, N_Op) && kind != N_Op_Expon)
|| kind == N_Type_Conversion)
&& Is_Integer_Type (Etype (gnat_node)))
&& !(kind == N_Attribute_Reference
&& (Get_Attribute_Id (Attribute_Name (gnat_node)) == Attr_Length
|| Get_Attribute_Id (Attribute_Name (gnat_node)) == Attr_Size)
&& Is_Constrained (Etype (Prefix (gnat_node)))
&& !Is_Constr_Subt_For_U_Nominal (Etype (Prefix (gnat_node))))
&& kind != N_Expanded_Name
&& kind != N_Identifier
&& !Compile_Time_Known_Value (gnat_node))
return build1 (NULL_EXPR, get_unpadded_type (Etype (gnat_node)),
build_call_raise (CE_Range_Check_Failed, gnat_node,
N_Raise_Constraint_Error));
if ((statement_node_p (gnat_node) && kind != N_Null_Statement)
|| kind == N_Handled_Sequence_Of_Statements
|| kind == N_Implicit_Label_Declaration)
{
tree current_elab_proc = get_elaboration_procedure ();
/* If this is a statement and we are at top level, it must be part of
the elaboration procedure, so mark us as being in that procedure. */
if (!current_function_decl)
{
current_function_decl = current_elab_proc;
went_into_elab_proc = true;
}
/* If we are in the elaboration procedure, check if we are violating a
No_Elaboration_Code restriction by having a statement there. Don't
check for a possible No_Elaboration_Code restriction violation on
N_Handled_Sequence_Of_Statements, as we want to signal an error on
every nested real statement instead. This also avoids triggering
spurious errors on dummy (empty) sequences created by the front-end
for package bodies in some cases. */
if (current_function_decl == current_elab_proc
&& kind != N_Handled_Sequence_Of_Statements
&& kind != N_Implicit_Label_Declaration)
Check_Elaboration_Code_Allowed (gnat_node);
}
switch (kind)
{
/********************************/
/* Chapter 2: Lexical Elements */
/********************************/
case N_Identifier:
case N_Expanded_Name:
case N_Operator_Symbol:
case N_Defining_Identifier:
case N_Defining_Operator_Symbol:
gnu_result = Identifier_to_gnu (gnat_node, &gnu_result_type);
/* If atomic access is required on the RHS, build the atomic load. */
if (atomic_access_required_p (gnat_node, &sync)
&& !present_in_lhs_or_actual_p (gnat_node))
gnu_result = build_atomic_load (gnu_result, sync);
break;
case N_Integer_Literal:
{
tree gnu_type;
/* Get the type of the result, looking inside any padding and
justified modular types. Then get the value in that type. */
gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_JUSTIFIED_MODULAR_P (gnu_type))
gnu_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
gnu_result = UI_To_gnu (Intval (gnat_node), gnu_type);
/* If the result overflows (meaning it doesn't fit in its base type),
abort. We would like to check that the value is within the range
of the subtype, but that causes problems with subtypes whose usage
will raise Constraint_Error and with biased representation, so
we don't. */
gcc_assert (!TREE_OVERFLOW (gnu_result));
}
break;
case N_Character_Literal:
/* If a Entity is present, it means that this was one of the
literals in a user-defined character type. In that case,
just return the value in the CONST_DECL. Otherwise, use the
character code. In that case, the base type should be an
INTEGER_TYPE, but we won't bother checking for that. */
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (Present (Entity (gnat_node)))
gnu_result = DECL_INITIAL (get_gnu_tree (Entity (gnat_node)));
else
gnu_result
= build_int_cst (gnu_result_type,
UI_To_CC (Char_Literal_Value (gnat_node)));
break;
case N_Real_Literal:
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If this is of a fixed-point type, the value we want is the value of
the corresponding integer. */
if (Is_Fixed_Point_Type (Underlying_Type (Etype (gnat_node))))
{
gnu_result = UI_To_gnu (Corresponding_Integer_Value (gnat_node),
gnu_result_type);
gcc_assert (!TREE_OVERFLOW (gnu_result));
}
else
{
Ureal ur_realval = Realval (gnat_node);
/* First convert the value to a machine number if it isn't already.
That will force the base to 2 for non-zero values and simplify
the rest of the logic. */
if (!Is_Machine_Number (gnat_node))
ur_realval
= Machine (Base_Type (Underlying_Type (Etype (gnat_node))),
ur_realval, Round_Even, gnat_node);
if (UR_Is_Zero (ur_realval))
gnu_result = build_real (gnu_result_type, dconst0);
else
{
REAL_VALUE_TYPE tmp;
gnu_result = UI_To_gnu (Numerator (ur_realval), gnu_result_type);
/* The base must be 2 as Machine guarantees this, so we scale
the value, which we know can fit in the mantissa of the type
(hence the use of that type above). */
gcc_assert (Rbase (ur_realval) == 2);
real_ldexp (&tmp, &TREE_REAL_CST (gnu_result),
- UI_To_Int (Denominator (ur_realval)));
gnu_result = build_real (gnu_result_type, tmp);
}
/* Now see if we need to negate the result. Do it this way to
properly handle -0. */
if (UR_Is_Negative (Realval (gnat_node)))
gnu_result
= build_unary_op (NEGATE_EXPR, get_base_type (gnu_result_type),
gnu_result);
}
break;
case N_String_Literal:
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (TYPE_PRECISION (TREE_TYPE (gnu_result_type)) == HOST_BITS_PER_CHAR)
{
String_Id gnat_string = Strval (gnat_node);
int length = String_Length (gnat_string);
int i;
char *string;
if (length >= ALLOCA_THRESHOLD)
string = XNEWVEC (char, length + 1);
else
string = (char *) alloca (length + 1);
/* Build the string with the characters in the literal. Note
that Ada strings are 1-origin. */
for (i = 0; i < length; i++)
string[i] = Get_String_Char (gnat_string, i + 1);
/* Put a null at the end of the string in case it's in a context
where GCC will want to treat it as a C string. */
string[i] = 0;
gnu_result = build_string (length, string);
/* Strings in GCC don't normally have types, but we want
this to not be converted to the array type. */
TREE_TYPE (gnu_result) = gnu_result_type;
if (length >= ALLOCA_THRESHOLD)
free (string);
}
else
{
/* Build a list consisting of each character, then make
the aggregate. */
String_Id gnat_string = Strval (gnat_node);
int length = String_Length (gnat_string);
int i;
tree gnu_idx = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_result_type));
tree gnu_one_node = convert (TREE_TYPE (gnu_idx), integer_one_node);
vec *gnu_vec;
vec_alloc (gnu_vec, length);
for (i = 0; i < length; i++)
{
tree t = build_int_cst (TREE_TYPE (gnu_result_type),
Get_String_Char (gnat_string, i + 1));
CONSTRUCTOR_APPEND_ELT (gnu_vec, gnu_idx, t);
gnu_idx = int_const_binop (PLUS_EXPR, gnu_idx, gnu_one_node);
}
gnu_result = gnat_build_constructor (gnu_result_type, gnu_vec);
}
break;
case N_Pragma:
gnu_result = Pragma_to_gnu (gnat_node);
break;
/**************************************/
/* Chapter 3: Declarations and Types */
/**************************************/
case N_Subtype_Declaration:
case N_Full_Type_Declaration:
case N_Incomplete_Type_Declaration:
case N_Private_Type_Declaration:
case N_Private_Extension_Declaration:
case N_Task_Type_Declaration:
process_type (Defining_Entity (gnat_node));
gnu_result = alloc_stmt_list ();
break;
case N_Object_Declaration:
case N_Exception_Declaration:
gnat_temp = Defining_Entity (gnat_node);
gnu_result = alloc_stmt_list ();
/* If we are just annotating types and this object has an unconstrained
or task type, don't elaborate it. */
if (type_annotate_only
&& (((Is_Array_Type (Etype (gnat_temp))
|| Is_Record_Type (Etype (gnat_temp)))
&& !Is_Constrained (Etype (gnat_temp)))
|| Is_Concurrent_Type (Etype (gnat_temp))))
break;
if (Present (Expression (gnat_node))
&& !(kind == N_Object_Declaration && No_Initialization (gnat_node))
&& (!type_annotate_only
|| Compile_Time_Known_Value (Expression (gnat_node))))
{
gnu_expr = gnat_to_gnu (Expression (gnat_node));
if (Do_Range_Check (Expression (gnat_node)))
gnu_expr
= emit_range_check (gnu_expr, Etype (gnat_temp), gnat_node);
if (type_annotate_only && TREE_CODE (gnu_expr) == ERROR_MARK)
gnu_expr = NULL_TREE;
}
else
gnu_expr = NULL_TREE;
/* If this is a deferred constant with an address clause, we ignore the
full view since the clause is on the partial view and we cannot have
2 different GCC trees for the object. The only bits of the full view
we will use is the initializer, but it will be directly fetched. */
if (Ekind (gnat_temp) == E_Constant
&& Present (Address_Clause (gnat_temp))
&& Present (Full_View (gnat_temp)))
save_gnu_tree (Full_View (gnat_temp), error_mark_node, true);
/* If this object has its elaboration delayed, we must force evaluation
of GNU_EXPR now and save it for the freeze point. Note that we need
not do anything special at the global level since the lifetime of the
temporary is fully contained within the elaboration routine. */
if (Present (Freeze_Node (gnat_temp)))
{
if (gnu_expr)
{
gnu_result = gnat_save_expr (gnu_expr);
save_gnu_tree (gnat_node, gnu_result, true);
}
}
else
gnat_to_gnu_entity (gnat_temp, gnu_expr, true);
break;
case N_Object_Renaming_Declaration:
gnat_temp = Defining_Entity (gnat_node);
gnu_result = alloc_stmt_list ();
/* Don't do anything if this renaming is handled by the front end and it
does not need debug info. Note that we consider renamings don't need
debug info when optimizing: our way to describe them has a
memory/elaboration footprint.
Don't do anything neither if we are just annotating types and this
object has a composite or task type, don't elaborate it. */
if ((!Is_Renaming_Of_Object (gnat_temp)
|| (Needs_Debug_Info (gnat_temp)
&& !optimize
&& can_materialize_object_renaming_p
(Renamed_Object (gnat_temp))))
&& ! (type_annotate_only
&& (Is_Array_Type (Etype (gnat_temp))
|| Is_Record_Type (Etype (gnat_temp))
|| Is_Concurrent_Type (Etype (gnat_temp)))))
{
tree gnu_temp
= gnat_to_gnu_entity (gnat_temp,
gnat_to_gnu (Renamed_Object (gnat_temp)),
true);
/* See case 2 of renaming in gnat_to_gnu_entity. */
if (TREE_SIDE_EFFECTS (gnu_temp))
gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_temp);
}
break;
case N_Exception_Renaming_Declaration:
gnat_temp = Defining_Entity (gnat_node);
gnu_result = alloc_stmt_list ();
/* See the above case for the rationale. */
if (Present (Renamed_Entity (gnat_temp)))
{
tree gnu_temp
= gnat_to_gnu_entity (gnat_temp,
gnat_to_gnu (Renamed_Entity (gnat_temp)),
true);
if (TREE_SIDE_EFFECTS (gnu_temp))
gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_temp);
}
break;
case N_Subprogram_Renaming_Declaration:
{
const Node_Id gnat_renaming = Defining_Entity (gnat_node);
const Node_Id gnat_renamed = Renamed_Entity (gnat_renaming);
gnu_result = alloc_stmt_list ();
/* Materializing renamed subprograms will only benefit the debugging
information as they aren't referenced in the generated code. So
skip them when they aren't needed. Avoid doing this if:
- there is a freeze node: in this case the renamed entity is not
elaborated yet,
- the renamed subprogram is intrinsic: it will not be available in
the debugging information (note that both or only one of the
renaming and the renamed subprograms can be intrinsic). */
if (!type_annotate_only
&& Needs_Debug_Info (gnat_renaming)
&& No (Freeze_Node (gnat_renaming))
&& Present (gnat_renamed)
&& (Ekind (gnat_renamed) == E_Function
|| Ekind (gnat_renamed) == E_Procedure)
&& !Is_Intrinsic_Subprogram (gnat_renaming)
&& !Is_Intrinsic_Subprogram (gnat_renamed))
gnat_to_gnu_entity (gnat_renaming, gnat_to_gnu (gnat_renamed), true);
break;
}
case N_Implicit_Label_Declaration:
gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, true);
gnu_result = alloc_stmt_list ();
break;
case N_Number_Declaration:
case N_Package_Renaming_Declaration:
/* These are fully handled in the front end. */
/* ??? For package renamings, find a way to use GENERIC namespaces so
that we get proper debug information for them. */
gnu_result = alloc_stmt_list ();
break;
/*************************************/
/* Chapter 4: Names and Expressions */
/*************************************/
case N_Explicit_Dereference:
/* Make sure the designated type is complete before dereferencing. */
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result = gnat_to_gnu (Prefix (gnat_node));
gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result);
/* If atomic access is required on the RHS, build the atomic load. */
if (atomic_access_required_p (gnat_node, &sync)
&& !present_in_lhs_or_actual_p (gnat_node))
gnu_result = build_atomic_load (gnu_result, sync);
break;
case N_Indexed_Component:
{
tree gnu_array_object
= gnat_to_gnu (adjust_for_implicit_deref (Prefix (gnat_node)));
tree gnu_type;
int ndim;
int i;
Node_Id *gnat_expr_array;
gnu_array_object = maybe_implicit_deref (gnu_array_object);
/* Convert vector inputs to their representative array type, to fit
what the code below expects. */
if (VECTOR_TYPE_P (TREE_TYPE (gnu_array_object)))
{
if (present_in_lhs_or_actual_p (gnat_node))
gnat_mark_addressable (gnu_array_object);
gnu_array_object = maybe_vector_array (gnu_array_object);
}
gnu_array_object = maybe_unconstrained_array (gnu_array_object);
/* If we got a padded type, remove it too. */
if (TYPE_IS_PADDING_P (TREE_TYPE (gnu_array_object)))
gnu_array_object
= convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_array_object))),
gnu_array_object);
/* The failure of this assertion will very likely come from a missing
expansion for a packed array access. */
gcc_assert (TREE_CODE (TREE_TYPE (gnu_array_object)) == ARRAY_TYPE);
/* First compute the number of dimensions of the array, then
fill the expression array, the order depending on whether
this is a Convention_Fortran array or not. */
for (ndim = 1, gnu_type = TREE_TYPE (gnu_array_object);
TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type));
ndim++, gnu_type = TREE_TYPE (gnu_type))
;
gnat_expr_array = XALLOCAVEC (Node_Id, ndim);
if (TYPE_CONVENTION_FORTRAN_P (TREE_TYPE (gnu_array_object)))
for (i = ndim - 1, gnat_temp = First (Expressions (gnat_node));
i >= 0;
i--, gnat_temp = Next (gnat_temp))
gnat_expr_array[i] = gnat_temp;
else
for (i = 0, gnat_temp = First (Expressions (gnat_node));
i < ndim;
i++, gnat_temp = Next (gnat_temp))
gnat_expr_array[i] = gnat_temp;
/* Start with the prefix and build the successive references. */
gnu_result = gnu_array_object;
for (i = 0, gnu_type = TREE_TYPE (gnu_array_object);
i < ndim;
i++, gnu_type = TREE_TYPE (gnu_type))
{
gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE);
gnat_temp = gnat_expr_array[i];
gnu_expr = maybe_character_value (gnat_to_gnu (gnat_temp));
gnu_result
= build_binary_op (ARRAY_REF, NULL_TREE, gnu_result, gnu_expr);
}
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If atomic access is required on the RHS, build the atomic load. */
if (atomic_access_required_p (gnat_node, &sync)
&& !present_in_lhs_or_actual_p (gnat_node))
gnu_result = build_atomic_load (gnu_result, sync);
}
break;
case N_Slice:
{
tree gnu_array_object
= gnat_to_gnu (adjust_for_implicit_deref (Prefix (gnat_node)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_array_object = maybe_implicit_deref (gnu_array_object);
gnu_array_object = maybe_unconstrained_array (gnu_array_object);
gnu_expr = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_result_type));
gnu_expr = maybe_character_value (gnu_expr);
/* If this is a slice with non-constant size of an array with constant
size, set the maximum size for the allocation of temporaries. */
if (!TREE_CONSTANT (TYPE_SIZE_UNIT (gnu_result_type))
&& TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (gnu_array_object))))
TYPE_ARRAY_MAX_SIZE (gnu_result_type)
= TYPE_SIZE_UNIT (TREE_TYPE (gnu_array_object));
gnu_result = build_binary_op (ARRAY_RANGE_REF, gnu_result_type,
gnu_array_object, gnu_expr);
}
break;
case N_Selected_Component:
{
Entity_Id gnat_prefix
= adjust_for_implicit_deref (Prefix (gnat_node));
Entity_Id gnat_field = Entity (Selector_Name (gnat_node));
tree gnu_prefix = gnat_to_gnu (gnat_prefix);
gnu_prefix = maybe_implicit_deref (gnu_prefix);
/* gnat_to_gnu_entity does not save the GNU tree made for renamed
discriminants so avoid making recursive calls on each reference
to them by following the appropriate link directly here. */
if (Ekind (gnat_field) == E_Discriminant)
{
/* For discriminant references in tagged types always substitute
the corresponding discriminant as the actual component. */
if (Is_Tagged_Type (Underlying_Type (Etype (gnat_prefix))))
while (Present (Corresponding_Discriminant (gnat_field)))
gnat_field = Corresponding_Discriminant (gnat_field);
/* For discriminant references in untagged types always substitute
the corresponding stored discriminant. */
else if (Present (Corresponding_Discriminant (gnat_field)))
gnat_field = Original_Record_Component (gnat_field);
}
/* Handle extracting the real or imaginary part of a complex.
The real part is the first field and the imaginary the last. */
if (TREE_CODE (TREE_TYPE (gnu_prefix)) == COMPLEX_TYPE)
gnu_result = build_unary_op (Present (Next_Entity (gnat_field))
? REALPART_EXPR : IMAGPART_EXPR,
NULL_TREE, gnu_prefix);
else
{
tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
gnu_result
= build_component_ref (gnu_prefix, gnu_field,
(Nkind (Parent (gnat_node))
== N_Attribute_Reference)
&& lvalue_required_for_attribute_p
(Parent (gnat_node)));
}
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If atomic access is required on the RHS, build the atomic load. */
if (atomic_access_required_p (gnat_node, &sync)
&& !present_in_lhs_or_actual_p (gnat_node))
gnu_result = build_atomic_load (gnu_result, sync);
}
break;
case N_Attribute_Reference:
{
/* The attribute designator. */
const int attr = Get_Attribute_Id (Attribute_Name (gnat_node));
/* The Elab_Spec and Elab_Body attributes are special in that Prefix
is a unit, not an object with a GCC equivalent. */
if (attr == Attr_Elab_Spec || attr == Attr_Elab_Body)
return
create_subprog_decl (create_concat_name
(Entity (Prefix (gnat_node)),
attr == Attr_Elab_Body ? "elabb" : "elabs"),
NULL_TREE, void_ftype, NULL_TREE, is_default,
true, true, true, true, false, NULL,
gnat_node);
gnu_result = Attribute_to_gnu (gnat_node, &gnu_result_type, attr);
}
break;
case N_Reference:
/* Like 'Access as far as we are concerned. */
gnu_result = gnat_to_gnu (Prefix (gnat_node));
gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_result);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case N_Aggregate:
case N_Extension_Aggregate:
{
tree gnu_aggr_type;
/* Check that this aggregate has not slipped through the cracks. */
gcc_assert (!Expansion_Delayed (gnat_node));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
if (TREE_CODE (gnu_result_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_result_type))
gnu_aggr_type
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_result_type)));
else if (TREE_CODE (gnu_result_type) == VECTOR_TYPE)
gnu_aggr_type = TYPE_REPRESENTATIVE_ARRAY (gnu_result_type);
else
gnu_aggr_type = gnu_result_type;
if (Null_Record_Present (gnat_node))
gnu_result = gnat_build_constructor (gnu_aggr_type, NULL);
else if (TREE_CODE (gnu_aggr_type) == RECORD_TYPE
|| TREE_CODE (gnu_aggr_type) == UNION_TYPE)
gnu_result
= assoc_to_constructor (Etype (gnat_node),
First (Component_Associations (gnat_node)),
gnu_aggr_type);
else if (TREE_CODE (gnu_aggr_type) == ARRAY_TYPE)
gnu_result = pos_to_constructor (First (Expressions (gnat_node)),
gnu_aggr_type,
Component_Type (Etype (gnat_node)));
else if (TREE_CODE (gnu_aggr_type) == COMPLEX_TYPE)
gnu_result
= build_binary_op
(COMPLEX_EXPR, gnu_aggr_type,
gnat_to_gnu (Expression (First
(Component_Associations (gnat_node)))),
gnat_to_gnu (Expression
(Next
(First (Component_Associations (gnat_node))))));
else
gcc_unreachable ();
gnu_result = convert (gnu_result_type, gnu_result);
}
break;
case N_Null:
if (TARGET_VTABLE_USES_DESCRIPTORS
&& Ekind (Etype (gnat_node)) == E_Access_Subprogram_Type
&& Is_Dispatch_Table_Entity (Etype (gnat_node)))
gnu_result = null_fdesc_node;
else
gnu_result = null_pointer_node;
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case N_Type_Conversion:
case N_Qualified_Expression:
gnu_expr = maybe_character_value (gnat_to_gnu (Expression (gnat_node)));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If this is a qualified expression for a tagged type, we mark the type
as used. Because of polymorphism, this might be the only reference to
the tagged type in the program while objects have it as dynamic type.
