/* * This file is part of the flashrom project. * * Copyright (C) 2009,2010 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include "flash.h" #include "chipdrivers.h" #include "programmer.h" #include "flashchips.h" #include "spi.h" #include "writeprotect.h" enum emu_chip { EMULATE_NONE, EMULATE_ST_M25P10_RES, EMULATE_SST_SST25VF040_REMS, EMULATE_SST_SST25VF032B, EMULATE_MACRONIX_MX25L6436, EMULATE_WINBOND_W25Q128FV, EMULATE_SPANSION_S25FL128L, EMULATE_VARIABLE_SIZE, }; struct emu_data { enum emu_chip emu_chip; char *emu_persistent_image; unsigned int emu_chip_size; /* Note: W25Q128FV doesn't change value of SR2 if it's not provided, but * even its previous generations do, so don't forget to update * WRSR code on enabling WRSR_EXT2 for more chips. */ bool emu_wrsr_ext2; bool emu_wrsr_ext3; bool erase_to_zero; bool emu_modified; /* is the image modified since reading it? */ uint8_t emu_status[3]; uint8_t emu_status_len; /* number of emulated status registers */ /* If "freq" parameter is passed in from command line, commands will delay * for this period before returning. */ unsigned long int delay_us; unsigned int emu_max_byteprogram_size; unsigned int emu_max_aai_size; unsigned int emu_jedec_se_size; unsigned int emu_jedec_be_52_size; unsigned int emu_jedec_be_d8_size; unsigned int emu_jedec_ce_60_size; unsigned int emu_jedec_ce_c7_size; unsigned char spi_blacklist[256]; unsigned char spi_ignorelist[256]; unsigned int spi_blacklist_size; unsigned int spi_ignorelist_size; bool hwwp; /* state of hardware write protection */ /* wp_start == wp_end when write-protection is disabled */ uint32_t wp_start; uint32_t wp_end; unsigned int spi_write_256_chunksize; uint8_t *flashchip_contents; /* An instance of this structure is shared between multiple masters, so * store the number of references to clean up only once at shutdown time. */ uint8_t refs_cnt; }; /* A legit complete SFDP table based on the MX25L6436E (rev. 1.8) datasheet. */ static const uint8_t sfdp_table[] = { 0x53, 0x46, 0x44, 0x50, // @0x00: SFDP signature 0x00, 0x01, 0x01, 0xFF, // @0x04: revision 1.0, 2 headers 0x00, 0x00, 0x01, 0x09, // @0x08: JEDEC SFDP header rev. 1.0, 9 DW long 0x1C, 0x00, 0x00, 0xFF, // @0x0C: PTP0 = 0x1C (instead of 0x30) 0xC2, 0x00, 0x01, 0x04, // @0x10: Macronix header rev. 1.0, 4 DW long 0x48, 0x00, 0x00, 0xFF, // @0x14: PTP1 = 0x48 (instead of 0x60) 0xFF, 0xFF, 0xFF, 0xFF, // @0x18: hole. 0xE5, 0x20, 0xC9, 0xFF, // @0x1C: SFDP parameter table start 0xFF, 0xFF, 0xFF, 0x03, // @0x20 0x00, 0xFF, 0x08, 0x6B, // @0x24 0x08, 0x3B, 0x00, 0xFF, // @0x28 0xEE, 0xFF, 0xFF, 0xFF, // @0x2C 0xFF, 0xFF, 0x00, 0x00, // @0x30 0xFF, 0xFF, 0x00, 0xFF, // @0x34 0x0C, 0x20, 0x0F, 0x52, // @0x38 0x10, 0xD8, 0x00, 0xFF, // @0x3C: SFDP parameter table end 0xFF, 0xFF, 0xFF, 0xFF, // @0x40: hole. 0xFF, 0xFF, 0xFF, 0xFF, // @0x44: hole. 0x00, 0x36, 0x00, 0x27, // @0x48: Macronix parameter table start 0xF4, 0x4F, 0xFF, 0xFF, // @0x4C 0xD9, 0xC8, 0xFF, 0xFF, // @0x50 0xFF, 0xFF, 0xFF, 0xFF, // @0x54: Macronix parameter table end }; static void *dummy_map(const char *descr, uintptr_t phys_addr, size_t len) { msg_pspew("%s: Mapping %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n", __func__, descr, len, PRIxPTR_WIDTH, phys_addr); return (void *)phys_addr; } static void dummy_unmap(void *virt_addr, size_t len) { msg_pspew("%s: Unmapping 0x%zx bytes at %p\n", __func__, len, virt_addr); } static int dummy_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { struct emu_data *emu_data = flash->mst->spi.data; return spi_write_chunked(flash, buf, start, len, emu_data->spi_write_256_chunksize); } static bool dummy_spi_probe_opcode(const struct flashctx *flash, uint8_t opcode) { size_t i; const struct emu_data *emu_data = flash->mst->spi.data; for (i = 0; i < emu_data->spi_blacklist_size; i++) { if (emu_data->spi_blacklist[i] == opcode) return false; } return true; } static int probe_variable_size(struct flashctx *flash) { const struct emu_data *emu_data = flash->mst->opaque.data; /* Skip the probing if we don't emulate "variable size" chip. */ if (!emu_data || emu_data->emu_chip != EMULATE_VARIABLE_SIZE) return 0; flash->chip->total_size = emu_data->emu_chip_size / 1024; msg_cdbg("%s: set flash->total_size to %dK bytes.