------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- B I N D E -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2016, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Binderr; use Binderr; with Butil; use Butil; with Debug; use Debug; with Fname; use Fname; with Opt; use Opt; with Osint; with Output; use Output; with Table; with System.Case_Util; use System.Case_Util; with System.OS_Lib; package body Binde is -- We now have Elab_New, a new elaboration-order algorithm. -- -- However, any change to elaboration order can break some programs. -- Therefore, we are keeping the old algorithm in place, to be selected -- by switches. -- -- The new algorithm has the following interesting properties: -- -- * The static and dynamic models use the same elaboration order. The -- static model might get an error, but if it does not, it will use -- the same order as the dynamic model. -- -- * Each SCC (see below) is elaborated together; that is, units from -- different SCCs are not interspersed. -- -- * In particular, this implies that if an SCC contains just a spec and -- the corresponding body, and nothing else, the body will be -- elaborated immediately after the spec. This is expected to result -- in a better elaboration order for most programs, because in this -- case, a call from outside the library unit cannot get ABE. -- -- * Pragmas Elaborate_All (explicit and implicit) are ignored. Instead, -- we behave as if every legal pragma Elaborate_All were present. That -- is, if it would be legal to have "pragma Elaborate_All(Y);" on X, -- then we behave as if such a pragma exists, even if it does not. Do_Old : constant Boolean := False; Do_New : constant Boolean := True; -- True to enable the old and new algorithms, respectively. Used for -- debugging/experimentation. Doing_New : Boolean := False; -- True if we are currently doing the new algorithm. Print certain -- messages only when doing the "new" elab order algorithm, so we don't get -- duplicates. And use different heuristics in Better_Choice_Optimistic. -- The following data structures are used to represent the graph that is -- used to determine the elaboration order (using a topological sort). -- The following structures are used to record successors. If B is a -- successor of A in this table, it means that A must be elaborated before -- B is elaborated. For example, if Y (body) says "with X;", then Y (body) -- will be a successor of X (spec), and X (spec) will be a predecessor of -- Y (body). -- -- Note that we store the successors of each unit explicitly. We don't -- store the predecessors, but we store a count of them. -- -- The basic algorithm is to first compute a directed graph of units (type -- Unit_Node_Record, below), with successors as edges. A unit is "ready" -- (to be chosen as the next to be elaborated) if it has no predecessors -- that have not yet been chosen. We use heuristics to decide which of the -- ready units should be elaborated next, and "choose" that one (which -- means we append it to the elaboration-order table). type Successor_Id is new Nat; -- Identification of single successor entry No_Successor : constant Successor_Id := 0; -- Used to indicate end of list of successors type Elab_All_Id is new Nat; -- Identification of Elab_All entry link No_Elab_All_Link : constant Elab_All_Id := 0; -- Used to indicate end of list -- Succ_Reason indicates the reason for a particular elaboration link type Succ_Reason is (Withed, -- After directly with's Before, so the spec of Before must be -- elaborated before After is elaborated. Forced, -- Before and After come from a pair of lines in the forced elaboration -- order file. Elab, -- After directly mentions Before in a pragma Elaborate, so the body of -- Before must be elaborated before After is elaborated. Elab_All, -- After either mentions Before directly in a pragma Elaborate_All, or -- mentions a third unit, X, which itself requires that Before be -- elaborated before unit X is elaborated. The Elab_All_Link list traces -- the dependencies in the latter case. Elab_All_Desirable, -- This is just like Elab_All, except that the Elaborate_All was not -- explicitly present in the source, but rather was created by the front -- end, which decided that it was "desirable". Elab_Desirable, -- This is just like Elab, except that the Elaborate was not explicitly -- present in the source, but rather was created by the front end, which -- decided that it was "desirable". Spec_First); -- After is a body, and Before is the corresponding spec -- Successor_Link contains the information for one link type Successor_Link is record Before : Unit_Id; -- Predecessor unit After : Unit_Id; -- Successor unit Next : Successor_Id; -- Next successor on this list Reason : Succ_Reason; -- Reason for this link Elab_Body : Boolean; -- Set True if this link is needed for the special Elaborate_Body -- processing described below. Reason_Unit : Unit_Id; -- For Reason = Elab, or Elab_All or Elab_Desirable, records the unit -- containing the pragma leading to the link. Elab_All_Link : Elab_All_Id; -- If Reason = Elab_All or Elab_Desirable, then this points to the -- first element in a list of Elab_All entries that record the with -- chain resulting in this particular dependency. end record; -- Note on handling of Elaborate_Body. Basically, if we have a pragma -- Elaborate_Body in a unit, it means that the spec and body have to be -- handled as a single entity from the point of view of determining an -- elaboration order. What we do is to essentially remove the body from -- consideration completely, and transfer all its links (other than the -- spec link) to the spec. Then when the spec gets chosen, we choose the -- body right afterwards. We mark the links that get moved from the body to -- the spec by setting their Elab_Body flag True, so that we can understand -- what is going on. Succ_First : constant := 1; package Succ is new Table.Table (Table_Component_Type => Successor_Link, Table_Index_Type => Successor_Id, Table_Low_Bound => Succ_First, Table_Initial => 500, Table_Increment => 200, Table_Name => "Succ"); -- For the case of Elaborate_All, the following table is used to record -- chains of with relationships that lead to the Elab_All link. These are -- used solely for diagnostic purposes type Elab_All_Entry is record Needed_By : Unit_Name_Type; -- Name of unit from which referencing unit was with'ed or otherwise -- needed as a result of Elaborate_All or Elaborate_Desirable. Next_Elab : Elab_All_Id; -- Link to next entry on chain (No_Elab_All_Link marks end of list) end record; package Elab_All_Entries is new Table.Table (Table_Component_Type => Elab_All_Entry, Table_Index_Type => Elab_All_Id, Table_Low_Bound => 1, Table_Initial => 2000, Table_Increment => 200, Table_Name => "Elab_All_Entries"); type Unit_Id_Array_Ptr is access Unit_Id_Array; -- A Unit_Node_Record is built for each active unit type Unit_Node_Record is record Successors : Successor_Id; -- Pointer to list of links for successor nodes Num_Pred : Int; -- Number of predecessors for this unit that have not yet been chosen. -- Normally non-negative, but can go negative in the case of units -- chosen by the diagnose error procedure (when cycles are being removed -- from the graph). Nextnp : Unit_Id; -- Forward pointer for list of units with no predecessors Visited : Boolean; -- Used in computing transitive closure for Elaborate_All and also in -- locating cycles and paths in the diagnose routines. Elab_Position : Natural; -- Initialized to zero. Set non-zero when a unit is chosen and placed in -- the elaboration order. The value represents the ordinal position in -- the elaboration order. -- The following are for Elab_New. We compute the strongly connected -- components (SCCs) of the directed graph of units. The edges are the -- Successors, which do not include pragmas Elaborate_All (explicit or -- implicit) in Elab_New. In addition, we assume there is a edge -- pointing from a body to its corresponding spec; this edge is not -- included in Successors, because of course a spec is elaborated BEFORE -- its body, not after. SCC_Root : Unit_Id; -- Each unit points to the root of its SCC, which is just an arbitrary -- member of the SCC. Two units are in the same SCC if and only if their -- SCC_Roots are equal. U is the root of its SCC if and only if -- SCC(U)=U. Nodes : Unit_Id_Array_Ptr; -- Present only in the root of an SCC. This is the set of units in the -- SCC, in no particular order. SCC_Num_Pred : Int; -- Present only in the root of an SCC. This is the number of predecessor -- units of the SCC that are in other SCCs, and that have not yet been -- chosen. Validate_Seen : Boolean := False; -- See procedure Validate below end record; package UNR is new Table.Table (Table_Component_Type => Unit_Node_Record, Table_Index_Type => Unit_Id, Table_Low_Bound => First_Unit_Entry, Table_Initial => 500, Table_Increment => 200, Table_Name => "UNR"); No_Pred : Unit_Id; -- Head of list of items with no predecessors Num_Left : Int; -- Number of entries not yet dealt with Cur_Unit : Unit_Id; -- Current unit, set by Gather_Dependencies, and picked up in Build_Link to -- set the Reason_Unit field of the created dependency link. Num_Chosen : Natural; -- Number of units chosen in the elaboration order so far ----------------------- -- Local Subprograms -- ----------------------- function Debug_Flag_Older return Boolean; function Debug_Flag_Old return Boolean; -- True if debug flags select the old or older algorithms. Pretty much any -- change to elaboration order can break some programs. For example, -- programs can depend on elaboration order even without failing -- access-before-elaboration checks. A trivial example is a program that -- prints text during elaboration. Therefore, we have flags to revert to -- the old(er) algorithms. procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean); -- Assert that certain properties are true function Better_Choice_Optimistic (U1 : Unit_Id; U2 : Unit_Id) return Boolean; -- U1 and U2 are both permitted candidates