------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . -- -- I N D E F I N I T E _ O R D E R E D _ S E T S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2005 Free Software Foundation, Inc. -- -- -- -- This specification is derived from the Ada Reference Manual for use with -- -- GNAT. The copyright notice above, and the license provisions that follow -- -- apply solely to the contents of the part following the private keyword. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Containers.Red_Black_Trees.Generic_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations); with Ada.Containers.Red_Black_Trees.Generic_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys); with Ada.Containers.Red_Black_Trees.Generic_Set_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations); with Ada.Unchecked_Deallocation; package body Ada.Containers.Indefinite_Ordered_Sets is ----------------------- -- Local Subprograms -- ----------------------- function Color (Node : Node_Access) return Color_Type; pragma Inline (Color); function Copy_Node (Source : Node_Access) return Node_Access; pragma Inline (Copy_Node); procedure Free (X : in out Node_Access); procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access); function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Element_Node); function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Element_Node); function Is_Less_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Less_Node_Node); function Left (Node : Node_Access) return Node_Access; pragma Inline (Left); function Parent (Node : Node_Access) return Node_Access; pragma Inline (Parent); procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type); function Right (Node : Node_Access) return Node_Access; pragma Inline (Right); procedure Set_Color (Node : Node_Access; Color : Color_Type); pragma Inline (Set_Color); procedure Set_Left (Node : Node_Access; Left : Node_Access); pragma Inline (Set_Left); procedure Set_Parent (Node : Node_Access; Parent : Node_Access); pragma Inline (Set_Parent); procedure Set_Right (Node : Node_Access; Right : Node_Access); pragma Inline (Set_Right); -------------------------- -- Local Instantiations -- -------------------------- procedure Free_Element is new Ada.Unchecked_Deallocation (Element_Type, Element_Access); package Tree_Operations is new Red_Black_Trees.Generic_Operations (Tree_Types); procedure Delete_Tree is new Tree_Operations.Generic_Delete_Tree (Free); function Copy_Tree is new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree); use Tree_Operations; package Element_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Element_Type, Is_Less_Key_Node => Is_Less_Element_Node, Is_Greater_Key_Node => Is_Greater_Element_Node); package Set_Ops is new Generic_Set_Operations (Tree_Operations => Tree_Operations, Insert_With_Hint => Insert_With_Hint, Copy_Tree => Copy_Tree, Delete_Tree => Delete_Tree, Is_Less => Is_Less_Node_Node, Free => Free); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin return Left.Node.Element.all < Right.Node.Element.all; end "<"; function "<" (Left : Cursor; Right : Element_Type) return Boolean is begin return Left.Node.Element.all < Right; end "<"; function "<" (Left : Element_Type; Right : Cursor) return Boolean is begin return Left < Right.Node.Element.all; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Set) return Boolean is function Is_Equal_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element.all = R.Element.all; end Is_Equal_Node_Node; -- Start of processing for "=" begin return Is_Equal (Left.Tree, Right.Tree); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin -- L > R same as R < L return Right.Node.Element.all < Left.Node.Element.all; end ">"; function ">" (Left : Cursor; Right : Element_Type) return Boolean is begin return Right < Left.Node.Element.all; end ">"; function ">" (Left : Element_Type; Right : Cursor) return Boolean is begin return Right.Node.Element.all < Left; end ">"; ------------ -- Adjust -- ------------ procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree); procedure Adjust (Container : in out Set) is begin Adjust (Container.Tree); end Adjust; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Ceiling (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Ceiling; ----------- -- Clear -- ----------- procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree); procedure Clear (Container : in out Set) is begin Clear (Container.Tree); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Access) return Color_Type is begin return Node.Color; end Color; -------------- -- Contains -- -------------- function Contains (Container : Set; Item : Element_Type) return Boolean is begin return Find (Container, Item) /= No_Element; end Contains; --------------- -- Copy_Node -- --------------- function Copy_Node (Source : Node_Access) return Node_Access is Element : Element_Access := new Element_Type'(Source.Element.all); begin return new Node_Type'(Parent => null, Left => null, Right => null, Color => Source.Color, Element => Element); exception when others => Free_Element (Element); raise; end Copy_Node; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Position : in out Cursor) is begin if Position.Node = null then raise Constraint_Error; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error; end if; Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node); Free (Position.Node); Position.Container := null; end Delete; procedure Delete (Container : in out Set; Item : Element_Type) is X : Node_Access := Element_Keys.Find (Container.Tree, Item); begin if X = null then raise Constraint_Error; end if; Delete_Node_Sans_Free (Container.Tree, X); Free (X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.First; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.Last; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end if; end Delete_Last; ---------------- -- Difference -- ---------------- procedure Difference (Target : in out Set; Source : Set) is begin Set_Ops.Difference (Target.Tree, Source.Tree); end Difference; function Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Difference; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin return Position.Node.Element.all; end Element; --------------------- -- Equivalent_Sets -- --------------------- function Equivalent_Sets (Left, Right : Set) return Boolean is function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equivalent_Node_Node); function Is_Equivalent is new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); ----------------------------- -- Is_Equivalent_Node_Node -- ----------------------------- function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is begin if L.Element.all < R.Element.all then return False; elsif R.Element.all < L.Element.all then return False; else return True; end if; end Is_Equivalent_Node_Node; -- Start of processing for Equivalent_Sets begin return Is_Equivalent (Left.Tree, Right.Tree); end Equivalent_Sets; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Item : Element_Type) is X : Node_Access := Element_Keys.Find (Container.Tree, Item); begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Find; ----------- -- First -- ----------- function First (Container : Set) return Cursor is begin if Container.Tree.First = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Container.Tree.First); end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Set) return Element_Type is begin return Container.Tree.First.Element.all; end First_Element; ----------- -- Floor -- ----------- function Floor (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Floor; ---------- -- Free -- ---------- procedure Free (X : in out Node_Access) is procedure Deallocate is new Ada.Unchecked_Deallocation (Node_Type, Node_Access); begin if X = null then return; end if; begin Free_Element (X.Element); exception when others => X.Element := null; Deallocate (X); raise; end; Deallocate (X); end Free; ------------------ -- Generic_Keys -- ------------------ package body Generic_Keys is ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Key_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); --------- -- "<" -- --------- function "<" (Left : Key_Type; Right : Cursor) return Boolean is begin return Left < Right.Node.Element.all; end "<"; function "<" (Left : Cursor; Right : Key_Type) return Boolean is begin return Right > Left.Node.Element.all; end "<"; --------- -- ">" -- --------- function ">" (Left : Key_Type; Right : Cursor) return Boolean is begin return Left > Right.Node.Element.all; end ">"; function ">" (Left : Cursor; Right : Key_Type) return Boolean is begin return Right < Left.Node.Element.all; end ">"; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Ceiling; -------------- -- Contains -- -------------- function Contains (Container : Set; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Key : Key_Type) is X : Node_Access := Key_Keys.Find (Container.Tree, Key); begin if X = null then raise Constraint_Error; end if; Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end Delete; ------------- -- Element -- ------------- function Element (Container : Set; Key : Key_Type) return Element_Type is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin return Node.Element.all; end Element; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Key : Key_Type) is X : Node_Access := Key_Keys.Find (Container.Tree, Key); begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Find; ----------- -- Floor -- ----------- function Floor (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key); begin if Node = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Floor; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Left > Right.Element.all; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Left < Right.Element.all; end Is_Less_Key_Node; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin return Key (Position.Node.Element.all); end Key; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; Key : Key_Type; New_Item : Element_Type) is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Node = null then raise Constraint_Error; end if; Replace_Element (Container.Tree, Node, New_Item); end Replace; ----------------------------------- -- Update_Element_Preserving_Key -- ----------------------------------- procedure Update_Element_Preserving_Key (Container : in out Set; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)) is Tree : Tree_Type renames Container.Tree; begin if Position.Node = null then raise Constraint_Error; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error; end if; declare E : Element_Type renames Position.Node.Element.all; K : Key_Type renames Key (E); B : Natural renames Tree.Busy; L : Natural renames Tree.Lock; begin B := B + 1; L := L + 1; begin Process (E); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; if K < E or else K > E then null; else return; end if; end; declare X : Node_Access := Position.Node; begin Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end; raise Program_Error; end Update_Element_Preserving_Key; end Generic_Keys; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; X : Element_Access; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then if Container.Tree.Lock > 0 then raise Program_Error; end if; X := Position.Node.Element; Position.Node.Element := new Element_Type'(New_Item); Free_Element (X); end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Set; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Element : Element_Access := new Element_Type'(New_Item); begin return new Node_Type'(Parent => null, Left => null, Right => null, Color => Red, Element => Element); exception when others => Free_Element (Element); raise; end New_Node; -- Start of processing for Insert begin Insert_Sans_Hint (Container.Tree, New_Item, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; procedure Insert (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then raise Constraint_Error; end if; end Insert; ---------------------- -- Insert_With_Hint -- ---------------------- procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access) is Success : Boolean; function New_Node return Node_Access; procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Insert_Post, Insert_Sans_Hint); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Element : Element_Access := new Element_Type'(Src_Node.Element.all); Node : Node_Access; begin begin Node := new Node_Type; exception when others => Free_Element (Element); raise; end; Node.Element := Element; return Node; end New_Node; -- Start of processing for Insert_With_Hint begin Insert_With_Hint (Dst_Tree, Dst_Hint, Src_Node.Element.all, Dst_Node, Success); end Insert_With_Hint; ------------------ -- Intersection -- ------------------ procedure Intersection (Target : in out Set; Source : Set) is begin Set_Ops.Intersection (Target.Tree, Source.Tree); end Intersection; function Intersection (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Intersection (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Intersection; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Set) return Boolean is begin return Container.Tree.Length = 0; end Is_Empty; ----------------------------- -- Is_Greater_Element_Node -- ----------------------------- function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin -- e > node same as node < e return Right.Element.all < Left; end Is_Greater_Element_Node; -------------------------- -- Is_Less_Element_Node -- -------------------------- function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin return Left < Right.Element.all; end Is_Less_Element_Node; ----------------------- -- Is_Less_Node_Node -- ----------------------- function Is_Less_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element.all < R.Element.all; end Is_Less_Node_Node; --------------- -- Is_Subset -- --------------- function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is begin return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree); end Is_Subset; ------------- -- Iterate -- ------------- procedure Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of prccessing for Iterate begin B := B + 1; begin Local_Iterate (T); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; ---------- -- Last -- ---------- function Last (Container : Set) return Cursor is begin if Container.Tree.Last = null then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Container.Tree.Last); end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Set) return Element_Type is begin return Container.Tree.Last.Element.all; end Last_Element; ---------- -- Left -- ---------- function Left (Node : Node_Access) return Node_Access is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Set) return Count_Type is begin return Container.Tree.Length; end Length; ---------- -- Move -- ---------- procedure Move is new Tree_Operations.Generic_Move (Clear); procedure Move (Target : in out Set; Source : in out Set) is begin Move (Target => Target.Tree, Source => Source.Tree); end Move; ---------- -- Next -- ---------- procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; declare Node : constant Node_Access := Tree_Operations.Next (Position.Node); begin if Node = null then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Set) return Boolean is begin return Set_Ops.Overlap (Left.Tree, Right.Tree); end Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Access) return Node_Access is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; declare Node : constant Node_Access := Tree_Operations.Previous (Position.Node); begin if Node = null then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Previous; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)) is E : Element_Type renames Position.Node.Element.all; S : Set renames Position.Container.all; T : Tree_Type renames S.