/* * This file is part of the flashrom project. * * Copyright (C) 2009 Peter Stuge * Copyright (C) 2009 coresystems GmbH * Copyright (C) 2010 Carl-Daniel Hailfinger * Copyright (C) 2010 Rudolf Marek * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include "flash.h" #include "platform.h" #include "hwaccess_physmap.h" #if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__) /* No file access needed/possible to get mmap access permissions or access MSR. */ #include #include #include #include #endif #ifdef __DJGPP__ #include #include #include #define ONE_MEGABYTE (1024 * 1024) #define MEM_DEV "dpmi" static void *realmem_map_aligned; static void *map_first_meg(uintptr_t phys_addr, size_t len) { void *realmem_map; size_t pagesize; if (realmem_map_aligned) return realmem_map_aligned + phys_addr; /* valloc() from DJGPP 2.05 does not work properly */ pagesize = getpagesize(); realmem_map = malloc(ONE_MEGABYTE + pagesize); if (!realmem_map) return ERROR_PTR; realmem_map_aligned = (void *)(((size_t) realmem_map + (pagesize - 1)) & ~(pagesize - 1)); if (__djgpp_map_physical_memory(realmem_map_aligned, ONE_MEGABYTE, 0)) { free(realmem_map); realmem_map_aligned = NULL; return ERROR_PTR; } return realmem_map_aligned + phys_addr; } static void *sys_physmap(uintptr_t phys_addr, size_t len) { int ret; __dpmi_meminfo mi; /* Enable 4GB limit on DS descriptor. */ if (!__djgpp_nearptr_enable()) return ERROR_PTR; if ((phys_addr + len - 1) < ONE_MEGABYTE) { /* We need to use another method to map first 1MB. */ return map_first_meg(phys_addr, len); } mi.address = phys_addr; mi.size = len; ret = __dpmi_physical_address_mapping(&mi); if (ret != 0) return ERROR_PTR; return (void *) mi.address + __djgpp_conventional_base; } #define sys_physmap_rw_uncached sys_physmap #define sys_physmap_ro_cached sys_physmap static void sys_physunmap_unaligned(void *virt_addr, size_t len) { __dpmi_meminfo mi; /* There is no known way to unmap the first 1 MB. The DPMI server will * do this for us on exit. */ if ((virt_addr >= realmem_map_aligned) && ((virt_addr + len) <= (realmem_map_aligned + ONE_MEGABYTE))) { return; } mi.address = (unsigned long) virt_addr; __dpmi_free_physical_address_mapping(&mi); } #elif defined(__LIBPAYLOAD__) #include #define MEM_DEV "" static void *sys_physmap(uintptr_t phys_addr, size_t len) { return (void *)phys_to_virt(phys_addr); } #define sys_physmap_rw_uncached sys_physmap #define sys_physmap_ro_cached sys_physmap static void sys_physunmap_unaligned(void *virt_addr, size_t len) { } #elif defined(__MACH__) && defined(__APPLE__) #include #define MEM_DEV "DirectHW" static void *sys_physmap(uintptr_t phys_addr, size_t len) { /* The short form of ?: is a GNU extension. * FIXME: map_physical returns NULL both for errors and for success * if the region is mapped at virtual address zero. If in doubt, report * an error until a better interface exists. */ return map_physical(phys_addr, len) ? : ERROR_PTR; } /* The OS X driver does not differentiate between mapping types. */ #define sys_physmap_rw_uncached sys_physmap #define sys_physmap_ro_cached sys_physmap static void sys_physunmap_unaligned(void *virt_addr, size_t len) { unmap_physical(virt_addr, len); } #else #include #if defined (__sun) && (defined(__i386) || defined(__amd64)) # define MEM_DEV "/dev/xsvc" #else # define MEM_DEV "/dev/mem" #endif static int fd_mem = -1; static int fd_mem_cached = -1; /* For MMIO access. Must be uncached, doesn't make sense to restrict to ro. */ static void *sys_physmap_rw_uncached(uintptr_t phys_addr, size_t len) { void *virt_addr; if (-1 == fd_mem) { /* Open the memory device UNCACHED. Important for MMIO. */ if (-1 == (fd_mem = open(MEM_DEV, O_RDWR | O_SYNC))) { msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno)); return ERROR_PTR; } } virt_addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, fd_mem, (off_t)phys_addr); return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr; } /* For reading DMI/coreboot/whatever tables. We should never write, and we * do not care about caching. */ static void *sys_physmap_ro_cached(uintptr_t phys_addr, size_t len) { void *virt_addr; if (-1 == fd_mem_cached) { /* Open the memory device CACHED. */ if (-1 == (fd_mem_cached = open(MEM_DEV, O_RDWR))) { msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno)); return ERROR_PTR; } } virt_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd_mem_cached, (off_t)phys_addr); return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr; } static void sys_physunmap_unaligned(void *virt_addr, size_t len) { munmap(virt_addr, len); } #endif #define PHYSM_RW 0 #define PHYSM_RO 1 #define PHYSM_NOCLEANUP 