The debugger needs to see it to display these objects properly. */
if (kind == N_Qualified_Expression && Is_Tagged_Type (Etype (gnat_node)))
used_types_insert (gnu_result_type);
gnu_result
= convert_with_check (Etype (gnat_node), gnu_expr,
Do_Overflow_Check (gnat_node),
Do_Range_Check (Expression (gnat_node)),
kind == N_Type_Conversion
&& Float_Truncate (gnat_node), gnat_node);
break;
case N_Unchecked_Type_Conversion:
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_expr = maybe_character_value (gnat_to_gnu (Expression (gnat_node)));
/* Skip further processing if the conversion is deemed a no-op. */
if (unchecked_conversion_nop (gnat_node))
{
gnu_result = gnu_expr;
gnu_result_type = TREE_TYPE (gnu_result);
break;
}
/* If the result is a pointer type, see if we are improperly
converting to a stricter alignment. */
if (STRICT_ALIGNMENT && POINTER_TYPE_P (gnu_result_type)
&& Is_Access_Type (Etype (gnat_node)))
{
unsigned int align = known_alignment (gnu_expr);
tree gnu_obj_type = TREE_TYPE (gnu_result_type);
unsigned int oalign = TYPE_ALIGN (gnu_obj_type);
if (align != 0 && align < oalign && !TYPE_ALIGN_OK (gnu_obj_type))
post_error_ne_tree_2
("?source alignment (^) '< alignment of & (^)",
gnat_node, Designated_Type (Etype (gnat_node)),
size_int (align / BITS_PER_UNIT), oalign / BITS_PER_UNIT);
}
/* If we are converting a descriptor to a function pointer, first
build the pointer. */
if (TARGET_VTABLE_USES_DESCRIPTORS
&& TREE_TYPE (gnu_expr) == fdesc_type_node
&& POINTER_TYPE_P (gnu_result_type))
gnu_expr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr);
gnu_result = unchecked_convert (gnu_result_type, gnu_expr,
No_Truncation (gnat_node));
break;
case N_In:
case N_Not_In:
{
tree gnu_obj = gnat_to_gnu (Left_Opnd (gnat_node));
tree gnu_low, gnu_high;
Range_to_gnu (Right_Opnd (gnat_node), &gnu_low, &gnu_high);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
tree gnu_op_type = maybe_character_type (TREE_TYPE (gnu_obj));
if (TREE_TYPE (gnu_obj) != gnu_op_type)
{
gnu_obj = convert (gnu_op_type, gnu_obj);
gnu_low = convert (gnu_op_type, gnu_low);
gnu_high = convert (gnu_op_type, gnu_high);
}
/* If LOW and HIGH are identical, perform an equality test. Otherwise,
ensure that GNU_OBJ is evaluated only once and perform a full range
test. */
if (operand_equal_p (gnu_low, gnu_high, 0))
gnu_result
= build_binary_op (EQ_EXPR, gnu_result_type, gnu_obj, gnu_low);
else
{
tree t1, t2;
gnu_obj = gnat_protect_expr (gnu_obj);
t1 = build_binary_op (GE_EXPR, gnu_result_type, gnu_obj, gnu_low);
if (EXPR_P (t1))
set_expr_location_from_node (t1, gnat_node);
t2 = build_binary_op (LE_EXPR, gnu_result_type, gnu_obj, gnu_high);
if (EXPR_P (t2))
set_expr_location_from_node (t2, gnat_node);
gnu_result
= build_binary_op (TRUTH_ANDIF_EXPR, gnu_result_type, t1, t2);
}
if (kind == N_Not_In)
gnu_result
= invert_truthvalue_loc (EXPR_LOCATION (gnu_result), gnu_result);
}
break;
case N_Op_Divide:
gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node));
gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result = build_binary_op (FLOAT_TYPE_P (gnu_result_type)
? RDIV_EXPR
: (Rounded_Result (gnat_node)
? ROUND_DIV_EXPR : TRUNC_DIV_EXPR),
gnu_result_type, gnu_lhs, gnu_rhs);
break;
case N_Op_Eq:
case N_Op_Ne:
case N_Op_Lt:
case N_Op_Le:
case N_Op_Gt:
case N_Op_Ge:
case N_Op_Add:
case N_Op_Subtract:
case N_Op_Multiply:
case N_Op_Mod:
case N_Op_Rem:
case N_Op_Rotate_Left:
case N_Op_Rotate_Right:
case N_Op_Shift_Left:
case N_Op_Shift_Right:
case N_Op_Shift_Right_Arithmetic:
case N_Op_And:
case N_Op_Or:
case N_Op_Xor:
case N_And_Then:
case N_Or_Else:
{
enum tree_code code = gnu_codes[kind];
bool ignore_lhs_overflow = false;
location_t saved_location = input_location;
tree gnu_type, gnu_max_shift = NULL_TREE;
/* Fix operations set up for boolean types in GNU_CODES above. */
if (Is_Modular_Integer_Type (Underlying_Type (Etype (gnat_node))))
switch (kind)
{
case N_Op_And:
code = BIT_AND_EXPR;
break;
case N_Op_Or:
code = BIT_IOR_EXPR;
break;
case N_Op_Xor:
code = BIT_XOR_EXPR;
break;
default:
break;
}
gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node));
gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node));
gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* If this is a shift, take the count as unsigned since that is what
most machines do and will generate simpler adjustments below. */
if (IN (kind, N_Op_Shift))
{
tree gnu_count_type
= gnat_unsigned_type_for (get_base_type (TREE_TYPE (gnu_rhs)));
gnu_rhs = convert (gnu_count_type, gnu_rhs);
gnu_max_shift
= convert (TREE_TYPE (gnu_rhs), TYPE_SIZE (gnu_type));
}
/* Pending generic support for efficient vector logical operations in
GCC, convert vectors to their representative array type view and
fallthrough. */
gnu_lhs = maybe_vector_array (gnu_lhs);
gnu_rhs = maybe_vector_array (gnu_rhs);
/* If this is a comparison operator, convert any references to an
unconstrained array value into a reference to the actual array. */
if (TREE_CODE_CLASS (code) == tcc_comparison)
{
gnu_lhs = maybe_unconstrained_array (gnu_lhs);
gnu_rhs = maybe_unconstrained_array (gnu_rhs);
tree gnu_op_type = maybe_character_type (TREE_TYPE (gnu_lhs));
if (TREE_TYPE (gnu_lhs) != gnu_op_type)
{
gnu_lhs = convert (gnu_op_type, gnu_lhs);
gnu_rhs = convert (gnu_op_type, gnu_rhs);
}
}
/* If this is a shift whose count is not guaranteed to be correct,
we need to adjust the shift count. */
if ((kind == N_Op_Rotate_Left || kind == N_Op_Rotate_Right)
&& !Shift_Count_OK (gnat_node))
gnu_rhs = build_binary_op (TRUNC_MOD_EXPR, TREE_TYPE (gnu_rhs),
gnu_rhs, gnu_max_shift);
else if (kind == N_Op_Shift_Right_Arithmetic
&& !Shift_Count_OK (gnat_node))
gnu_rhs
= build_binary_op (MIN_EXPR, TREE_TYPE (gnu_rhs),
build_binary_op (MINUS_EXPR,
TREE_TYPE (gnu_rhs),
gnu_max_shift,
build_int_cst
(TREE_TYPE (gnu_rhs), 1)),
gnu_rhs);
/* For right shifts, the type says what kind of shift to do,
so we may need to choose a different type. In this case,
we have to ignore integer overflow lest it propagates all
the way down and causes a CE to be explicitly raised. */
if (kind == N_Op_Shift_Right && !TYPE_UNSIGNED (gnu_type))
{
gnu_type = gnat_unsigned_type_for (gnu_type);
ignore_lhs_overflow = true;
}
else if (kind == N_Op_Shift_Right_Arithmetic
&& TYPE_UNSIGNED (gnu_type))
{
gnu_type = gnat_signed_type_for (gnu_type);
ignore_lhs_overflow = true;
}
if (gnu_type != gnu_result_type)
{
tree gnu_old_lhs = gnu_lhs;
gnu_lhs = convert (gnu_type, gnu_lhs);
if (TREE_CODE (gnu_lhs) == INTEGER_CST && ignore_lhs_overflow)
TREE_OVERFLOW (gnu_lhs) = TREE_OVERFLOW (gnu_old_lhs);
gnu_rhs = convert (gnu_type, gnu_rhs);
}
/* For signed integer addition, subtraction and multiplication, do an
overflow check if required. */
if (Do_Overflow_Check (gnat_node)
&& (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR)
&& !TYPE_UNSIGNED (gnu_type)
&& !FLOAT_TYPE_P (gnu_type))
gnu_result
= build_binary_op_trapv (code, gnu_type, gnu_lhs, gnu_rhs,
gnat_node);
else
{
/* Some operations, e.g. comparisons of arrays, generate complex
trees that need to be annotated while they are being built. */
input_location = saved_location;
gnu_result = build_binary_op (code, gnu_type, gnu_lhs, gnu_rhs);
}
/* If this is a logical shift with the shift count not verified,
we must return zero if it is too large. We cannot compensate
beforehand in this case. */
if ((kind == N_Op_Shift_Left || kind == N_Op_Shift_Right)
&& !Shift_Count_OK (gnat_node))
gnu_result
= build_cond_expr (gnu_type,
build_binary_op (GE_EXPR, boolean_type_node,
gnu_rhs, gnu_max_shift),
build_int_cst (gnu_type, 0),
gnu_result);
}
break;
case N_If_Expression:
{
tree gnu_cond = gnat_to_gnu (First (Expressions (gnat_node)));
tree gnu_true = gnat_to_gnu (Next (First (Expressions (gnat_node))));
tree gnu_false
= gnat_to_gnu (Next (Next (First (Expressions (gnat_node)))));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result
= build_cond_expr (gnu_result_type, gnu_cond, gnu_true, gnu_false);
}
break;
case N_Op_Plus:
gnu_result = gnat_to_gnu (Right_Opnd (gnat_node));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case N_Op_Not:
/* This case can apply to a boolean or a modular type.
Fall through for a boolean operand since GNU_CODES is set
up to handle this. */
if (Is_Modular_Integer_Type (Underlying_Type (Etype (gnat_node))))
{
gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
gnu_result = build_unary_op (BIT_NOT_EXPR, gnu_result_type,
gnu_expr);
break;
}
/* ... fall through ... */
case N_Op_Minus:
case N_Op_Abs:
gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node));
gnu_result_type = get_unpadded_type (Etype (gnat_node));
/* For signed integer negation and absolute value, do an overflow check
if required. */
if (Do_Overflow_Check (gnat_node)
&& !TYPE_UNSIGNED (gnu_result_type)
&& !FLOAT_TYPE_P (gnu_result_type))
gnu_result
= build_unary_op_trapv (gnu_codes[kind], gnu_result_type, gnu_expr,
gnat_node);
else
gnu_result
= build_unary_op (gnu_codes[kind], gnu_result_type, gnu_expr);
break;
case N_Allocator:
{
tree gnu_init = NULL_TREE;
tree gnu_type;
bool ignore_init_type = false;
gnat_temp = Expression (gnat_node);
/* The Expression operand can either be an N_Identifier or
Expanded_Name, which must represent a type, or a
N_Qualified_Expression, which contains both the object type and an
initial value for the object. */
if (Nkind (gnat_temp) == N_Identifier
|| Nkind (gnat_temp) == N_Expanded_Name)
gnu_type = gnat_to_gnu_type (Entity (gnat_temp));
else if (Nkind (gnat_temp) == N_Qualified_Expression)
{
Entity_Id gnat_desig_type
= Designated_Type (Underlying_Type (Etype (gnat_node)));
ignore_init_type = Has_Constrained_Partial_View (gnat_desig_type);
gnu_init = gnat_to_gnu (Expression (gnat_temp));
gnu_init = maybe_unconstrained_array (gnu_init);
if (Do_Range_Check (Expression (gnat_temp)))
gnu_init
= emit_range_check (gnu_init, gnat_desig_type, gnat_temp);
if (Is_Elementary_Type (gnat_desig_type)
|| Is_Constrained (gnat_desig_type))
gnu_type = gnat_to_gnu_type (gnat_desig_type);
else
{
gnu_type = gnat_to_gnu_type (Etype (Expression (gnat_temp)));
if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
gnu_type = TREE_TYPE (gnu_init);
}
/* See the N_Qualified_Expression case for the rationale. */
if (Is_Tagged_Type (gnat_desig_type))
used_types_insert (gnu_type);
gnu_init = convert (gnu_type, gnu_init);
}
else
gcc_unreachable ();
gnu_result_type = get_unpadded_type (Etype (gnat_node));
return build_allocator (gnu_type, gnu_init, gnu_result_type,
Procedure_To_Call (gnat_node),
Storage_Pool (gnat_node), gnat_node,
ignore_init_type);
}
break;
/**************************/
/* Chapter 5: Statements */
/**************************/
case N_Label:
gnu_result = build1 (LABEL_EXPR, void_type_node,
gnat_to_gnu (Identifier (gnat_node)));
break;
case N_Null_Statement:
/* When not optimizing, turn null statements from source into gotos to
the next statement that the middle-end knows how to preserve. */
if (!optimize && Comes_From_Source (gnat_node))
{
tree stmt, label = create_label_decl (NULL_TREE, gnat_node);
DECL_IGNORED_P (label) = 1;
start_stmt_group ();
stmt = build1 (GOTO_EXPR, void_type_node, label);
set_expr_location_from_node (stmt, gnat_node);
add_stmt (stmt);
stmt = build1 (LABEL_EXPR, void_type_node, label);
set_expr_location_from_node (stmt, gnat_node);
add_stmt (stmt);
gnu_result = end_stmt_group ();
}
else
gnu_result = alloc_stmt_list ();
break;
case N_Assignment_Statement:
/* Get the LHS and RHS of the statement and convert any reference to an
unconstrained array into a reference to the underlying array. */
gnu_lhs = maybe_unconstrained_array (gnat_to_gnu (Name (gnat_node)));
/* If the type has a size that overflows, convert this into raise of
Storage_Error: execution shouldn't have gotten here anyway. */
if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (gnu_lhs))) == INTEGER_CST
&& !valid_constant_size_p (TYPE_SIZE_UNIT (TREE_TYPE (gnu_lhs))))
gnu_result = build_call_raise (SE_Object_Too_Large, gnat_node,
N_Raise_Storage_Error);
else if (Nkind (Expression (gnat_node)) == N_Function_Call)
{
bool outer_atomic_access
= outer_atomic_access_required_p (Name (gnat_node));
bool atomic_access
= !outer_atomic_access
&& atomic_access_required_p (Name (gnat_node), &sync);
gnu_result
= Call_to_gnu (Expression (gnat_node), &gnu_result_type, gnu_lhs,
outer_atomic_access, atomic_access, sync);
}
else
{
const Node_Id gnat_expr = Expression (gnat_node);
const Entity_Id gnat_type
= Underlying_Type (Etype (Name (gnat_node)));
const bool regular_array_type_p
= (Is_Array_Type (gnat_type) && !Is_Bit_Packed_Array (gnat_type));
const bool use_memset_p
= (regular_array_type_p
&& Nkind (gnat_expr) == N_Aggregate
&& Is_Others_Aggregate (gnat_expr));
/* If we'll use memset, we need to find the inner expression. */
if (use_memset_p)
{
Node_Id gnat_inner
= Expression (First (Component_Associations (gnat_expr)));
while (Nkind (gnat_inner) == N_Aggregate
&& Is_Others_Aggregate (gnat_inner))
gnat_inner
= Expression (First (Component_Associations (gnat_inner)));
gnu_rhs = gnat_to_gnu (gnat_inner);
}
else
gnu_rhs = maybe_unconstrained_array (gnat_to_gnu (gnat_expr));
/* If range check is needed, emit code to generate it. */
if (Do_Range_Check (gnat_expr))
gnu_rhs = emit_range_check (gnu_rhs, Etype (Name (gnat_node)),
gnat_node);
/* If an outer atomic access is required on the LHS, build the load-
modify-store sequence. */
if (outer_atomic_access_required_p (Name (gnat_node)))
gnu_result = build_load_modify_store (gnu_lhs, gnu_rhs, gnat_node);
/* Or else, if atomic access is required, build the atomic store. */
else if (atomic_access_required_p (Name (gnat_node), &sync))
gnu_result = build_atomic_store (gnu_lhs, gnu_rhs, sync);
/* Or else, use memset when the conditions are met. This has already
been validated by Aggr_Assignment_OK_For_Backend in the front-end
and the RHS is thus guaranteed to be of the appropriate form. */
else if (use_memset_p)
{
tree value
= real_zerop (gnu_rhs)
? integer_zero_node
: fold_convert (integer_type_node, gnu_rhs);
tree dest = build_fold_addr_expr (gnu_lhs);
tree t = builtin_decl_explicit (BUILT_IN_MEMSET);
/* Be extra careful not to write too much data. */
tree size;
if (TREE_CODE (gnu_lhs) == COMPONENT_REF)
size = DECL_SIZE_UNIT (TREE_OPERAND (gnu_lhs, 1));
else if (DECL_P (gnu_lhs))
size = DECL_SIZE_UNIT (gnu_lhs);
else
size = TYPE_SIZE_UNIT (TREE_TYPE (gnu_lhs));
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_lhs);
if (TREE_CODE (value) == INTEGER_CST && !integer_zerop (value))
{
tree mask
= build_int_cst (integer_type_node,
((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
value = int_const_binop (BIT_AND_EXPR, value, mask);
}
gnu_result = build_call_expr (t, 3, dest, value, size);
}
/* Otherwise build a regular assignment. */
else
gnu_result
= build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_lhs, gnu_rhs);
/* If the assignment type is a regular array and the two sides are
not completely disjoint, play safe and use memmove. But don't do
it for a bit-packed array as it might not be byte-aligned. */
if (TREE_CODE (gnu_result) == MODIFY_EXPR
&& regular_array_type_p
&& !(Forwards_OK (gnat_node) && Backwards_OK (gnat_node)))
{
tree to = TREE_OPERAND (gnu_result, 0);
tree from = TREE_OPERAND (gnu_result, 1);
tree type = TREE_TYPE (from);
tree size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (type), from);
tree to_ptr = build_fold_addr_expr (to);
tree from_ptr = build_fold_addr_expr (from);
tree t = builtin_decl_explicit (BUILT_IN_MEMMOVE);
gnu_result = build_call_expr (t, 3, to_ptr, from_ptr, size);
}
}
break;
case N_If_Statement:
{
tree *gnu_else_ptr; /* Point to put next "else if" or "else". */
/* Make the outer COND_EXPR. Avoid non-determinism. */
gnu_result = build3 (COND_EXPR, void_type_node,
gnat_to_gnu (Condition (gnat_node)),
NULL_TREE, NULL_TREE);
COND_EXPR_THEN (gnu_result)
= build_stmt_group (Then_Statements (gnat_node), false);
TREE_SIDE_EFFECTS (gnu_result) = 1;
gnu_else_ptr = &COND_EXPR_ELSE (gnu_result);
/* Now make a COND_EXPR for each of the "else if" parts. Put each
into the previous "else" part and point to where to put any
outer "else". Also avoid non-determinism. */
if (Present (Elsif_Parts (gnat_node)))
for (gnat_temp = First (Elsif_Parts (gnat_node));
Present (gnat_temp); gnat_temp = Next (gnat_temp))
{
gnu_expr = build3 (COND_EXPR, void_type_node,
gnat_to_gnu (Condition (gnat_temp)),
NULL_TREE, NULL_TREE);
COND_EXPR_THEN (gnu_expr)
= build_stmt_group (Then_Statements (gnat_temp), false);
TREE_SIDE_EFFECTS (gnu_expr) = 1;
set_expr_location_from_node (gnu_expr, gnat_temp);
*gnu_else_ptr = gnu_expr;
gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr);
}
*gnu_else_ptr = build_stmt_group (Else_Statements (gnat_node), false);
}
break;
case N_Case_Statement:
gnu_result = Case_Statement_to_gnu (gnat_node);
break;
case N_Loop_Statement:
gnu_result = Loop_Statement_to_gnu (gnat_node);
break;
case N_Block_Statement:
/* The only way to enter the block is to fall through to it. */
if (stmt_group_may_fallthru ())
{
start_stmt_group ();
gnat_pushlevel ();
process_decls (Declarations (gnat_node), Empty, Empty, true, true);
add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node)));
gnat_poplevel ();
gnu_result = end_stmt_group ();
}
else
gnu_result = alloc_stmt_list ();
break;
case N_Exit_Statement:
gnu_result
= build2 (EXIT_STMT, void_type_node,
(Present (Condition (gnat_node))
? gnat_to_gnu (Condition (gnat_node)) : NULL_TREE),
(Present (Name (gnat_node))
? get_gnu_tree (Entity (Name (gnat_node)))
: LOOP_STMT_LABEL (gnu_loop_stack->last ()->stmt)));
break;
case N_Simple_Return_Statement:
{
tree gnu_ret_obj, gnu_ret_val;
/* If the subprogram is a function, we must return the expression. */
if (Present (Expression (gnat_node)))
{
tree gnu_subprog_type = TREE_TYPE (current_function_decl);
/* If this function has copy-in/copy-out parameters parameters and
doesn't return by invisible reference, get the real object for
the return. See Subprogram_Body_to_gnu. */
if (TYPE_CI_CO_LIST (gnu_subprog_type)
&& !TREE_ADDRESSABLE (gnu_subprog_type))
gnu_ret_obj = gnu_return_var_stack->last ();
else
gnu_ret_obj = DECL_RESULT (current_function_decl);
/* Get the GCC tree for the expression to be returned. */
gnu_ret_val = gnat_to_gnu (Expression (gnat_node));
/* Do not remove the padding from GNU_RET_VAL if the inner type is
self-referential since we want to allocate the fixed size. */
if (TREE_CODE (gnu_ret_val) == COMPONENT_REF
&& type_is_padding_self_referential
(TREE_TYPE (TREE_OPERAND (gnu_ret_val, 0))))
gnu_ret_val = TREE_OPERAND (gnu_ret_val, 0);
/* If the function returns by direct reference, return a pointer
to the return value. */
if (TYPE_RETURN_BY_DIRECT_REF_P (gnu_subprog_type)
|| By_Ref (gnat_node))
gnu_ret_val = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_ret_val);
/* Otherwise, if it returns an unconstrained array, we have to
allocate a new version of the result and return it. */
else if (TYPE_RETURN_UNCONSTRAINED_P (gnu_subprog_type))
{
gnu_ret_val = maybe_unconstrained_array (gnu_ret_val);
/* And find out whether this is a candidate for Named Return
Value. If so, record it. */
if (!TYPE_CI_CO_LIST (gnu_subprog_type) && optimize)
{
tree ret_val = gnu_ret_val;
/* Strip useless conversions around the return value. */
if (gnat_useless_type_conversion (ret_val))
ret_val = TREE_OPERAND (ret_val, 0);
/* Strip unpadding around the return value. */
if (TREE_CODE (ret_val) == COMPONENT_REF
&& TYPE_IS_PADDING_P
(TREE_TYPE (TREE_OPERAND (ret_val, 0))))
ret_val = TREE_OPERAND (ret_val, 0);
/* Now apply the test to the return value. */
if (return_value_ok_for_nrv_p (NULL_TREE, ret_val))
{
if (!f_named_ret_val)
f_named_ret_val = BITMAP_GGC_ALLOC ();
bitmap_set_bit (f_named_ret_val, DECL_UID (ret_val));
if (!f_gnat_ret)
f_gnat_ret = gnat_node;
}
}
gnu_ret_val = build_allocator (TREE_TYPE (gnu_ret_val),