for selection as the next unit -- to be elaborated. This function determines whether U1 is a better choice -- than U2, i.e. should be elaborated in preference to U2, based on a set -- of heuristics that establish a friendly and predictable order (see body -- for details). The result is True if U1 is a better choice than U2, and -- False if it is a worse choice, or there is no preference between them. function Better_Choice_Pessimistic (U1 : Unit_Id; U2 : Unit_Id) return Boolean; -- This is like Better_Choice_Optimistic, and has the same interface, but -- returns true if U1 is a worse choice than U2 in the sense of the -p -- (pessimistic elaboration order) switch. We still have to obey Ada rules, -- so it is not quite the direct inverse of Better_Choice_Optimistic. function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean; -- Calls Better_Choice_Optimistic or Better_Choice_Pessimistic as -- appropriate. Also takes care of the U2 = No_Unit_Id case. procedure Build_Link (Before : Unit_Id; After : Unit_Id; R : Succ_Reason; Ea_Id : Elab_All_Id := No_Elab_All_Link); -- Establish a successor link, Before must be elaborated before After, and -- the reason for the link is R. Ea_Id is the contents to be placed in the -- Elab_All_Link of the entry. procedure Choose (Elab_Order : in out Unit_Id_Table; Chosen : Unit_Id); -- Chosen is the next entry chosen in the elaboration order. This procedure -- updates all data structures appropriately. function Corresponding_Body (U : Unit_Id) return Unit_Id; pragma Inline (Corresponding_Body); -- Given a unit that is a spec for which there is a separate body, return -- the unit id of the body. It is an error to call this routine with a unit -- that is not a spec, or that does not have a separate body. function Corresponding_Spec (U : Unit_Id) return Unit_Id; pragma Inline (Corresponding_Spec); -- Given a unit that is a body for which there is a separate spec, return -- the unit id of the spec. It is an error to call this routine with a unit -- that is not a body, or that does not have a separate spec. procedure Diagnose_Elaboration_Problem (Elab_Order : in out Unit_Id_Table); -- Called when no elaboration order can be found. Outputs an appropriate -- diagnosis of the problem, and then abandons the bind. procedure Elab_All_Links (Before : Unit_Id; After : Unit_Id; Reason : Succ_Reason; Link : Elab_All_Id); -- Used to compute the transitive closure of elaboration links for an -- Elaborate_All pragma (Reason = Elab_All) or for an indication of -- Elaborate_All_Desirable (Reason = Elab_All_Desirable). Unit After has a -- pragma Elaborate_All or the front end has determined that a reference -- probably requires Elaborate_All, and unit Before must be previously -- elaborated. First a link is built making sure that unit Before is -- elaborated before After, then a recursive call ensures that we also -- build links for any units needed by Before (i.e. these units must/should -- also be elaborated before After). Link is used to build a chain of -- Elab_All_Entries to explain the reason for a link. The value passed is -- the chain so far. procedure Elab_Error_Msg (S : Successor_Id); -- Given a successor link, outputs an error message of the form -- "$ must be elaborated before $ ..." where ... is the reason. procedure Force_Elab_Order; -- Gather dependencies from the forced elaboration order file (-f switch) procedure Gather_Dependencies; -- Compute dependencies, building the Succ and UNR tables procedure Init; -- Initialize global data structures in this package body function Is_Body_Unit (U : Unit_Id) return Boolean; pragma Inline (Is_Body_Unit); -- Determines if given unit is a body function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean; -- Returns True if corresponding unit is Pure or Preelaborate. Includes -- dealing with testing flags on spec if it is given a body. function Is_Waiting_Body (U : Unit_Id) return Boolean; pragma Inline (Is_Waiting_Body); -- Determines if U is a waiting body, defined as a body that has -- not been elaborated, but whose spec has been elaborated. function Make_Elab_All_Entry (Unam : Unit_Name_Type; Link : Elab_All_Id) return Elab_All_Id; -- Make an Elab_All_Entries table entry with the given Unam and Link function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id; -- This function uses the Info field set in the names table to obtain -- the unit Id of a unit, given its name id value. procedure Write_Closure (Order : Unit_Id_Array); -- Write the closure. This is for the -R and -Ra switches, "list closure -- display". procedure Write_Dependencies; -- Write out dependencies (called only if appropriate option is set) procedure Write_Elab_All_Chain (S : Successor_Id); -- If the reason for the link S is Elaborate_All or Elaborate_Desirable, -- then this routine will output the "needed by" explanation chain. procedure Write_Elab_Order (Order : Unit_Id_Array; Title : String); -- Display elaboration order. This is for the -l switch. Title is a heading -- to print; an empty string is passed to indicate Zero_Formatting. package Elab_New is -- Implementation of the new algorithm procedure Write_SCC (U : Unit_Id); -- Write the unit names of the units in the SCC in which U lives procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table); Illegal_Elab_All : Boolean := False; -- Set true if Find_Elab_Order found an illegal pragma Elaborate_All -- (explicit or implicit). function SCC (U : Unit_Id) return Unit_Id; -- The root of the strongly connected component containing U function SCC_Num_Pred (U : Unit_Id) return Int; -- The SCC_Num_Pred of the SCC in which U lives function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr; -- The nodes of the strongly connected component containing U end Elab_New; use Elab_New; package Elab_Old is -- Implementation of the old algorithm procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table); end Elab_Old; -- Most of the code is shared between old and new; such code is outside -- packages Elab_Old and Elab_New. ------------------- -- Better_Choice -- ------------------- function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean is pragma Assert (U1 /= No_Unit_Id); begin if U2 = No_Unit_Id then return True; end if; if Pessimistic_Elab_Order then return Better_Choice_Pessimistic (U1, U2); else return Better_Choice_Optimistic (U1, U2); end if; end Better_Choice; ------------------------------ -- Better_Choice_Optimistic -- ------------------------------ function Better_Choice_Optimistic (U1 : Unit_Id; U2 : Unit_Id) return Boolean is UT1 : Unit_Record renames Units.Table (U1); UT2 : Unit_Record renames Units.Table (U2); begin if Debug_Flag_B then Write_Str ("Better_Choice_Optimistic ("); Write_Unit_Name (UT1.Uname); Write_Str (", "); Write_Unit_Name (UT2.Uname); Write_Line (")"); end if; -- Note: the checks here are applied in sequence, and the ordering is -- significant (i.e. the more important criteria are applied first). -- Prefer a waiting body to one that is not a waiting body if Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then if Debug_Flag_B then Write_Line (" True: u1 is waiting body, u2 is not"); end if; return True; elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then if Debug_Flag_B then Write_Line (" False: u2 is waiting body, u1 is not"); end if; return False; -- Prefer a predefined unit to a non-predefined unit elsif UT1.Predefined and then not UT2.Predefined then if Debug_Flag_B then Write_Line (" True: u1 is predefined, u2 is not"); end if; return True; elsif UT2.Predefined and then not UT1.Predefined then if Debug_Flag_B then Write_Line (" False: u2 is predefined, u1 is not"); end if; return False; -- Prefer an internal unit to a non-internal unit elsif UT1.Internal and then not UT2.Internal then if Debug_Flag_B then Write_Line (" True: u1 is internal, u2 is not"); end if; return True; elsif UT2.Internal and then not UT1.Internal then if Debug_Flag_B then Write_Line (" False: u2 is internal, u1 is not"); end if; return False; -- Prefer a pure or preelaborated unit to one that is not. Pure should -- come before preelaborated. elsif Is_Pure_Or_Preelab_Unit (U1) and then not Is_Pure_Or_Preelab_Unit (U2) then if Debug_Flag_B then Write_Line (" True: u1 is pure/preelab, u2 is not"); end if; return True; elsif Is_Pure_Or_Preelab_Unit (U2) and then not Is_Pure_Or_Preelab_Unit (U1) then if Debug_Flag_B then Write_Line (" False: u2 is pure/preelab, u1 is not"); end if; return False; -- Prefer a body to a spec elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then if Debug_Flag_B then Write_Line (" True: u1 is body, u2 is not"); end if; return True; elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then if Debug_Flag_B then Write_Line (" False: u2 is body, u1 is not"); end if; return False; -- If both are waiting bodies, then prefer the one whose spec is more -- recently elaborated. Consider the following: -- spec of A -- spec of B -- body of A or B? -- The normal waiting body preference would have placed the body of A -- before the spec of B if it could. Since it could not, then it must be -- the case that A depends on B. It is therefore a good idea to put the -- body of B first. elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then declare Result : constant Boolean := UNR.Table (Corresponding_Spec (U1)).Elab_Position > UNR.Table (Corresponding_Spec (U2)).Elab_Position; begin if Debug_Flag_B then if Result then Write_Line (" True: based on waiting body elab positions"); else Write_Line (" False: based on waiting body elab positions"); end if; end if; return Result; end; end if; -- Remaining choice rules are disabled by Debug flag -do if not Debug_Flag_Older then -- The following deal with the case of specs that have been marked -- as Elaborate_Body_Desirable. We generally want to delay these -- specs as long as possible, so that the bodies have a better chance -- of being elaborated closer to the specs. -- If we have two units, one of which is a spec for which this flag -- is set, and the other is not, we prefer to delay the spec for -- which