------------------------------------------------------------------------------ -- -- -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS -- -- -- -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- $Revision: 1.1 $ -- -- -- Copyright (C) 1991-2001, Florida State University -- -- -- -- GNARL is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNARL is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNARL; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNARL was developed by the GNARL team at Florida State University. It is -- -- now maintained by Ada Core Technologies Inc. in cooperation with Florida -- -- State University (http://www.gnat.com). -- -- -- ------------------------------------------------------------------------------ -- This is a POSIX-like version of this package -- This package contains all the GNULL primitives that interface directly -- with the underlying OS. -- Note: this file can only be used for POSIX compliant systems that -- implement SCHED_FIFO and Ceiling Locking correctly. -- For configurations where SCHED_FIFO and priority ceiling are not a -- requirement, this file can also be used (e.g AiX threads) pragma Polling (Off); -- Turn off polling, we do not want ATC polling to take place during -- tasking operations. It causes infinite loops and other problems. with System.Tasking.Debug; -- used for Known_Tasks with System.Task_Info; -- used for Task_Info_Type with Interfaces.C; -- used for int -- size_t with System.Interrupt_Management; -- used for Keep_Unmasked -- Abort_Task_Interrupt -- Interrupt_ID with System.Interrupt_Management.Operations; -- used for Set_Interrupt_Mask -- All_Tasks_Mask pragma Elaborate_All (System.Interrupt_Management.Operations); with System.Parameters; -- used for Size_Type with System.Tasking; -- used for Ada_Task_Control_Block -- Task_ID with System.Soft_Links; -- used for Defer/Undefer_Abort -- Note that we do not use System.Tasking.Initialization directly since -- this is a higher level package that we shouldn't depend on. For example -- when using the restricted run time, it is replaced by -- System.Tasking.Restricted.Initialization with System.OS_Primitives; -- used for Delay_Modes with Unchecked_Conversion; with Unchecked_Deallocation; package body System.Task_Primitives.Operations is use System.Tasking.Debug; use System.Tasking; use Interfaces.C; use System.OS_Interface; use System.Parameters; use System.OS_Primitives; package SSL renames System.Soft_Links; ------------------ -- Local Data -- ------------------ -- The followings are logically constants, but need to be initialized -- at run time. All_Tasks_L : aliased System.Task_Primitives.RTS_Lock; -- See comments on locking rules in System.Tasking (spec). Environment_Task_ID : Task_ID; -- A variable to hold Task_ID for the environment task. Locking_Policy : Character; pragma Import (C, Locking_Policy, "__gl_locking_policy"); -- Value of the pragma Locking_Policy: -- 'C' for Ceiling_Locking -- 'I' for Inherit_Locking -- ' ' for none. Unblocked_Signal_Mask : aliased sigset_t; -- The set of signals that should unblocked in all tasks -- The followings are internal configuration constants needed. Next_Serial_Number : Task_Serial_Number := 100; -- We start at 100, to reserve some special values for -- using in error checking. Time_Slice_Val : Integer; pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); Dispatching_Policy : Character; pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F'; -- Indicates whether FIFO_Within_Priorities is set. ----------------------- -- Local Subprograms -- ----------------------- procedure Abort_Handler (Sig : Signal); function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID); function To_Address is new Unchecked_Conversion (Task_ID, System.Address); -------------------- -- Local Packages -- -------------------- package Specific is procedure Initialize (Environment_Task : Task_ID); pragma Inline (Initialize); -- Initialize various data needed by this package. procedure Set (Self_Id : Task_ID); pragma Inline (Set); -- Set the self id for the current task. function Self return Task_ID; pragma Inline (Self); -- Return a pointer to the Ada Task Control Block of the calling task. end Specific; package body Specific is separate; -- The body of this package is target specific. ------------------- -- Abort_Handler -- ------------------- -- Target-dependent binding of inter-thread Abort signal to -- the raising of the Abort_Signal exception. -- The technical issues and alternatives here are essentially -- the same as for raising exceptions in response to other -- signals (e.g. Storage_Error). See code and comments in -- the package body System.Interrupt_Management. -- Some implementations may not allow an exception to be propagated -- out of a handler, and others might leave the signal or -- interrupt that invoked this handler masked after the exceptional -- return to the application code. -- GNAT exceptions are originally implemented using setjmp()/longjmp(). -- On most UNIX systems, this will allow transfer out of a signal handler, -- which is usually the only mechanism available for implementing -- asynchronous handlers of this kind. However, some -- systems do not restore the signal mask on longjmp(), leaving the -- abort signal masked. -- Alternative solutions include: -- 1. Change the PC saved in the system-dependent Context -- parameter to point to code that raises the exception. -- Normal return from this handler will then raise -- the exception after the mask and other system state has -- been restored (see example