gnu_ret_val,
TREE_TYPE (gnu_ret_obj),
Procedure_To_Call (gnat_node),
Storage_Pool (gnat_node),
gnat_node, false);
}
/* Otherwise, if it returns by invisible reference, dereference
the pointer it is passed using the type of the return value
and build the copy operation manually. This ensures that we
don't copy too much data, for example if the return type is
unconstrained with a maximum size. */
else if (TREE_ADDRESSABLE (gnu_subprog_type))
{
tree gnu_ret_deref
= build_unary_op (INDIRECT_REF, TREE_TYPE (gnu_ret_val),
gnu_ret_obj);
gnu_result = build2 (INIT_EXPR, void_type_node,
gnu_ret_deref, gnu_ret_val);
add_stmt_with_node (gnu_result, gnat_node);
gnu_ret_val = NULL_TREE;
}
}
else
gnu_ret_obj = gnu_ret_val = NULL_TREE;
/* If we have a return label defined, convert this into a branch to
that label. The return proper will be handled elsewhere. */
if (gnu_return_label_stack->last ())
{
if (gnu_ret_val)
add_stmt (build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_ret_obj,
gnu_ret_val));
gnu_result = build1 (GOTO_EXPR, void_type_node,
gnu_return_label_stack->last ());
/* When not optimizing, make sure the return is preserved. */
if (!optimize && Comes_From_Source (gnat_node))
DECL_ARTIFICIAL (gnu_return_label_stack->last ()) = 0;
}
/* Otherwise, build a regular return. */
else
gnu_result = build_return_expr (gnu_ret_obj, gnu_ret_val);
}
break;
case N_Goto_Statement:
gnu_expr = gnat_to_gnu (Name (gnat_node));
gnu_result = build1 (GOTO_EXPR, void_type_node, gnu_expr);
TREE_USED (gnu_expr) = 1;
break;
/***************************/
/* Chapter 6: Subprograms */
/***************************/
case N_Subprogram_Declaration:
/* Unless there is a freeze node, declare the entity. We consider
this a definition even though we're not generating code for the
subprogram because we will be making the corresponding GCC node.
When there is a freeze node, it is considered the definition of
the subprogram and we do nothing until after it is encountered.
That's an efficiency issue: the types involved in the profile
are far more likely to be frozen between the declaration and
the freeze node than before the declaration, so we save some
updates of the GCC node by waiting until the freeze node.
The counterpart is that we assume that there is no reference
to the subprogram between the declaration and the freeze node
in the expanded code; otherwise, it will be interpreted as an
external reference and very likely give rise to a link failure. */
if (No (Freeze_Node (Defining_Entity (Specification (gnat_node)))))
gnat_to_gnu_entity (Defining_Entity (Specification (gnat_node)),
NULL_TREE, true);
gnu_result = alloc_stmt_list ();
break;
case N_Abstract_Subprogram_Declaration:
/* This subprogram doesn't exist for code generation purposes, but we
have to elaborate the types of any parameters and result, unless
they are imported types (nothing to generate in this case).
The parameter list may contain types with freeze nodes, e.g. not null
subtypes, so the subprogram itself may carry a freeze node, in which
case its elaboration must be deferred. */
/* Process the parameter types first. */
if (No (Freeze_Node (Defining_Entity (Specification (gnat_node)))))
for (gnat_temp
= First_Formal_With_Extras
(Defining_Entity (Specification (gnat_node)));
Present (gnat_temp);
gnat_temp = Next_Formal_With_Extras (gnat_temp))
if (Is_Itype (Etype (gnat_temp))
&& !From_Limited_With (Etype (gnat_temp)))
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, false);
/* Then the result type, set to Standard_Void_Type for procedures. */
{
Entity_Id gnat_temp_type
= Etype (Defining_Entity (Specification (gnat_node)));
if (Is_Itype (gnat_temp_type) && !From_Limited_With (gnat_temp_type))
gnat_to_gnu_entity (Etype (gnat_temp_type), NULL_TREE, false);
}
gnu_result = alloc_stmt_list ();
break;
case N_Defining_Program_Unit_Name:
/* For a child unit identifier go up a level to get the specification.
We get this when we try to find the spec of a child unit package
that is the compilation unit being compiled. */
gnu_result = gnat_to_gnu (Parent (gnat_node));
break;
case N_Subprogram_Body:
Subprogram_Body_to_gnu (gnat_node);
gnu_result = alloc_stmt_list ();
break;
case N_Function_Call:
case N_Procedure_Call_Statement:
gnu_result = Call_to_gnu (gnat_node, &gnu_result_type, NULL_TREE,
false, false, false);
break;
/************************/
/* Chapter 7: Packages */
/************************/
case N_Package_Declaration:
gnu_result = gnat_to_gnu (Specification (gnat_node));
break;
case N_Package_Specification:
start_stmt_group ();
process_decls (Visible_Declarations (gnat_node),
Private_Declarations (gnat_node), Empty, true, true);
gnu_result = end_stmt_group ();
break;
case N_Package_Body:
/* If this is the body of a generic package - do nothing. */
if (Ekind (Corresponding_Spec (gnat_node)) == E_Generic_Package)
{
gnu_result = alloc_stmt_list ();
break;
}
start_stmt_group ();
process_decls (Declarations (gnat_node), Empty, Empty, true, true);
if (Present (Handled_Statement_Sequence (gnat_node)))
add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node)));
gnu_result = end_stmt_group ();
break;
/********************************/
/* Chapter 8: Visibility Rules */
/********************************/
case N_Use_Package_Clause:
case N_Use_Type_Clause:
/* Nothing to do here - but these may appear in list of declarations. */
gnu_result = alloc_stmt_list ();
break;
/*********************/
/* Chapter 9: Tasks */
/*********************/
case N_Protected_Type_Declaration:
gnu_result = alloc_stmt_list ();
break;
case N_Single_Task_Declaration:
gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, true);
gnu_result = alloc_stmt_list ();
break;
/*********************************************************/
/* Chapter 10: Program Structure and Compilation Issues */
/*********************************************************/
case N_Compilation_Unit:
/* This is not called for the main unit on which gigi is invoked. */
Compilation_Unit_to_gnu (gnat_node);
gnu_result = alloc_stmt_list ();
break;
case N_Subunit:
gnu_result = gnat_to_gnu (Proper_Body (gnat_node));
break;
case N_Entry_Body:
case N_Protected_Body:
case N_Task_Body:
/* These nodes should only be present when annotating types. */
gcc_assert (type_annotate_only);
process_decls (Declarations (gnat_node), Empty, Empty, true, true);
gnu_result = alloc_stmt_list ();
break;
case N_Subprogram_Body_Stub:
case N_Package_Body_Stub:
case N_Protected_Body_Stub:
case N_Task_Body_Stub:
/* Simply process whatever unit is being inserted. */
if (Present (Library_Unit (gnat_node)))
gnu_result = gnat_to_gnu (Unit (Library_Unit (gnat_node)));
else
{
gcc_assert (type_annotate_only);
gnu_result = alloc_stmt_list ();
}
break;
/***************************/
/* Chapter 11: Exceptions */
/***************************/
case N_Handled_Sequence_Of_Statements:
/* If there is an At_End procedure attached to this node, and the EH
mechanism is front-end, we must have at least a corresponding At_End
handler, unless the No_Exception_Handlers restriction is set. */
gcc_assert (type_annotate_only
|| !Front_End_Exceptions ()
|| No (At_End_Proc (gnat_node))
|| Present (Exception_Handlers (gnat_node))
|| No_Exception_Handlers_Set ());
gnu_result = Handled_Sequence_Of_Statements_to_gnu (gnat_node);
break;
case N_Exception_Handler:
if (Back_End_Exceptions ())
gnu_result = Exception_Handler_to_gnu_gcc (gnat_node);
else if (Exception_Mechanism == Front_End_SJLJ)
gnu_result = Exception_Handler_to_gnu_fe_sjlj (gnat_node);
else
gcc_unreachable ();
break;
case N_Raise_Statement:
/* Only for reraise in back-end exceptions mode. */
gcc_assert (No (Name (gnat_node)) && Back_End_Exceptions ());
start_stmt_group ();
add_stmt_with_node (build_call_n_expr (reraise_zcx_decl, 1,
gnu_incoming_exc_ptr),
gnat_node);
gnu_result = end_stmt_group ();
break;
case N_Push_Constraint_Error_Label:
gnu_constraint_error_label_stack.safe_push (Exception_Label (gnat_node));
break;
case N_Push_Storage_Error_Label:
gnu_storage_error_label_stack.safe_push (Exception_Label (gnat_node));
break;
case N_Push_Program_Error_Label:
gnu_program_error_label_stack.safe_push (Exception_Label (gnat_node));
break;
case N_Pop_Constraint_Error_Label:
gnat_temp = gnu_constraint_error_label_stack.pop ();
if (Present (gnat_temp)
&& !TREE_USED (gnat_to_gnu_entity (gnat_temp, NULL_TREE, false)))
Warn_If_No_Local_Raise (gnat_temp);
break;
case N_Pop_Storage_Error_Label:
gnat_temp = gnu_storage_error_label_stack.pop ();
if (Present (gnat_temp)
&& !TREE_USED (gnat_to_gnu_entity (gnat_temp, NULL_TREE, false)))
Warn_If_No_Local_Raise (gnat_temp);
break;
case N_Pop_Program_Error_Label:
gnat_temp = gnu_program_error_label_stack.pop ();
if (Present (gnat_temp)
&& !TREE_USED (gnat_to_gnu_entity (gnat_temp, NULL_TREE, false)))
Warn_If_No_Local_Raise (gnat_temp);
break;
/******************************/
/* Chapter 12: Generic Units */
/******************************/
case N_Generic_Function_Renaming_Declaration:
case N_Generic_Package_Renaming_Declaration:
case N_Generic_Procedure_Renaming_Declaration:
case N_Generic_Package_Declaration:
case N_Generic_Subprogram_Declaration:
case N_Package_Instantiation:
case N_Procedure_Instantiation:
case N_Function_Instantiation:
/* These nodes can appear on a declaration list but there is nothing to
to be done with them. */
gnu_result = alloc_stmt_list ();
break;
/**************************************************/
/* Chapter 13: Representation Clauses and */
/* Implementation-Dependent Features */
/**************************************************/
case N_Attribute_Definition_Clause:
gnu_result = alloc_stmt_list ();
/* The only one we need to deal with is 'Address since, for the others,
the front-end puts the information elsewhere. */
if (Get_Attribute_Id (Chars (gnat_node)) != Attr_Address)
break;
/* And we only deal with 'Address if the object has a Freeze node. */
gnat_temp = Entity (Name (gnat_node));
if (Freeze_Node (gnat_temp))
{
tree gnu_address = gnat_to_gnu (Expression (gnat_node));
/* Get the value to use as the address and save it as the equivalent
for the object; when it is frozen, gnat_to_gnu_entity will do the
right thing. For a subprogram, put the naked address but build a
meaningfull expression for an object in case its address is taken
before the Freeze node is encountered; this can happen if the type
of the object is limited and it is initialized with the result of
a function call. */
if (Is_Subprogram (gnat_temp))
gnu_result = gnu_address;
else
{
tree gnu_type = gnat_to_gnu_type (Etype (gnat_temp));
/* Drop atomic and volatile qualifiers for the expression. */
gnu_type = TYPE_MAIN_VARIANT (gnu_type);
gnu_type
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
gnu_address = convert (gnu_type, gnu_address);
gnu_result
= build_unary_op (INDIRECT_REF, NULL_TREE, gnu_address);
}
save_gnu_tree (gnat_temp, gnu_result, true);
}
break;
case N_Enumeration_Representation_Clause:
case N_Record_Representation_Clause:
case N_At_Clause:
/* We do nothing with these. SEM puts the information elsewhere. */
gnu_result = alloc_stmt_list ();
break;
case N_Code_Statement:
if (!type_annotate_only)
{
tree gnu_template = gnat_to_gnu (Asm_Template (gnat_node));
tree gnu_inputs = NULL_TREE, gnu_outputs = NULL_TREE;
tree gnu_clobbers = NULL_TREE, tail;
bool allows_mem, allows_reg, fake;
int ninputs, noutputs, i;
const char **oconstraints;
const char *constraint;
char *clobber;
/* First retrieve the 3 operand lists built by the front-end. */
Setup_Asm_Outputs (gnat_node);
while (Present (gnat_temp = Asm_Output_Variable ()))
{
tree gnu_value = gnat_to_gnu (gnat_temp);
tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu
(Asm_Output_Constraint ()));
gnu_outputs = tree_cons (gnu_constr, gnu_value, gnu_outputs);
Next_Asm_Output ();
}
Setup_Asm_Inputs (gnat_node);
while (Present (gnat_temp = Asm_Input_Value ()))
{
tree gnu_value = gnat_to_gnu (gnat_temp);
tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu
(Asm_Input_Constraint ()));
gnu_inputs = tree_cons (gnu_constr, gnu_value, gnu_inputs);
Next_Asm_Input ();
}
Clobber_Setup (gnat_node);
while ((clobber = Clobber_Get_Next ()))
gnu_clobbers
= tree_cons (NULL_TREE,
build_string (strlen (clobber) + 1, clobber),
gnu_clobbers);
/* Then perform some standard checking and processing on the
operands. In particular, mark them addressable if needed. */
gnu_outputs = nreverse (gnu_outputs);
noutputs = list_length (gnu_outputs);
gnu_inputs = nreverse (gnu_inputs);
ninputs = list_length (gnu_inputs);
oconstraints = XALLOCAVEC (const char *, noutputs);
for (i = 0, tail = gnu_outputs; tail; ++i, tail = TREE_CHAIN (tail))
{
tree output = TREE_VALUE (tail);
constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
oconstraints[i] = constraint;
if (parse_output_constraint (&constraint, i, ninputs, noutputs,
&allows_mem, &allows_reg, &fake))
{
/* If the operand is going to end up in memory,
mark it addressable. Note that we don't test
allows_mem like in the input case below; this
is modelled on the C front-end. */
if (!allows_reg)
{
output = remove_conversions (output, false);
if (TREE_CODE (output) == CONST_DECL
&& DECL_CONST_CORRESPONDING_VAR (output))
output = DECL_CONST_CORRESPONDING_VAR (output);
if (!gnat_mark_addressable (output))
output = error_mark_node;
}
}
else
output = error_mark_node;
TREE_VALUE (tail) = output;
}
for (i = 0, tail = gnu_inputs; tail; ++i, tail = TREE_CHAIN (tail))
{
tree input = TREE_VALUE (tail);
constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
if (parse_input_constraint (&constraint, i, ninputs, noutputs,
0, oconstraints,
&allows_mem, &allows_reg))
{
/* If the operand is going to end up in memory,
mark it addressable. */
if (!allows_reg && allows_mem)
{
input = remove_conversions (input, false);
if (TREE_CODE (input) == CONST_DECL
&& DECL_CONST_CORRESPONDING_VAR (input))
input = DECL_CONST_CORRESPONDING_VAR (input);
if (!gnat_mark_addressable (input))
input = error_mark_node;
}
}
else
input = error_mark_node;
TREE_VALUE (tail) = input;
}
gnu_result = build5 (ASM_EXPR, void_type_node,
gnu_template, gnu_outputs,
gnu_inputs, gnu_clobbers, NULL_TREE);
ASM_VOLATILE_P (gnu_result) = Is_Asm_Volatile (gnat_node);
}
else
gnu_result = alloc_stmt_list ();
break;
/****************/
/* Added Nodes */
/****************/
/* Markers are created by the ABE mechanism to capture information which
is either unavailable of expensive to recompute. Markers do not have
and runtime semantics, and should be ignored. */
case N_Call_Marker:
case N_Variable_Reference_Marker:
gnu_result = alloc_stmt_list ();
break;
case N_Expression_With_Actions:
/* This construct doesn't define a scope so we don't push a binding
level around the statement list, but we wrap it in a SAVE_EXPR to
protect it from unsharing. Elaborate the expression as part of the
same statement group as the actions so that the type declaration
gets inserted there as well. This ensures that the type elaboration
code is issued past the actions computing values on which it might
depend. */
start_stmt_group ();
add_stmt_list (Actions (gnat_node));
gnu_expr = gnat_to_gnu (Expression (gnat_node));
gnu_result = end_stmt_group ();
gnu_result = build1 (SAVE_EXPR, void_type_node, gnu_result);
TREE_SIDE_EFFECTS (gnu_result) = 1;
gnu_result
= build_compound_expr (TREE_TYPE (gnu_expr), gnu_result, gnu_expr);
gnu_result_type = get_unpadded_type (Etype (gnat_node));
break;
case N_Freeze_Entity:
start_stmt_group ();
process_freeze_entity (gnat_node);
process_decls (Actions (gnat_node), Empty, Empty, true, true);
gnu_result = end_stmt_group ();
break;
case N_Freeze_Generic_Entity:
gnu_result = alloc_stmt_list ();
break;
case N_Itype_Reference:
if (!present_gnu_tree (Itype (gnat_node)))
process_type (Itype (gnat_node));
gnu_result = alloc_stmt_list ();
break;
case N_Free_Statement:
if (!type_annotate_only)
{
tree gnu_ptr
= gnat_to_gnu (adjust_for_implicit_deref (Expression (gnat_node)));
tree gnu_ptr_type = TREE_TYPE (gnu_ptr);
tree gnu_obj_type, gnu_actual_obj_type;
/* If this is a thin pointer, we must first dereference it to create
a fat pointer, then go back below to a thin pointer. The reason
for this is that we need to have a fat pointer someplace in order
to properly compute the size. */
if (TYPE_IS_THIN_POINTER_P (TREE_TYPE (gnu_ptr)))
gnu_ptr = build_unary_op (ADDR_EXPR, NULL_TREE,
build_unary_op (INDIRECT_REF, NULL_TREE,
gnu_ptr));
/* If this is a fat pointer, the object must have been allocated with
the template in front of the array. So pass the template address,
and get the total size; do it by converting to a thin pointer. */
if (TYPE_IS_FAT_POINTER_P (TREE_TYPE (gnu_ptr)))
gnu_ptr
= convert (build_pointer_type
(TYPE_OBJECT_RECORD_TYPE
(TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))),
gnu_ptr);
gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr));
/* If this is a thin pointer, the object must have been allocated with
the template in front of the array. So pass the template address,
and get the total size. */
if (TYPE_IS_THIN_POINTER_P (TREE_TYPE (gnu_ptr)))
gnu_ptr
= build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (gnu_ptr),
gnu_ptr,
fold_build1 (NEGATE_EXPR, sizetype,
byte_position
(DECL_CHAIN
TYPE_FIELDS ((gnu_obj_type)))));
/* If we have a special dynamic constrained subtype on the node, use
it to compute the size; otherwise, use the designated subtype. */
if (Present (Actual_Designated_Subtype (gnat_node)))
{
gnu_actual_obj_type
= gnat_to_gnu_type (Actual_Designated_Subtype (gnat_node));
if (TYPE_IS_FAT_OR_THIN_POINTER_P (gnu_ptr_type))
gnu_actual_obj_type
= build_unc_object_type_from_ptr (gnu_ptr_type,
gnu_actual_obj_type,
get_identifier ("DEALLOC"),
false);
}
else
gnu_actual_obj_type = gnu_obj_type;
tree gnu_size = TYPE_SIZE_UNIT (gnu_actual_obj_type);
gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size, gnu_ptr);
gnu_result
= build_call_alloc_dealloc (gnu_ptr, gnu_size, gnu_obj_type,
Procedure_To_Call (gnat_node),
Storage_Pool (gnat_node),
gnat_node);
}
break;
case N_Raise_Constraint_Error:
case N_Raise_Program_Error:
case N_Raise_Storage_Error:
if (type_annotate_only)
gnu_result = alloc_stmt_list ();
else
gnu_result = Raise_Error_to_gnu (gnat_node, &gnu_result_type);
break;
case N_Validate_Unchecked_Conversion:
/* The only validation we currently do on an unchecked conversion is
that of aliasing assumptions. */
if (flag_strict_aliasing)
gnat_validate_uc_list.safe_push (gnat_node);
gnu_result = alloc_stmt_list ();
break;
case N_Function_Specification:
case N_Procedure_Specification:
case N_Op_Concat:
case N_Component_Association:
/* These nodes should only be present when annotating types. */
gcc_assert (type_annotate_only);
gnu_result = alloc_stmt_list ();
break;
default:
/* Other nodes are not supposed to reach here. */
gcc_unreachable ();
}
/* If we pushed the processing of the elaboration routine, pop it back. */
if (went_into_elab_proc)
current_function_decl = NULL_TREE;
/* When not optimizing, turn boolean rvalues B into B != false tests
so that we can put the location information of the reference to B on
the inequality operator for better debug info. */
if (!optimize
&& TREE_CODE (gnu_result) != INTEGER_CST
&& TREE_CODE (gnu_result) != TYPE_DECL
&& (kind == N_Identifier
|| kind == N_Expanded_Name
|| kind == N_Explicit_Dereference
|| kind == N_Indexed_Component
|| kind == N_Selected_Component)
&& TREE_CODE (get_base_type (gnu_result_type)) == BOOLEAN_TYPE
&& !lvalue_required_p (gnat_node, gnu_result_type, false, false)
&& Nkind (Parent (gnat_node)) != N_Variant_Part)
{
gnu_result
= build_binary_op (NE_EXPR, gnu_result_type,
convert (gnu_result_type, gnu_result),
convert (gnu_result_type, boolean_false_node));
if (TREE_CODE (gnu_result) != INTEGER_CST)
set_gnu_expr_location_from_node (gnu_result, gnat_node);
}
/* Set the location information on the result if it's not a simple name.