\n", __func__, flash->chip->total_size); flash->chip->tested = TEST_OK_PREWB; if (emu_data->erase_to_zero) flash->chip->feature_bits |= FEATURE_ERASED_ZERO; /* * Update the first count of the block_eraser. * Opaque flash chip entry in flashchips.c has only one block eraser. * * If this changes in future, the code below needs to be adjusted * to update all block erasers. */ struct block_eraser *eraser = &flash->chip->block_erasers[0]; if (!eraser->block_erase) return 1; eraser->eraseblocks[0].count = 1; eraser->eraseblocks[0].size = emu_data->emu_chip_size; msg_cdbg("%s: eraser.size=%d, .count=%d\n", __func__, eraser->eraseblocks[0].size, eraser->eraseblocks[0].count); return 1; } static int dummy_opaque_read(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) { const struct emu_data *emu_data = flash->mst->opaque.data; memcpy(buf, emu_data->flashchip_contents + start, len); return 0; } static int dummy_opaque_write(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { struct emu_data *emu_data = flash->mst->opaque.data; memcpy(emu_data->flashchip_contents + start, buf, len); emu_data->emu_modified = true; return 0; } static int dummy_opaque_erase(struct flashctx *flash, unsigned int blockaddr, unsigned int blocklen) { struct emu_data *emu_data = flash->mst->opaque.data; memset(emu_data->flashchip_contents + blockaddr, emu_data->erase_to_zero ? 0x00 : 0xff, blocklen); emu_data->emu_modified = true; return 0; } static void dummy_chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%02x\n", __func__, addr, val); } static void dummy_chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%04x\n", __func__, addr, val); } static void dummy_chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", val=0x%08"PRIx32"\n", __func__, addr, val); } static void dummy_chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len) { size_t i; msg_pspew("%s: addr=0x%" PRIxPTR ", len=0x%zx, writing data (hex):", __func__, addr, len); for (i = 0; i < len; i++) { if ((i % 16) == 0) msg_pspew("\n"); msg_pspew("%02x ", buf[i]); } } static uint8_t dummy_chip_readb(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xff\n", __func__, addr); return 0xff; } static uint16_t dummy_chip_readw(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xffff\n", __func__, addr); return 0xffff; } static uint32_t dummy_chip_readl(const struct flashctx *flash, const chipaddr addr) { msg_pspew("%s: addr=0x%" PRIxPTR ", returning 0xffffffff\n", __func__, addr); return 0xffffffff; } static void dummy_chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len) { msg_pspew("%s: addr=0x%" PRIxPTR ", len=0x%zx, returning array of 0xff\n", __func__, addr, len); memset(buf, 0xff, len); return; } static uint8_t get_reg_ro_bit_mask(const struct emu_data *data, enum flash_reg reg) { /* Whoever adds a new register must not forget to update this function or at least shouldn't use it incorrectly. */ assert(reg == STATUS1 || reg == STATUS2 || reg == STATUS3); uint8_t ro_bits = reg == STATUS1 ? SPI_SR_WIP : 0; if (data->emu_chip == EMULATE_WINBOND_W25Q128FV) { const bool srp0 = (data->emu_status[0] >> 7); const bool srp1 = (data->emu_status[1] & 1); const bool wp_active = (srp1 || (srp0 && data->hwwp)); if (wp_active) { ro_bits = 0xff; } else if (reg == STATUS2) { /* SUS (bit_7) and (R) (bit_2). */ ro_bits = 0x84; /* Once any of the lock bits (LB[1..3]) are set, they can't be unset. */ ro_bits |= data->emu_status[1] & (1 << 3); ro_bits |= data->emu_status[1] & (1 << 4); ro_bits |= data->emu_status[1] & (1 << 5); } else if (reg == STATUS3) { /* Four reserved bits. */ ro_bits = 0x1b; } } if (data->emu_chip == EMULATE_SPANSION_S25FL128L) { const bool srp0 = (data->emu_status[0] >> 7); const bool srp1 = (data->emu_status[1] & 1); const bool wp_active = (srp1 || (srp0 && data->hwwp)); if (wp_active) { ro_bits = 0xff; } else if (reg == STATUS2) { /* SUS (bit_7) */ ro_bits = 0x80; /* Once any of the lock bits (LB[0..3]) are set, they can't be unset. */ ro_bits |= data->emu_status[1] & (1 << 2); ro_bits |= data->emu_status[1] & (1 << 3); ro_bits |= data->emu_status[1] & (1 << 4); ro_bits |= data->emu_status[1] & (1 << 5); } else if (reg == STATUS3) { /* Two reserved bits. */ ro_bits = 0x11; } } return ro_bits; } static void update_write_protection(struct emu_data *data) { if (data->emu_chip != EMULATE_WINBOND_W25Q128FV && data->emu_chip != EMULATE_SPANSION_S25FL128L) return; const struct wp_bits bits = { .srp = data->emu_status[0] >> 7, .srl = data->emu_status[1] & 1, .bp_bit_count = 3, .bp = { (data->emu_status[0] >> 2) & 1, (data->emu_status[0] >> 3) & 1, (data->emu_status[0] >> 4) & 1 }, .tb_bit_present = true, .tb = (data->emu_status[0] >> 5) & 1, .sec_bit_present = true, .sec = (data->emu_status[0] >> 6) & 1, .cmp_bit_present = true, .cmp = (data->emu_status[1] >> 6) & 1, }; size_t start; size_t len; decode_range_spi25(&start, &len, &bits, data->emu_chip_size); data->wp_start = start; data->wp_end = start + len; } /* Checks whether range intersects a write-protected area of the flash if one is * defined. */ static bool is_write_protected(const struct emu_data *data, uint32_t start, uint32_t len) { if (len == 0) return false; const uint32_t last = start + len - 1; return (start < data->wp_end && last >= data->wp_start); } /* Returns non-zero on error. */ static int write_flash_data(struct emu_data *data, uint32_t start, uint32_t len, const uint8_t *buf) { if (is_write_protected(data, start, len)) { msg_perr("At least part of the write range is write protected!\n"); return 1; } memcpy(data->flashchip_contents + start, buf, len); data->emu_modified = true; return 0; } /* Returns non-zero on error. */ static int erase_flash_data(struct emu_data *data, uint32_t start, uint32_t len) { if (is_write_protected(data, start, len)) { msg_perr("At least part of the erase range is write protected!\n"); return 1; } /* FIXME: Maybe use ERASED_VALUE(flash) instead of 0xff ? */ memset(data->flashchip_contents + start, 0xff, len); data->emu_modified = true; return 0; } static int emulate_spi_chip_response(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr, struct emu_data *data) { unsigned int offs, i, toread; uint8_t ro_bits; bool wrsr_ext2, wrsr_ext3; static int unsigned aai_offs; const unsigned char sst25vf040_rems_response[2] = {0xbf, 0x44}; const unsigned char sst25vf032b_rems_response[2] = {0xbf, 0x4a}; const unsigned char mx25l6436_rems_response[2] = {0xc2, 0x16}; const unsigned char w25q128fv_rems_response[2] = {0xef, 0x17}; if (writecnt == 0) { msg_perr("No command sent to the chip!\n"); return 1; } /* spi_blacklist has precedence over spi_ignorelist. */ for (i = 0; i < data->spi_blacklist_size; i++) { if (writearr[0] == data->spi_blacklist[i]) { msg_pdbg("Refusing blacklisted SPI command 0x%02x\n", data->spi_blacklist[i]); return SPI_INVALID_OPCODE; } } for (i = 0; i < data->spi_ignorelist_size; i++) { if (writearr[0] == data->spi_ignorelist[i]) { msg_cdbg("Ignoring ignorelisted SPI command 0x%02x\n", data->spi_ignorelist[i]); /* Return success because the command does not fail, * it is simply ignored. */ return 0; } } if (data->emu_max_aai_size && (data->emu_status[0] & SPI_SR_AAI)) { if (writearr[0] != JEDEC_AAI_WORD_PROGRAM && writearr[0] != JEDEC_WRDI && writearr[0] != JEDEC_RDSR) { msg_perr("Forbidden opcode (0x%02x) attempted during " "AAI sequence!