the flag is set. if not UT1.Elaborate_Body_Desirable and then UT2.Elaborate_Body_Desirable then if Debug_Flag_B then Write_Line (" True: u1 is elab body desirable, u2 is not"); end if; return True; elsif not UT2.Elaborate_Body_Desirable and then UT1.Elaborate_Body_Desirable then if Debug_Flag_B then Write_Line (" False: u1 is elab body desirable, u2 is not"); end if; return False; -- If we have two specs that are both marked as Elaborate_Body -- desirable, we prefer the one whose body is nearer to being able -- to be elaborated, based on the Num_Pred count. This helps to -- ensure bodies are as close to specs as possible. elsif UT1.Elaborate_Body_Desirable and then UT2.Elaborate_Body_Desirable then declare Result : constant Boolean := UNR.Table (Corresponding_Body (U1)).Num_Pred < UNR.Table (Corresponding_Body (U2)).Num_Pred; begin if Debug_Flag_B then if Result then Write_Line (" True based on Num_Pred compare"); else Write_Line (" False based on Num_Pred compare"); end if; end if; return Result; end; end if; end if; -- If we have two specs in the same SCC, choose the one whose body is -- closer to being ready. if Doing_New and then SCC (U1) = SCC (U2) and then Units.Table (U1).Utype = Is_Spec and then Units.Table (U2).Utype = Is_Spec and then UNR.Table (Corresponding_Body (U1)).Num_Pred /= UNR.Table (Corresponding_Body (U2)).Num_Pred then if UNR.Table (Corresponding_Body (U1)).Num_Pred < UNR.Table (Corresponding_Body (U2)).Num_Pred then if Debug_Flag_B then Write_Str (" True: same SCC; "); Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred); Write_Str (" < "); Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred); Write_Eol; end if; return True; else if Debug_Flag_B then Write_Str (" False: same SCC; "); Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred); Write_Str (" > "); Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred); Write_Eol; end if; return False; end if; end if; -- If we fall through, it means that no preference rule applies, so we -- use alphabetical order to at least give a deterministic result. if Debug_Flag_B then Write_Line (" choose on alpha order"); end if; return Uname_Less (UT1.Uname, UT2.Uname); end Better_Choice_Optimistic; ------------------------------- -- Better_Choice_Pessimistic -- ------------------------------- function Better_Choice_Pessimistic (U1 : Unit_Id; U2 : Unit_Id) return Boolean is UT1 : Unit_Record renames Units.Table (U1); UT2 : Unit_Record renames Units.Table (U2); begin if Debug_Flag_B then Write_Str ("Better_Choice_Pessimistic ("); Write_Unit_Name (UT1.Uname); Write_Str (", "); Write_Unit_Name (UT2.Uname); Write_Line (")"); end if; -- Note: the checks here are applied in sequence, and the ordering is -- significant (i.e. the more important criteria are applied first). -- If either unit is predefined or internal, then we use the normal -- Better_Choice_Optimistic rule, since we don't want to disturb the -- elaboration rules of the language with -p; same treatment for -- Pure/Preelab. -- Prefer a predefined unit to a non-predefined unit if UT1.Predefined and then not UT2.Predefined then if Debug_Flag_B then Write_Line (" True: u1 is predefined, u2 is not"); end if; return True; elsif UT2.Predefined and then not UT1.Predefined then if Debug_Flag_B then Write_Line (" False: u2 is predefined, u1 is not"); end if; return False; -- Prefer an internal unit to a non-internal unit elsif UT1.Internal and then not UT2.Internal then if Debug_Flag_B then Write_Line (" True: u1 is internal, u2 is not"); end if; return True; elsif UT2.Internal and then not UT1.Internal then if Debug_Flag_B then Write_Line (" False: u2 is internal, u1 is not"); end if; return False; -- Prefer a pure or preelaborated unit to one that is not elsif Is_Pure_Or_Preelab_Unit (U1) and then not Is_Pure_Or_Preelab_Unit (U2) then if Debug_Flag_B then Write_Line (" True: u1 is pure/preelab, u2 is not"); end if; return True; elsif Is_Pure_Or_Preelab_Unit (U2) and then not Is_Pure_Or_Preelab_Unit (U1) then if Debug_Flag_B then Write_Line (" False: u2 is pure/preelab, u1 is not"); end if; return False; -- Prefer anything else to a waiting body. We want to make bodies wait -- as long as possible, till we are forced to choose them. elsif Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then if Debug_Flag_B then Write_Line (" False: u1 is waiting body, u2 is not"); end if; return False; elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then if Debug_Flag_B then Write_Line (" True: u2 is waiting body, u1 is not"); end if; return True; -- Prefer a spec to a body (this is mandatory) elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then if Debug_Flag_B then Write_Line (" False: u1 is body, u2 is not"); end if; return False; elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then if Debug_Flag_B then Write_Line (" True: u2 is body, u1 is not"); end if; return True; -- If both are waiting bodies, then prefer the one whose spec is less -- recently elaborated. Consider the following: -- spec of A -- spec of B -- body of A or B? -- The normal waiting body preference would have placed the body of A -- before the spec of B if it could. Since it could not, then it must be -- the case that A depends on B. It is therefore a good idea to put the -- body of B last so that if there is an elaboration order problem, we -- will find it (that's what pessimistic order is about). elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then declare Result : constant Boolean := UNR.Table (Corresponding_Spec (U1)).Elab_Position < UNR.Table (Corresponding_Spec (U2)).Elab_Position; begin if Debug_Flag_B then if Result then Write_Line (" True: based on waiting body elab positions"); else Write_Line (" False: based on waiting body elab positions"); end if; end if; return Result; end; end if; -- Remaining choice rules are disabled by Debug flag -do if not Debug_Flag_Older then -- The following deal with the case of specs that have been marked as -- Elaborate_Body_Desirable. In the normal case, we generally want to -- delay the elaboration of these specs as long as possible, so that -- bodies have better chance of being elaborated closer to the specs. -- Better_Choice_Pessimistic as usual wants to do the opposite and -- elaborate such specs as early as possible. -- If we have two units, one of which is a spec for which this flag -- is set, and the other is not, we normally prefer to delay the spec -- for which the flag is set, so again Better_Choice_Pessimistic does -- the opposite. if not UT1.Elaborate_Body_Desirable and then UT2.Elaborate_Body_Desirable then if Debug_Flag_B then Write_Line (" False: u1 is elab body desirable, u2 is not"); end if; return False; elsif not UT2.Elaborate_Body_Desirable and then UT1.Elaborate_Body_Desirable then if Debug_Flag_B then Write_Line (" True: u1 is elab body desirable, u2 is not"); end if; return True; -- If we have two specs that are both marked as Elaborate_Body -- desirable, we normally prefer the one whose body is nearer to -- being able to be elaborated, based on the Num_Pred count. This -- helps to ensure bodies are as close to specs as possible. As -- usual, Better_Choice_Pessimistic does the opposite. elsif UT1.Elaborate_Body_Desirable and then UT2.Elaborate_Body_Desirable then declare Result : constant Boolean := UNR.Table (Corresponding_Body (U1)).Num_Pred >= UNR.Table (Corresponding_Body (U2)).Num_Pred; begin if Debug_Flag_B then if Result then Write_Line (" True based on Num_Pred compare"); else Write_Line (" False based on Num_Pred compare"); end if; end if; return Result; end; end if; end if; -- If we fall through, it means that no preference rule applies, so we -- use alphabetical order to at least give a deterministic result. Since -- Better_Choice_Pessimistic is in the business of stirring up the -- order, we will use reverse alphabetical ordering. if Debug_Flag_B then Write_Line (" choose on reverse alpha order"); end if; return Uname_Less (UT2.Uname, UT1.Uname); end Better_Choice_Pessimistic; ---------------- -- Build_Link -- ---------------- procedure Build_Link (Before : Unit_Id; After : Unit_Id; R : Succ_Reason; Ea_Id : Elab_All_Id := No_Elab_All_Link) is Cspec : Unit_Id; begin Succ.Append ((Before => Before, After => No_Unit_Id, -- filled in below Next => UNR.Table (Before).Successors, Reason => R, Elab_Body => False, -- set correctly below Reason_Unit => Cur_Unit, Elab_All_Link => Ea_Id)); UNR.Table (Before).Successors := Succ.Last; -- Deal with special Elab_Body case. If the After of this link is -- a body whose spec has Elaborate_All set, and this is not the link -- directly from the body to the spec, then we make the After of the -- link reference its spec instead, marking the link appropriately. if Units.Table (After).Utype = Is_Body then Cspec := Corresponding_Spec (After); if Units.Table (Cspec).Elaborate_Body and then Cspec /= Before then Succ.Table (Succ.Last).After := Cspec; Succ.Table (Succ.Last).Elab_Body := True; UNR.Table (Cspec).Num_Pred := UNR.Table (Cspec).Num_Pred + 1; return; end if; end if; -- Fall through on normal case Succ.Table (Succ.Last).After := After; Succ.Table (Succ.Last).Elab_Body := False; UNR.Table (After).Num_Pred := UNR.Table (After).Num_Pred + 1; end Build_Link; ------------ -- Choose -- ------------ procedure Choose (Elab_Order : in out Unit_Id_Table; Chosen : Unit_Id) is pragma Assert (Chosen /= No_Unit_Id); S : Successor_Id; U : Unit_Id; begin if Debug_Flag_C then Write_Str ("Choosing Unit "); Write_Unit_Name (Units.Table (Chosen).Uname); Write_Eol; end if; -- We shouldn't be choosing something with unelaborated predecessors, -- and we shouldn't call this twice on the same unit. But that's not -- true when this is called from Diagnose_Elaboration_Problem. if Errors_Detected = 0 then pragma Assert (UNR.Table (Chosen).Num_Pred = 0); pragma Assert (UNR.Table (Chosen).Elab_Position = 0); pragma Assert (not Doing_New or else SCC_Num_Pred (Chosen) = 0); null; end if; -- Add to elaboration order. Note that units having no elaboration code -- are not treated specially yet. The special