Note that we may have no result if we tried to build a CALL_EXPR node
to a procedure with no side-effects and optimization is enabled. */
else if (kind != N_Identifier && gnu_result && EXPR_P (gnu_result))
set_gnu_expr_location_from_node (gnu_result, gnat_node);
/* If we're supposed to return something of void_type, it means we have
something we're elaborating for effect, so just return. */
if (TREE_CODE (gnu_result_type) == VOID_TYPE)
return gnu_result;
/* If the result is a constant that overflowed, raise Constraint_Error. */
if (TREE_CODE (gnu_result) == INTEGER_CST && TREE_OVERFLOW (gnu_result))
{
post_error ("?`Constraint_Error` will be raised at run time", gnat_node);
gnu_result
= build1 (NULL_EXPR, gnu_result_type,
build_call_raise (CE_Overflow_Check_Failed, gnat_node,
N_Raise_Constraint_Error));
}
/* If the result has side-effects and is of an unconstrained type, protect
the expression in case it will be referenced multiple times, i.e. for
its value and to compute the size of an object. But do it neither for
an object nor a renaming declaration, nor a return statement of a call
to a function that returns an unconstrained record type with default
discriminant, because there is no size to be computed in these cases
and this will create a useless temporary. We must do this before any
conversions. */
if (TREE_SIDE_EFFECTS (gnu_result)
&& (TREE_CODE (gnu_result_type) == UNCONSTRAINED_ARRAY_TYPE
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type)))
&& !(TREE_CODE (gnu_result) == CALL_EXPR
&& type_is_padding_self_referential (TREE_TYPE (gnu_result))
&& (Nkind (Parent (gnat_node)) == N_Object_Declaration
|| Nkind (Parent (gnat_node)) == N_Object_Renaming_Declaration
|| Nkind (Parent (gnat_node)) == N_Simple_Return_Statement)))
gnu_result = gnat_protect_expr (gnu_result);
/* Now convert the result to the result type, unless we are in one of the
following cases:
1. If this is the LHS of an assignment or an actual parameter of a
call, return the result almost unmodified since the RHS will have
to be converted to our type in that case, unless the result type
has a simpler size. Likewise if there is just a no-op unchecked
conversion in-between. Similarly, don't convert integral types
that are the operands of an unchecked conversion since we need
to ignore those conversions (for 'Valid).
2. If we have a label (which doesn't have any well-defined type), a
field or an error, return the result almost unmodified. Similarly,
if the two types are record types with the same name, don't convert.
This will be the case when we are converting from a packable version
of a type to its original type and we need those conversions to be
NOPs in order for assignments into these types to work properly.
3. If the type is void or if we have no result, return error_mark_node
to show we have no result.
4. If this is a call to a function that returns with variable size and
the call is used as the expression in either an object or a renaming
declaration, return the result unmodified because we want to use the
return slot optimization in this case.
5. If this is a reference to an unconstrained array which is used as the
prefix of an attribute reference that requires an lvalue, return the
result unmodified because we want return the original bounds.
6. Finally, if the type of the result is already correct. */
if (Present (Parent (gnat_node))
&& (lhs_or_actual_p (gnat_node)
|| (Nkind (Parent (gnat_node)) == N_Unchecked_Type_Conversion
&& unchecked_conversion_nop (Parent (gnat_node)))
|| (Nkind (Parent (gnat_node)) == N_Unchecked_Type_Conversion
&& !AGGREGATE_TYPE_P (gnu_result_type)
&& !AGGREGATE_TYPE_P (TREE_TYPE (gnu_result))))
&& !(TYPE_SIZE (gnu_result_type)
&& TYPE_SIZE (TREE_TYPE (gnu_result))
&& (AGGREGATE_TYPE_P (gnu_result_type)
== AGGREGATE_TYPE_P (TREE_TYPE (gnu_result)))
&& ((TREE_CODE (TYPE_SIZE (gnu_result_type)) == INTEGER_CST
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_result)))
!= INTEGER_CST))
|| (TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type))
&& (CONTAINS_PLACEHOLDER_P
(TYPE_SIZE (TREE_TYPE (gnu_result))))))
&& !(TREE_CODE (gnu_result_type) == RECORD_TYPE
&& TYPE_JUSTIFIED_MODULAR_P (gnu_result_type))))
{
/* Remove padding only if the inner object is of self-referential
size: in that case it must be an object of unconstrained type
with a default discriminant and we want to avoid copying too
much data. */
if (type_is_padding_self_referential (TREE_TYPE (gnu_result)))
gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))),
gnu_result);
}
else if (TREE_CODE (gnu_result) == LABEL_DECL
|| TREE_CODE (gnu_result) == FIELD_DECL
|| TREE_CODE (gnu_result) == ERROR_MARK
|| (TYPE_NAME (gnu_result_type)
== TYPE_NAME (TREE_TYPE (gnu_result))
&& TREE_CODE (gnu_result_type) == RECORD_TYPE
&& TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE))
{
/* Remove any padding. */
if (TYPE_IS_PADDING_P (TREE_TYPE (gnu_result)))
gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))),
gnu_result);
}
else if (gnu_result == error_mark_node || gnu_result_type == void_type_node)
gnu_result = error_mark_node;
else if (TREE_CODE (gnu_result) == CALL_EXPR
&& Present (Parent (gnat_node))
&& (Nkind (Parent (gnat_node)) == N_Object_Declaration
|| Nkind (Parent (gnat_node)) == N_Object_Renaming_Declaration)
&& return_type_with_variable_size_p (TREE_TYPE (gnu_result)))
;
else if (TREE_CODE (gnu_result) == UNCONSTRAINED_ARRAY_REF
&& Present (Parent (gnat_node))
&& Nkind (Parent (gnat_node)) == N_Attribute_Reference
&& lvalue_required_for_attribute_p (Parent (gnat_node)))
;
else if (TREE_TYPE (gnu_result) != gnu_result_type)
gnu_result = convert (gnu_result_type, gnu_result);
/* We don't need any NOP_EXPR or NON_LVALUE_EXPR on the result. */
while ((TREE_CODE (gnu_result) == NOP_EXPR
|| TREE_CODE (gnu_result) == NON_LVALUE_EXPR)
&& TREE_TYPE (TREE_OPERAND (gnu_result, 0)) == TREE_TYPE (gnu_result))
gnu_result = TREE_OPERAND (gnu_result, 0);
return gnu_result;
}
/* Similar to gnat_to_gnu, but discard any object that might be created in
the course of the translation of GNAT_NODE, which must be an "external"
expression in the sense that it will be elaborated elsewhere. */
tree
gnat_to_gnu_external (Node_Id gnat_node)
{
const int save_force_global = force_global;
bool went_into_elab_proc = false;
/* Force the local context and create a fake scope that we zap
at the end so declarations will not be stuck either in the
global varpool or in the current scope. */
if (!current_function_decl)
{
current_function_decl = get_elaboration_procedure ();
went_into_elab_proc = true;
}
force_global = 0;
gnat_pushlevel ();
tree gnu_result = gnat_to_gnu (gnat_node);
gnat_zaplevel ();
force_global = save_force_global;
if (went_into_elab_proc)
current_function_decl = NULL_TREE;
/* Do not import locations from external units. */
if (gnu_result && EXPR_P (gnu_result))
SET_EXPR_LOCATION (gnu_result, UNKNOWN_LOCATION);
return gnu_result;
}
/* Return true if the statement list STMT_LIST is empty. */
static bool
empty_stmt_list_p (tree stmt_list)
{
tree_stmt_iterator tsi;
for (tsi = tsi_start (stmt_list); !tsi_end_p (tsi); tsi_next (&tsi))
{
tree stmt = tsi_stmt (tsi);
/* Anything else than an empty STMT_STMT counts as something. */
if (TREE_CODE (stmt) != STMT_STMT || STMT_STMT_STMT (stmt))
return false;
}
return true;
}
/* Record the current code position in GNAT_NODE. */
static void
record_code_position (Node_Id gnat_node)
{
tree stmt_stmt = build1 (STMT_STMT, void_type_node, NULL_TREE);
add_stmt_with_node (stmt_stmt, gnat_node);
save_gnu_tree (gnat_node, stmt_stmt, true);
}
/* Insert the code for GNAT_NODE at the position saved for that node. */
static void
insert_code_for (Node_Id gnat_node)
{
tree code = gnat_to_gnu (gnat_node);
/* It's too late to remove the STMT_STMT itself at this point. */
if (!empty_stmt_list_p (code))
STMT_STMT_STMT (get_gnu_tree (gnat_node)) = code;
save_gnu_tree (gnat_node, NULL_TREE, true);
}
/* Start a new statement group chained to the previous group. */
void
start_stmt_group (void)
{
struct stmt_group *group = stmt_group_free_list;
/* First see if we can get one from the free list. */
if (group)
stmt_group_free_list = group->previous;
else
group = ggc_alloc ();
group->previous = current_stmt_group;
group->stmt_list = group->block = group->cleanups = NULL_TREE;
current_stmt_group = group;
}
/* Add GNU_STMT to the current statement group. If it is an expression with
no effects, it is ignored. */
void
add_stmt (tree gnu_stmt)
{
append_to_statement_list (gnu_stmt, ¤t_stmt_group->stmt_list);
}
/* Similar, but the statement is always added, regardless of side-effects. */
void
add_stmt_force (tree gnu_stmt)
{
append_to_statement_list_force (gnu_stmt, ¤t_stmt_group->stmt_list);
}
/* Like add_stmt, but set the location of GNU_STMT to that of GNAT_NODE. */
void
add_stmt_with_node (tree gnu_stmt, Node_Id gnat_node)
{
if (Present (gnat_node))
set_expr_location_from_node (gnu_stmt, gnat_node);
add_stmt (gnu_stmt);
}
/* Similar, but the statement is always added, regardless of side-effects. */
void
add_stmt_with_node_force (tree gnu_stmt, Node_Id gnat_node)
{
if (Present (gnat_node))
set_expr_location_from_node (gnu_stmt, gnat_node);
add_stmt_force (gnu_stmt);
}
/* Add a declaration statement for GNU_DECL to the current statement group.
Get the SLOC to be put onto the statement from GNAT_NODE. */
void
add_decl_expr (tree gnu_decl, Node_Id gnat_node)
{
tree type = TREE_TYPE (gnu_decl);
tree gnu_stmt, gnu_init;
/* If this is a variable that Gigi is to ignore, we may have been given
an ERROR_MARK. So test for it. We also might have been given a
reference for a renaming. So only do something for a decl. Also
ignore a TYPE_DECL for an UNCONSTRAINED_ARRAY_TYPE. */
if (!DECL_P (gnu_decl)
|| (TREE_CODE (gnu_decl) == TYPE_DECL
&& TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE))
return;
gnu_stmt = build1 (DECL_EXPR, void_type_node, gnu_decl);
/* If we are external or global, we don't want to output the DECL_EXPR for
this DECL node since we already have evaluated the expressions in the
sizes and positions as globals and doing it again would be wrong. */
if (DECL_EXTERNAL (gnu_decl) || global_bindings_p ())
{
/* Mark everything as used to prevent node sharing with subprograms.
Note that walk_tree knows how to deal with TYPE_DECL, but neither
VAR_DECL nor CONST_DECL. This appears to be somewhat arbitrary. */
MARK_VISITED (gnu_stmt);
if (TREE_CODE (gnu_decl) == VAR_DECL
|| TREE_CODE (gnu_decl) == CONST_DECL)
{
MARK_VISITED (DECL_SIZE (gnu_decl));
MARK_VISITED (DECL_SIZE_UNIT (gnu_decl));
MARK_VISITED (DECL_INITIAL (gnu_decl));
}
/* In any case, we have to deal with our own TYPE_ADA_SIZE field. */
else if (TREE_CODE (gnu_decl) == TYPE_DECL
&& RECORD_OR_UNION_TYPE_P (type)
&& !TYPE_FAT_POINTER_P (type))
MARK_VISITED (TYPE_ADA_SIZE (type));
}
else
add_stmt_with_node (gnu_stmt, gnat_node);
/* If this is a variable and an initializer is attached to it, it must be
valid for the context. Similar to init_const in create_var_decl. */
if (TREE_CODE (gnu_decl) == VAR_DECL
&& (gnu_init = DECL_INITIAL (gnu_decl))
&& (!gnat_types_compatible_p (type, TREE_TYPE (gnu_init))
|| (TREE_STATIC (gnu_decl)
&& !initializer_constant_valid_p (gnu_init,
TREE_TYPE (gnu_init)))))
{
DECL_INITIAL (gnu_decl) = NULL_TREE;
if (TREE_READONLY (gnu_decl))
{
TREE_READONLY (gnu_decl) = 0;
DECL_READONLY_ONCE_ELAB (gnu_decl) = 1;
}
/* If GNU_DECL has a padded type, convert it to the unpadded
type so the assignment is done properly. */
if (TYPE_IS_PADDING_P (type))
gnu_decl = convert (TREE_TYPE (TYPE_FIELDS (type)), gnu_decl);
gnu_stmt = build_binary_op (INIT_EXPR, NULL_TREE, gnu_decl, gnu_init);
add_stmt_with_node (gnu_stmt, gnat_node);
}
}
/* Callback for walk_tree to mark the visited trees rooted at *TP. */
static tree
mark_visited_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (TREE_VISITED (t))
*walk_subtrees = 0;
/* Don't mark a dummy type as visited because we want to mark its sizes
and fields once it's filled in. */
else if (!TYPE_IS_DUMMY_P (t))
TREE_VISITED (t) = 1;
/* The test in gimplify_type_sizes is on the main variant. */
if (TYPE_P (t))
TYPE_SIZES_GIMPLIFIED (TYPE_MAIN_VARIANT (t)) = 1;
return NULL_TREE;
}
/* Mark nodes rooted at T with TREE_VISITED and types as having their
sized gimplified. We use this to indicate all variable sizes and
positions in global types may not be shared by any subprogram. */
void
mark_visited (tree t)
{
walk_tree (&t, mark_visited_r, NULL, NULL);
}
/* Add GNU_CLEANUP, a cleanup action, to the current code group and
set its location to that of GNAT_NODE if present, but with column info
cleared so that conditional branches generated as part of the cleanup
code do not interfere with coverage analysis tools. */
static void
add_cleanup (tree gnu_cleanup, Node_Id gnat_node)
{
if (Present (gnat_node))
set_expr_location_from_node (gnu_cleanup, gnat_node, true);
/* An EH_ELSE_EXPR must be by itself, and that's all we need when we
use it. The assert below makes sure that is so. Should we ever
need more than that, we could combine EH_ELSE_EXPRs, and copy
non-EH_ELSE_EXPR stmts into both cleanup paths of an
EH_ELSE_EXPR. */
if (TREE_CODE (gnu_cleanup) == EH_ELSE_EXPR)
{
gcc_assert (!current_stmt_group->cleanups);
current_stmt_group->cleanups = gnu_cleanup;
}
else
{
gcc_assert (!current_stmt_group->cleanups
|| (TREE_CODE (current_stmt_group->cleanups)
!= EH_ELSE_EXPR));
append_to_statement_list (gnu_cleanup, ¤t_stmt_group->cleanups);
}
}
/* Set the BLOCK node corresponding to the current code group to GNU_BLOCK. */
void
set_block_for_group (tree gnu_block)
{
gcc_assert (!current_stmt_group->block);
current_stmt_group->block = gnu_block;
}
/* Return code corresponding to the current code group. It is normally
a STATEMENT_LIST, but may also be a BIND_EXPR or TRY_FINALLY_EXPR if
BLOCK or cleanups were set. */
tree
end_stmt_group (void)
{
struct stmt_group *group = current_stmt_group;
tree gnu_retval = group->stmt_list;
/* If this is a null list, allocate a new STATEMENT_LIST. Then, if there
are cleanups, make a TRY_FINALLY_EXPR. Last, if there is a BLOCK,
make a BIND_EXPR. Note that we nest in that because the cleanup may
reference variables in the block. */
if (!gnu_retval)
gnu_retval = alloc_stmt_list ();
if (group->cleanups)
gnu_retval = build2 (TRY_FINALLY_EXPR, void_type_node, gnu_retval,
group->cleanups);
if (current_stmt_group->block)
gnu_retval = build3 (BIND_EXPR, void_type_node, BLOCK_VARS (group->block),
gnu_retval, group->block);
/* Remove this group from the stack and add it to the free list. */
current_stmt_group = group->previous;
group->previous = stmt_group_free_list;
stmt_group_free_list = group;
return gnu_retval;
}
/* Return whether the current statement group may fall through. */
static inline bool
stmt_group_may_fallthru (void)
{
if (current_stmt_group->stmt_list)
return block_may_fallthru (current_stmt_group->stmt_list);
else
return true;
}
/* Add a list of statements from GNAT_LIST, a possibly-empty list of
statements.*/
static void
add_stmt_list (List_Id gnat_list)
{
Node_Id gnat_node;
if (Present (gnat_list))
for (gnat_node = First (gnat_list); Present (gnat_node);
gnat_node = Next (gnat_node))
add_stmt (gnat_to_gnu (gnat_node));
}
/* Build a tree from GNAT_LIST, a possibly-empty list of statements.
