From 07b78716af6a9d7c9fd1e94d9baf94a52c873947 Mon Sep 17 00:00:00 2001
From: Andrew Haley
- * This class represents a specific time in milliseconds since the epoch.
- * The epoch is 1970, January 1 00:00:00.0000 UTC.
- *
- *
- * The representations of the date fields are as follows:
- * Date
is intended to reflect universal time coordinate (UTC),
- * but this depends on the underlying host environment. Most operating systems
- * don't handle the leap second, which occurs about once every year or
- * so. The leap second is added to the last minute of the day on either
- * the 30th of June or the 31st of December, creating a minute 61 seconds
- * in length.
- *
- *
- *
- * Prior to JDK 1.1, this class was the sole class handling date and time
- * related functionality. However, this particular solution was not
- * amenable to internationalization. The new Calendar
- * class should now be used to handle dates and times, with Date
- * being used only for values in milliseconds since the epoch. The
- * Calendar
class, and its concrete implementations, handle
- * the interpretation of these values into minutes, hours, days, months
- * and years. The formatting and parsing of dates is left to the
- * DateFormat
class, which is able to handle the different
- * types of date format which occur in different locales.
- *
new GregorianCalendar(year+1900, month,
- * day)
instead.
- * @param year the difference between the required year and 1900.
- * @param month the month as a value between 0 and 11.
- * @param day the day as a value between 0 and 31.
- */
- public Date(int year, int month, int day)
- {
- this(year, month, day, 0, 0, 0);
- }
-
- /**
- * Creates a new Date Object representing the given time.
- *
- * @deprecated use new GregorianCalendar(year+1900, month,
- * day, hour, min)
instead.
- * @param year the difference between the required year and 1900.
- * @param month the month as a value between 0 and 11.
- * @param day the day as a value between 0 and 31.
- * @param hour the hour as a value between 0 and 23, in 24-hour
- * clock notation.
- * @param min the minute as a value between 0 and 59.
- */
- public Date(int year, int month, int day, int hour, int min)
- {
- this(year, month, day, hour, min, 0);
- }
-
- /**
- * Creates a new Date Object representing the given time.
- *
- * @deprecated use new GregorianCalendar(year+1900, month,
- * day, hour, min, sec)
instead.
- * @param year the difference between the required year and 1900.
- * @param month the month as a value between 0 and 11.
- * @param day the day as a value between 0 and 31.
- * @param hour the hour as a value between 0 and 23, in 24-hour
- * clock notation.
- * @param min the minute as a value between 0 and 59.
- * @param sec the second as a value between 0 and 61 (with 60
- * and 61 being leap seconds).
- */
- public Date(int year, int month, int day, int hour, int min, int sec)
- {
- GregorianCalendar cal =
- new GregorianCalendar(year + 1900, month, day, hour, min, sec);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Creates a new Date from the given string representation. This
- * does the same as new Date(Date.parse(s))
- * @see #parse
- * @deprecated use java.text.DateFormat.parse(s)
instead.
- */
- public Date(String s)
- {
- time = parse(s);
- }
-
- /**
- * Returns a copy of this Date
object.
- *
- * @return a copy, or null if the object couldn't be
- * cloned.
- * @see Object#clone()
- */
- public Object clone()
- {
- try
- {
- return super.clone();
- }
- catch (CloneNotSupportedException ex)
- {
- return null;
- }
- }
-
- /**
- * Returns the number of milliseconds since the epoch
- * specified by the given arguments. The arguments are
- * interpreted relative to UTC rather than the local
- * time zone.
- *
- * @deprecated Use Calendar
with a UTC
- * TimeZone
instead.
- * @param year the difference between the required year and 1900.
- * @param month the month as a value between 0 and 11.
- * @param date the day as a value between 0 and 31.
- * @param hrs the hour as a value between 0 and 23, in 24-hour
- * clock notation.
- * @param min the minute as a value between 0 and 59.
- * @param sec the second as a value between 0 and 61 (with 60
- * and 61 being leap seconds).
- * @return the time in milliseconds since the epoch.
- */
- public static long UTC(int year, int month, int date,
- int hrs, int min, int sec)
- {
- GregorianCalendar cal =
- new GregorianCalendar(year + 1900, month, date, hrs, min, sec);
- cal.set(Calendar.ZONE_OFFSET, 0);
- cal.set(Calendar.DST_OFFSET, 0);
- return cal.getTimeInMillis();
- }
-
- /**
- * Gets the time represented by this object.
- *
- * @return the time in milliseconds since the epoch.
- */
- public long getTime()
- {
- return time;
- }
-
- /**
- * Returns the number of minutes offset used with UTC to give the time
- * represented by this object in the current time zone. The date information
- * from this object is also used to determine whether or not daylight savings
- * time is in effect. For example, the offset for the UK would be 0 if the
- * month of the date object was January, and 1 if the month was August.