casing of this is in -- Bindgen, where Gen_Elab_Calls skips over them. Meanwhile we need them -- here, because the object file list is also driven by the contents of -- the Elab_Order table. Append (Elab_Order, Chosen); -- Remove from No_Pred list. This is a little inefficient and may be we -- should doubly link the list, but it will do for now. if No_Pred = Chosen then No_Pred := UNR.Table (Chosen).Nextnp; else -- Note that we just ignore the situation where it does not -- appear in the No_Pred list, this happens in calls from the -- Diagnose_Elaboration_Problem routine, where cycles are being -- removed arbitrarily from the graph. U := No_Pred; while U /= No_Unit_Id loop if UNR.Table (U).Nextnp = Chosen then UNR.Table (U).Nextnp := UNR.Table (Chosen).Nextnp; exit; end if; U := UNR.Table (U).Nextnp; end loop; end if; -- For all successors, decrement the number of predecessors, and if it -- becomes zero, then add to no-predecessor list. S := UNR.Table (Chosen).Successors; while S /= No_Successor loop U := Succ.Table (S).After; UNR.Table (U).Num_Pred := UNR.Table (U).Num_Pred - 1; if Debug_Flag_N then Write_Str (" decrementing Num_Pred for unit "); Write_Unit_Name (Units.Table (U).Uname); Write_Str (" new value = "); Write_Int (UNR.Table (U).Num_Pred); Write_Eol; end if; if UNR.Table (U).Num_Pred = 0 then UNR.Table (U).Nextnp := No_Pred; No_Pred := U; end if; if Doing_New and then SCC (U) /= SCC (Chosen) then UNR.Table (SCC (U)).SCC_Num_Pred := UNR.Table (SCC (U)).SCC_Num_Pred - 1; if Debug_Flag_N then Write_Str (" decrementing SCC_Num_Pred for unit "); Write_Unit_Name (Units.Table (U).Uname); Write_Str (" new value = "); Write_Int (SCC_Num_Pred (U)); Write_Eol; end if; end if; S := Succ.Table (S).Next; end loop; -- All done, adjust number of units left count and set elaboration pos Num_Left := Num_Left - 1; Num_Chosen := Num_Chosen + 1; pragma Assert (Errors_Detected > 0 or else Num_Chosen = Natural (Last (Elab_Order))); UNR.Table (Chosen).Elab_Position := Num_Chosen; -- If we just chose a spec with Elaborate_Body set, then we must -- immediately elaborate the body, before any other units. if Units.Table (Chosen).Elaborate_Body then -- If the unit is a spec only, then there is no body. This is a bit -- odd given that Elaborate_Body is here, but it is valid in an RCI -- unit, where we only have the interface in the stub bind. if Units.Table (Chosen).Utype = Is_Spec_Only and then Units.Table (Chosen).RCI then null; else Choose (Elab_Order, Corresponding_Body (Chosen)); end if; end if; end Choose; ------------------------ -- Corresponding_Body -- ------------------------ -- Currently if the body and spec are separate, then they appear as two -- separate units in the same ALI file, with the body appearing first and -- the spec appearing second. function Corresponding_Body (U : Unit_Id) return Unit_Id is begin pragma Assert (Units.Table (U).Utype = Is_Spec); return U - 1; end Corresponding_Body; ------------------------ -- Corresponding_Spec -- ------------------------ -- Currently if the body and spec are separate, then they appear as two -- separate units in the same ALI file, with the body appearing first and -- the spec appearing second. function Corresponding_Spec (U : Unit_Id) return Unit_Id is begin pragma Assert (Units.Table (U).Utype = Is_Body); return U + 1; end Corresponding_Spec; -------------------- -- Debug_Flag_Old -- -------------------- function Debug_Flag_Old return Boolean is begin return Debug_Flag_P; end Debug_Flag_Old; ---------------------- -- Debug_Flag_Older -- ---------------------- function Debug_Flag_Older return Boolean is begin return Debug_Flag_O; end Debug_Flag_Older; ---------------------------------- -- Diagnose_Elaboration_Problem -- ---------------------------------- procedure Diagnose_Elaboration_Problem (Elab_Order : in out Unit_Id_Table) is function Find_Path (Ufrom : Unit_Id; Uto : Unit_Id; ML : Nat) return Boolean; -- Recursive routine used to find a path from node Ufrom to node Uto. -- If a path exists, returns True and outputs an appropriate set of -- error messages giving the path. Also calls Choose for each of the -- nodes so that they get removed from the remaining set. There are -- two cases of calls, either Ufrom = Uto for an attempt to find a -- cycle, or Ufrom is a spec and Uto the corresponding body for the -- case of an unsatisfiable Elaborate_Body pragma. ML is the minimum -- acceptable length for a path. --------------- -- Find_Path -- --------------- function Find_Path (Ufrom : Unit_Id; Uto : Unit_Id; ML : Nat) return Boolean is function Find_Link (U : Unit_Id; PL : Nat) return Boolean; -- This is the inner recursive routine, it determines if a path -- exists from U to Uto, and if so returns True and outputs the -- appropriate set of error messages. PL is the path length --------------- -- Find_Link -- --------------- function Find_Link (U : Unit_Id; PL : Nat) return Boolean is S : Successor_Id; begin -- Recursion ends if we are at terminating node and the path is -- sufficiently long, generate error message and return True. if U = Uto and then PL >= ML then Choose (Elab_Order, U); return True; -- All done if already visited elsif UNR.Table (U).Visited then return False; -- Otherwise mark as visited and look at all successors else UNR.Table (U).Visited := True; S := UNR.Table (U).Successors; while S /= No_Successor loop if Find_Link (Succ.Table (S).After, PL + 1) then Elab_Error_Msg (S); Choose (Elab_Order, U); return True; end if; S := Succ.Table (S).Next; end loop; -- Falling through means this does not lead to a path return False; end if; end Find_Link; -- Start of processing for Find_Path begin -- Initialize all non-chosen nodes to not visited yet for U in Units.First .. Units.Last loop UNR.Table (U).Visited := UNR.Table (U).Elab_Position /= 0; end loop; -- Now try to find the path return Find_Link (Ufrom, 0); end Find_Path; -- Start of processing for Diagnose_Elaboration_Problem begin Set_Standard_Error; -- Output state of things if debug flag N set if Debug_Flag_N then declare NP : Int; begin Write_Eol; Write_Eol; Write_Str ("Diagnose_Elaboration_Problem called"); Write_Eol; Write_Str ("List of remaining unchosen units and predecessors"); Write_Eol; for U in Units.First .. Units.Last loop if UNR.Table (U).Elab_Position = 0 then NP := UNR.Table (U).Num_Pred; Write_Eol; Write_Str (" Unchosen unit: #"); Write_Int (Int (U)); Write_Str (" "); Write_Unit_Name (Units.Table (U).Uname); Write_Str (" (Num_Pred = "); Write_Int (NP); Write_Char (')'); Write_Eol; if NP = 0 then if Units.Table (U).Elaborate_Body then Write_Str (" (not chosen because of Elaborate_Body)"); Write_Eol; else Write_Str (" ****************** why not chosen?"); Write_Eol; end if; end if; -- Search links list to find unchosen predecessors for S in Succ.First .. Succ.Last loop declare SL : Successor_Link renames Succ.Table (S); begin if SL.After = U and then UNR.Table (SL.Before).Elab_Position = 0 then Write_Str (" unchosen predecessor: #"); Write_Int (Int (SL.Before)); Write_Str (" "); Write_Unit_Name (Units.Table (SL.Before).Uname); Write_Eol; NP := NP - 1; end if; end; end loop; if NP /= 0 then Write_Str (" **************** Num_Pred value wrong!"); Write_Eol; end if; end if; end loop; end; end if; -- Output the header for the error, and manually increment the error -- count. We are using Error_Msg_Output rather than Error_Msg here for -- two reasons: -- This is really only one error, not one for each line -- We want this output on standard output since it is voluminous -- But we do need to deal with the error count manually in this case Errors_Detected := Errors_Detected + 1; Error_Msg_Output ("elaboration circularity detected", Info => False); -- Try to find cycles starting with any of the remaining nodes that have -- not yet been chosen. There must be at least one (there is some reason -- we are being called). for U in Units.First .. Units.Last loop if UNR.Table (U).Elab_Position = 0 then if Find_Path (U, U, 1) then raise Unrecoverable_Error; end if; end if; end loop; -- We should never get here, since we were called for some reason, and -- we should have found and eliminated at least one bad path. raise Program_Error; end Diagnose_Elaboration_Problem; -------------------- -- Elab_All_Links -- -------------------- procedure Elab_All_Links (Before : Unit_Id; After : Unit_Id; Reason : Succ_Reason; Link : Elab_All_Id) is begin if UNR.Table (Before).Visited then return; end if; -- Build the direct link for Before UNR.Table (Before).Visited := True; Build_Link (Before, After, Reason, Link); -- Process all units with'ed by Before recursively for W in Units.Table (Before).First_With .. Units.Table (Before).Last_With loop -- Skip if this with is an interface to a stand-alone library. Skip -- also if no ALI file for this WITH, happens for language defined -- generics while bootstrapping the compiler (see body of routine -- Lib.Writ.Write_With_Lines). Finally, skip if it is a limited with -- clause, which does not impose an elaboration link. if not Withs.Table (W).SAL_Interface and then Withs.Table (W).Afile /= No_File and then not Withs.Table (W).Limited_With then declare Info : constant Int := Get_Name_Table_Int (Withs.Table (W).Uname); begin -- If the unit is unknown, for some unknown reason, fail -- graciously explaining that the unit is unknown. Without -- this check, gnatbind will crash in Unit_Id_Of. if Info = 0 or else Unit_Id (Info) = No_Unit_Id then declare Withed : String := Get_Name_String (Withs.Table (W).Uname); Last_Withed : Natural := Withed'Last; Withing : String := Get_Name_String (Units.Table (Before).Uname); Last_Withing : Natural := Withing'Last; Spec_Body : String := " (Spec)"; begin To_Mixed (Withed); To_Mixed (Withing); if Last_Withed > 2 and then Withed (Last_Withed - 1) = '%' then Last_Withed := Last_Withed - 2; end if; if Last_Withing > 2 and then Withing (Last_Withing - 1) = '%' then Last_Withing := Last_Withing - 2; end if; if Units.Table (Before).Utype = Is_Body or else Units.Table (Before).Utype = Is_Body_Only then Spec_Body := " (Body)"; end