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; L : Natural renames T.Lock; begin B := B + 1; L := L + 1; begin Process (E); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : access Root_Stream_Type'Class; Container : out Set) is function Read_Node (Stream : access Root_Stream_Type'Class) return Node_Access; pragma Inline (Read_Node); procedure Read is new Tree_Operations.Generic_Read (Clear, Read_Node); --------------- -- Read_Node -- --------------- function Read_Node (Stream : access Root_Stream_Type'Class) return Node_Access is Node : Node_Access := new Node_Type; begin Node.Element := new Element_Type'(Element_Type'Input (Stream)); return Node; exception when others => Free (Node); -- Note that Free deallocates elem too raise; end Read_Node; -- Start of processing for Read begin Read (Stream, Container.Tree); end Read; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; New_Item : Element_Type) is Node : constant Node_Access := Element_Keys.Find (Container.Tree, New_Item); X : Element_Access; begin if Node = null then raise Constraint_Error; end if; X := Node.Element; Node.Element := new Element_Type'(New_Item); Free_Element (X); end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type) is begin if Item < Node.Element.all or else Node.Element.all < Item then null; else if Tree.Lock > 0 then raise Program_Error; end if; declare X : Element_Access := Node.Element; begin Node.Element := new Element_Type'(Item); Free_Element (X); end; return; end if; Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit Insert_New_Item : declare function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert is new Element_Keys.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is begin Node.Element := new Element_Type'(Item); -- OK if fails return Node; end New_Node; Result : Node_Access; Inserted : Boolean; X : Element_Access := Node.Element; -- Start of processing for Insert_New_Item begin Attempt_Insert : begin Insert (Tree => Tree, Key => Item, Node => Result, Success => Inserted); -- TODO: change name of formal param exception when others => Inserted := False; end Attempt_Insert; if Inserted then pragma Assert (Result = Node); Free_Element (X); -- OK if fails return; end if; end Insert_New_Item; Reinsert_Old_Element : declare function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert is new Element_Keys.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is begin return Node; end New_Node; Result : Node_Access; Inserted : Boolean; -- Start of processing for Reinsert_Old_Element begin Insert (Tree => Tree, Key => Node.Element.all, Node => Result, Success => Inserted); -- TODO: change name of formal param exception when others => null; end Reinsert_Old_Element; raise Program_Error; end Replace_Element; procedure Replace_Element (Container : Set; Position : Cursor; By : Element_Type) is Tree : Tree_Type renames Position.Container.Tree'Unrestricted_Access.all; begin if Position.Node = null then raise Constraint_Error; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error; end if; Replace_Element (Tree, Position.Node, By); end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; B : Natural renames T.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (T); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Access) return Node_Access is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : Node_Access; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : Node_Access; Left : Node_Access) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : Node_Access; Right : Node_Access) is begin Node.Right := Right; end Set_Right; -------------------------- -- Symmetric_Difference -- -------------------------- procedure Symmetric_Difference (Target : in out Set; Source : Set) is begin Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree); end Symmetric_Difference; function Symmetric_Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Symmetric_Difference; ----------- -- Union -- ----------- procedure Union (Target : in out Set; Source : Set) is begin Set_Ops.Union (Target.Tree, Source.Tree); end Union; function Union (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Union (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Union; ----------- -- Write -- ----------- procedure Write (Stream : access Root_Stream_Type'Class; Container : Set) is procedure Write_Node (Stream : access Root_Stream_Type'Class; Node : Node_Access); pragma Inline (Write_Node); procedure Write is new Tree_Operations.Generic_Write (Write_Node); ---------------- -- Write_Node -- ---------------- procedure Write_Node (Stream : access Root_Stream_Type'Class; Node : Node_Access) is begin Element_Type'Output (Stream, Node.Element.all); end Write_Node; -- Start of processing for Write begin Write (Stream, Container.Tree); end Write; end Ada.Containers.Indefinite_Ordered_Sets;