0 #define PHYSM_CLEANUP 1 #define PHYSM_EXACT 0 #define PHYSM_ROUND 1 /* Round start to nearest page boundary below and set len so that the resulting address range ends at the lowest * possible page boundary where the original address range is still entirely contained. It returns the * difference between the rounded start address and the original start address. */ static uintptr_t round_to_page_boundaries(uintptr_t *start, size_t *len) { uintptr_t page_size = getpagesize(); uintptr_t page_mask = ~(page_size-1); uintptr_t end = *start + *len; uintptr_t old_start = *start; msg_gspew("page_size=%" PRIxPTR "\n", page_size); msg_gspew("pre-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n", PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, end); *start = *start & page_mask; end = (end + page_size - 1) & page_mask; *len = end - *start; msg_gspew("post-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n", PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, *start + *len); return old_start - *start; } struct undo_physmap_data { void *virt_addr; size_t len; }; static int undo_physmap(void *data) { if (data == NULL) { msg_perr("%s: tried to physunmap without valid data!\n", __func__); return 1; } struct undo_physmap_data *d = data; physunmap_unaligned(d->virt_addr, d->len); free(data); return 0; } static void *physmap_common(const char *descr, uintptr_t phys_addr, size_t len, bool readonly, bool autocleanup, bool round) { void *virt_addr; uintptr_t offset = 0; if (len == 0) { msg_pspew("Not mapping %s, zero size at 0x%0*" PRIxPTR ".\n", descr, PRIxPTR_WIDTH, phys_addr); return ERROR_PTR; } if (round) offset = round_to_page_boundaries(&phys_addr, &len); if (readonly) virt_addr = sys_physmap_ro_cached(phys_addr, len); else virt_addr = sys_physmap_rw_uncached(phys_addr, len); if (ERROR_PTR == virt_addr) { if (NULL == descr) descr = "memory"; msg_perr("Error accessing %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n", descr, len, PRIxPTR_WIDTH, phys_addr); msg_perr(MEM_DEV " mmap failed: %s\n", strerror(errno)); #ifdef __linux__ if (EINVAL == errno) { msg_perr("In Linux this error can be caused by the CONFIG_NONPROMISC_DEVMEM (<2.6.27),\n"); msg_perr("CONFIG_STRICT_DEVMEM (>=2.6.27) and CONFIG_X86_PAT kernel options.\n"); msg_perr("Please check if either is enabled in your kernel before reporting a failure.\n"); msg_perr("You can override CONFIG_X86_PAT at boot with the nopat kernel parameter but\n"); msg_perr("disabling the other option unfortunately requires a kernel recompile. Sorry!\n"); } #elif defined (__OpenBSD__) msg_perr("Please set securelevel=-1 in /etc/rc.securelevel " "and reboot, or reboot into\n" "single user mode.\n"); #endif return ERROR_PTR; } if (autocleanup) { struct undo_physmap_data *d = malloc(sizeof(*d)); if (d == NULL) { msg_perr("%s: Out of memory!\n", __func__); physunmap_unaligned(virt_addr, len); return ERROR_PTR; } d->virt_addr = virt_addr; d->len = len; if (register_shutdown(undo_physmap, d) != 0) { msg_perr("%s: Could not register shutdown function!\n", __func__); physunmap_unaligned(virt_addr, len); return ERROR_PTR; } } return virt_addr + offset; } void physunmap_unaligned(void *virt_addr, size_t len) { /* No need to check for zero size, such mappings would have yielded ERROR_PTR. */ if (virt_addr == ERROR_PTR) { msg_perr("Trying to unmap a nonexisting mapping!\n" "Please report a bug at flashrom@flashrom.org\n"); return; } sys_physunmap_unaligned(virt_addr, len); } void physunmap(void *virt_addr, size_t len) { uintptr_t tmp; /* No need to check for zero size, such mappings would have yielded ERROR_PTR. */ if (virt_addr == ERROR_PTR) { msg_perr("Trying to unmap a nonexisting mapping!\n" "Please report a bug at flashrom@flashrom.org\n"); return; } tmp = (uintptr_t)virt_addr; /* We assume that the virtual address of a page-aligned physical address is page-aligned as well. By * extension, rounding a virtual unaligned address as returned by physmap should yield the same offset * between rounded and original virtual address as between rounded and original physical address. */ round_to_page_boundaries(&tmp, &len); virt_addr = (void *)tmp; physunmap_unaligned(virt_addr, len); } void *physmap(const char *descr, uintptr_t phys_addr, size_t len) { return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_NOCLEANUP, PHYSM_ROUND); } void *rphysmap(const char *descr, uintptr_t phys_addr, size_t len) { return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_CLEANUP, PHYSM_ROUND); } void *physmap_ro(const char *descr, uintptr_t phys_addr, size_t