if; Osint.Fail ("could not find unit " & Withed (Withed'First .. Last_Withed) & " needed by " & Withing (Withing'First .. Last_Withing) & Spec_Body); end; end if; Elab_All_Links (Unit_Id_Of (Withs.Table (W).Uname), After, Reason, Make_Elab_All_Entry (Withs.Table (W).Uname, Link)); end; end if; end loop; -- Process corresponding body, if there is one if Units.Table (Before).Utype = Is_Spec then Elab_All_Links (Corresponding_Body (Before), After, Reason, Make_Elab_All_Entry (Units.Table (Corresponding_Body (Before)).Uname, Link)); end if; end Elab_All_Links; -------------------- -- Elab_Error_Msg -- -------------------- procedure Elab_Error_Msg (S : Successor_Id) is SL : Successor_Link renames Succ.Table (S); begin -- Nothing to do if internal unit involved and no -da flag if not Debug_Flag_A and then (Is_Internal_File_Name (Units.Table (SL.Before).Sfile) or else Is_Internal_File_Name (Units.Table (SL.After).Sfile)) then return; end if; -- Here we want to generate output Error_Msg_Unit_1 := Units.Table (SL.Before).Uname; if SL.Elab_Body then Error_Msg_Unit_2 := Units.Table (Corresponding_Body (SL.After)).Uname; else Error_Msg_Unit_2 := Units.Table (SL.After).Uname; end if; Error_Msg_Output (" $ must be elaborated before $", Info => True); Error_Msg_Unit_1 := Units.Table (SL.Reason_Unit).Uname; case SL.Reason is when Withed => Error_Msg_Output (" reason: with clause", Info => True); when Forced => Error_Msg_Output (" reason: forced by -f switch", Info => True); when Elab => Error_Msg_Output (" reason: pragma Elaborate in unit $", Info => True); when Elab_All => Error_Msg_Output (" reason: pragma Elaborate_All in unit $", Info => True); when Elab_All_Desirable => Error_Msg_Output (" reason: implicit Elaborate_All in unit $", Info => True); Error_Msg_Output (" recompile $ with -gnatel for full details", Info => True); when Elab_Desirable => Error_Msg_Output (" reason: implicit Elaborate in unit $", Info => True); Error_Msg_Output (" recompile $ with -gnatel for full details", Info => True); when Spec_First => Error_Msg_Output (" reason: spec always elaborated before body", Info => True); end case; Write_Elab_All_Chain (S); if SL.Elab_Body then Error_Msg_Unit_1 := Units.Table (SL.Before).Uname; Error_Msg_Unit_2 := Units.Table (SL.After).Uname; Error_Msg_Output (" $ must therefore be elaborated before $", True); Error_Msg_Unit_1 := Units.Table (SL.After).Uname; Error_Msg_Output (" (because $ has a pragma Elaborate_Body)", True); end if; if not Zero_Formatting then Write_Eol; end if; end Elab_Error_Msg; --------------------- -- Find_Elab_Order -- --------------------- procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table; First_Main_Lib_File : File_Name_Type) is function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat; -- Number of cases where the body of a unit immediately follows the -- corresponding spec. Such cases are good, because calls to that unit -- from outside can't get ABE. ------------------------- -- Num_Spec_Body_Pairs -- ------------------------- function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat is Result : Nat := 0; begin for J in Order'First + 1 .. Order'Last loop if Units.Table (Order (J - 1)).Utype = Is_Spec and then Units.Table (Order (J)).Utype = Is_Body and then Corresponding_Spec (Order (J)) = Order (J - 1) then Result := Result + 1; end if; end loop; return Result; end Num_Spec_Body_Pairs; -- Local variables Old_Elab_Order : Unit_Id_Table; -- Start of processing for Find_Elab_Order begin -- Output warning if -p used with no -gnatE units if Pessimistic_Elab_Order and not Dynamic_Elaboration_Checks_Specified then Error_Msg ("?use of -p switch questionable"); Error_Msg ("?since all units compiled with static elaboration model"); end if; if Do_New then if Debug_Flag_V then Write_Line ("Doing new..."); end if; Doing_New := True; Init; Elab_New.Find_Elab_Order (Elab_Order); end if; -- Elab_New does not support the pessimistic order, so if that was -- requested, use the old results. Use Elab_Old if -dp was selected. -- Elab_New does not yet give proper error messages for illegal -- Elaborate_Alls, so if there is one, run Elab_Old. if Do_Old or Pessimistic_Elab_Order or Debug_Flag_Old or Illegal_Elab_All then if Debug_Flag_V then Write_Line ("Doing old..."); end if; Doing_New := False; Init; Elab_Old.Find_Elab_Order (Old_Elab_Order); end if; declare Old_Order : Unit_Id_Array renames Old_Elab_Order.Table (1 .. Last (Old_Elab_Order)); New_Order : Unit_Id_Array renames Elab_Order.Table (1 .. Last (Elab_Order)); Old_Pairs : constant Nat := Num_Spec_Body_Pairs (Old_Order); New_Pairs : constant Nat := Num_Spec_Body_Pairs (New_Order); begin if Do_Old and Do_New then Write_Line (Get_Name_String (First_Main_Lib_File)); pragma Assert (Old_Order'Length = New_Order'Length); pragma Debug (Validate (Old_Order, Doing_New => False)); pragma Debug (Validate (New_Order, Doing_New => True)); -- Misc debug printouts that can be used for experimentation by -- changing the 'if's below. if True then if New_Order = Old_Order then Write_Line ("Elab_New: same order."); else Write_Line ("Elab_New: diff order."); end if; end if; if New_Order /= Old_Order and then False then Write_Line ("Elaboration orders differ:"); Write_Elab_Order (Old_Order, Title => "OLD ELABORATION ORDER"); Write_Elab_Order (New_Order, Title => "NEW ELABORATION ORDER"); end if; if True then Write_Str ("Pairs: "); Write_Int (Old_Pairs); if Old_Pairs = New_Pairs then Write_Str (" = "); elsif Old_Pairs < New_Pairs then Write_Str (" < "); else Write_Str (" > "); end if; Write_Int (New_Pairs); Write_Eol; end if; if Old_Pairs /= New_Pairs and then False then Write_Str ("Pairs: "); Write_Int (Old_Pairs); if Old_Pairs < New_Pairs then Write_Str (" < "); else Write_Str (" > "); end if; Write_Int (New_Pairs); Write_Eol; if Old_Pairs /= New_Pairs and then Debug_Flag_V then Write_Elab_Order (Old_Order, Title => "OLD ELABORATION ORDER"); Write_Elab_Order (New_Order, Title => "NEW ELABORATION ORDER"); pragma Assert (New_Pairs >= Old_Pairs); end if; end if; end if; -- The Elab_New algorithm doesn't implement the -p switch, so if that -- was used, use the results from the old algorithm. if Pessimistic_Elab_Order or Debug_Flag_Old then New_Order := Old_Order; end if; -- Now set the Elab_Positions in the Units table. It is important to -- do this late, in case we're running both Elab_New and Elab_Old. declare Units_Array : Units.Table_Type renames Units.Table (Units.First .. Units.Last); begin for J in New_Order'Range loop pragma Assert (UNR.Table (New_Order (J)).Elab_Position = Positive (J)); Units_Array (New_Order (J)).Elab_Position := Positive (J); end loop; end; if Errors_Detected = 0 then -- Display elaboration order if -l was specified if Elab_Order_Output then if Zero_Formatting then Write_Elab_Order (New_Order, Title => ""); else Write_Elab_Order (New_Order, Title => "ELABORATION ORDER"); end if; end if; -- Display list of sources in the closure (except predefined -- sources) if -R was used. Include predefined sources if -Ra -- was used. if List_Closure then Write_Closure (New_Order); end if; end if; end; end Find_Elab_Order; ---------------------- -- Force_Elab_Order -- ---------------------- procedure Force_Elab_Order is use System.OS_Lib; -- There is a lot of fiddly string manipulation below, because we don't -- want to depend on misc utility packages like Ada.Characters.Handling. function Get_Line return String; -- Read the next line from the file content read by Read_File. Strip -- all leading and trailing blanks. Convert "(spec)" or "(body)" to -- "%s"/"%b". Remove comments (Ada style; "--" to end of line). function Read_File (Name : String) return String_Ptr; -- Read the entire contents of the named file --------------- -- Read_File -- --------------- function Read_File (Name : String) return String_Ptr is -- All of the following calls should succeed, because we checked the -- file in Switch.B, but we double check and raise Program_Error on -- failure, just in case. F : constant File_Descriptor := Open_Read (Name, Binary); begin if F = Invalid_FD then raise Program_Error; end if; declare Len : constant Natural := Natural (File_Length (F)); Result : constant String_Ptr := new String (1 .. Len); Len_Read : constant Natural := Read (F, Result (1)'Address, Len); Status : Boolean; begin if Len_Read /= Len then raise Program_Error; end if; Close (F, Status); if not Status then raise Program_Error; end if; return Result; end; end Read_File; Cur : Positive := 1; S : String_Ptr := Read_File (Force_Elab_Order_File.all); -------------- -- Get_Line -- -------------- function Get_Line return String is First : Positive := Cur; Last : Natural; begin -- Skip to end of line while Cur <= S'Last and then S (Cur) /= ASCII.LF and then S (Cur) /= ASCII.CR loop Cur := Cur + 1; end loop; -- Strip leading blanks while First <= S'Last and then S (First) = ' ' loop First := First + 1; end loop; -- Strip trailing blanks and comment Last := Cur - 1; for J in First .. Last - 1 loop if S (J .. J + 1) = "--" then Last := J - 1; exit; end if; end loop; while Last >= First and then S (Last) = ' ' loop Last := Last - 1; end loop; -- Convert "(spec)" or "(body)" to "%s"/"%b", strip trailing blanks -- again. declare Body_String : constant String := "(body)"; BL : constant Positive := Body_String'Length; Spec_String : constant String := "(spec)"; SL : constant Positive := Spec_String'Length; Line : String renames S (First .. Last); Is_Body : Boolean := False; Is_Spec : Boolean := False; begin if Line'Length >= SL and then Line (Last - SL + 1 .. Last) = Spec_String then Is_Spec := True; Last := Last - SL; elsif Line'Length >= BL and then Line (Last - BL + 1 .. Last) = Body_String then Is_Body := True; Last := Last - BL; end if; while Last >= First and then S (Last) = ' ' loop Last := Last - 1; end loop; -- Skip past LF or CR/LF if Cur <= S'Last and then S (Cur) = ASCII.CR then Cur := Cur + 1; end if; if Cur <= S'Last and then S (Cur) = ASCII.LF then Cur := Cur + 1; end if; if Is_Spec then return Line (First .. Last) & "%s"; elsif Is_Body then return