------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- A D A . N U M E R I C S . A U X -- -- -- -- S p e c -- -- (Apple OS X Version) -- -- -- -- Copyright (C) 1992-2014, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- This version is for use on OS X. It uses the normal Unix math functions, -- except for sine/cosine which have been implemented directly in Ada to get -- the required accuracy. package Ada.Numerics.Aux is pragma Pure; pragma Linker_Options ("-lm"); type Double is digits 15; -- Type Double is the type used to call the C routines -- The following functions have been implemented in Ada, since -- the OS X math library didn't meet accuracy requirements for -- argument reduction. The implementation here has been tailored -- to match Ada strict mode Numerics requirements while maintaining -- maximum efficiency. function Sin (X : Double) return Double; pragma Inline (Sin); function Cos (X : Double) return Double; pragma Inline (Cos); -- We import these functions directly from C. Note that we label them -- all as pure functions, because indeed all of them are in fact pure. function Tan (X : Double) return Double; pragma Import (C, Tan, "tan"); pragma Pure_Function (Tan); function Exp (X : Double) return Double; pragma Import (C, Exp, "exp"); pragma Pure_Function (Exp); function Sqrt (X : Double) return Double; pragma Import (C, Sqrt, "sqrt"); pragma Pure_Function (Sqrt); function Log (X : Double) return Double; pragma Import (C, Log, "log"); pragma Pure_Function (Log); function Acos (X : Double) return Double; pragma Import (C, Acos, "acos"); pragma Pure_Function (Acos); function Asin (X : Double) return Double; pragma Import (C, Asin, "asin"); pragma Pure_Function (Asin); function Atan (X : Double) return Double; pragma Import (C, Atan, "atan"); pragma Pure_Function (Atan); function Sinh (X : Double) return Double; pragma Import (C, Sinh, "sinh"); pragma Pure_Function (Sinh); function Cosh (X : Double) return Double; pragma Import (C, Cosh, "cosh"); pragma Pure_Function (Cosh); function Tanh (X : Double) return Double; pragma Import (C, Tanh, "tanh"); pragma Pure_Function (Tanh); function Pow (X, Y : Double) return Double; pragma Import (C, Pow, "pow"); pragma Pure_Function (Pow); end Ada.Numerics.Aux;