If BINDING_P is true, push and pop a binding level around the list. */
static tree
build_stmt_group (List_Id gnat_list, bool binding_p)
{
start_stmt_group ();
if (binding_p)
gnat_pushlevel ();
add_stmt_list (gnat_list);
if (binding_p)
gnat_poplevel ();
return end_stmt_group ();
}
/* Generate GIMPLE in place for the expression at *EXPR_P. */
int
gnat_gimplify_expr (tree *expr_p, gimple_seq *pre_p,
gimple_seq *post_p ATTRIBUTE_UNUSED)
{
tree expr = *expr_p;
tree type = TREE_TYPE (expr);
tree op;
if (IS_ADA_STMT (expr))
return gnat_gimplify_stmt (expr_p);
switch (TREE_CODE (expr))
{
case NULL_EXPR:
/* If this is an aggregate type, build a null pointer of the appropriate
type and dereference it. */
if (AGGREGATE_TYPE_P (type)
|| TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
*expr_p = build_unary_op (INDIRECT_REF, NULL_TREE,
convert (build_pointer_type (type),
integer_zero_node));
/* Otherwise, just make a VAR_DECL. */
else
{
*expr_p = create_tmp_var (type, NULL);
TREE_NO_WARNING (*expr_p) = 1;
}
gimplify_and_add (TREE_OPERAND (expr, 0), pre_p);
return GS_OK;
case UNCONSTRAINED_ARRAY_REF:
/* We should only do this if we are just elaborating for side-effects,
but we can't know that yet. */
*expr_p = TREE_OPERAND (*expr_p, 0);
return GS_OK;
case ADDR_EXPR:
op = TREE_OPERAND (expr, 0);
/* If we are taking the address of a constant CONSTRUCTOR, make sure it
is put into static memory. We know that it's going to be read-only
given the semantics we have and it must be in static memory when the
reference is in an elaboration procedure. */
if (TREE_CODE (op) == CONSTRUCTOR && TREE_CONSTANT (op))
{
tree addr = build_fold_addr_expr (tree_output_constant_def (op));
*expr_p = fold_convert (type, addr);
return GS_ALL_DONE;
}
/* Replace atomic loads with their first argument. That's necessary
because the gimplifier would create a temporary otherwise. */
if (TREE_SIDE_EFFECTS (op))
while (handled_component_p (op) || CONVERT_EXPR_P (op))
{
tree inner = TREE_OPERAND (op, 0);
if (TREE_CODE (inner) == CALL_EXPR && call_is_atomic_load (inner))
{
tree t = CALL_EXPR_ARG (inner, 0);
if (TREE_CODE (t) == NOP_EXPR)
t = TREE_OPERAND (t, 0);
if (TREE_CODE (t) == ADDR_EXPR)
TREE_OPERAND (op, 0) = TREE_OPERAND (t, 0);
else
TREE_OPERAND (op, 0) = build_fold_indirect_ref (t);
}
else
op = inner;
}
return GS_UNHANDLED;
case VIEW_CONVERT_EXPR:
op = TREE_OPERAND (expr, 0);
/* If we are view-converting a CONSTRUCTOR or a call from an aggregate
type to a scalar one, explicitly create the local temporary. That's
required if the type is passed by reference. */
if ((TREE_CODE (op) == CONSTRUCTOR || TREE_CODE (op) == CALL_EXPR)
&& AGGREGATE_TYPE_P (TREE_TYPE (op))
&& !AGGREGATE_TYPE_P (type))
{
tree mod, new_var = create_tmp_var_raw (TREE_TYPE (op), "C");
gimple_add_tmp_var (new_var);
mod = build2 (INIT_EXPR, TREE_TYPE (new_var), new_var, op);
gimplify_and_add (mod, pre_p);
TREE_OPERAND (expr, 0) = new_var;
return GS_OK;
}
return GS_UNHANDLED;
case DECL_EXPR:
op = DECL_EXPR_DECL (expr);
/* The expressions for the RM bounds must be gimplified to ensure that
they are properly elaborated. See gimplify_decl_expr. */
if ((TREE_CODE (op) == TYPE_DECL || TREE_CODE (op) == VAR_DECL)
&& !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (op)))
switch (TREE_CODE (TREE_TYPE (op)))
{
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case REAL_TYPE:
{
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (op)), t, val;
val = TYPE_RM_MIN_VALUE (type);
if (val)
{
gimplify_one_sizepos (&val, pre_p);
for (t = type; t; t = TYPE_NEXT_VARIANT (t))
SET_TYPE_RM_MIN_VALUE (t, val);
}
val = TYPE_RM_MAX_VALUE (type);
if (val)
{
gimplify_one_sizepos (&val, pre_p);
for (t = type; t; t = TYPE_NEXT_VARIANT (t))
SET_TYPE_RM_MAX_VALUE (t, val);
}
}
break;
default:
break;
}
/* ... fall through ... */
default:
return GS_UNHANDLED;
}
}
/* Generate GIMPLE in place for the statement at *STMT_P. */
static enum gimplify_status
gnat_gimplify_stmt (tree *stmt_p)
{
tree stmt = *stmt_p;
switch (TREE_CODE (stmt))
{
case STMT_STMT:
*stmt_p = STMT_STMT_STMT (stmt);
return GS_OK;
case LOOP_STMT:
{
tree gnu_start_label = create_artificial_label (input_location);
tree gnu_cond = LOOP_STMT_COND (stmt);
tree gnu_update = LOOP_STMT_UPDATE (stmt);
tree gnu_end_label = LOOP_STMT_LABEL (stmt);
/* Build the condition expression from the test, if any. */
if (gnu_cond)
{
/* Deal with the optimization hints. */
if (LOOP_STMT_IVDEP (stmt))
gnu_cond = build3 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_ivdep_kind),
integer_zero_node);
if (LOOP_STMT_NO_UNROLL (stmt))
gnu_cond = build3 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_unroll_kind),
integer_one_node);
if (LOOP_STMT_UNROLL (stmt))
gnu_cond = build3 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_unroll_kind),
build_int_cst (NULL_TREE, USHRT_MAX));
if (LOOP_STMT_NO_VECTOR (stmt))
gnu_cond = build3 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_no_vector_kind),
integer_zero_node);
if (LOOP_STMT_VECTOR (stmt))
gnu_cond = build3 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_vector_kind),
integer_zero_node);
gnu_cond
= build3 (COND_EXPR, void_type_node, gnu_cond, NULL_TREE,
build1 (GOTO_EXPR, void_type_node, gnu_end_label));
}
/* Set to emit the statements of the loop. */
*stmt_p = NULL_TREE;
/* We first emit the start label and then a conditional jump to the
end label if there's a top condition, then the update if it's at
the top, then the body of the loop, then a conditional jump to
the end label if there's a bottom condition, then the update if
it's at the bottom, and finally a jump to the start label and the
definition of the end label. */
append_to_statement_list (build1 (LABEL_EXPR, void_type_node,
gnu_start_label),
stmt_p);
if (gnu_cond && !LOOP_STMT_BOTTOM_COND_P (stmt))
append_to_statement_list (gnu_cond, stmt_p);
if (gnu_update && LOOP_STMT_TOP_UPDATE_P (stmt))
append_to_statement_list (gnu_update, stmt_p);
append_to_statement_list (LOOP_STMT_BODY (stmt), stmt_p);
if (gnu_cond && LOOP_STMT_BOTTOM_COND_P (stmt))
append_to_statement_list (gnu_cond, stmt_p);
if (gnu_update && !LOOP_STMT_TOP_UPDATE_P (stmt))
append_to_statement_list (gnu_update, stmt_p);
tree t = build1 (GOTO_EXPR, void_type_node, gnu_start_label);
SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (gnu_end_label));
append_to_statement_list (t, stmt_p);
append_to_statement_list (build1 (LABEL_EXPR, void_type_node,
gnu_end_label),
stmt_p);
return GS_OK;
}
case EXIT_STMT:
/* Build a statement to jump to the corresponding end label, then
see if it needs to be conditional. */
*stmt_p = build1 (GOTO_EXPR, void_type_node, EXIT_STMT_LABEL (stmt));
if (EXIT_STMT_COND (stmt))
*stmt_p = build3 (COND_EXPR, void_type_node,
EXIT_STMT_COND (stmt), *stmt_p, alloc_stmt_list ());
return GS_OK;
default:
gcc_unreachable ();
}
}
/* Force a reference to each of the entities in GNAT_PACKAGE recursively.
This routine is exclusively called in type_annotate mode, to compute DDA
information for types in withed units, for ASIS use. */
static void
elaborate_all_entities_for_package (Entity_Id gnat_package)
{
Entity_Id gnat_entity;
for (gnat_entity = First_Entity (gnat_package);
Present (gnat_entity);
gnat_entity = Next_Entity (gnat_entity))
{
const Entity_Kind kind = Ekind (gnat_entity);
/* We are interested only in entities visible from the main unit. */
if (!Is_Public (gnat_entity))
continue;
/* Skip stuff internal to the compiler. */
if (Convention (gnat_entity) == Convention_Intrinsic)
continue;
if (kind == E_Operator)
continue;
if (IN (kind, Subprogram_Kind)
&& (Present (Alias (gnat_entity))
|| Is_Intrinsic_Subprogram (gnat_entity)))
continue;
if (Is_Itype (gnat_entity))
continue;
/* Skip named numbers. */
if (IN (kind, Named_Kind))
continue;
/* Skip generic declarations. */
if (IN (kind, Generic_Unit_Kind))
continue;
/* Skip formal objects. */
if (IN (kind, Formal_Object_Kind))
continue;
/* Skip package bodies. */
if (kind == E_Package_Body)
continue;
/* Skip limited views that point back to the main unit. */
if (IN (kind, Incomplete_Kind)
&& From_Limited_With (gnat_entity)
&& In_Extended_Main_Code_Unit (Non_Limited_View (gnat_entity)))
continue;
/* Skip types that aren't frozen. */
if (IN (kind, Type_Kind) && !Is_Frozen (gnat_entity))
continue;
/* Recurse on real packages that aren't in the main unit. */
if (kind == E_Package)
{
if (No (Renamed_Entity (gnat_entity))
&& !In_Extended_Main_Code_Unit (gnat_entity))
elaborate_all_entities_for_package (gnat_entity);
}
else
gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
}
}
/* Force a reference to each of the entities in packages withed by GNAT_NODE.
Operate recursively but check that we aren't elaborating something more
than once.
This routine is exclusively called in type_annotate mode, to compute DDA
information for types in withed units, for ASIS use. */
static void
elaborate_all_entities (Node_Id gnat_node)
{
Entity_Id gnat_with_clause;
/* Process each unit only once. As we trace the context of all relevant
units transitively, including generic bodies, we may encounter the
same generic unit repeatedly. */
if (!present_gnu_tree (gnat_node))
save_gnu_tree (gnat_node, integer_zero_node, true);
/* Save entities in all context units. A body may have an implicit_with
on its own spec, if the context includes a child unit, so don't save
the spec twice. */
for (gnat_with_clause = First (Context_Items (gnat_node));
Present (gnat_with_clause);
gnat_with_clause = Next (gnat_with_clause))
if (Nkind (gnat_with_clause) == N_With_Clause
&& !present_gnu_tree (Library_Unit (gnat_with_clause))
&& Library_Unit (gnat_with_clause) != Library_Unit (Cunit (Main_Unit)))
{
Node_Id gnat_unit = Library_Unit (gnat_with_clause);
Entity_Id gnat_entity = Entity (Name (gnat_with_clause));
elaborate_all_entities (gnat_unit);
if (Ekind (gnat_entity) == E_Package
&& No (Renamed_Entity (gnat_entity)))
elaborate_all_entities_for_package (gnat_entity);
else if (Ekind (gnat_entity) == E_Generic_Package)
{
Node_Id gnat_body = Corresponding_Body (Unit (gnat_unit));
/* Retrieve compilation unit node of generic body. */
while (Present (gnat_body)
&& Nkind (gnat_body) != N_Compilation_Unit)
gnat_body = Parent (gnat_body);
/* If body is available, elaborate its context. */
if (Present (gnat_body))
elaborate_all_entities (gnat_body);
}
}
if (Nkind (Unit (gnat_node)) == N_Package_Body)
elaborate_all_entities (Library_Unit (gnat_node));
}
/* Do the processing of GNAT_NODE, an N_Freeze_Entity. */
static void
process_freeze_entity (Node_Id gnat_node)
{
const Entity_Id gnat_entity = Entity (gnat_node);
const Entity_Kind kind = Ekind (gnat_entity);
tree gnu_old, gnu_new;
/* If this is a package, generate code for the package body, if any. */
if (kind == E_Package)
{
const Node_Id gnat_decl = Parent (Declaration_Node (gnat_entity));
if (Present (Corresponding_Body (gnat_decl)))
insert_code_for (Parent (Corresponding_Body (gnat_decl)));
return;
}
/* Don't do anything for class-wide types as they are always transformed
into their root type. */
if (kind == E_Class_Wide_Type)
return;
/* Check for an old definition if this isn't an object with address clause,
since the saved GCC tree is the address expression in that case. */
gnu_old
= present_gnu_tree (gnat_entity) && No (Address_Clause (gnat_entity))
? get_gnu_tree (gnat_entity) : NULL_TREE;
/* Don't do anything for subprograms that may have been elaborated before
their freeze nodes. This can happen, for example, because of an inner
call in an instance body or because of previous compilation of a spec
for inlining purposes. */
if (gnu_old
&& ((TREE_CODE (gnu_old) == FUNCTION_DECL
&& (kind == E_Function || kind == E_Procedure))
|| (FUNC_OR_METHOD_TYPE_P (TREE_TYPE (gnu_old))
&& kind == E_Subprogram_Type)))
return;
/* If we have a non-dummy type old tree, we have nothing to do, except for
aborting, since this node was never delayed as it should have been. We
let this happen for concurrent types and their Corresponding_Record_Type,
however, because each might legitimately be elaborated before its own
freeze node, e.g. while processing the other. */
if (gnu_old
&& !(TREE_CODE (gnu_old) == TYPE_DECL
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old))))
{
gcc_assert (Is_Concurrent_Type (gnat_entity)
|| (Is_Record_Type (gnat_entity)
&& Is_Concurrent_Record_Type (gnat_entity)));
return;
}
/* Reset the saved tree, if any, and elaborate the object or type for real.
If there is a full view, elaborate it and use the result. And, if this
is the root type of a class-wide type, reuse it for the latter. */
if (gnu_old)
{
save_gnu_tree (gnat_entity, NULL_TREE, false);
if (Is_Incomplete_Or_Private_Type (gnat_entity)
&& Present (Full_View (gnat_entity)))
{
Entity_Id full_view = Full_View (gnat_entity);
save_gnu_tree (full_view, NULL_TREE, false);
if (Is_Private_Type (full_view)
&& Present (Underlying_Full_View (full_view)))
{
full_view = Underlying_Full_View (full_view);
save_gnu_tree (full_view, NULL_TREE, false);
}
}
if (Is_Type (gnat_entity)
&& Present (Class_Wide_Type (gnat_entity))
&& Root_Type (Class_Wide_Type (gnat_entity)) == gnat_entity)
save_gnu_tree (Class_Wide_Type (gnat_entity), NULL_TREE, false);
}
if (Is_Incomplete_Or_Private_Type (gnat_entity)
&& Present (Full_View (gnat_entity)))
{
Entity_Id full_view = Full_View (gnat_entity);
if (Is_Private_Type (full_view)
&& Present (Underlying_Full_View (full_view)))
full_view = Underlying_Full_View (full_view);
gnu_new = gnat_to_gnu_entity (full_view, NULL_TREE, true);
/* Propagate back-annotations from full view to partial view. */
if (Unknown_Alignment (gnat_entity))
Set_Alignment (gnat_entity, Alignment (full_view));
if (Unknown_Esize (gnat_entity))
Set_Esize (gnat_entity, Esize (full_view));
if (Unknown_RM_Size (gnat_entity))
Set_RM_Size (gnat_entity, RM_Size (full_view));
/* The above call may have defined this entity (the simplest example
of this is when we have a private enumeral type since the bounds
will have the public view). */
if (!present_gnu_tree (gnat_entity))
save_gnu_tree (gnat_entity, gnu_new, false);
}
else
{
tree gnu_init
= (Nkind (Declaration_Node (gnat_entity)) == N_Object_Declaration
&& present_gnu_tree (Declaration_Node (gnat_entity)))
? get_gnu_tree (Declaration_Node (gnat_entity)) : NULL_TREE;
gnu_new = gnat_to_gnu_entity (gnat_entity, gnu_init, true);
}
if (Is_Type (gnat_entity)
&& Present (Class_Wide_Type (gnat_entity))
&& Root_Type (Class_Wide_Type (gnat_entity)) == gnat_entity)
save_gnu_tree (Class_Wide_Type (gnat_entity), gnu_new, false);
/* If we have an old type and we've made pointers to this type, update those
pointers. If this is a Taft amendment type in the main unit, we need to
mark the type as used since other units referencing it don't see the full
declaration and, therefore, cannot mark it as used themselves. */
if (gnu_old)
{
update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)),
TREE_TYPE (gnu_new));
if (TYPE_DUMMY_IN_PROFILE_P (TREE_TYPE (gnu_old)))
update_profiles_with (TREE_TYPE (gnu_old));
if (DECL_TAFT_TYPE_P (gnu_old))
used_types_insert (TREE_TYPE (gnu_new));
}
}
/* Elaborate decls in the lists GNAT_DECLS and GNAT_DECLS2, if present.
We make two passes, one to elaborate anything other than bodies (but
we declare a function if there was no spec). The second pass
elaborates the bodies.
GNAT_END_LIST gives the element in the list past the end. Normally,
this is Empty, but can be First_Real_Statement for a
Handled_Sequence_Of_Statements.