Line (First .. Last) & "%b"; else return Line; end if; end; end Get_Line; -- Local variables Empty_Name : constant Unit_Name_Type := Name_Find (""); Prev_Unit : Unit_Id := No_Unit_Id; -- Start of processing for Force_Elab_Order begin -- Loop through the file content, and build a dependency link for each -- pair of lines. Ignore lines that should be ignored. while Cur <= S'Last loop declare Uname : constant Unit_Name_Type := Name_Find (Get_Line); begin if Uname = Empty_Name then null; -- silently skip blank lines elsif Get_Name_Table_Int (Uname) = 0 or else Unit_Id (Get_Name_Table_Int (Uname)) = No_Unit_Id then if Doing_New then Write_Line ("""" & Get_Name_String (Uname) & """: not present; ignored"); end if; else declare Cur_Unit : constant Unit_Id := Unit_Id_Of (Uname); begin if Is_Internal_File_Name (Units.Table (Cur_Unit).Sfile) then if Doing_New then Write_Line ("""" & Get_Name_String (Uname) & """: predefined unit ignored"); end if; else if Prev_Unit /= No_Unit_Id then if Doing_New then Write_Unit_Name (Units.Table (Prev_Unit).Uname); Write_Str (" <-- "); Write_Unit_Name (Units.Table (Cur_Unit).Uname); Write_Eol; end if; Build_Link (Before => Prev_Unit, After => Cur_Unit, R => Forced); end if; Prev_Unit := Cur_Unit; end if; end; end if; end; end loop; Free (S); end Force_Elab_Order; ------------------------- -- Gather_Dependencies -- ------------------------- procedure Gather_Dependencies is Withed_Unit : Unit_Id; begin -- Loop through all units for U in Units.First .. Units.Last loop Cur_Unit := U; -- If this is not an interface to a stand-alone library and there is -- a body and a spec, then spec must be elaborated first. Note that -- the corresponding spec immediately follows the body. if not Units.Table (U).SAL_Interface and then Units.Table (U).Utype = Is_Body then Build_Link (Corresponding_Spec (U), U, Spec_First); end if; -- If this unit is not an interface to a stand-alone library, process -- WITH references for this unit ignoring interfaces to stand-alone -- libraries. if not Units.Table (U).SAL_Interface then for W in Units.Table (U).First_With .. Units.Table (U).Last_With loop if Withs.Table (W).Sfile /= No_File and then (not Withs.Table (W).SAL_Interface) then -- Check for special case of withing a unit that does not -- exist any more. If the unit was completely missing we -- would already have detected this, but a nasty case arises -- when we have a subprogram body with no spec, and some -- obsolete unit with's a previous (now disappeared) spec. if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then if Doing_New then Error_Msg_File_1 := Units.Table (U).Sfile; Error_Msg_Unit_1 := Withs.Table (W).Uname; Error_Msg ("{ depends on $ which no longer exists"); end if; goto Next_With; end if; Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname); -- Pragma Elaborate_All case, for this we use the recursive -- Elab_All_Links procedure to establish the links. -- Elab_New ignores Elaborate_All and Elab_All_Desirable, -- except for error messages. if Withs.Table (W).Elaborate_All and then not Doing_New then -- Reset flags used to stop multiple visits to a given -- node. for Uref in UNR.First .. UNR.Last loop UNR.Table (Uref).Visited := False; end loop; -- Now establish all the links we need Elab_All_Links (Withed_Unit, U, Elab_All, Make_Elab_All_Entry (Withs.Table (W).Uname, No_Elab_All_Link)); -- Elaborate_All_Desirable case, for this we establish the -- same links as above, but with a different reason. elsif Withs.Table (W).Elab_All_Desirable and then not Doing_New then -- Reset flags used to stop multiple visits to a given -- node. for Uref in UNR.First .. UNR.Last loop UNR.Table (Uref).Visited := False; end loop; -- Now establish all the links we need Elab_All_Links (Withed_Unit, U, Elab_All_Desirable, Make_Elab_All_Entry (Withs.Table (W).Uname, No_Elab_All_Link)); -- Pragma Elaborate case. We must build a link for the -- withed unit itself, and also the corresponding body if -- there is one. -- However, skip this processing if there is no ALI file for -- the WITH entry, because this means it is a generic (even -- when we fix the generics so that an ALI file is present, -- we probably still will have no ALI file for unchecked and -- other special cases). elsif Withs.Table (W).Elaborate and then Withs.Table (W).Afile /= No_File then Build_Link (Withed_Unit, U, Withed); if Units.Table (Withed_Unit).Utype = Is_Spec then Build_Link (Corresponding_Body (Withed_Unit), U, Elab); end if; -- Elaborate_Desirable case, for this we establish the same -- links as above, but with a different reason. elsif Withs.Table (W).Elab_Desirable then Build_Link (Withed_Unit, U, Withed); if Units.Table (Withed_Unit).Utype = Is_Spec then Build_Link (Corresponding_Body (Withed_Unit), U, Elab_Desirable); end if; -- A limited_with does not establish an elaboration -- dependence (that's the whole point). elsif Withs.Table (W).Limited_With then null; -- Case of normal WITH with no elaboration pragmas, just -- build the single link to the directly referenced unit else Build_Link (Withed_Unit, U, Withed); end if; end if; <> null; end loop; end if; end loop; -- If -f switch was given, take into account dependences -- specified in the file . if Force_Elab_Order_File /= null then Force_Elab_Order; end if; -- Output elaboration dependencies if option is set if Elab_Dependency_Output or Debug_Flag_E then if Doing_New then Write_Dependencies; end if; end if; end Gather_Dependencies; ---------- -- Init -- ---------- procedure Init is begin Num_Chosen := 0; Num_Left := Int (Units.Last - Units.First + 1); Succ.Init; Elab_All_Entries.Init; UNR.Init; -- Initialize unit table for elaboration control for U in Units.First .. Units.Last loop UNR.Append ((Successors => No_Successor, Num_Pred => 0, Nextnp => No_Unit_Id, Visited => False, Elab_Position => 0, SCC_Root => No_Unit_Id, Nodes => null, SCC_Num_Pred => 0, Validate_Seen => False)); end loop; end Init; ------------------ -- Is_Body_Unit -- ------------------ function Is_Body_Unit (U : Unit_Id) return Boolean is begin return Units.Table (U).Utype = Is_Body or else Units.Table (U).Utype = Is_Body_Only; end Is_Body_Unit; ----------------------------- -- Is_Pure_Or_Preelab_Unit -- ----------------------------- function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean is begin -- If we have a body with separate spec, test flags on the spec if Units.Table (U).Utype = Is_Body then return Units.Table (Corresponding_Spec (U)).Preelab or else Units.Table (Corresponding_Spec (U)).Pure; -- Otherwise we have a spec or body acting as spec, test flags on unit else return Units.Table (U).Preelab or else Units.Table (U).Pure; end if; end Is_Pure_Or_Preelab_Unit; --------------------- -- Is_Waiting_Body -- --------------------- function Is_Waiting_Body (U : Unit_Id) return Boolean is begin return Units.Table (U).Utype = Is_Body and then UNR.Table (Corresponding_Spec (U)).Elab_Position /= 0; end Is_Waiting_Body; ------------------------- -- Make_Elab_All_Entry -- ------------------------- function Make_Elab_All_Entry (Unam : Unit_Name_Type; Link : Elab_All_Id) return Elab_All_Id is begin Elab_All_Entries.Append ((Needed_By => Unam, Next_Elab => Link)); return Elab_All_Entries.Last; end Make_Elab_All_Entry; ---------------- -- Unit_Id_Of -- ---------------- function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id is Info : constant Int := Get_Name_Table_Int (Uname); begin pragma Assert (Info /= 0 and then Unit_Id (Info) /= No_Unit_Id); return Unit_Id (Info); end Unit_Id_Of; -------------- -- Validate -- -------------- procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean) is Cur_SCC : Unit_Id := No_Unit_Id; OK : Boolean := True; Msg : String := "Old: "; begin if Doing_New then Msg := "New: "; end if; -- For each unit, assert that its successors are elaborated after it for J in Order'Range loop declare U : constant Unit_Id := Order (J); S : Successor_Id := UNR.Table (U).Successors; begin while S /= No_Successor loop if UNR.Table (Succ.Table (S).After).Elab_Position <= UNR.Table (U).Elab_Position then OK := False; Write_Line (Msg & " elab order failed"); end if; S := Succ.Table (S).Next; end loop; end; end loop; -- An SCC of size 2 units necessarily consists of a spec and the -- corresponding body. Assert that the body is elaborated immediately -- after the spec, with nothing in between. (We only have SCCs in the -- new algorithm.) if Doing_New then for J in Order'Range loop declare U : constant Unit_Id := Order (J); begin if Nodes (U)'Length = 2 then if Units.Table (U).Utype = Is_Spec then if Order (J + 1) /= Corresponding_Body (U) then OK := False; Write_Line (Msg & "Bad spec with SCC of size 2:"); Write_SCC (SCC (U)); end if; end if; if Units.Table (U).Utype = Is_Body then if Order (J - 1) /= Corresponding_Spec (U) then OK := False; Write_Line (Msg & "Bad body with SCC of size 2:"); Write_SCC (SCC (U)); end if; end if; end if; end; end loop; -- Assert that all units of an SCC are elaborated together, with no -- units from other SCCs in between. The above spec/body case is a -- special case of this general rule. for J in Order'Range loop declare U : constant Unit_Id := Order (J); begin if SCC (U) /= Cur_SCC then Cur_SCC := SCC (U); if UNR.Table (Cur_SCC).Validate_Seen then OK := False; Write_Line (Msg & "SCC not elaborated together:"); Write_SCC (Cur_SCC); end if; UNR.Table (Cur_SCC).Validate_Seen := True; end if; end; end loop; end if; pragma Assert (OK); end Validate; ------------------- -- Write_Closure -- ------------------- procedure Write_Closure (Order : Unit_Id_Array) is package Closure_Sources is new Table.Table (Table_Component_Type => File_Name_Type, Table_Index_Type => Natural, Table_Low_Bound => 1, Table_Initial => 10, Table_Increment => 100, Table_Name => "Gnatbind.Closure_Sources"); -- Table to record the sources in the closure, to avoid duplications function Put_In_Sources (S : File_Name_Type) return Boolean; -- Check if S is already in table Sources and put in Sources if it is -- not. Return False if the source is already in Sources, and