- *
- * @deprecated use
- * Calendar.get(Calendar.ZONE_OFFSET)+Calendar.get(Calendar.DST_OFFSET)
- * instead.
- * @return The time zone offset in minutes of the local time zone
- * relative to UTC. The time represented by this object is used to
- * determine if we should use daylight savings.
- */
- public int getTimezoneOffset()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return - (cal.get(Calendar.ZONE_OFFSET)
- + cal.get(Calendar.DST_OFFSET)) / (60 * 1000);
- }
-
- /**
- * Sets the time which this object should represent.
- *
- * @param time the time in milliseconds since the epoch.
- */
- public void setTime(long time)
- {
- this.time = time;
- }
-
- /**
- * Tests if this date is after the specified date.
- *
- * @param when the other date
- * @return true, if the date represented by this object is
- * strictly later than the time represented by when.
- */
- public boolean after(Date when)
- {
- return time > when.time;
- }
-
- /**
- * Tests if this date is before the specified date.
- *
- * @param when the other date
- * @return true, if the date represented by when is strictly later
- * than the time represented by this object.
- */
- public boolean before(Date when)
- {
- return time < when.time;
- }
-
- /**
- * Compares two dates for equality.
- *
- * @param obj the object to compare.
- * @return true, if obj is a Date object and the time represented
- * by obj is exactly the same as the time represented by this
- * object.
- */
- public boolean equals(Object obj)
- {
- return (obj instanceof Date && time == ((Date) obj).time);
- }
-
- /**
- * Compares two dates.
- *
- * @param when the other date.
- * @return 0, if the date represented
- * by obj is exactly the same as the time represented by this
- * object, a negative if this Date is before the other Date, and
- * a positive value otherwise.
- */
- public int compareTo(Date when)
- {
- return (time < when.time) ? -1 : (time == when.time) ? 0 : 1;
- }
-
- /**
- * Computes the hash code of this Date
as the
- * XOR of the most significant and the least significant
- * 32 bits of the 64 bit milliseconds value.
- *
- * @return the hash code.
- */
- public int hashCode()
- {
- return (int) time ^ (int) (time >>> 32);
- }
-
- /**
- * - * Returns a string representation of this date using - * the following date format: - *
- *
- * day mon dd hh:mm:ss zz yyyy
- *
where the fields used here are: - *
day
-- the day of the week
- * (Sunday through to Saturday).
- * mon
-- the month (Jan to Dec).
- * dd
-- the day of the month
- * as two decimal digits (01 to 31).
- * hh
-- the hour of the day
- * as two decimal digits in 24-hour clock notation
- * (01 to 23).
- * mm
-- the minute of the day
- * as two decimal digits (01 to 59).
- * ss
-- the second of the day
- * as two decimal digits (01 to 61).
- * zz
-- the time zone information if available.
- * The possible time zones used include the abbreviations
- * recognised by parse()
(e.g. GMT, CET, etc.)
- * and may reflect the fact that daylight savings time is in
- * effect. The empty string is used if there is no time zone
- * information.
- * yyyy
-- the year as four decimal digits.
- *
- * The DateFormat
class should now be
- * preferred over using this method.
- *
Date
object.
- *
- * @deprecated Use DateFormat.format(Date)
- * @return A locale-dependent string representation.
- * @see #parse(String)
- * @see DateFormat
- */
- public String toLocaleString()
- {
- return java.text.DateFormat.getInstance().format(this);
- }
-
- /**
- *
- * Returns a string representation of this Date
- * object using GMT rather than the local timezone.
- * The following date format is used:
- *
- * d mon yyyy hh:mm:ss GMT
- *
where the fields used here are: - *
d
-- the day of the month
- * as one or two decimal digits (1 to 31).
- * mon
-- the month (Jan to Dec).
- * yyyy
-- the year as four decimal digits.
- * hh
-- the hour of the day
- * as two decimal digits in 24-hour clock notation
- * (01 to 23).
- * mm
-- the minute of the day
- * as two decimal digits (01 to 59).
- * ss
-- the second of the day
- * as two decimal digits (01 to 61).
- * GMT
-- the literal string "GMT"
- * indicating Greenwich Mean Time as opposed to
- * the local timezone.
- *
- * Parses a String and returns the time, in milliseconds since the
- * epoch, it represents. Most syntaxes are handled, including
- * the IETF date standard "day, dd mon yyyy hh:mm:ss zz" (see
- * toString()
for definitions of these fields).
- * Standard U.S. time zone abbreviations are recognised, in
- * addition to time zone offsets in positive or negative minutes.