\n", writearr[0]); return 0; } } switch (writearr[0]) { case JEDEC_RES: if (writecnt < JEDEC_RES_OUTSIZE) break; /* offs calculation is only needed for SST chips which treat RES like REMS. */ offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; offs += writecnt - JEDEC_REMS_OUTSIZE; switch (data->emu_chip) { case EMULATE_ST_M25P10_RES: if (readcnt > 0) memset(readarr, 0x10, readcnt); break; case EMULATE_SST_SST25VF040_REMS: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf040_rems_response[(offs + i) % 2]; break; case EMULATE_SST_SST25VF032B: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf032b_rems_response[(offs + i) % 2]; break; case EMULATE_MACRONIX_MX25L6436: if (readcnt > 0) memset(readarr, 0x16, readcnt); break; case EMULATE_WINBOND_W25Q128FV: if (readcnt > 0) memset(readarr, 0x17, readcnt); break; case EMULATE_SPANSION_S25FL128L: if (readcnt > 0) readarr[0] = 0x60; if (readcnt > 1) readarr[1] = 0x18; break; default: /* ignore */ break; } break; case JEDEC_REMS: /* REMS response has wraparound and uses an address parameter. */ if (writecnt < JEDEC_REMS_OUTSIZE) break; offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; offs += writecnt - JEDEC_REMS_OUTSIZE; switch (data->emu_chip) { case EMULATE_SST_SST25VF040_REMS: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf040_rems_response[(offs + i) % 2]; break; case EMULATE_SST_SST25VF032B: for (i = 0; i < readcnt; i++) readarr[i] = sst25vf032b_rems_response[(offs + i) % 2]; break; case EMULATE_MACRONIX_MX25L6436: for (i = 0; i < readcnt; i++) readarr[i] = mx25l6436_rems_response[(offs + i) % 2]; break; case EMULATE_WINBOND_W25Q128FV: for (i = 0; i < readcnt; i++) readarr[i] = w25q128fv_rems_response[(offs + i) % 2]; break; default: /* ignore */ break; } break; case JEDEC_RDID: switch (data->emu_chip) { case EMULATE_SST_SST25VF032B: if (readcnt > 0) readarr[0] = 0xbf; if (readcnt > 1) readarr[1] = 0x25; if (readcnt > 2) readarr[2] = 0x4a; break; case EMULATE_MACRONIX_MX25L6436: if (readcnt > 0) readarr[0] = 0xc2; if (readcnt > 1) readarr[1] = 0x20; if (readcnt > 2) readarr[2] = 0x17; break; case EMULATE_WINBOND_W25Q128FV: if (readcnt > 0) readarr[0] = 0xef; if (readcnt > 1) readarr[1] = 0x40; if (readcnt > 2) readarr[2] = 0x18; break; case EMULATE_SPANSION_S25FL128L: if (readcnt > 0) readarr[0] = 0x01; if (readcnt > 1) readarr[1] = 0x60; if (readcnt > 2) readarr[2] = 0x18; break; case EMULATE_VARIABLE_SIZE: if (readcnt > 0) readarr[0] = (PROGMANUF_ID >> 8) & 0xff; if (readcnt > 1) readarr[1] = PROGMANUF_ID & 0xff; if (readcnt > 2) readarr[2] = (PROGDEV_ID >> 8) & 0xff; if (readcnt > 3) readarr[3] = PROGDEV_ID & 0xff; break; default: /* ignore */ break; } break; case JEDEC_RDSR: memset(readarr, data->emu_status[0], readcnt); break; case JEDEC_RDSR2: if (data->emu_status_len >= 2) memset(readarr, data->emu_status[1], readcnt); break; case JEDEC_RDSR3: if (data->emu_status_len >= 3) memset(readarr, data->emu_status[2], readcnt); break; /* FIXME: this should be chip-specific. */ case JEDEC_EWSR: case JEDEC_WREN: data->emu_status[0] |= SPI_SR_WEL; break; case JEDEC_WRSR: if (!(data->emu_status[0] & SPI_SR_WEL)) { msg_perr("WRSR attempted, but WEL is 0!