True if -- it is added. -------------------- -- Put_In_Sources -- -------------------- function Put_In_Sources (S : File_Name_Type) return Boolean is begin for J in 1 .. Closure_Sources.Last loop if Closure_Sources.Table (J) = S then return False; end if; end loop; Closure_Sources.Append (S); return True; end Put_In_Sources; -- Local variables Source : File_Name_Type; -- Start of processing for Write_Closure begin Closure_Sources.Init; if not Zero_Formatting then Write_Eol; Write_Str ("REFERENCED SOURCES"); Write_Eol; end if; for J in reverse Order'Range loop Source := Units.Table (Order (J)).Sfile; -- Do not include same source more than once if Put_In_Sources (Source) -- Do not include run-time units unless -Ra switch set and then (List_Closure_All or else not Is_Internal_File_Name (Source)) then if not Zero_Formatting then Write_Str (" "); end if; Write_Str (Get_Name_String (Source)); Write_Eol; end if; end loop; -- Subunits do not appear in the elaboration table because they are -- subsumed by their parent units, but we need to list them for other -- tools. For now they are listed after other files, rather than right -- after their parent, since there is no easy link between the -- elaboration table and the ALIs table ??? As subunits may appear -- repeatedly in the list, if the parent unit appears in the context of -- several units in the closure, duplicates are suppressed. for J in Sdep.First .. Sdep.Last loop Source := Sdep.Table (J).Sfile; if Sdep.Table (J).Subunit_Name /= No_Name and then Put_In_Sources (Source) and then not Is_Internal_File_Name (Source) then if not Zero_Formatting then Write_Str (" "); end if; Write_Str (Get_Name_String (Source)); Write_Eol; end if; end loop; if not Zero_Formatting then Write_Eol; end if; end Write_Closure; ------------------------ -- Write_Dependencies -- ------------------------ procedure Write_Dependencies is begin if not Zero_Formatting then Write_Eol; Write_Str (" ELABORATION ORDER DEPENDENCIES"); Write_Eol; Write_Eol; end if; Info_Prefix_Suppress := True; for S in Succ_First .. Succ.Last loop Elab_Error_Msg (S); end loop; Info_Prefix_Suppress := False; if not Zero_Formatting then Write_Eol; end if; end Write_Dependencies; -------------------------- -- Write_Elab_All_Chain -- -------------------------- procedure Write_Elab_All_Chain (S : Successor_Id) is ST : constant Successor_Link := Succ.Table (S); After : constant Unit_Name_Type := Units.Table (ST.After).Uname; L : Elab_All_Id; Nam : Unit_Name_Type; First_Name : Boolean := True; begin if ST.Reason in Elab_All .. Elab_All_Desirable then L := ST.Elab_All_Link; while L /= No_Elab_All_Link loop Nam := Elab_All_Entries.Table (L).Needed_By; Error_Msg_Unit_1 := Nam; Error_Msg_Output (" $", Info => True); Get_Name_String (Nam); if Name_Buffer (Name_Len) = 'b' then if First_Name then Error_Msg_Output (" must be elaborated along with its spec:", Info => True); else Error_Msg_Output (" which must be elaborated along with its " & "spec:", Info => True); end if; else if First_Name then Error_Msg_Output (" is withed by:", Info => True); else Error_Msg_Output (" which is withed by:", Info => True); end if; end if; First_Name := False; L := Elab_All_Entries.Table (L).Next_Elab; end loop; Error_Msg_Unit_1 := After; Error_Msg_Output (" $", Info => True); end if; end Write_Elab_All_Chain; ---------------------- -- Write_Elab_Order -- ---------------------- procedure Write_Elab_Order (Order : Unit_Id_Array; Title : String) is begin if Title /= "" then Write_Eol; Write_Str (Title); Write_Eol; end if; for J in Order'Range loop if not Units.Table (Order (J)).SAL_Interface then if not Zero_Formatting then Write_Str (" "); end if; Write_Unit_Name (Units.Table (Order (J)).Uname); Write_Eol; end if; end loop; if Title /= "" then Write_Eol; end if; end Write_Elab_Order; -------------- -- Elab_New -- -------------- package body Elab_New is generic type Node is (<>); First_Node : Node; Last_Node : Node; type Node_Array is array (Pos range <>) of Node; with function Successors (N : Node) return Node_Array; with procedure Create_SCC (Root : Node; Nodes : Node_Array); procedure Compute_Strongly_Connected_Components; -- Compute SCCs for a directed graph. The nodes in the graph are all -- values of type Node in the range First_Node .. Last_Node. -- Successors(N) returns the nodes pointed to by the edges emanating -- from N. Create_SCC is a callback that is called once for each SCC, -- passing in the Root node for that SCC (which is an arbitrary node in -- the SCC used as a representative of that SCC), and the set of Nodes -- in that SCC. -- -- This is generic, in case we want to use it elsewhere; then we could -- move this into a separate library unit. Unfortunately, it's not as -- generic as one might like. Ideally, we would have "type Node is -- private;", and pass in iterators to iterate over all nodes, and over -- the successors of a given node. However, that leads to using advanced -- features of Ada that are not allowed in the compiler and binder for -- bootstrapping reasons. It also leads to trampolines, which are not -- allowed in the compiler and binder. Restricting Node to be discrete -- allows us to iterate over all nodes with a 'for' loop, and allows us -- to attach temporary information to nodes by having an array indexed -- by Node. procedure Compute_Unit_SCCs; -- Use the above generic procedure to compute the SCCs for the graph of -- units. Store in each Unit_Node_Record the SCC_Root and Nodes -- components. Also initialize the SCC_Num_Pred components. procedure Find_Elab_All_Errors; -- Generate an error for illegal Elaborate_All pragmas (explicit or -- implicit). A pragma Elaborate_All (Y) on unit X is legal if and only -- if X and Y are in different SCCs. ------------------------------------------- -- Compute_Strongly_Connected_Components -- ------------------------------------------- procedure Compute_Strongly_Connected_Components is -- This uses Tarjan's algorithm for finding SCCs. Comments here are -- intended to tell what it does, but if you want to know how it -- works, you have to look it up. Please do not modify this code -- without reading up on Tarjan's algorithm. subtype Node_Index is Nat; No_Index : constant Node_Index := 0; Num_Nodes : constant Nat := Node'Pos (Last_Node) - Node'Pos (First_Node) + 1; Stack : Node_Array (1 .. Num_Nodes); Top : Node_Index := 0; -- Stack of nodes, pushed when first visited. All nodes of an SCC are -- popped at once when the SCC is found. subtype Valid_Node is Node range First_Node .. Last_Node; Node_Indices : array (Valid_Node) of Node_Index := (others => No_Index); -- Each node has an "index", which is the sequential number in the -- order in which they are visited in the recursive walk. No_Index -- means "not yet visited"; we want to avoid walking any node more -- than once. Index : Node_Index := 1; -- Next value to be assigned to a node index Low_Links : array (Valid_Node) of Node_Index; -- Low_Links (N) is the smallest index of nodes reachable from N On_Stack : array (Valid_Node) of Boolean := (others => False); -- True if the node is currently on the stack procedure Walk (N : Valid_Node); -- Recursive depth-first graph walk, with the node index used to -- avoid visiting a node more than once. ---------- -- Walk -- ---------- procedure Walk (N : Valid_Node) is Stack_Position_Of_N : constant Pos := Top + 1; S : constant Node_Array := Successors (N); begin -- Assign the index and low link, increment Index for next call to -- Walk. Node_Indices (N) := Index; Low_Links (N) := Index; Index := Index + 1; -- Push it on the stack: Top := Stack_Position_Of_N; Stack (Top) := N; On_Stack (N) := True; -- Walk not-yet-visited subnodes, and update low link for visited -- ones as appropriate. for J in S'Range loop if Node_Indices (S (J)) = No_Index then Walk (S (J)); Low_Links (N) := Node_Index'Min (Low_Links (N), Low_Links (S (J))); elsif On_Stack (S (J)) then Low_Links (N) := Node_Index'Min (Low_Links (N), Node_Indices (S (J))); end if; end loop; -- If the index is (still) equal to the low link, we've found an -- SCC. Pop the whole SCC off the stack, and call Create_SCC. if Low_Links (N) = Node_Indices (N) then declare SCC : Node_Array renames Stack (Stack_Position_Of_N .. Top); pragma Assert (SCC'Length >= 1); pragma Assert (SCC (SCC'First) = N); begin for J in SCC'Range loop On_Stack (SCC (J)) := False; end loop; Create_SCC (Root => N, Nodes => SCC); pragma Assert (Top - SCC'Length = Stack_Position_Of_N - 1); Top := Stack_Position_Of_N - 1; -- pop all end; end if; end Walk; -- Start of processing for Compute_Strongly_Connected_Components begin -- Walk all the nodes that have not yet been walked for N in Valid_Node loop if Node_Indices (N) = No_Index then Walk (N); end if; end loop; end Compute_Strongly_Connected_Components; ----------------------- -- Compute_Unit_SCCs -- ----------------------- procedure Compute_Unit_SCCs is function Successors (U : Unit_Id) return Unit_Id_Array; -- Return all the units that must be elaborated after U. In addition, -- if U is a body, include the corresponding spec; this ensures that -- a spec/body pair are always in the same SCC. procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array); -- Set Nodes of the Root, and set SCC_Root of all the Nodes procedure Init_SCC_Num_Pred (U : Unit_Id); -- Initialize the SCC_Num_Pred fields, so that the root of each SCC -- has a count of the number of successors of all the units in the -- SCC, but only for successors outside the SCC. procedure Compute_SCCs is new Compute_Strongly_Connected_Components (Node => Unit_Id, First_Node => Units.First, Last_Node => Units.Last, Node_Array => Unit_Id_Array, Successors => Successors, Create_SCC => Create_SCC); ---------------- -- Create_SCC -- ---------------- procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array) is begin if Debug_Flag_V then Write_Str ("Root = "); Write_Int (Int (Root)); Write_Str (" "); Write_Unit_Name (Units.Table (Root).Uname); Write_Str (" -- "); Write_Int (Nodes'Length); Write_Str (" units:"); Write_Eol; for J in