below). -- 2. Use siglongjmp()/sigsetjmp() to implement exceptions. -- 3. Unmask the signal in the Abortion_Signal exception handler -- (in the RTS). -- The following procedure would be needed if we can't lonjmp out of -- a signal handler (See below) -- procedure Raise_Abort_Signal is -- begin -- raise Standard'Abort_Signal; -- end if; procedure Abort_Handler (Sig : Signal) is T : Task_ID := Self; Result : Interfaces.C.int; Old_Set : aliased sigset_t; begin -- Assuming it is safe to longjmp out of a signal handler, the -- following code can be used: if T.Deferral_Level = 0 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then not T.Aborting then T.Aborting := True; -- Make sure signals used for RTS internal purpose are unmasked Result := pthread_sigmask (SIG_UNBLOCK, Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access); pragma Assert (Result = 0); raise Standard'Abort_Signal; end if; -- Otherwise, something like this is required: -- if not Abort_Is_Deferred.all then -- -- Overwrite the return PC address with the address of the -- -- special raise routine, and "return" to that routine's -- -- starting address. -- Context.PC := Raise_Abort_Signal'Address; -- return; -- end if; end Abort_Handler; ------------------- -- Stack_Guard -- ------------------- procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread); Guard_Page_Address : Address; Res : Interfaces.C.int; begin if Stack_Base_Available then -- Compute the guard page address Guard_Page_Address := Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size; if On then Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON); else Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF); end if; pragma Assert (Res = 0); end if; end Stack_Guard; -------------------- -- Get_Thread_Id -- -------------------- function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is begin return T.Common.LL.Thread; end Get_Thread_Id; ---------- -- Self -- ---------- function Self return Task_ID renames Specific.Self; --------------------- -- Initialize_Lock -- --------------------- -- Note: mutexes and cond_variables needed per-task basis are -- initialized in Initialize_TCB and the Storage_Error is -- handled. Other mutexes (such as All_Tasks_Lock, Memory_Lock...) -- used in RTS is initialized before any status change of RTS. -- Therefore rasing Storage_Error in the following routines -- should be able to be handled safely. procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; if Locking_Policy = 'C' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_PROTECT); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (Prio)); pragma Assert (Result = 0); elsif Locking_Policy = 'I' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_INHERIT); pragma Assert (Result = 0); end if; Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; if Locking_Policy = 'C' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_PROTECT); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last)); pragma Assert (Result = 0); elsif Locking_Policy = 'I' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_INHERIT); pragma Assert (Result = 0); end if; Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then Result := pthread_mutexattr_destroy (Attributes'Access); raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; ------------------- -- Finalize_Lock -- ------------------- procedure Finalize_Lock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; procedure Finalize_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; ---------------- -- Write_Lock -- ---------------- procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (L); -- Assume that the cause of EINVAL is a priority ceiling violation Ceiling_Violation := (Result = EINVAL); pragma Assert (Result = 0 or else Result = EINVAL); end Write_Lock; procedure Write_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (L); pragma Assert (Result = 0); end Write_Lock; procedure Write_Lock (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (T.Common.LL.L'Access); pragma Assert (Result = 0); end Write_Lock; --------------- -- Read_Lock -- --------------- procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is begin Write_Lock (L, Ceiling_Violation); end Read_Lock; ------------ -- Unlock -- ------------ procedure Unlock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end Unlock; procedure Unlock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end Unlock; procedure Unlock (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (T.Common.LL.L'Access); pragma Assert (Result = 0); end Unlock; ------------- -- Sleep -- ------------- procedure Sleep (Self_ID : Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin pragma Assert (Self_ID = Self); Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access); -- EINTR is not considered a failure. pragma Assert (Result = 0 or else Result = EINTR); end Sleep; ----------------- -- Timed_Sleep -- ----------------- -- This is for use within the run-time system, so abort is -- assumed to be already deferred, and the caller should be -- holding its own ATCB lock. procedure Timed_Sleep (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes; Reason : Task_States; Timedout : out Boolean; Yielded : out Boolean) is Check_Time : constant Duration := Monotonic_Clock; Rel_Time : Duration; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin Timedout := True; Yielded := False; if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time); end if; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time); end if; end if; if Abs_Time > Check_Time then if Relative_Timed_Wait