We make a complete pass through both lists if PASS1P is true, then make
the second pass over both lists if PASS2P is true. The lists usually
correspond to the public and private parts of a package. */
static void
process_decls (List_Id gnat_decls, List_Id gnat_decls2,
Node_Id gnat_end_list, bool pass1p, bool pass2p)
{
List_Id gnat_decl_array[2];
Node_Id gnat_decl;
int i;
gnat_decl_array[0] = gnat_decls, gnat_decl_array[1] = gnat_decls2;
if (pass1p)
for (i = 0; i <= 1; i++)
if (Present (gnat_decl_array[i]))
for (gnat_decl = First (gnat_decl_array[i]);
gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl))
{
/* For package specs, we recurse inside the declarations,
thus taking the two pass approach inside the boundary. */
if (Nkind (gnat_decl) == N_Package_Declaration
&& (Nkind (Specification (gnat_decl)
== N_Package_Specification)))
process_decls (Visible_Declarations (Specification (gnat_decl)),
Private_Declarations (Specification (gnat_decl)),
Empty, true, false);
/* Similarly for any declarations in the actions of a
freeze node. */
else if (Nkind (gnat_decl) == N_Freeze_Entity)
{
process_freeze_entity (gnat_decl);
process_decls (Actions (gnat_decl), Empty, Empty, true, false);
}
/* Package bodies with freeze nodes get their elaboration deferred
until the freeze node, but the code must be placed in the right
place, so record the code position now. */
else if (Nkind (gnat_decl) == N_Package_Body
&& Present (Freeze_Node (Corresponding_Spec (gnat_decl))))
record_code_position (gnat_decl);
else if (Nkind (gnat_decl) == N_Package_Body_Stub
&& Present (Library_Unit (gnat_decl))
&& Present (Freeze_Node
(Corresponding_Spec
(Proper_Body (Unit
(Library_Unit (gnat_decl)))))))
record_code_position
(Proper_Body (Unit (Library_Unit (gnat_decl))));
/* We defer most subprogram bodies to the second pass. */
else if (Nkind (gnat_decl) == N_Subprogram_Body)
{
if (Acts_As_Spec (gnat_decl))
{
Node_Id gnat_subprog_id = Defining_Entity (gnat_decl);
if (Ekind (gnat_subprog_id) != E_Generic_Procedure
&& Ekind (gnat_subprog_id) != E_Generic_Function)
gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, true);
}
}
/* For bodies and stubs that act as their own specs, the entity
itself must be elaborated in the first pass, because it may
be used in other declarations. */
else if (Nkind (gnat_decl) == N_Subprogram_Body_Stub)
{
Node_Id gnat_subprog_id
= Defining_Entity (Specification (gnat_decl));
if (Ekind (gnat_subprog_id) != E_Subprogram_Body
&& Ekind (gnat_subprog_id) != E_Generic_Procedure
&& Ekind (gnat_subprog_id) != E_Generic_Function)
gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, true);
}
/* Concurrent stubs stand for the corresponding subprogram bodies,
which are deferred like other bodies. */
else if (Nkind (gnat_decl) == N_Task_Body_Stub
|| Nkind (gnat_decl) == N_Protected_Body_Stub)
;
/* Renamed subprograms may not be elaborated yet at this point
since renamings do not trigger freezing. Wait for the second
pass to take care of them. */
else if (Nkind (gnat_decl) == N_Subprogram_Renaming_Declaration)
;
else
add_stmt (gnat_to_gnu (gnat_decl));
}
/* Here we elaborate everything we deferred above except for package bodies,
which are elaborated at their freeze nodes. Note that we must also
go inside things (package specs and freeze nodes) the first pass did. */
if (pass2p)
for (i = 0; i <= 1; i++)
if (Present (gnat_decl_array[i]))
for (gnat_decl = First (gnat_decl_array[i]);
gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl))
{
if (Nkind (gnat_decl) == N_Subprogram_Body
|| Nkind (gnat_decl) == N_Subprogram_Body_Stub
|| Nkind (gnat_decl) == N_Task_Body_Stub
|| Nkind (gnat_decl) == N_Protected_Body_Stub)
add_stmt (gnat_to_gnu (gnat_decl));
else if (Nkind (gnat_decl) == N_Package_Declaration
&& (Nkind (Specification (gnat_decl)
== N_Package_Specification)))
process_decls (Visible_Declarations (Specification (gnat_decl)),
Private_Declarations (Specification (gnat_decl)),
Empty, false, true);
else if (Nkind (gnat_decl) == N_Freeze_Entity)
process_decls (Actions (gnat_decl), Empty, Empty, false, true);
else if (Nkind (gnat_decl) == N_Subprogram_Renaming_Declaration)
add_stmt (gnat_to_gnu (gnat_decl));
}
}
/* Make a unary operation of kind CODE using build_unary_op, but guard
the operation by an overflow check. CODE can be one of NEGATE_EXPR
or ABS_EXPR. GNU_TYPE is the type desired for the result. Usually
the operation is to be performed in that type. GNAT_NODE is the gnat
node conveying the source location for which the error should be
signaled. */
static tree
build_unary_op_trapv (enum tree_code code, tree gnu_type, tree operand,
Node_Id gnat_node)
{
gcc_assert (code == NEGATE_EXPR || code == ABS_EXPR);
operand = gnat_protect_expr (operand);
return emit_check (build_binary_op (EQ_EXPR, boolean_type_node,
operand, TYPE_MIN_VALUE (gnu_type)),
build_unary_op (code, gnu_type, operand),
CE_Overflow_Check_Failed, gnat_node);
}
/* Make a binary operation of kind CODE using build_binary_op, but guard
the operation by an overflow check. CODE can be one of PLUS_EXPR,
MINUS_EXPR or MULT_EXPR. GNU_TYPE is the type desired for the result.
Usually the operation is to be performed in that type. GNAT_NODE is
the GNAT node conveying the source location for which the error should
be signaled. */
static tree
build_binary_op_trapv (enum tree_code code, tree gnu_type, tree left,
tree right, Node_Id gnat_node)
{
const unsigned int precision = TYPE_PRECISION (gnu_type);
tree lhs = gnat_protect_expr (left);
tree rhs = gnat_protect_expr (right);
tree type_max = TYPE_MAX_VALUE (gnu_type);
tree type_min = TYPE_MIN_VALUE (gnu_type);
tree gnu_expr, check;
int sgn;
/* Assert that the precision is a power of 2. */
gcc_assert ((precision & (precision - 1)) == 0);
/* Prefer a constant on the RHS to simplify checks. */
if (TREE_CODE (rhs) != INTEGER_CST
&& TREE_CODE (lhs) == INTEGER_CST
&& (code == PLUS_EXPR || code == MULT_EXPR))
{
tree tmp = lhs;
lhs = rhs;
rhs = tmp;
}
gnu_expr = build_binary_op (code, gnu_type, lhs, rhs);
/* If we can fold the expression to a constant, just return it.
The caller will deal with overflow, no need to generate a check. */
if (TREE_CODE (gnu_expr) == INTEGER_CST)
return gnu_expr;
/* If no operand is a constant, we use the generic implementation. */
if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (rhs) != INTEGER_CST)
{
/* Never inline a 64-bit mult for a 32-bit target, it's way too long. */
if (code == MULT_EXPR && precision == 64 && BITS_PER_WORD < 64)
{
tree int64 = gnat_type_for_size (64, 0);
return convert (gnu_type, build_call_n_expr (mulv64_decl, 2,
convert (int64, lhs),
convert (int64, rhs)));
}
enum internal_fn icode;
switch (code)
{
case PLUS_EXPR:
icode = IFN_ADD_OVERFLOW;
break;
case MINUS_EXPR:
icode = IFN_SUB_OVERFLOW;
break;
case MULT_EXPR:
icode = IFN_MUL_OVERFLOW;
break;
default:
gcc_unreachable ();
}
tree gnu_ctype = build_complex_type (gnu_type);
tree call
= build_call_expr_internal_loc (UNKNOWN_LOCATION, icode, gnu_ctype, 2,
lhs, rhs);
tree tgt = save_expr (call);
gnu_expr = build1 (REALPART_EXPR, gnu_type, tgt);
check = fold_build2 (NE_EXPR, boolean_type_node,
build1 (IMAGPART_EXPR, gnu_type, tgt),
build_int_cst (gnu_type, 0));
return
emit_check (check, gnu_expr, CE_Overflow_Check_Failed, gnat_node);
}
/* If one operand is a constant, we expose the overflow condition to enable
a subsequent simplication or even elimination. */
switch (code)
{
case PLUS_EXPR:
sgn = tree_int_cst_sgn (rhs);
if (sgn > 0)
/* When rhs > 0, overflow when lhs > type_max - rhs. */
check = build_binary_op (GT_EXPR, boolean_type_node, lhs,
build_binary_op (MINUS_EXPR, gnu_type,
type_max, rhs));
else if (sgn < 0)
/* When rhs < 0, overflow when lhs < type_min - rhs. */
check = build_binary_op (LT_EXPR, boolean_type_node, lhs,
build_binary_op (MINUS_EXPR, gnu_type,
type_min, rhs));
else
return gnu_expr;
break;
case MINUS_EXPR:
if (TREE_CODE (lhs) == INTEGER_CST)
{
sgn = tree_int_cst_sgn (lhs);
if (sgn > 0)
/* When lhs > 0, overflow when rhs < lhs - type_max. */
check = build_binary_op (LT_EXPR, boolean_type_node, rhs,
build_binary_op (MINUS_EXPR, gnu_type,
lhs, type_max));
else if (sgn < 0)
/* When lhs < 0, overflow when rhs > lhs - type_min. */
check = build_binary_op (GT_EXPR, boolean_type_node, rhs,
build_binary_op (MINUS_EXPR, gnu_type,
lhs, type_min));
else
return gnu_expr;
}
else
{
sgn = tree_int_cst_sgn (rhs);
if (sgn > 0)
/* When rhs > 0, overflow when lhs < type_min + rhs. */
check = build_binary_op (LT_EXPR, boolean_type_node, lhs,
build_binary_op (PLUS_EXPR, gnu_type,
type_min, rhs));
else if (sgn < 0)
/* When rhs < 0, overflow when lhs > type_max + rhs. */
check = build_binary_op (GT_EXPR, boolean_type_node, lhs,
build_binary_op (PLUS_EXPR, gnu_type,
type_max, rhs));
else
return gnu_expr;
}
break;
case MULT_EXPR:
sgn = tree_int_cst_sgn (rhs);
if (sgn > 0)
{
if (integer_onep (rhs))
return gnu_expr;
tree lb = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_min, rhs);
tree ub = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_max, rhs);
/* When rhs > 1, overflow outside [type_min/rhs; type_max/rhs]. */
check
= build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node,
build_binary_op (LT_EXPR, boolean_type_node,
lhs, lb),
build_binary_op (GT_EXPR, boolean_type_node,
lhs, ub));
}
else if (sgn < 0)
{
tree lb = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_max, rhs);
tree ub = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_min, rhs);
if (integer_minus_onep (rhs))
/* When rhs == -1, overflow if lhs == type_min. */
check
= build_binary_op (EQ_EXPR, boolean_type_node, lhs, type_min);
else
/* When rhs < -1, overflow outside [type_max/rhs; type_min/rhs]. */
check
= build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node,
build_binary_op (LT_EXPR, boolean_type_node,
lhs, lb),
build_binary_op (GT_EXPR, boolean_type_node,
lhs, ub));
}
else
return gnu_expr;
break;
default:
gcc_unreachable ();
}
return emit_check (check, gnu_expr, CE_Overflow_Check_Failed, gnat_node);
}
/* Emit code for a range check. GNU_EXPR is the expression to be checked,
GNAT_RANGE_TYPE the gnat type or subtype containing the bounds against
which we have to check. GNAT_NODE is the GNAT node conveying the source
location for which the error should be signaled. */
static tree
emit_range_check (tree gnu_expr, Entity_Id gnat_range_type, Node_Id gnat_node)
{
tree gnu_range_type = get_unpadded_type (gnat_range_type);
tree gnu_compare_type = get_base_type (TREE_TYPE (gnu_expr));
/* If GNU_EXPR has GNAT_RANGE_TYPE as its base type, no check is needed.
This can for example happen when translating 'Val or 'Value. */
if (gnu_compare_type == gnu_range_type)
return gnu_expr;
/* Range checks can only be applied to types with ranges. */
gcc_assert (INTEGRAL_TYPE_P (gnu_range_type)
|| SCALAR_FLOAT_TYPE_P (gnu_range_type));
/* If GNU_EXPR has an integral type that is narrower than GNU_RANGE_TYPE,
we can't do anything since we might be truncating the bounds. No
check is needed in this case. */
if (INTEGRAL_TYPE_P (TREE_TYPE (gnu_expr))
&& (TYPE_PRECISION (gnu_compare_type)
< TYPE_PRECISION (get_base_type (gnu_range_type))))
return gnu_expr;
/* Checked expressions must be evaluated only once. */
gnu_expr = gnat_protect_expr (gnu_expr);
/* Note that the form of the check is
(not (expr >= lo)) or (not (expr <= hi))
the reason for this slightly convoluted form is that NaNs
are not considered to be in range in the float case. */
return emit_check
(build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node,
invert_truthvalue
(build_binary_op (GE_EXPR, boolean_type_node,
convert (gnu_compare_type, gnu_expr),
convert (gnu_compare_type,
TYPE_MIN_VALUE
(gnu_range_type)))),
invert_truthvalue
(build_binary_op (LE_EXPR, boolean_type_node,
convert (gnu_compare_type, gnu_expr),
convert (gnu_compare_type,
TYPE_MAX_VALUE
(gnu_range_type))))),
gnu_expr, CE_Range_Check_Failed, gnat_node);
}
/* GNU_COND contains the condition corresponding to an index, overflow or
range check of value GNU_EXPR. Build a COND_EXPR that returns GNU_EXPR
if GNU_COND is false and raises a CONSTRAINT_ERROR if GNU_COND is true.
REASON is the code that says why the exception is raised. GNAT_NODE is
the node conveying the source location for which the error should be
signaled.
We used to propagate TREE_SIDE_EFFECTS from GNU_EXPR to the COND_EXPR,
overwriting the setting inherited from the call statement, on the ground
that the expression need not be evaluated just for the check. However
that's incorrect because, in the GCC type system, its value is presumed
to be valid so its comparison against the type bounds always yields true
and, therefore, could be done without evaluating it; given that it can
be a computation that overflows the bounds, the language may require the
check to fail and thus the expression to be evaluated in this case. */
static tree
emit_check (tree gnu_cond, tree gnu_expr, int reason, Node_Id gnat_node)
{
tree gnu_call
= build_call_raise (reason, gnat_node, N_Raise_Constraint_Error);
return
fold_build3 (COND_EXPR, TREE_TYPE (gnu_expr), gnu_cond,
build2 (COMPOUND_EXPR, TREE_TYPE (gnu_expr), gnu_call,
SCALAR_FLOAT_TYPE_P (TREE_TYPE (gnu_expr))
? build_real (TREE_TYPE (gnu_expr), dconst0)
: build_int_cst (TREE_TYPE (gnu_expr), 0)),
gnu_expr);
}
/* Return an expression that converts GNU_EXPR to GNAT_TYPE, doing overflow
checks if OVERFLOW_P is true and range checks if RANGE_P is true.
If TRUNCATE_P true, do a float-to-integer conversion with truncation,
otherwise round. GNAT_NODE is the GNAT node conveying the source location
for which the error should be signaled. */
static tree
convert_with_check (Entity_Id gnat_type, tree gnu_expr, bool overflow_p,
bool range_p, bool truncate_p, Node_Id gnat_node)
{
tree gnu_type = get_unpadded_type (gnat_type);
tree gnu_base_type = get_base_type (gnu_type);
tree gnu_in_type = TREE_TYPE (gnu_expr);
tree gnu_in_base_type = get_base_type (gnu_in_type);
tree gnu_result = gnu_expr;
/* If we are not doing any checks, the output is an integral type and the
input is not a floating-point type, just do the conversion. This is
required for packed array types and is simpler in all cases anyway. */
if (!range_p
&& !overflow_p
&& INTEGRAL_TYPE_P (gnu_base_type)
&& !FLOAT_TYPE_P (gnu_in_base_type))
return convert (gnu_type, gnu_expr);
/* If the mode of the input base type is larger, then converting to it below
may pessimize the final conversion step, for example generate a libcall
instead of a simple instruction, so use a narrower type in this case. */
if (TYPE_MODE (gnu_in_base_type) != TYPE_MODE (gnu_in_type)
&& !(TREE_CODE (gnu_in_type) == INTEGER_TYPE
&& TYPE_BIASED_REPRESENTATION_P (gnu_in_type)))
gnu_in_base_type = gnat_type_for_mode (TYPE_MODE (gnu_in_type),
TYPE_UNSIGNED (gnu_in_type));
/* First convert the expression to the base type. This will never generate
code, but makes the tests below simpler. But don't do this if converting
from an integer type to an unconstrained array type since then we need to
get the bounds from the original (unpacked) type. */
if (TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE)
gnu_result = convert (gnu_in_base_type, gnu_result);
/* If overflow checks are requested, we need to be sure the result will fit
in the output base type. But don't do this if the input is integer and
the output floating-point. */
if (overflow_p
&& !(FLOAT_TYPE_P (gnu_base_type) && INTEGRAL_TYPE_P (gnu_in_base_type)))
{
/* Ensure GNU_EXPR only gets evaluated once. */
tree gnu_input = gnat_protect_expr (gnu_result);
tree gnu_cond = boolean_false_node;
tree gnu_in_lb = TYPE_MIN_VALUE (gnu_in_base_type);
tree gnu_in_ub = TYPE_MAX_VALUE (gnu_in_base_type);
tree gnu_out_lb = TYPE_MIN_VALUE (gnu_base_type);
tree gnu_out_ub = TYPE_MAX_VALUE (gnu_base_type);
/* Convert the lower bounds to signed types, so we're sure we're
comparing them properly. Likewise, convert the upper bounds
to unsigned types. */
if (INTEGRAL_TYPE_P (gnu_in_base_type)
&& TYPE_UNSIGNED (gnu_in_base_type))
gnu_in_lb
= convert (gnat_signed_type_for (gnu_in_base_type), gnu_in_lb);
if (INTEGRAL_TYPE_P (gnu_in_base_type)
&& !TYPE_UNSIGNED (gnu_in_base_type))
gnu_in_ub
= convert (gnat_unsigned_type_for (gnu_in_base_type), gnu_in_ub);
if (INTEGRAL_TYPE_P (gnu_base_type) && TYPE_UNSIGNED (gnu_base_type))
gnu_out_lb
= convert (gnat_signed_type_for (gnu_base_type), gnu_out_lb);
if (INTEGRAL_TYPE_P (gnu_base_type) && !TYPE_UNSIGNED (gnu_base_type))
gnu_out_ub
= convert (gnat_unsigned_type_for (gnu_base_type), gnu_out_ub);
/* Check each bound separately and only if the result bound
is tighter than the bound on the input type. Note that all the
types are base types, so the bounds must be constant. Also,
the comparison is done in the base type of the input, which
always has the proper signedness. First check for input
integer (which means output integer), output float (which means
both float), or mixed, in which case we always compare.
Note that we have to do the comparison which would *fail* in the
case of an error since if it's an FP comparison and one of the
values is a NaN or Inf, the comparison will fail. */
if (INTEGRAL_TYPE_P (gnu_in_base_type)
? tree_int_cst_lt (gnu_in_lb, gnu_out_lb)
: (FLOAT_TYPE_P (gnu_base_type)
? real_less (&TREE_REAL_CST (gnu_in_lb),
&TREE_REAL_CST (gnu_out_lb))
: 1))
gnu_cond
= invert_truthvalue
(build_binary_op (GE_EXPR, boolean_type_node,
gnu_input, convert (gnu_in_base_type,
gnu_out_lb)));
if (INTEGRAL_TYPE_P (gnu_in_base_type)
? tree_int_cst_lt (gnu_out_ub, gnu_in_ub)
: (FLOAT_TYPE_P (gnu_base_type)
? real_less (&TREE_REAL_CST (gnu_out_ub),
&TREE_REAL_CST (gnu_in_ub))
: 1))
gnu_cond
= build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node, gnu_cond,
invert_truthvalue
(build_binary_op (LE_EXPR, boolean_type_node,
gnu_input,
convert (gnu_in_base_type,
gnu_out_ub))));
if (!integer_zerop (gnu_cond))
gnu_result = emit_check (gnu_cond, gnu_input,
CE_Overflow_Check_Failed, gnat_node);
}
/* Now convert to the result base type. If this is a non-truncating
float-to-integer conversion, round. */
if (INTEGRAL_TYPE_P (gnu_base_type)
&& FLOAT_TYPE_P (gnu_in_base_type)
&& !truncate_p)
{
REAL_VALUE_TYPE half_minus_pred_half, pred_half;
tree gnu_conv, gnu_zero, gnu_comp, calc_type;
tree gnu_pred_half, gnu_add_pred_half, gnu_subtract_pred_half;
const struct real_format *fmt;
/* The following calculations depend on proper rounding to even
of each arithmetic operation. In order to prevent excess
precision from spoiling this property, use the widest hardware
floating-point type if FP_ARITH_MAY_WIDEN is true. */
calc_type
= fp_arith_may_widen ? longest_float_type_node : gnu_in_base_type;
/* Compute the exact value calc_type'Pred (0.5) at compile time. */
fmt = REAL_MODE_FORMAT (TYPE_MODE (calc_type));
real_2expN (&half_minus_pred_half, -(fmt->p) - 1, TYPE_MODE (calc_type));
real_arithmetic (&pred_half, MINUS_EXPR, &dconsthalf,
&half_minus_pred_half);
gnu_pred_half = build_real (calc_type, pred_half);
/* If the input is strictly negative, subtract this value
and otherwise add it from the input. For 0.5, the result
is exactly between 1.0 and the machine number preceding 1.0
(for calc_type). Since the last bit of 1.0 is even, this 0.5
will round to 1.0, while all other number with an absolute
value less than 0.5 round to 0.0. For larger numbers exactly
halfway between integers, rounding will always be correct as
the true mathematical result will be closer to the higher
integer compared to the lower one. So, this constant works
for all floating-point numbers.