\n"); break; } wrsr_ext2 = (writecnt == 3 && data->emu_wrsr_ext2); wrsr_ext3 = (writecnt == 4 && data->emu_wrsr_ext3); /* FIXME: add some reasonable simulation of the busy flag */ ro_bits = get_reg_ro_bit_mask(data, STATUS1); data->emu_status[0] &= ro_bits; data->emu_status[0] |= writearr[1] & ~ro_bits; if (wrsr_ext2 || wrsr_ext3) { ro_bits = get_reg_ro_bit_mask(data, STATUS2); data->emu_status[1] &= ro_bits; data->emu_status[1] |= writearr[2] & ~ro_bits; } if (wrsr_ext3) { ro_bits = get_reg_ro_bit_mask(data, STATUS3); data->emu_status[2] &= ro_bits; data->emu_status[2] |= writearr[3] & ~ro_bits; } if (wrsr_ext3) msg_pdbg2("WRSR wrote 0x%02x%02x%02x.\n", data->emu_status[2], data->emu_status[1], data->emu_status[0]); else if (wrsr_ext2) msg_pdbg2("WRSR wrote 0x%02x%02x.\n", data->emu_status[1], data->emu_status[0]); else msg_pdbg2("WRSR wrote 0x%02x.\n", data->emu_status[0]); update_write_protection(data); break; case JEDEC_WRSR2: if (data->emu_status_len < 2) break; if (!(data->emu_status[0] & SPI_SR_WEL)) { msg_perr("WRSR2 attempted, but WEL is 0!\n"); break; } ro_bits = get_reg_ro_bit_mask(data, STATUS2); data->emu_status[1] &= ro_bits; data->emu_status[1] |= (writearr[1] & ~ro_bits); msg_pdbg2("WRSR2 wrote 0x%02x.\n", data->emu_status[1]); update_write_protection(data); break; case JEDEC_WRSR3: if (data->emu_status_len < 3) break; if (!(data->emu_status[0] & SPI_SR_WEL)) { msg_perr("WRSR3 attempted, but WEL is 0!\n"); break; } ro_bits = get_reg_ro_bit_mask(data, STATUS3); data->emu_status[2] &= ro_bits; data->emu_status[2] |= (writearr[1] & ~ro_bits); msg_pdbg2("WRSR3 wrote 0x%02x.\n", data->emu_status[2]); break; case JEDEC_READ: offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ offs %= data->emu_chip_size; if (readcnt > 0) memcpy(readarr, data->flashchip_contents + offs, readcnt); break; case JEDEC_READ_4BA: offs = writearr[1] << 24 | writearr[2] << 16 | writearr[3] << 8 | writearr[4]; /* Truncate to emu_chip_size. */ offs %= data->emu_chip_size; if (readcnt > 0) memcpy(readarr, data->flashchip_contents + offs, readcnt); break; case JEDEC_BYTE_PROGRAM: offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ offs %= data->emu_chip_size; if (writecnt < 5) { msg_perr("BYTE PROGRAM size too short!\n"); return 1; } if (writecnt - 4 > data->emu_max_byteprogram_size) { msg_perr("Max BYTE PROGRAM size exceeded!\n"); return 1; } if (write_flash_data(data, offs, writecnt - 4, writearr + 4)) { msg_perr("Failed to program flash!\n"); return 1; } break; case JEDEC_BYTE_PROGRAM_4BA: offs = writearr[1] << 24 | writearr[2] << 16 | writearr[3] << 8 | writearr[4]; /* Truncate to emu_chip_size. */ offs %= data->emu_chip_size; if (writecnt < 6) { msg_perr("BYTE PROGRAM size too short!\n"); return 1; } if (writecnt - 5 > data->emu_max_byteprogram_size) { msg_perr("Max BYTE PROGRAM size exceeded!\n"); return 1; } if (write_flash_data(data, offs, writecnt - 5, writearr + 5)) { msg_perr("Failed to program flash!\n"); return 1; } break; case JEDEC_AAI_WORD_PROGRAM: if (!data->emu_max_aai_size) break; if (!(data->emu_status[0] & SPI_SR_AAI)) { if (writecnt < JEDEC_AAI_WORD_PROGRAM_OUTSIZE) { msg_perr("Initial AAI WORD PROGRAM size too " "short!\n"); return 1; } if (writecnt > JEDEC_AAI_WORD_PROGRAM_OUTSIZE) { msg_perr("Initial AAI WORD PROGRAM size too " "long!\n"); return 1; } data->emu_status[0] |= SPI_SR_AAI; aai_offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* Truncate to emu_chip_size. */ aai_offs %= data->emu_chip_size; if (write_flash_data(data, aai_offs, 2, writearr + 4)) { msg_perr("Failed to program flash!\n"); return 1; } aai_offs += 2; } else { if (writecnt < JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) { msg_perr("Continuation AAI WORD PROGRAM size " "too short!\n"); return 1; } if (writecnt > JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE) { msg_perr("Continuation AAI WORD PROGRAM size " "too long!\n"); return 1; } if (write_flash_data(data, aai_offs, 2, writearr + 1)) { msg_perr("Failed to program flash!