- * If a time zone is specified, the specified time is assumed to
- * be in UTC and the appropriate conversion is applied, following
- * parsing, to convert this to the local time zone. If no zone
- * is specified, the time is assumed to already be in the local
- * time zone.
- *
- * The method parses the string progressively from left to right.
- * At the end of the parsing process, either a time is returned
- * or an IllegalArgumentException
is thrown to signify
- * failure. The ASCII characters A-Z, a-z, 0-9, and ',', '+', '-',
- * ':' and '/' are the only characters permitted within the string,
- * besides whitespace and characters enclosed within parantheses
- * '(' and ')'.
- *
- * A sequence of consecutive digits are recognised as a number, - * and interpreted as follows: - *
Date
class is initialised.. Given a century,
- * x, the year is assumed to be within the range x - 80 to x + 19. The value
- * itself is then used as a match against the two last digits of one of these
- * years. For example, take x to be 2004. A two-digit year is assumed to fall
- * within the range x - 80 (1924) and x + 19 (2023). Thus, any intepreted value
- * between 0 and 23 is assumed to be 2000 to 2023 and values between 24 and 99
- * are taken as being 1924 to 1999. This only applies for the case of 2004.
- * With a different year, the values will be interpreted differently. 2005
- * will used 0 to 24 as 2000 to 2024 and 25 to 99 as 1925 to 1999, for example.
- * This behaviour differs from that of SimpleDateFormat
and is
- * time-dependent (a two-digit year will be interpreted differently depending
- * on the time the code is run).
- * - * A sequence of consecutive alphabetic characters is recognised as a word, - * and interpreted as follows, in a case-insentive fashion: - *
Date
object and 1900.
- *
- * @return the year minus 1900 represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.YEAR)
- * instead. Note the 1900 difference in the year.
- * @see Calendar
- * @see #setYear(int)
- */
- public int getYear()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.YEAR) - 1900;
- }
-
- /**
- * Sets the year to the specified year, plus 1900. The other
- * fields are only altered as required to match the same date
- * and time in the new year. Usually, this will mean that
- * the fields are not changed at all, but in the case of
- * a leap day or leap second, the fields will change in
- * relation to the existence of such an event in the new year.
- * For example, if the date specifies February the 29th, 2000,
- * then this will become March the 1st if the year is changed
- * to 2001, as 2001 is not a leap year. Similarly, a seconds
- * value of 60 or 61 may result in the seconds becoming 0 and
- * the minute increasing by 1, if the new time does not include
- * a leap second.
- *
- * @param year the year minus 1900.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.YEAR, year) instead. Note about the 1900
- * difference in year.
- * @see #getYear()
- * @see Calendar
- */
- public void setYear(int year)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.YEAR, 1900 + year);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Returns the month represented by this Date
object,
- * as a value between 0 (January) and 11 (December).
- *
- * @return the month represented by this date object (zero based).
- * @deprecated Use Calendar instead of Date, and use get(Calendar.MONTH)
- * instead.
- * @see #setMonth(int)
- * @see Calendar
- */
- public int getMonth()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.MONTH);
- }
-
- /**
- * Sets the month to the given value. The other
- * fields are only altered as necessary to match
- * the same date and time in the new month. In most
- * cases, the other fields won't change at all. However,
- * in the case of a shorter month or a leap second, values
- * may be adjusted. For example, if the day of the month
- * is currently 31, and the month value is changed from
- * January (0) to September (8), the date will become
- * October the 1st, as September only has 30 days. Similarly,
- * a seconds value of 60 or 61 (a leap second) may result
- * in the seconds value being reset to 0 and the minutes
- * value being incremented by 1, if the new time does
- * not include a leap second.
- *
- * @param month the month, with a zero-based index
- * from January.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.MONTH, month) instead.
- * @see #getMonth()
- * @see Calendar
- */
- public void setMonth(int month)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.MONTH, month);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Returns the day of the month of this Date
- * object, as a value between 0 and 31.
- *
- * @return the day of month represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.DATE)
- * instead.
- * @see Calendar
- * @see #setDate(int)
- */
- public int getDate()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.DATE);
- }
-
- /**
- * Sets the date to the given value. The other
- * fields are only altered as necessary to match
- * the same date and time on the new day of the month. In most
- * cases, the other fields won't change at all. However,
- * in the case of a leap second or the day being out of
- * the range of the current month, values
- * may be adjusted. For example, if the day of the month
- * is currently 30 and the month is June, a new day of the
- * month value of 31 will cause the month to change to July,
- * as June only has 30 days . Similarly,
- * a seconds value of 60 or 61 (a leap second) may result
- * in the seconds value being reset to 0 and the minutes
- * value being incremented by 1, if the new time does
- * not include a leap second.