The reason to use the same constant with subtract/add instead
of a positive and negative constant is to allow the comparison
to be scheduled in parallel with retrieval of the constant and
conversion of the input to the calc_type (if necessary). */
gnu_zero = build_real (gnu_in_base_type, dconst0);
gnu_result = gnat_protect_expr (gnu_result);
gnu_conv = convert (calc_type, gnu_result);
gnu_comp
= fold_build2 (GE_EXPR, boolean_type_node, gnu_result, gnu_zero);
gnu_add_pred_half
= fold_build2 (PLUS_EXPR, calc_type, gnu_conv, gnu_pred_half);
gnu_subtract_pred_half
= fold_build2 (MINUS_EXPR, calc_type, gnu_conv, gnu_pred_half);
gnu_result = fold_build3 (COND_EXPR, calc_type, gnu_comp,
gnu_add_pred_half, gnu_subtract_pred_half);
}
if (TREE_CODE (gnu_base_type) == INTEGER_TYPE
&& TYPE_HAS_ACTUAL_BOUNDS_P (gnu_base_type)
&& TREE_CODE (gnu_result) == UNCONSTRAINED_ARRAY_REF)
gnu_result = unchecked_convert (gnu_base_type, gnu_result, false);
else
gnu_result = convert (gnu_base_type, gnu_result);
/* Finally, do the range check if requested. Note that if the result type
is a modular type, the range check is actually an overflow check. */
if (range_p
|| (overflow_p
&& TREE_CODE (gnu_base_type) == INTEGER_TYPE
&& TYPE_MODULAR_P (gnu_base_type)))
gnu_result = emit_range_check (gnu_result, gnat_type, gnat_node);
return convert (gnu_type, gnu_result);
}
/* Return true if GNU_EXPR can be directly addressed. This is the case
unless it is an expression involving computation or if it involves a
reference to a bitfield or to an object not sufficiently aligned for
its type. If GNU_TYPE is non-null, return true only if GNU_EXPR can
be directly addressed as an object of this type.
*** Notes on addressability issues in the Ada compiler ***
This predicate is necessary in order to bridge the gap between Gigi
and the middle-end about addressability of GENERIC trees. A tree
is said to be addressable if it can be directly addressed, i.e. if
its address can be taken, is a multiple of the type's alignment on
strict-alignment architectures and returns the first storage unit
assigned to the object represented by the tree.
In the C family of languages, everything is in practice addressable
at the language level, except for bit-fields. This means that these
compilers will take the address of any tree that doesn't represent
a bit-field reference and expect the result to be the first storage
unit assigned to the object. Even in cases where this will result
in unaligned accesses at run time, nothing is supposed to be done
and the program is considered as erroneous instead (see PR c/18287).
The implicit assumptions made in the middle-end are in keeping with
the C viewpoint described above:
- the address of a bit-field reference is supposed to be never
taken; the compiler (generally) will stop on such a construct,
- any other tree is addressable if it is formally addressable,
i.e. if it is formally allowed to be the operand of ADDR_EXPR.
In Ada, the viewpoint is the opposite one: nothing is addressable
at the language level unless explicitly declared so. This means
that the compiler will both make sure that the trees representing
references to addressable ("aliased" in Ada parlance) objects are
addressable and make no real attempts at ensuring that the trees
representing references to non-addressable objects are addressable.
In the first case, Ada is effectively equivalent to C and handing
down the direct result of applying ADDR_EXPR to these trees to the
middle-end works flawlessly. In the second case, Ada cannot afford
to consider the program as erroneous if the address of trees that
are not addressable is requested for technical reasons, unlike C;
as a consequence, the Ada compiler must arrange for either making
sure that this address is not requested in the middle-end or for
compensating by inserting temporaries if it is requested in Gigi.
The first goal can be achieved because the middle-end should not
request the address of non-addressable trees on its own; the only
exception is for the invocation of low-level block operations like
memcpy, for which the addressability requirements are lower since
the type's alignment can be disregarded. In practice, this means
that Gigi must make sure that such operations cannot be applied to
non-BLKmode bit-fields.
The second goal is achieved by means of the addressable_p predicate,
which computes whether a temporary must be inserted by Gigi when the
address of a tree is requested; if so, the address of the temporary
will be used in lieu of that of the original tree and some glue code
generated to connect everything together. */
static bool
addressable_p (tree gnu_expr, tree gnu_type)
{
/* For an integral type, the size of the actual type of the object may not
be greater than that of the expected type, otherwise an indirect access
in the latter type wouldn't correctly set all the bits of the object. */
if (gnu_type
&& INTEGRAL_TYPE_P (gnu_type)
&& smaller_form_type_p (gnu_type, TREE_TYPE (gnu_expr)))
return false;
/* The size of the actual type of the object may not be smaller than that
of the expected type, otherwise an indirect access in the latter type
would be larger than the object. But only record types need to be
considered in practice for this case. */
if (gnu_type
&& TREE_CODE (gnu_type) == RECORD_TYPE
&& smaller_form_type_p (TREE_TYPE (gnu_expr), gnu_type))
return false;
switch (TREE_CODE (gnu_expr))
{
case VAR_DECL:
case PARM_DECL:
case FUNCTION_DECL:
case RESULT_DECL:
/* All DECLs are addressable: if they are in a register, we can force
them to memory. */
return true;
case UNCONSTRAINED_ARRAY_REF:
case INDIRECT_REF:
/* Taking the address of a dereference yields the original pointer. */
return true;
case STRING_CST:
case INTEGER_CST:
/* Taking the address yields a pointer to the constant pool. */
return true;
case CONSTRUCTOR:
/* Taking the address of a static constructor yields a pointer to the
tree constant pool. */
return TREE_STATIC (gnu_expr) ? true : false;
case NULL_EXPR:
case SAVE_EXPR:
case CALL_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
case BIT_NOT_EXPR:
/* All rvalues are deemed addressable since taking their address will
force a temporary to be created by the middle-end. */
return true;
case COMPOUND_EXPR:
/* The address of a compound expression is that of its 2nd operand. */
return addressable_p (TREE_OPERAND (gnu_expr, 1), gnu_type);
case COND_EXPR:
/* We accept &COND_EXPR as soon as both operands are addressable and
expect the outcome to be the address of the selected operand. */
return (addressable_p (TREE_OPERAND (gnu_expr, 1), NULL_TREE)
&& addressable_p (TREE_OPERAND (gnu_expr, 2), NULL_TREE));
case COMPONENT_REF:
return (((!DECL_BIT_FIELD (TREE_OPERAND (gnu_expr, 1))
/* Even with DECL_BIT_FIELD cleared, we have to ensure that
the field is sufficiently aligned, in case it is subject
to a pragma Component_Alignment. But we don't need to
check the alignment of the containing record, as it is
guaranteed to be not smaller than that of its most
aligned field that is not a bit-field. */
&& (!STRICT_ALIGNMENT
|| DECL_ALIGN (TREE_OPERAND (gnu_expr, 1))
>= TYPE_ALIGN (TREE_TYPE (gnu_expr))))
/* The field of a padding record is always addressable. */
|| TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
&& addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE));
case ARRAY_REF: case ARRAY_RANGE_REF:
case REALPART_EXPR: case IMAGPART_EXPR:
case NOP_EXPR:
return addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE);
case CONVERT_EXPR:
return (AGGREGATE_TYPE_P (TREE_TYPE (gnu_expr))
&& addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE));
case VIEW_CONVERT_EXPR:
{
/* This is addressable if we can avoid a copy. */
tree type = TREE_TYPE (gnu_expr);
tree inner_type = TREE_TYPE (TREE_OPERAND (gnu_expr, 0));
return (((TYPE_MODE (type) == TYPE_MODE (inner_type)
&& (!STRICT_ALIGNMENT
|| TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type)
|| TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT))
|| ((TYPE_MODE (type) == BLKmode
|| TYPE_MODE (inner_type) == BLKmode)
&& (!STRICT_ALIGNMENT
|| TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type)
|| TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT
|| TYPE_ALIGN_OK (type)
|| TYPE_ALIGN_OK (inner_type))))
&& addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE));
}
default:
return false;
}
}
/* Do the processing for the declaration of a GNAT_ENTITY, a type or subtype.
If a Freeze node exists for the entity, delay the bulk of the processing.
Otherwise make a GCC type for GNAT_ENTITY and set up the correspondence. */
void
process_type (Entity_Id gnat_entity)
{
tree gnu_old
= present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : NULL_TREE;
/* If we are to delay elaboration of this type, just do any elaboration
needed for expressions within the declaration and make a dummy node
for it and its Full_View (if any), in case something points to it.
Do not do this if it has already been done (the only way that can
happen is if the private completion is also delayed). */
if (Present (Freeze_Node (gnat_entity)))
{
elaborate_entity (gnat_entity);
if (!gnu_old)
{
tree gnu_decl = TYPE_STUB_DECL (make_dummy_type (gnat_entity));
save_gnu_tree (gnat_entity, gnu_decl, false);
if (Is_Incomplete_Or_Private_Type (gnat_entity)
&& Present (Full_View (gnat_entity)))
{
if (Has_Completion_In_Body (gnat_entity))
DECL_TAFT_TYPE_P (gnu_decl) = 1;
save_gnu_tree (Full_View (gnat_entity), gnu_decl, false);
}
}
return;
}
/* If we saved away a dummy type for this node, it means that this made the
type that corresponds to the full type of an incomplete type. Clear that
type for now and then update the type in the pointers below. But, if the
saved type is not dummy, it very likely means that we have a use before
declaration for the type in the tree, what we really cannot handle. */
if (gnu_old)
{
gcc_assert (TREE_CODE (gnu_old) == TYPE_DECL
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old)));
save_gnu_tree (gnat_entity, NULL_TREE, false);
}
/* Now fully elaborate the type. */
tree gnu_new = gnat_to_gnu_entity (gnat_entity, NULL_TREE, true);
gcc_assert (TREE_CODE (gnu_new) == TYPE_DECL);
/* If we have an old type and we've made pointers to this type, update those
pointers. If this is a Taft amendment type in the main unit, we need to
mark the type as used since other units referencing it don't see the full
declaration and, therefore, cannot mark it as used themselves. */
if (gnu_old)
{
update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)),
TREE_TYPE (gnu_new));
if (DECL_TAFT_TYPE_P (gnu_old))
used_types_insert (TREE_TYPE (gnu_new));
}
/* If this is a record type corresponding to a task or protected type
that is a completion of an incomplete type, perform a similar update
on the type. ??? Including protected types here is a guess. */
if (Is_Record_Type (gnat_entity)
&& Is_Concurrent_Record_Type (gnat_entity)
&& present_gnu_tree (Corresponding_Concurrent_Type (gnat_entity)))
{
tree gnu_task_old
= get_gnu_tree (Corresponding_Concurrent_Type (gnat_entity));
save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity),
NULL_TREE, false);
save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity),
gnu_new, false);
update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_task_old)),
TREE_TYPE (gnu_new));
}
}
/* Subroutine of assoc_to_constructor: VALUES is a list of field associations,
some of which are from RECORD_TYPE. Return a CONSTRUCTOR consisting of the
associations that are from RECORD_TYPE. If we see an internal record, make
a recursive call to fill it in as well. */
static tree
extract_values (tree values, tree record_type)
{
vec *v = NULL;
tree field;
for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
{
tree tem, value = NULL_TREE;
/* _Parent is an internal field, but may have values in the aggregate,
so check for values first. */
if ((tem = purpose_member (field, values)))
{
value = TREE_VALUE (tem);
TREE_ADDRESSABLE (tem) = 1;
}
else if (DECL_INTERNAL_P (field))
{
value = extract_values (values, TREE_TYPE (field));
if (TREE_CODE (value) == CONSTRUCTOR
&& vec_safe_is_empty (CONSTRUCTOR_ELTS (value)))
value = NULL_TREE;
}
else
/* If we have a record subtype, the names will match, but not the
actual FIELD_DECLs. */
for (tem = values; tem; tem = TREE_CHAIN (tem))
if (DECL_NAME (TREE_PURPOSE (tem)) == DECL_NAME (field))
{
value = convert (TREE_TYPE (field), TREE_VALUE (tem));
TREE_ADDRESSABLE (tem) = 1;
}
if (!value)
continue;
CONSTRUCTOR_APPEND_ELT (v, field, value);
}
return gnat_build_constructor (record_type, v);
}
/* GNAT_ENTITY is the type of the resulting constructor, GNAT_ASSOC is the
front of the Component_Associations of an N_Aggregate and GNU_TYPE is the
GCC type of the corresponding record type. Return the CONSTRUCTOR. */
static tree
assoc_to_constructor (Entity_Id gnat_entity, Node_Id gnat_assoc, tree gnu_type)
{
tree gnu_list = NULL_TREE, gnu_result;
/* We test for GNU_FIELD being empty in the case where a variant
was the last thing since we don't take things off GNAT_ASSOC in
that case. We check GNAT_ASSOC in case we have a variant, but it
has no fields. */
for (; Present (gnat_assoc); gnat_assoc = Next (gnat_assoc))
{
Node_Id gnat_field = First (Choices (gnat_assoc));
tree gnu_field = gnat_to_gnu_field_decl (Entity (gnat_field));
tree gnu_expr = gnat_to_gnu (Expression (gnat_assoc));
/* The expander is supposed to put a single component selector name
in every record component association. */
gcc_assert (No (Next (gnat_field)));
/* Ignore discriminants that have Corresponding_Discriminants in tagged
types since we'll be setting those fields in the parent subtype. */
if (Ekind (Entity (gnat_field)) == E_Discriminant
&& Present (Corresponding_Discriminant (Entity (gnat_field)))
&& Is_Tagged_Type (Scope (Entity (gnat_field))))
continue;
/* Also ignore discriminants of Unchecked_Unions. */
if (Ekind (Entity (gnat_field)) == E_Discriminant
&& Is_Unchecked_Union (gnat_entity))
continue;
/* Before assigning a value in an aggregate make sure range checks
are done if required. Then convert to the type of the field. */
if (Do_Range_Check (Expression (gnat_assoc)))
gnu_expr = emit_range_check (gnu_expr, Etype (gnat_field), Empty);
gnu_expr = convert (TREE_TYPE (gnu_field), gnu_expr);
/* Add the field and expression to the list. */
gnu_list = tree_cons (gnu_field, gnu_expr, gnu_list);
}
gnu_result = extract_values (gnu_list, gnu_type);
if (flag_checking)
{
/* Verify that every entry in GNU_LIST was used. */
for (; gnu_list; gnu_list = TREE_CHAIN (gnu_list))
gcc_assert (TREE_ADDRESSABLE (gnu_list));
}
return gnu_result;
}
/* Build a possibly nested constructor for array aggregates. GNAT_EXPR is
the first element of an array aggregate. It may itself be an aggregate.
GNU_ARRAY_TYPE is the GCC type corresponding to the array aggregate.
GNAT_COMPONENT_TYPE is the type of the array component; it is needed
for range checking. */
static tree
pos_to_constructor (Node_Id gnat_expr, tree gnu_array_type,
Entity_Id gnat_component_type)
{
tree gnu_index = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_array_type));
vec *gnu_expr_vec = NULL;
for (; Present (gnat_expr); gnat_expr = Next (gnat_expr))
{
tree gnu_expr;
/* If the expression is itself an array aggregate then first build the
innermost constructor if it is part of our array (multi-dimensional
case). */
if (Nkind (gnat_expr) == N_Aggregate
&& TREE_CODE (TREE_TYPE (gnu_array_type)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_array_type)))
gnu_expr = pos_to_constructor (First (Expressions (gnat_expr)),
TREE_TYPE (gnu_array_type),
gnat_component_type);
else
{
/* If the expression is a conversion to an unconstrained array type,
skip it to avoid spilling to memory. */
if (Nkind (gnat_expr) == N_Type_Conversion
&& Is_Array_Type (Etype (gnat_expr))
&& !Is_Constrained (Etype (gnat_expr)))
gnu_expr = gnat_to_gnu (Expression (gnat_expr));
else
gnu_expr = gnat_to_gnu (gnat_expr);
/* Before assigning the element to the array, make sure it is
in range. */
if (Do_Range_Check (gnat_expr))
gnu_expr = emit_range_check (gnu_expr, gnat_component_type, Empty);
}
CONSTRUCTOR_APPEND_ELT (gnu_expr_vec, gnu_index,
convert (TREE_TYPE (gnu_array_type), gnu_expr));
gnu_index = int_const_binop (PLUS_EXPR, gnu_index,
convert (TREE_TYPE (gnu_index),
integer_one_node));
}
return gnat_build_constructor (gnu_array_type, gnu_expr_vec);
}
/* Process a N_Validate_Unchecked_Conversion node. */
static void
validate_unchecked_conversion (Node_Id gnat_node)
{
tree gnu_source_type = gnat_to_gnu_type (Source_Type (gnat_node));
tree gnu_target_type = gnat_to_gnu_type (Target_Type (gnat_node));
/* If the target is a pointer type, see if we are either converting from a
non-pointer or from a pointer to a type with a different alias set and
warn if so, unless the pointer has been marked to alias everything. */
if (POINTER_TYPE_P (gnu_target_type)
&& !TYPE_REF_CAN_ALIAS_ALL (gnu_target_type))
{
tree gnu_source_desig_type = POINTER_TYPE_P (gnu_source_type)
? TREE_TYPE (gnu_source_type)
: NULL_TREE;
tree gnu_target_desig_type = TREE_TYPE (gnu_target_type);
alias_set_type target_alias_set = get_alias_set (gnu_target_desig_type);
if (target_alias_set != 0
&& (!POINTER_TYPE_P (gnu_source_type)
|| !alias_sets_conflict_p (get_alias_set (gnu_source_desig_type),
target_alias_set)))
{
post_error_ne ("?possible aliasing problem for type&",
gnat_node, Target_Type (gnat_node));
post_error ("\\?use -fno-strict-aliasing switch for references",
gnat_node);
post_error_ne ("\\?or use `pragma No_Strict_Aliasing (&);`",
gnat_node, Target_Type (gnat_node));
}
}
/* Likewise if the target is a fat pointer type, but we have no mechanism to
mitigate the problem in this case, so we unconditionally warn. */
else if (TYPE_IS_FAT_POINTER_P (gnu_target_type))
{
tree gnu_source_desig_type
= TYPE_IS_FAT_POINTER_P (gnu_source_type)
? TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_source_type)))
: NULL_TREE;
tree gnu_target_desig_type
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_target_type)));
alias_set_type target_alias_set = get_alias_set (gnu_target_desig_type);
if (target_alias_set != 0
&& (!TYPE_IS_FAT_POINTER_P (gnu_source_type)
|| !alias_sets_conflict_p (get_alias_set (gnu_source_desig_type),
target_alias_set)))
{
post_error_ne ("?possible aliasing problem for type&",
gnat_node, Target_Type (gnat_node));
post_error ("\\?use -fno-strict-aliasing switch for references",
gnat_node);
}
}
}
/* EXP is to be used in a context where access objects are implicitly
dereferenced. Handle the cases when it is an access object. */
static Node_Id
adjust_for_implicit_deref (Node_Id exp)
{
Entity_Id type = Underlying_Type (Etype (exp));
/* Make sure the designated type is complete before dereferencing. */
if (Is_Access_Type (type))
gnat_to_gnu_entity (Designated_Type (type), NULL_TREE, false);
return exp;
}
/* EXP is to be treated as an array or record. Handle the cases when it is
an access object and perform the required dereferences. */
static tree
maybe_implicit_deref (tree exp)
{
/* If the type is a pointer, dereference it. */
if (POINTER_TYPE_P (TREE_TYPE (exp))
|| TYPE_IS_FAT_POINTER_P (TREE_TYPE (exp)))
exp = build_unary_op (INDIRECT_REF, NULL_TREE, exp);
/* If we got a padded type, remove it too. */
if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
exp = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
return exp;
}
/* Convert SLOC into LOCUS. Return true if SLOC corresponds to a
source code location and false if it doesn't. If CLEAR_COLUMN is
true, set the column information to 0. If DECL is given and SLOC
refers to a File with an instance, map DECL to that instance. */
bool
Sloc_to_locus (Source_Ptr Sloc, location_t *locus, bool clear_column,
const_tree decl)
{
if (Sloc == No_Location)
return false;
if (Sloc <= Standard_Location)
{
*locus = BUILTINS_LOCATION;
return false;
}
Source_File_Index file = Get_Source_File_Index (Sloc);
Logical_Line_Number line = Get_Logical_Line_Number (Sloc);
Column_Number column = (clear_column ? 0 : Get_Column_Number (Sloc));
line_map_ordinary *map = LINEMAPS_ORDINARY_MAP_AT (line_table, file - 1);
/* We can have zero if pragma Source_Reference is in effect. */
if (line < 1)
line = 1;
/* Translate the location. */
*locus
= linemap_position_for_line_and_column (line_table, map, line, column);
if (file_map && file_map[file - 1].Instance)
decl_to_instance_map->put (decl, file_map[file - 1].Instance);
return true;
}
/* Return whether GNAT_NODE is a defining identifier for a renaming that comes
from the parameter association for the instantiation of a generic. We do
not want to emit source location for them: the code generated for their
initialization is likely to disturb debugging. */
bool
renaming_from_instantiation_p (Node_Id gnat_node)
{
if (Nkind (gnat_node) != N_Defining_Identifier
|| !Is_Object (gnat_node)
|| Comes_From_Source (gnat_node)
|| !Present (Renamed_Object (gnat_node)))
return false;
/* Get the object declaration of the renamed object, if any and if the
renamed object is a mere identifier. */
gnat_node = Renamed_Object (gnat_node);
if (Nkind (gnat_node) != N_Identifier)
return false;
gnat_node = Parent (Entity (gnat_node));
return (Present (gnat_node)
&& Nkind (gnat_node) == N_Object_Declaration
&& Present (Corresponding_Generic_Association (gnat_node)));
}
/* Similar to set_expr_location, but start with the Sloc of GNAT_NODE and
don't do anything if it doesn't correspond to a source location. And,
if CLEAR_COLUMN is true, set the column information to 0. */
static void
set_expr_location_from_node (tree node, Node_Id gnat_node, bool clear_column)
{
location_t locus;
/* Do not set a location for constructs likely to disturb debugging. */
if (Nkind (gnat_node) == N_Defining_Identifier)
{
if (Is_Type (gnat_node) && Is_Actual_Subtype (gnat_node))
return;
if (renaming_from_instantiation_p (gnat_node))
return;
}
if (!Sloc_to_locus (Sloc (gnat_node), &locus, clear_column))
return;
SET_EXPR_LOCATION (node, locus);
}
/* More elaborate version of set_expr_location_from_node to be used in more
general contexts, for example the result of the translation of a generic
GNAT node. */
static void
set_gnu_expr_location_from_node (tree node, Node_Id gnat_node)
{
/* Set the location information on the node if it is a real expression.