\n"); return 1; } aai_offs += 2; } break; case JEDEC_WRDI: if (data->emu_max_aai_size) data->emu_status[0] &= ~SPI_SR_AAI; break; case JEDEC_SE: if (!data->emu_jedec_se_size) break; if (writecnt != JEDEC_SE_OUTSIZE) { msg_perr("SECTOR ERASE 0x20 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_SE_INSIZE) { msg_perr("SECTOR ERASE 0x20 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (data->emu_jedec_se_size - 1)) msg_pdbg("Unaligned SECTOR ERASE 0x20: 0x%x\n", offs); offs &= ~(data->emu_jedec_se_size - 1); if (erase_flash_data(data, offs, data->emu_jedec_se_size)) { msg_perr("Failed to erase flash!\n"); return 1; } break; case JEDEC_BE_52: if (!data->emu_jedec_be_52_size) break; if (writecnt != JEDEC_BE_52_OUTSIZE) { msg_perr("BLOCK ERASE 0x52 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_BE_52_INSIZE) { msg_perr("BLOCK ERASE 0x52 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (data->emu_jedec_be_52_size - 1)) msg_pdbg("Unaligned BLOCK ERASE 0x52: 0x%x\n", offs); offs &= ~(data->emu_jedec_be_52_size - 1); if (erase_flash_data(data, offs, data->emu_jedec_be_52_size)) { msg_perr("Failed to erase flash!\n"); return 1; } break; case JEDEC_BE_D8: if (!data->emu_jedec_be_d8_size) break; if (writecnt != JEDEC_BE_D8_OUTSIZE) { msg_perr("BLOCK ERASE 0xd8 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_BE_D8_INSIZE) { msg_perr("BLOCK ERASE 0xd8 insize invalid!\n"); return 1; } offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; if (offs & (data->emu_jedec_be_d8_size - 1)) msg_pdbg("Unaligned BLOCK ERASE 0xd8: 0x%x\n", offs); offs &= ~(data->emu_jedec_be_d8_size - 1); if (erase_flash_data(data, offs, data->emu_jedec_be_d8_size)) { msg_perr("Failed to erase flash!\n"); return 1; } break; case JEDEC_CE_60: if (!data->emu_jedec_ce_60_size) break; if (writecnt != JEDEC_CE_60_OUTSIZE) { msg_perr("CHIP ERASE 0x60 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_CE_60_INSIZE) { msg_perr("CHIP ERASE 0x60 insize invalid!\n"); return 1; } /* JEDEC_CE_60_OUTSIZE is 1 (no address) -> no offset. */ /* emu_jedec_ce_60_size is emu_chip_size. */ if (erase_flash_data(data, 0, data->emu_jedec_ce_60_size)) { msg_perr("Failed to erase flash!\n"); return 1; } break; case JEDEC_CE_C7: if (!data->emu_jedec_ce_c7_size) break; if (writecnt != JEDEC_CE_C7_OUTSIZE) { msg_perr("CHIP ERASE 0xc7 outsize invalid!\n"); return 1; } if (readcnt != JEDEC_CE_C7_INSIZE) { msg_perr("CHIP ERASE 0xc7 insize invalid!\n"); return 1; } /* JEDEC_CE_C7_OUTSIZE is 1 (no address) -> no offset. */ /* emu_jedec_ce_c7_size is emu_chip_size. */ if (erase_flash_data(data, 0, data->emu_jedec_ce_c7_size)) { msg_perr("Failed to erase flash!\n"); return 1; } break; case JEDEC_SFDP: if (data->emu_chip != EMULATE_MACRONIX_MX25L6436) break; if (writecnt < 4) break; offs = writearr[1] << 16 | writearr[2] << 8 | writearr[3]; /* SFDP expects one dummy byte after the address. */ if (writecnt == 4) { /* The dummy byte was not written, make sure it is read instead. * Shifting and shortening the read array does achieve this goal. */ readarr++; readcnt--; } else { /* The response is shifted if more than 5 bytes are written, because SFDP data is * already shifted out by the chip while those superfluous bytes are written. */ offs += writecnt - 5; } /* The SFDP spec implies that the start address of an SFDP read may be truncated to fit in the * SFDP table address space, i.e. the start address may be wrapped around at SFDP table size. * This is a reasonable implementation choice in hardware because it saves a few gates. */ if (offs >= sizeof(sfdp_table)) { msg_pdbg("Wrapping the start address around the SFDP table boundary (using 0x%x " "instead of 0x%x).