Nodes'Range loop Write_Str (" "); Write_Int (Int (Nodes (J))); Write_Str (" "); Write_Unit_Name (Units.Table (Nodes (J)).Uname); Write_Eol; end loop; end if; pragma Assert (Nodes (Nodes'First) = Root); pragma Assert (UNR.Table (Root).Nodes = null); UNR.Table (Root).Nodes := new Unit_Id_Array'(Nodes); for J in Nodes'Range loop pragma Assert (SCC (Nodes (J)) = No_Unit_Id); UNR.Table (Nodes (J)).SCC_Root := Root; end loop; end Create_SCC; ---------------- -- Successors -- ---------------- function Successors (U : Unit_Id) return Unit_Id_Array is S : Successor_Id := UNR.Table (U).Successors; Tab : Unit_Id_Table; begin -- Pretend that a spec is a successor of its body (even though it -- isn't), just so both get included. if Units.Table (U).Utype = Is_Body then Append (Tab, Corresponding_Spec (U)); end if; -- Now include the real successors while S /= No_Successor loop pragma Assert (Succ.Table (S).Before = U); Append (Tab, Succ.Table (S).After); S := Succ.Table (S).Next; end loop; declare Result : constant Unit_Id_Array := Tab.Table (1 .. Last (Tab)); begin Free (Tab); return Result; end; end Successors; ----------------------- -- Init_SCC_Num_Pred -- ----------------------- procedure Init_SCC_Num_Pred (U : Unit_Id) is begin if UNR.Table (U).Visited then return; end if; UNR.Table (U).Visited := True; declare S : Successor_Id := UNR.Table (U).Successors; begin while S /= No_Successor loop pragma Assert (Succ.Table (S).Before = U); Init_SCC_Num_Pred (Succ.Table (S).After); if SCC (U) /= SCC (Succ.Table (S).After) then UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred := UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred + 1; end if; S := Succ.Table (S).Next; end loop; end; end Init_SCC_Num_Pred; -- Start of processing for Compute_Unit_SCCs begin Compute_SCCs; for Uref in UNR.First .. UNR.Last loop pragma Assert (not UNR.Table (Uref).Visited); null; end loop; for Uref in UNR.First .. UNR.Last loop Init_SCC_Num_Pred (Uref); end loop; -- Assert that SCC_Root of all units has been set to a valid unit, -- and that SCC_Num_Pred has not been modified in non-root units. for Uref in UNR.First .. UNR.Last loop pragma Assert (UNR.Table (Uref).SCC_Root /= No_Unit_Id); pragma Assert (UNR.Table (Uref).SCC_Root in UNR.First .. UNR.Last); if SCC (Uref) /= Uref then pragma Assert (UNR.Table (Uref).SCC_Num_Pred = 0); null; end if; end loop; end Compute_Unit_SCCs; -------------------------- -- Find_Elab_All_Errors -- -------------------------- procedure Find_Elab_All_Errors is Withed_Unit : Unit_Id; begin for U in Units.First .. Units.Last loop -- If this unit is not an interface to a stand-alone library, -- process WITH references for this unit ignoring interfaces to -- stand-alone libraries. if not Units.Table (U).SAL_Interface then for W in Units.Table (U).First_With .. Units.Table (U).Last_With loop if Withs.Table (W).Sfile /= No_File and then (not Withs.Table (W).SAL_Interface) then -- Check for special case of withing a unit that does not -- exist any more. if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then goto Next_With; end if; Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname); -- If it's Elaborate_All or Elab_All_Desirable, check -- that the withER and withEE are not in the same SCC. if Withs.Table (W).Elaborate_All or else Withs.Table (W).Elab_All_Desirable then if SCC (U) = SCC (Withed_Unit) then Illegal_Elab_All := True; -- ???? -- We could probably give better error messages -- than Elab_Old here, but for now, to avoid -- disruption, we don't give any error here. -- Instead, we set the Illegal_Elab_All flag above, -- and then run the Elab_Old algorithm to issue the -- error message. Ideally, we would like to print -- multiple errors rather than stopping after the -- first cycle. if False then Error_Msg_Output ("illegal pragma Elaborate_All", Info => False); end if; end if; end if; end if; <> null; end loop; end if; end loop; end Find_Elab_All_Errors; --------------------- -- Find_Elab_Order -- --------------------- procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is Best_So_Far : Unit_Id; U : Unit_Id; begin -- Gather dependencies and output them if option set Gather_Dependencies; Compute_Unit_SCCs; -- Initialize the no-predecessor list No_Pred := No_Unit_Id; for U in UNR.First .. UNR.Last loop if UNR.Table (U).Num_Pred = 0 then UNR.Table (U).Nextnp := No_Pred; No_Pred := U; end if; end loop; -- OK, now we determine the elaboration order proper. All we do is to -- select the best choice from the no-predecessor list until all the -- nodes have been chosen. Outer : loop -- If there are no nodes with predecessors, then either we are -- done, as indicated by Num_Left being set to zero, or we have -- a circularity. In the latter case, diagnose the circularity, -- removing it from the graph and continue. -- ????But Diagnose_Elaboration_Problem always raises an -- exception. Get_No_Pred : while No_Pred = No_Unit_Id loop exit Outer when Num_Left < 1; Diagnose_Elaboration_Problem (Elab_Order); end loop Get_No_Pred; U := No_Pred; Best_So_Far := No_Unit_Id; -- Loop to choose best entry in No_Pred list No_Pred_Search : loop if Debug_Flag_N then Write_Str (" considering choice of "); Write_Unit_Name (Units.Table (U).Uname); Write_Eol; if Units.Table (U).Elaborate_Body then Write_Str (" Elaborate_Body = True, Num_Pred for body = "); Write_Int (UNR.Table (Corresponding_Body (U)).Num_Pred); else Write_Str (" Elaborate_Body = False"); end if; Write_Eol; end if; -- Don't even consider units whose SCC is not ready. This -- ensures that all units of an SCC will be elaborated -- together, with no other units in between. if SCC_Num_Pred (U) = 0 and then Better_Choice (U, Best_So_Far) then if Debug_Flag_N then Write_Str (" tentatively chosen (best so far)"); Write_Eol; end if; Best_So_Far := U; end if; U := UNR.Table (U).Nextnp; exit No_Pred_Search when U = No_Unit_Id; end loop No_Pred_Search; -- Choose the best candidate found Choose (Elab_Order, Best_So_Far); -- If it's a spec with a body, and the body is not yet chosen, -- choose the body if possible. The case where the body is -- already chosen is Elaborate_Body; the above call to Choose -- the spec will also Choose the body. if Units.Table (Best_So_Far).Utype = Is_Spec and then UNR.Table (Corresponding_Body (Best_So_Far)).Elab_Position = 0 then declare Choose_The_Body : constant Boolean := UNR.Table (Corresponding_Body (Best_So_Far)).Num_Pred = 0; begin if Debug_Flag_B then Write_Str ("Can we choose the body?... "); if Choose_The_Body then Write_Line ("Yes!"); else Write_Line ("No."); end if; end if; if Choose_The_Body then Choose (Elab_Order, Corresponding_Body (Best_So_Far)); end if; end; end if; -- Finally, choose all the rest of the units in the same SCC as -- Best_So_Far. If it hasn't been chosen (Elab_Position = 0), and -- it's ready to be chosen (Num_Pred = 0), then we can choose it. loop declare Chose_One_Or_More : Boolean := False; SCC : Unit_Id_Array renames Nodes (Best_So_Far).all; begin for J in SCC'Range loop if UNR.Table (SCC (J)).Elab_Position = 0 and then UNR.Table (SCC (J)).Num_Pred = 0 then Chose_One_Or_More := True; Choose (Elab_Order, SCC (J)); end if; end loop; exit when not Chose_One_Or_More; end; end loop; end loop Outer; Find_Elab_All_Errors; end Find_Elab_Order; ----------- -- Nodes -- ----------- function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr is begin return UNR.Table (SCC (U)).Nodes; end Nodes; --------- -- SCC -- --------- function SCC (U : Unit_Id) return Unit_Id is begin return UNR.Table (U).SCC_Root; end SCC; ------------------ -- SCC_Num_Pred -- ------------------ function SCC_Num_Pred (U : Unit_Id) return Int is begin return UNR.Table (SCC (U)).SCC_Num_Pred; end SCC_Num_Pred; --------------- -- Write_SCC -- --------------- procedure Write_SCC (U : Unit_Id) is pragma Assert (SCC (U) = U); begin for J in Nodes (U)'Range loop Write_Int (Int (UNR.Table (Nodes (U) (J)).Elab_Position)); Write_Str (". "); Write_Unit_Name (Units.Table (Nodes (U) (J)).Uname); Write_Eol; end loop; Write_Eol; end Write_SCC; end Elab_New; -------------- -- Elab_Old -- -------------- package body Elab_Old is --------------------- -- Find_Elab_Order -- --------------------- procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is Best_So_Far : Unit_Id; U : Unit_Id; begin -- Gather dependencies and output them if option set Gather_Dependencies; -- Initialize the no-predecessor list No_Pred := No_Unit_Id; for U in UNR.First .. UNR.Last loop if UNR.Table (U).Num_Pred = 0 then UNR.Table (U).Nextnp := No_Pred; No_Pred := U; end if; end loop; -- OK, now we determine the elaboration order proper. All we do is to -- select the best choice from the no-predecessor list until all the -- nodes have been chosen. Outer : loop -- If there are no nodes with predecessors, then either we are -- done, as indicated by Num_Left being set to zero, or we have -- a circularity. In the latter case, diagnose the circularity, -- removing it from the graph and continue. -- ????But Diagnose_Elaboration_Problem always raises an -- exception. Get_No_Pred : while No_Pred = No_Unit_Id loop exit Outer when Num_Left < 1; Diagnose_Elaboration_Problem (Elab_Order); end loop Get_No_Pred; U := No_Pred; Best_So_Far := No_Unit_Id; -- Loop to choose best entry in No_Pred list No_Pred_Search : loop if Debug_Flag_N then Write_Str (" considering choice of "); Write_Unit_Name (Units.Table (U).Uname); Write_Eol; if Units.Table (U).Elaborate_Body then Write_Str (" Elaborate_Body = True, Num_Pred for body = "); Write_Int (UNR.Table (Corresponding_Body (U)).Num_Pred); else Write_Str (" Elaborate_Body = False"); end if; Write_Eol; end if; -- This is a candididate to be considered for choice if Better_Choice (U, Best_So_Far) then if Debug_Flag_N then Write_Str (" tentatively chosen (best so far)"); Write_Eol; end if; Best_So_Far := U; end if; U := UNR.Table (U).Nextnp; exit No_Pred_Search when U = No_Unit_Id; end loop No_Pred_Search; -- Choose the best candidate found Choose (Elab_Order, Best_So_Far); end loop Outer; end Find_Elab_Order; end Elab_Old; end Binde;