then Request := To_Timespec (Rel_Time); else Request := To_Timespec (Abs_Time); end if; loop exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level or else Self_ID.Pending_Priority_Change; Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); exit when Abs_Time <= Monotonic_Clock; if Result = 0 or Result = EINTR then -- Somebody may have called Wakeup for us Timedout := False; exit; end if; pragma Assert (Result = ETIMEDOUT); end loop; end if; end Timed_Sleep; ----------------- -- Timed_Delay -- ----------------- -- This is for use in implementing delay statements, so -- we assume the caller is abort-deferred but is holding -- no locks. procedure Timed_Delay (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Rel_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin -- Only the little window between deferring abort and -- locking Self_ID is the reason we need to -- check for pending abort and priority change below! :( SSL.Abort_Defer.all; Write_Lock (Self_ID); if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time); end if; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); if Relative_Timed_Wait then Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time); end if; end if; if Abs_Time > Check_Time then if Relative_Timed_Wait then Request := To_Timespec (Rel_Time); else Request := To_Timespec (Abs_Time); end if; Self_ID.Common.State := Delay_Sleep; loop if Self_ID.Pending_Priority_Change then Self_ID.Pending_Priority_Change := False; Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority; Set_Priority (Self_ID, Self_ID.Common.Base_Priority); end if; exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); exit when Abs_Time <= Monotonic_Clock; pragma Assert (Result = 0 or else Result = ETIMEDOUT or else Result = EINTR); end loop; Self_ID.Common.State := Runnable; end if; Unlock (Self_ID); Result := sched_yield; SSL.Abort_Undefer.all; end Timed_Delay; --------------------- -- Monotonic_Clock -- --------------------- function Monotonic_Clock return Duration is TS : aliased timespec; Result : Interfaces.C.int; begin Result := clock_gettime (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access); pragma Assert (Result = 0); return To_Duration (TS); end Monotonic_Clock; ------------------- -- RT_Resolution -- ------------------- function RT_Resolution return Duration is begin return 10#1.0#E-6; end RT_Resolution; ------------ -- Wakeup -- ------------ procedure Wakeup (T : Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin Result := pthread_cond_signal (T.Common.LL.CV'Access); pragma Assert (Result = 0); end Wakeup; ----------- -- Yield -- ----------- procedure Yield (Do_Yield : Boolean := True) is Result : Interfaces.C.int; begin if Do_Yield then Result := sched_yield; end if; end Yield; ------------------ -- Set_Priority -- ------------------ procedure Set_Priority (T : Task_ID; Prio : System.Any_Priority; Loss_Of_Inheritance : Boolean := False) is Result : Interfaces.C.int; Param : aliased struct_sched_param; begin T.Common.Current_Priority := Prio; Param.sched_priority := Interfaces.C.int (Prio); if Time_Slice_Supported and then Time_Slice_Val > 0 then Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_RR, Param'Access); elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_FIFO, Param'Access); else Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_OTHER, Param'Access); end if; pragma Assert (Result = 0); end Set_Priority; ------------------ -- Get_Priority -- ------------------ function Get_Priority (T : Task_ID) return System.Any_Priority is begin return T.Common.Current_Priority; end Get_Priority; ---------------- -- Enter_Task -- ---------------- procedure Enter_Task (Self_ID : Task_ID) is begin Self_ID.Common.LL.Thread := pthread_self; Self_ID.Common.LL.LWP := lwp_self; Specific.Set (Self_ID); Lock_All_Tasks_List; for I in Known_Tasks'Range loop if Known_Tasks (I) = null then Known_Tasks (I) := Self_ID; Self_ID.Known_Tasks_Index := I; exit; end if; end loop; Unlock_All_Tasks_List; end Enter_Task; -------------- -- New_ATCB -- -------------- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is begin return new Ada_Task_Control_Block (Entry_Num); end New_ATCB; ---------------------- -- Initialize_TCB -- ---------------------- procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is Mutex_Attr : aliased pthread_mutexattr_t; Result : Interfaces.C.int; Cond_Attr : aliased pthread_condattr_t; begin -- Give the task a unique serial number. Self_ID.Serial_Number := Next_Serial_Number; Next_Serial_Number := Next_Serial_Number + 1; pragma Assert (Next_Serial_Number /= 0); Result := pthread_mutexattr_init (Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_mutexattr_setprotocol (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Mutex_Attr'Access, Interfaces.C.int (System.Any_Priority'Last)); pragma Assert (Result = 0); Result := pthread_mutex_init (Self_ID.Common.LL.L'Access, Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_mutexattr_destroy (Mutex_Attr'Access); pragma Assert (Result = 0); Result := pthread_condattr_init (Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); Succeeded := False; return; end if; Result := pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = 0 then Succeeded := True; else Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); Succeeded := False; end if; Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); end Initialize_TCB; ----------------- -- Create_Task -- ----------------- procedure Create_Task (T : Task_ID; Wrapper : System.Address; Stack_Size : System.Parameters.Size_Type; Priority : System.Any_Priority; Succeeded : out Boolean) is Attributes : aliased pthread_attr_t; Adjusted_Stack_Size : Interfaces.C.size_t; Result : Interfaces.C.int; function Thread_Body_Access is new Unchecked_Conversion (System.Address, Thread_Body); use System.Task_Info; begin if Stack_Size = Unspecified_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size); elsif Stack_Size < Minimum_Stack_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size); else Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size); end if; if Stack_Base_Available then -- If Stack Checking is supported then allocate 2 additional pages: -- -- In the worst case, stack is allocated at something like -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages -- to be sure the effective stack size is greater than what -- has been asked. Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size; end if; Result := pthread_attr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_attr_setdetachstate (Attributes'Access, PTHREAD_CREATE_DETACHED); pragma Assert (Result = 0); Result := pthread_attr_setstacksize (Attributes'Access, Adjusted_Stack_Size); pragma Assert (Result = 0); if T.Common.Task_Info /= Default_Scope then -- We are assuming that Scope_Type has the same values than the -- corresponding C macros Result := pthread_attr_setscope (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info)); pragma Assert (Result = 0); end if; -- Since the initial signal mask of a thread is inherited from the -- creator, and the Environment task has all its signals masked, we -- do not need to manipulate caller's signal mask at this point. -- All tasks in RTS will have All_Tasks_Mask initially. Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); pragma Assert (Result = 0 or else Result = EAGAIN); Succeeded := Result = 0; Result := pthread_attr_destroy (Attributes'Access); pragma Assert (Result = 0); Set_Priority (T, Priority); end Create_Task; ------------------ -- Finalize_TCB -- ------------------ procedure Finalize_TCB (T : Task_ID) is Result : Interfaces.C.int; Tmp : Task_ID := T; procedure Free is new Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID); begin Result := pthread_mutex_destroy (T.Common.LL.L'Access); pragma Assert (Result = 0); Result := pthread_cond_destroy (T.Common.LL.CV'Access); pragma Assert (Result = 0); if T.Known_Tasks_Index /= -1 then Known_Tasks (T.Known_Tasks_Index) := null; end if; Free (Tmp); end Finalize_TCB; --------------- -- Exit_Task -- --------------- procedure Exit_Task is begin pthread_exit (System.Null_Address); end Exit_Task; ---------------- -- Abort_Task -- ---------------- procedure Abort_Task (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_kill (T.Common.LL.Thread, Signal (System.Interrupt_Management.Abort_Task_Interrupt)); pragma Assert (Result = 0); end Abort_Task; ---------------- -- Check_Exit -- ---------------- -- Dummy versions. The only currently working versions is for solaris -- (native). function Check_Exit (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_Exit; -------------------- -- Check_No_Locks -- -------------------- function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_No_Locks; ---------------------- -- Environment_Task -- ---------------------- function Environment_Task return Task_ID is begin return Environment_Task_ID; end Environment_Task; ------------------------- -- Lock_All_Tasks_List -- ------------------------- procedure Lock_All_Tasks_List is begin Write_Lock (All_Tasks_L'Access); end Lock_All_Tasks_List; --------------------------- -- Unlock_All_Tasks_List -- --------------------------- procedure Unlock_All_Tasks_List is begin Unlock (All_Tasks_L'Access); end Unlock_All_Tasks_List; ------------------ -- Suspend_Task -- ------------------ function Suspend_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin return False; end Suspend_Task; ----------------- -- Resume_Task -- ----------------- function Resume_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin return False; end Resume_Task; ---------------- -- Initialize -- ---------------- procedure Initialize (Environment_Task : Task_ID) is act : aliased struct_sigaction; old_act : aliased struct_sigaction; Tmp_Set : aliased sigset_t; Result : Interfaces.C.int; begin Environment_Task_ID := Environment_Task; -- Initialize the lock used to synchronize chain of all ATCBs. Initialize_Lock (All_Tasks_L'Access, All_Tasks_Level); Specific.Initialize (Environment_Task); Enter_Task (Environment_Task); -- Install the abort-signal handler act.sa_flags := 0; act.sa_handler := Abort_Handler'Address; Result := sigemptyset (Tmp_Set'Access); pragma Assert (Result = 0); act.sa_mask := Tmp_Set; Result := sigaction ( Signal (System.Interrupt_Management.Abort_Task_Interrupt), act'Unchecked_Access, old_act'Unchecked_Access); pragma Assert (Result = 0); end Initialize; begin declare Result : Interfaces.C.int; begin -- Mask Environment task for all signals. The original mask of the -- Environment task will be recovered by Interrupt_Server task -- during the elaboration of s-interr.adb. System.Interrupt_Management.Operations.Set_Interrupt_Mask (System.Interrupt_Management.Operations.All_Tasks_Mask'Access); -- Prepare the set of signals that should unblocked in all tasks Result := sigemptyset (Unblocked_Signal_Mask'Access); pragma Assert (Result = 0); for J in Interrupt_Management.Interrupt_ID loop if System.Interrupt_Management.Keep_Unmasked (J) then Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); pragma Assert (Result = 0); end if; end loop; end; end System.Task_Primitives.Operations;