References can be reused for multiple GNAT nodes and they would get
the location information of their last use. Also make sure not to
overwrite an existing location as it is probably more precise. */
switch (TREE_CODE (node))
{
CASE_CONVERT:
case NON_LVALUE_EXPR:
case SAVE_EXPR:
break;
case COMPOUND_EXPR:
if (EXPR_P (TREE_OPERAND (node, 1)))
set_gnu_expr_location_from_node (TREE_OPERAND (node, 1), gnat_node);
/* ... fall through ... */
default:
if (!REFERENCE_CLASS_P (node) && !EXPR_HAS_LOCATION (node))
{
set_expr_location_from_node (node, gnat_node);
set_end_locus_from_node (node, gnat_node);
}
break;
}
}
/* Set the end_locus information for GNU_NODE, if any, from an explicit end
location associated with GNAT_NODE or GNAT_NODE itself, whichever makes
most sense. Return true if a sensible assignment was performed. */
static bool
set_end_locus_from_node (tree gnu_node, Node_Id gnat_node)
{
Node_Id gnat_end_label;
location_t end_locus;
/* Pick the GNAT node of which we'll take the sloc to assign to the GCC node
end_locus when there is one. We consider only GNAT nodes with a possible
End_Label attached. If the End_Label actually was unassigned, fallback
on the original node. We'd better assign an explicit sloc associated with
the outer construct in any case. */
switch (Nkind (gnat_node))
{
case N_Package_Body:
case N_Subprogram_Body:
case N_Block_Statement:
gnat_end_label = End_Label (Handled_Statement_Sequence (gnat_node));
break;
case N_Package_Declaration:
gnat_end_label = End_Label (Specification (gnat_node));
break;
default:
return false;
}
if (Present (gnat_end_label))
gnat_node = gnat_end_label;
/* Some expanded subprograms have neither an End_Label nor a Sloc
attached. Notify that to callers. For a block statement with no
End_Label, clear column information, so that the tree for a
transient block does not receive the sloc of a source condition. */
if (!Sloc_to_locus (Sloc (gnat_node), &end_locus,
No (gnat_end_label)
&& (Nkind (gnat_node) == N_Block_Statement)))
return false;
switch (TREE_CODE (gnu_node))
{
case BIND_EXPR:
BLOCK_SOURCE_END_LOCATION (BIND_EXPR_BLOCK (gnu_node)) = end_locus;
return true;
case FUNCTION_DECL:
DECL_STRUCT_FUNCTION (gnu_node)->function_end_locus = end_locus;
return true;
default:
return false;
}
}
/* Return a colon-separated list of encodings contained in encoded Ada
name. */
static const char *
extract_encoding (const char *name)
{
char *encoding = (char *) ggc_alloc_atomic (strlen (name));
get_encoding (name, encoding);
return encoding;
}
/* Extract the Ada name from an encoded name. */
static const char *
decode_name (const char *name)
{
char *decoded = (char *) ggc_alloc_atomic (strlen (name) * 2 + 60);
__gnat_decode (name, decoded, 0);
return decoded;
}
/* Post an error message. MSG is the error message, properly annotated.
NODE is the node at which to post the error and the node to use for the
'&' substitution. */
void
post_error (const char *msg, Node_Id node)
{
String_Template temp;
String_Pointer sp;
if (No (node))
return;
temp.Low_Bound = 1;
temp.High_Bound = strlen (msg);
sp.Bounds = &temp;
sp.Array = msg;
Error_Msg_N (sp, node);
}
/* Similar to post_error, but NODE is the node at which to post the error and
ENT is the node to use for the '&' substitution. */
void
post_error_ne (const char *msg, Node_Id node, Entity_Id ent)
{
String_Template temp;
String_Pointer sp;
if (No (node))
return;
temp.Low_Bound = 1;
temp.High_Bound = strlen (msg);
sp.Bounds = &temp;
sp.Array = msg;
Error_Msg_NE (sp, node, ent);
}
/* Similar to post_error_ne, but NUM is the number to use for the '^'. */
void
post_error_ne_num (const char *msg, Node_Id node, Entity_Id ent, int num)
{
Error_Msg_Uint_1 = UI_From_Int (num);
post_error_ne (msg, node, ent);
}
/* Similar to post_error_ne, but T is a GCC tree representing the number to
write. If T represents a constant, the text inside curly brackets in
MSG will be output (presumably including a '^'). Otherwise it will not
be output and the text inside square brackets will be output instead. */
void
post_error_ne_tree (const char *msg, Node_Id node, Entity_Id ent, tree t)
{
char *new_msg = XALLOCAVEC (char, strlen (msg) + 1);
char start_yes, end_yes, start_no, end_no;
const char *p;
char *q;
if (TREE_CODE (t) == INTEGER_CST)
{
Error_Msg_Uint_1 = UI_From_gnu (t);
start_yes = '{', end_yes = '}', start_no = '[', end_no = ']';
}
else
start_yes = '[', end_yes = ']', start_no = '{', end_no = '}';
for (p = msg, q = new_msg; *p; p++)
{
if (*p == start_yes)
for (p++; *p != end_yes; p++)
*q++ = *p;
else if (*p == start_no)
for (p++; *p != end_no; p++)
;
else
*q++ = *p;
}
*q = 0;
post_error_ne (new_msg, node, ent);
}
/* Similar to post_error_ne_tree, but NUM is a second integer to write. */
void
post_error_ne_tree_2 (const char *msg, Node_Id node, Entity_Id ent, tree t,
int num)
{
Error_Msg_Uint_2 = UI_From_Int (num);
post_error_ne_tree (msg, node, ent, t);
}
/* Return a label to branch to for the exception type in KIND or Empty
if none. */
Entity_Id
get_exception_label (char kind)
{
switch (kind)
{
case N_Raise_Constraint_Error:
return gnu_constraint_error_label_stack.last ();
case N_Raise_Storage_Error:
return gnu_storage_error_label_stack.last ();
case N_Raise_Program_Error:
return gnu_program_error_label_stack.last ();
default:
return Empty;
}
gcc_unreachable ();
}
/* Return the decl for the current elaboration procedure. */
static tree
get_elaboration_procedure (void)
{
return gnu_elab_proc_stack->last ();
}
/* Return the controlling type of a dispatching subprogram. */
static Entity_Id
get_controlling_type (Entity_Id subprog)
{
/* This is modelled on Expand_Interface_Thunk. */
Entity_Id controlling_type = Etype (First_Formal (subprog));
if (Is_Access_Type (controlling_type))
controlling_type = Directly_Designated_Type (controlling_type);
controlling_type = Underlying_Type (controlling_type);
if (Is_Concurrent_Type (controlling_type))
controlling_type = Corresponding_Record_Type (controlling_type);
controlling_type = Base_Type (controlling_type);
return controlling_type;
}
/* Return whether we should use an alias for the TARGET of a thunk
in order to make the call generated in the thunk local. */
static bool
use_alias_for_thunk_p (tree target)
{
/* We cannot generate a local call in this case. */
if (DECL_EXTERNAL (target))
return false;
/* The call is already local in this case. */
if (TREE_CODE (DECL_CONTEXT (target)) == FUNCTION_DECL)
return false;
return TARGET_USE_LOCAL_THUNK_ALIAS_P (target);
}
static GTY(()) unsigned long thunk_labelno = 0;
/* Create an alias for TARGET to be used as the target of a thunk. */
static tree
make_alias_for_thunk (tree target)
{
char buf[64];
targetm.asm_out.generate_internal_label (buf, "LTHUNK", thunk_labelno++);
tree alias = build_decl (DECL_SOURCE_LOCATION (target), TREE_CODE (target),
get_identifier (buf), TREE_TYPE (target));
DECL_LANG_SPECIFIC (alias) = DECL_LANG_SPECIFIC (target);
DECL_CONTEXT (alias) = DECL_CONTEXT (target);
TREE_READONLY (alias) = TREE_READONLY (target);
TREE_THIS_VOLATILE (alias) = TREE_THIS_VOLATILE (target);
DECL_ARTIFICIAL (alias) = 1;
DECL_INITIAL (alias) = error_mark_node;
DECL_ARGUMENTS (alias) = copy_list (DECL_ARGUMENTS (target));
TREE_ADDRESSABLE (alias) = 1;
SET_DECL_ASSEMBLER_NAME (alias, DECL_NAME (alias));
cgraph_node *n = cgraph_node::create_same_body_alias (alias, target);
gcc_assert (n);
return alias;
}
/* Create the covariant part of the {GNAT,GNU}_THUNK. */
static tree
make_covariant_thunk (Entity_Id gnat_thunk, tree gnu_thunk)
{
tree gnu_name = create_concat_name (gnat_thunk, "CV");
tree gnu_cv_thunk
= build_decl (DECL_SOURCE_LOCATION (gnu_thunk), TREE_CODE (gnu_thunk),
gnu_name, TREE_TYPE (gnu_thunk));
DECL_ARGUMENTS (gnu_cv_thunk) = copy_list (DECL_ARGUMENTS (gnu_thunk));
DECL_RESULT (gnu_cv_thunk) = copy_node (DECL_RESULT (gnu_thunk));
DECL_CONTEXT (DECL_RESULT (gnu_cv_thunk)) = gnu_cv_thunk;
DECL_LANG_SPECIFIC (gnu_cv_thunk) = DECL_LANG_SPECIFIC (gnu_thunk);
DECL_CONTEXT (gnu_cv_thunk) = DECL_CONTEXT (gnu_thunk);
TREE_READONLY (gnu_cv_thunk) = TREE_READONLY (gnu_thunk);
TREE_THIS_VOLATILE (gnu_cv_thunk) = TREE_THIS_VOLATILE (gnu_thunk);
TREE_PUBLIC (gnu_cv_thunk) = TREE_PUBLIC (gnu_thunk);
DECL_ARTIFICIAL (gnu_cv_thunk) = 1;
return gnu_cv_thunk;
}
/* Try to create a GNU thunk for {GNAT,GNU}_THUNK and return true on success.
GNU thunks are more efficient than GNAT thunks because they don't call into
the runtime to retrieve the offset used in the displacement operation, but
they are tailored to C++ and thus too limited to support the full range of
thunks generated in Ada. Here's the complete list of limitations:
1. Multi-controlling thunks, i.e thunks with more than one controlling
parameter, are simply not supported.
2. Covariant thunks, i.e. thunks for which the result is also controlling,
are split into a pair of (this, covariant-only) thunks.
3. Variable-offset thunks, i.e. thunks for which the offset depends on the
object and not only on its type, are supported as 2nd class citizens.
4. External thunks, i.e. thunks for which the target is not declared in
the same unit as the thunk, are supported as 2nd class citizens.
5. Local thunks, i.e. thunks generated for a local type, are supported as
2nd class citizens. */
static bool
maybe_make_gnu_thunk (Entity_Id gnat_thunk, tree gnu_thunk)
{
const Entity_Id gnat_target = Thunk_Entity (gnat_thunk);
/* Check that the first formal of the target is the only controlling one. */
Entity_Id gnat_formal = First_Formal (gnat_target);
if (!Is_Controlling_Formal (gnat_formal))
return false;
for (gnat_formal = Next_Formal (gnat_formal);
Present (gnat_formal);
gnat_formal = Next_Formal (gnat_formal))
if (Is_Controlling_Formal (gnat_formal))
return false;
/* Look for the types that control the target and the thunk. */
const Entity_Id gnat_controlling_type = get_controlling_type (gnat_target);
const Entity_Id gnat_interface_type = get_controlling_type (gnat_thunk);
/* Now compute whether the former covers the latter. */
const Entity_Id gnat_interface_tag
= Is_Interface (gnat_interface_type)
? Find_Interface_Tag (gnat_controlling_type, gnat_interface_type)
: Empty;
tree gnu_interface_tag
= Present (gnat_interface_tag)
? gnat_to_gnu_field_decl (gnat_interface_tag)
: NULL_TREE;
tree gnu_interface_offset
= gnu_interface_tag ? byte_position (gnu_interface_tag) : NULL_TREE;
/* There are three ways to retrieve the offset between the interface view
and the base object. Either the controlling type covers the interface
type and the offset of the corresponding tag is fixed, in which case it
can be statically encoded in the thunk (see FIXED_OFFSET below). Or the
controlling type doesn't cover the interface type but is of fixed size,
in which case the offset is stored in the dispatch table, two pointers
above the dispatch table address (see VIRTUAL_VALUE below). Otherwise,
the offset is variable and is stored right after the tag in every object
(see INDIRECT_OFFSET below). See also a-tags.ads for more details. */
HOST_WIDE_INT fixed_offset, virtual_value, indirect_offset;
tree virtual_offset;
if (gnu_interface_offset && TREE_CODE (gnu_interface_offset) == INTEGER_CST)
{
fixed_offset = - tree_to_shwi (gnu_interface_offset);
virtual_value = 0;
virtual_offset = NULL_TREE;
indirect_offset = 0;
}
else if (!gnu_interface_offset
&& !Is_Variable_Size_Record (gnat_controlling_type))
{
fixed_offset = 0;
virtual_value = - 2 * (HOST_WIDE_INT) (POINTER_SIZE / BITS_PER_UNIT);
virtual_offset = build_int_cst (integer_type_node, virtual_value);
indirect_offset = 0;
}
else
{
/* Covariant thunks with variable offset are not supported. */
if (Has_Controlling_Result (gnat_target))
return false;
fixed_offset = 0;
virtual_value = 0;
virtual_offset = NULL_TREE;
indirect_offset = (HOST_WIDE_INT) (POINTER_SIZE / BITS_PER_UNIT);
}
tree gnu_target = gnat_to_gnu_entity (gnat_target, NULL_TREE, false);
/* Thunk and target must have the same nesting level, if any. */
gcc_assert (DECL_CONTEXT (gnu_thunk) == DECL_CONTEXT (gnu_target));
/* If the target returns by invisible reference and is external, apply the
same transformation as Subprogram_Body_to_gnu here. */
if (TREE_ADDRESSABLE (TREE_TYPE (gnu_target))
&& DECL_EXTERNAL (gnu_target)
&& !POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (gnu_target))))
{
TREE_TYPE (DECL_RESULT (gnu_target))
= build_reference_type (TREE_TYPE (DECL_RESULT (gnu_target)));
relayout_decl (DECL_RESULT (gnu_target));
}
/* The thunk expander requires the return types of thunk and target to be
compatible, which is not fully the case with the CICO mechanism. */
if (TYPE_CI_CO_LIST (TREE_TYPE (gnu_thunk)))
{
tree gnu_target_type = TREE_TYPE (gnu_target);
gcc_assert (TYPE_CI_CO_LIST (gnu_target_type));
TYPE_CANONICAL (TREE_TYPE (TREE_TYPE (gnu_thunk)))
= TYPE_CANONICAL (TREE_TYPE (gnu_target_type));
}
cgraph_node *target_node = cgraph_node::get_create (gnu_target);
/* If the return type of the target is a controlling type, then we need
both an usual this thunk and a covariant thunk in this order:
this thunk --> covariant thunk --> target
For covariant thunks, we can only handle a fixed offset. */
if (Has_Controlling_Result (gnat_target))
{
gcc_assert (fixed_offset < 0);
tree gnu_cv_thunk = make_covariant_thunk (gnat_thunk, gnu_thunk);
target_node->create_thunk (gnu_cv_thunk, gnu_target, false,
- fixed_offset, 0, 0,
NULL_TREE, gnu_target);
gnu_target = gnu_cv_thunk;
}
/* We may also need to create an alias for the target in order to make
the call local, depending on the linkage of the target. */
tree gnu_alias = use_alias_for_thunk_p (gnu_target)
? make_alias_for_thunk (gnu_target)
: gnu_target;
target_node->create_thunk (gnu_thunk, gnu_target, true,
fixed_offset, virtual_value, indirect_offset,
virtual_offset, gnu_alias);
return true;
}
/* Initialize the table that maps GNAT codes to GCC codes for simple
binary and unary operations. */
static void
init_code_table (void)
{
gnu_codes[N_Op_And] = TRUTH_AND_EXPR;
gnu_codes[N_Op_Or] = TRUTH_OR_EXPR;
gnu_codes[N_Op_Xor] = TRUTH_XOR_EXPR;
gnu_codes[N_Op_Eq] = EQ_EXPR;
gnu_codes[N_Op_Ne] = NE_EXPR;
gnu_codes[N_Op_Lt] = LT_EXPR;
gnu_codes[N_Op_Le] = LE_EXPR;
gnu_codes[N_Op_Gt] = GT_EXPR;
gnu_codes[N_Op_Ge] = GE_EXPR;
gnu_codes[N_Op_Add] = PLUS_EXPR;
gnu_codes[N_Op_Subtract] = MINUS_EXPR;
gnu_codes[N_Op_Multiply] = MULT_EXPR;
gnu_codes[N_Op_Mod] = FLOOR_MOD_EXPR;
gnu_codes[N_Op_Rem] = TRUNC_MOD_EXPR;
gnu_codes[N_Op_Minus] = NEGATE_EXPR;
gnu_codes[N_Op_Abs] = ABS_EXPR;
gnu_codes[N_Op_Not] = TRUTH_NOT_EXPR;
gnu_codes[N_Op_Rotate_Left] = LROTATE_EXPR;
gnu_codes[N_Op_Rotate_Right] = RROTATE_EXPR;
gnu_codes[N_Op_Shift_Left] = LSHIFT_EXPR;
gnu_codes[N_Op_Shift_Right] = RSHIFT_EXPR;
gnu_codes[N_Op_Shift_Right_Arithmetic] = RSHIFT_EXPR;
gnu_codes[N_And_Then] = TRUTH_ANDIF_EXPR;
gnu_codes[N_Or_Else] = TRUTH_ORIF_EXPR;
}
#include "gt-ada-trans.h"