- *
- * @param date the date.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.DATE, date) instead.
- * @see Calendar
- * @see #getDate()
- */
- public void setDate(int date)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.DATE, date);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Returns the day represented by this Date
- * object as an integer between 0 (Sunday) and 6 (Saturday).
- *
- * @return the day represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.DAY_OF_WEEK)
- * instead.
- * @see Calendar
- */
- public int getDay()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- // For Calendar, Sunday is 1. For Date, Sunday is 0.
- return cal.get(Calendar.DAY_OF_WEEK) - 1;
- }
-
- /**
- * Returns the hours represented by this Date
- * object as an integer between 0 and 23.
- *
- * @return the hours represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.HOUR_OF_DAY)
- * instead.
- * @see Calendar
- * @see #setHours(int)
- */
- public int getHours()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.HOUR_OF_DAY);
- }
-
- /**
- * Sets the hours to the given value. The other
- * fields are only altered as necessary to match
- * the same date and time in the new hour. In most
- * cases, the other fields won't change at all. However,
- * in the case of a leap second, values
- * may be adjusted. For example,
- * a seconds value of 60 or 61 (a leap second) may result
- * in the seconds value being reset to 0 and the minutes
- * value being incremented by 1 if the new hour does
- * not contain a leap second.
- *
- * @param hours the hours.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.HOUR_OF_DAY, hours) instead.
- * @see Calendar
- * @see #getHours()
- */
- public void setHours(int hours)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.HOUR_OF_DAY, hours);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Returns the number of minutes represented by the Date
- * object, as an integer between 0 and 59.
- *
- * @return the minutes represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.MINUTE)
- * instead.
- * @see Calendar
- * @see #setMinutes(int)
- */
- public int getMinutes()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.MINUTE);
- }
-
- /**
- * Sets the minutes to the given value. The other
- * fields are only altered as necessary to match
- * the same date and time in the new minute. In most
- * cases, the other fields won't change at all. However,
- * in the case of a leap second, values
- * may be adjusted. For example,
- * a seconds value of 60 or 61 (a leap second) may result
- * in the seconds value being reset to 0 and the minutes
- * value being incremented by 1 if the new minute does
- * not contain a leap second.
- *
- * @param minutes the minutes.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.MINUTE, minutes) instead.
- * @see Calendar
- * @see #getMinutes()
- */
- public void setMinutes(int minutes)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.MINUTE, minutes);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Returns the number of seconds represented by the Date
- * object, as an integer between 0 and 61 (60 and 61 being leap seconds).
- *
- * @return the seconds represented by this date object.
- * @deprecated Use Calendar instead of Date, and use get(Calendar.SECOND)
- * instead.
- * @see Calendar
- * @see #setSeconds(int)
- */
- public int getSeconds()
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- return cal.get(Calendar.SECOND);
- }
-
- /**
- * Sets the seconds to the given value. The other
- * fields are only altered as necessary to match
- * the same date and time in the new minute. In most
- * cases, the other fields won't change at all. However,
- * in the case of a leap second, values
- * may be adjusted. For example, setting the
- * seconds value to 60 or 61 (a leap second) may result
- * in the seconds value being reset to 0 and the minutes
- * value being incremented by 1, if the current time does
- * not contain a leap second.
- *
- * @param seconds the seconds.
- * @deprecated Use Calendar instead of Date, and use
- * set(Calendar.SECOND, seconds) instead.
- * @see Calendar
- * @see #getSeconds()
- */
- public void setSeconds(int seconds)
- {
- Calendar cal = Calendar.getInstance();
- cal.setTimeInMillis(time);
- cal.set(Calendar.SECOND, seconds);
- time = cal.getTimeInMillis();
- }
-
- /**
- * Deserializes a Date
object from an
- * input stream, setting the time (in milliseconds
- * since the epoch) to the long value read from the
- * stream.
- *
- * @param input the input stream.
- * @throws IOException if an I/O error occurs in the stream.
- * @throws ClassNotFoundException if the class of the
- * serialized object could not be found.
- */
- private void readObject(ObjectInputStream input)
- throws IOException, ClassNotFoundException
- {
- input.defaultReadObject();
- time = input.readLong();
- }
-
- /**
- * Serializes a Date
object to an output stream,
- * storing the time (in milliseconds since the epoch) as a long
- * value in the stream.
- *
- * @serialdata A long value representing the offset from the epoch
- * in milliseconds. This is the same value that is returned by the
- * method getTime().
- * @param output the output stream.
- * @throws IOException if an I/O error occurs in the stream.
- */
- private void writeObject(ObjectOutputStream output)
- throws IOException
- {
- output.defaultWriteObject();
- output.writeLong(time);
- }
-
-}
--
cgit v1.2.1