len) { return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_ROUND); } void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len) { return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT); } /* Prevent reordering and/or merging of reads/writes to hardware. * Such reordering and/or merging would break device accesses which depend on the exact access order. */ static inline void sync_primitive(void) { /* This is not needed for... * - x86: uses uncached accesses which have a strongly ordered memory model. * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model. * - ARM: uses a strongly ordered memory model for device memories. * * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt */ // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h #if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \ defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \ defined(_ARCH_PPC64) || defined(__ppc) __asm__("eieio" : : : "memory"); #elif (__sparc__) || defined (__sparc) #if defined(__sparc_v9__) || defined(__sparcv9) /* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we * use the strongest hardware memory barriers that exist on Sparc V9. */ __asm__ volatile ("membar #Sync" ::: "memory"); #elif defined(__sparc_v8__) || defined(__sparcv8) /* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable * operation in the V8 instruction set anyway. If you know better then please tell us. */ __asm__ volatile ("stbar"); #else #error Unknown and/or unsupported SPARC instruction set version detected. #endif #endif } void mmio_writeb(uint8_t val, void *addr) { *(volatile uint8_t *) addr = val; sync_primitive(); } void mmio_writew(uint16_t val, void *addr) { *(volatile uint16_t *) addr = val; sync_primitive(); } void mmio_writel(uint32_t val, void *addr) { *(volatile uint32_t *) addr = val; sync_primitive(); } uint8_t mmio_readb(const void *addr) { return *(volatile const uint8_t *) addr; } uint16_t mmio_readw(const void *addr) { return *(volatile const uint16_t *) addr; } uint32_t mmio_readl(const void *addr) { return *(volatile const uint32_t *) addr; } void mmio_readn(const void *addr, uint8_t *buf, size_t len) { memcpy(buf, addr, len); return; } void mmio_le_writeb(uint8_t val, void *addr) { mmio_writeb(cpu_to_le8(val), addr); } void mmio_le_writew(uint16_t val, void *addr) { mmio_writew(cpu_to_le16(val), addr); } void mmio_le_writel(uint32_t val, void *addr) { mmio_writel(cpu_to_le32(val), addr); } uint8_t mmio_le_readb(const void *addr) { return le_to_cpu8(mmio_readb(addr)); } uint16_t mmio_le_readw(const void *addr) { return le_to_cpu16(mmio_readw(addr)); } uint32_t mmio_le_readl(const void *addr) { return le_to_cpu32(mmio_readl(addr)); } enum mmio_write_type { mmio_write_type_b, mmio_write_type_w, mmio_write_type_l, }; struct undo_mmio_write_data { void *addr; int reg; enum mmio_write_type type; union { uint8_t bdata; uint16_t wdata; uint32_t ldata; }; }; static int undo_mmio_write(void *p) { struct undo_mmio_write_data *data = p; msg_pdbg("Restoring MMIO space at %p\n", data->addr); switch (data->type) { case mmio_write_type_b: mmio_writeb(data->bdata, data->addr); break; case mmio_write_type_w: mmio_writew(data->wdata, data->addr); break; case mmio_write_type_l: mmio_writel(data->ldata, data->addr); break; } /* p was allocated in register_undo_mmio_write. */ free(p); return 0; } #define register_undo_mmio_write(a, c) \ { \ struct undo_mmio_write_data *undo_mmio_write_data; \ undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \ if (!undo_mmio_write_data) { \ msg_gerr("Out of memory!\n"); \ exit(1); \ } \ undo_mmio_write_data->addr = a; \ undo_mmio_write_data->type = mmio_write_type_##c; \ undo_mmio_write_data->c##data = mmio_read##c(a); \ register_shutdown(undo_mmio_write, undo_mmio_write_data); \ } #define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b) #define register_undo_mmio_writew(a) register_undo_mmio_write(a, w) #define register_undo_mmio_writel(a) register_undo_mmio_write(a, l) void rmmio_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_writeb(val, addr); } void rmmio_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_writew(val, addr); } void rmmio_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_writel(val, addr); } void rmmio_le_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_le_writeb(val, addr); } void rmmio_le_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_le_writew(val, addr); } void rmmio_le_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_le_writel(val, addr); } void rmmio_valb(void *addr) { register_undo_mmio_writeb(addr); } void rmmio_valw(void *addr) { register_undo_mmio_writew(addr); } void rmmio_vall(void *addr) { register_undo_mmio_writel(addr); }