\n", (unsigned int)(offs % sizeof(sfdp_table)), offs); offs %= sizeof(sfdp_table); } toread = min(sizeof(sfdp_table) - offs, readcnt); memcpy(readarr, sfdp_table + offs, toread); if (toread < readcnt) msg_pdbg("Crossing the SFDP table boundary in a single " "continuous chunk produces undefined results " "after that point.\n"); break; default: /* No special response. */ break; } if (writearr[0] != JEDEC_WREN && writearr[0] != JEDEC_EWSR) data->emu_status[0] &= ~SPI_SR_WEL; return 0; } static int dummy_spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { unsigned int i; struct emu_data *emu_data = flash->mst->spi.data; if (!emu_data) { msg_perr("No data in flash context!\n"); return 1; } msg_pspew("%s:", __func__); msg_pspew(" writing %u bytes:", writecnt); for (i = 0; i < writecnt; i++) msg_pspew(" 0x%02x", writearr[i]); /* Response for unknown commands and missing chip is 0xff. */ memset(readarr, 0xff, readcnt); switch (emu_data->emu_chip) { case EMULATE_ST_M25P10_RES: case EMULATE_SST_SST25VF040_REMS: case EMULATE_SST_SST25VF032B: case EMULATE_MACRONIX_MX25L6436: case EMULATE_WINBOND_W25Q128FV: case EMULATE_SPANSION_S25FL128L: case EMULATE_VARIABLE_SIZE: if (emulate_spi_chip_response(writecnt, readcnt, writearr, readarr, emu_data)) { msg_pdbg("Invalid command sent to flash chip!\n"); return 1; } break; default: break; } msg_pspew(" reading %u bytes:", readcnt); for (i = 0; i < readcnt; i++) msg_pspew(" 0x%02x", readarr[i]); msg_pspew("\n"); default_delay((writecnt + readcnt) * emu_data->delay_us); return 0; } static int dummy_shutdown(void *data) { msg_pspew("%s\n", __func__); struct emu_data *emu_data = (struct emu_data *)data; emu_data->refs_cnt--; if (emu_data->refs_cnt != 0) return 0; if (emu_data->emu_chip != EMULATE_NONE) { if (emu_data->emu_persistent_image && emu_data->emu_modified) { msg_pdbg("Writing %s\n", emu_data->emu_persistent_image); write_buf_to_file(emu_data->flashchip_contents, emu_data->emu_chip_size, emu_data->emu_persistent_image); } free(emu_data->emu_persistent_image); free(emu_data->flashchip_contents); } free(data); return 0; } static void dummy_nop_delay(const struct flashctx *flash, unsigned int usecs) { } static enum flashrom_wp_result dummy_wp_read_cfg(struct flashrom_wp_cfg *cfg, struct flashctx *flash) { cfg->mode = FLASHROM_WP_MODE_DISABLED; cfg->range.start = 0; cfg->range.len = 0; return FLASHROM_WP_OK; } static enum flashrom_wp_result dummy_wp_write_cfg(struct flashctx *flash, const struct flashrom_wp_cfg *cfg) { if (cfg->mode != FLASHROM_WP_MODE_DISABLED) return FLASHROM_WP_ERR_MODE_UNSUPPORTED; if (cfg->range.start != 0 || cfg->range.len != 0) return FLASHROM_WP_ERR_RANGE_UNSUPPORTED; return FLASHROM_WP_OK; } static enum flashrom_wp_result dummy_wp_get_available_ranges(struct flashrom_wp_ranges **list, struct flashctx *flash) { /* Not supported */ return FLASHROM_WP_ERR_RANGE_LIST_UNAVAILABLE; } static const struct spi_master spi_master_dummyflasher = { .map_flash_region = dummy_map, .unmap_flash_region = dummy_unmap, .features = SPI_MASTER_4BA, .max_data_read = MAX_DATA_READ_UNLIMITED, .max_data_write = MAX_DATA_UNSPECIFIED, .command = dummy_spi_send_command, .read = default_spi_read, .write_256 = dummy_spi_write_256, .shutdown = dummy_shutdown, .probe_opcode = dummy_spi_probe_opcode, .delay = dummy_nop_delay, }; static const struct par_master par_master_dummyflasher = { .map_flash_region = dummy_map, .unmap_flash_region = dummy_unmap, .chip_readb = dummy_chip_readb, .chip_readw = dummy_chip_readw, .chip_readl = dummy_chip_readl, .chip_readn = dummy_chip_readn, .chip_writeb = dummy_chip_writeb, .chip_writew = dummy_chip_writew, .chip_writel = dummy_chip_writel, .chip_writen = dummy_chip_writen, .shutdown = dummy_shutdown, .delay = dummy_nop_delay, }; static const struct opaque_master opaque_master_dummyflasher = { .probe = probe_variable_size, .read = dummy_opaque_read, .write = dummy_opaque_write, .erase = dummy_opaque_erase, .shutdown = dummy_shutdown, .delay = dummy_nop_delay, .wp_read_cfg = dummy_wp_read_cfg, .wp_write_cfg = dummy_wp_write_cfg, .wp_get_ranges = dummy_wp_get_available_ranges, }; static int init_data(const struct programmer_cfg *cfg, struct emu_data *data, enum chipbustype *dummy_buses_supported) { char *bustext = NULL; char *tmp = NULL; unsigned int i; char *endptr; char *status = NULL; int size = -1; /* size for VARIABLE_SIZE chip device */ bustext = extract_programmer_param_str(cfg, "bus"); msg_pdbg("Requested buses are: %s\n", bustext ? bustext : "default"); if (!bustext) bustext = strdup("parallel+lpc+fwh+spi+prog"); /* Convert the parameters to lowercase. */ tolower_string(bustext); *dummy_buses_supported = BUS_NONE; if (strstr(bustext, "parallel")) { *dummy_buses_supported |= BUS_PARALLEL; msg_pdbg("Enabling support for %s flash.\n", "parallel"); } if (strstr(bustext, "lpc")) { *dummy_buses_supported |= BUS_LPC; msg_pdbg("Enabling support for %s flash.\n", "LPC"); } if (strstr(bustext, "fwh")) { *dummy_buses_supported |= BUS_FWH; msg_pdbg("Enabling support for %s flash.\n", "FWH"); } if (strstr(bustext, "spi")) { *dummy_buses_supported |= BUS_SPI; msg_pdbg("Enabling support for %s flash.\n", "SPI"); } if (strstr(bustext, "prog")) { *dummy_buses_supported |= BUS_PROG; msg_pdbg("Enabling support for %s flash.\n", "PROG"); } if (*dummy_buses_supported == BUS_NONE) msg_pdbg("Support for all flash bus types disabled.\n"); free(bustext); tmp = extract_programmer_param_str(cfg, "spi_write_256_chunksize"); if (tmp) { data->spi_write_256_chunksize = strtoul(tmp, &endptr, 0); if (*endptr != '\0' || data->spi_write_256_chunksize < 1) { msg_perr("invalid spi_write_256_chunksize\n"); free(tmp); return 1; } } free(tmp); tmp = extract_programmer_param_str(cfg, "spi_blacklist"); if (tmp) { i = strlen(tmp); if (!strncmp(tmp, "0x", 2)) { i -= 2; memmove(tmp, tmp + 2, i + 1); } if ((i > 512) || (i % 2)) { msg_perr("Invalid SPI command blacklist length\n"); free(tmp); return 1; } data->spi_blacklist_size = i / 2; for (i = 0; i < data->spi_blacklist_size * 2; i++) { if (!isxdigit((unsigned char)tmp[i])) { msg_perr("Invalid char \"%c\" in SPI command " "blacklist\n", tmp[i]); free(tmp); return 1; } } for (i = 0; i < data->spi_blacklist_size; i++) { unsigned int tmp2; /* SCNx8 is apparently not supported by MSVC (and thus * MinGW), so work around it with an extra variable */ sscanf(tmp + i * 2, "%2x", &tmp2); data->spi_blacklist[i] = (uint8_t)tmp2; } msg_pdbg("SPI blacklist is "); for (i = 0; i < data->spi_blacklist_size; i++) msg_pdbg("%02x ", data->spi_blacklist[i]); msg_pdbg(", size %u\n", data->spi_blacklist_size); } free(tmp); tmp = extract_programmer_param_str(cfg, "spi_ignorelist"); if (tmp) { i = strlen(tmp); if (!strncmp(tmp, "0x", 2)) { i -= 2; memmove(tmp, tmp + 2, i + 1); } if ((i > 512) || (i % 2)) { msg_perr("Invalid SPI command ignorelist length\n"); free(tmp); return 1; } data->spi_ignorelist_size = i / 2; for (i = 0; i < data->spi_ignorelist_size * 2; i++) { if (!isxdigit((unsigned char)tmp[i])) { msg_perr("Invalid char \"%c\" in SPI command " "ignorelist\n", tmp[i]); free(tmp); return 1; } } for (i = 0; i < data->spi_ignorelist_size; i++) { unsigned int tmp2; /* SCNx8 is apparently not supported by MSVC (and thus * MinGW), so work around it with an extra variable */ sscanf(tmp + i * 2, "%2x", &tmp2); data->spi_ignorelist[i] = (uint8_t)tmp2; } msg_pdbg("SPI ignorelist is "); for (i = 0; i < data->spi_ignorelist_size; i++) msg_pdbg("%02x ", data->spi_ignorelist[i]); msg_pdbg(", size %u\n", data->spi_ignorelist_size); } free(tmp); /* frequency to emulate in Hz (default), KHz, or MHz */ tmp = extract_programmer_param_str(cfg, "freq"); if (tmp) { unsigned long int freq; char *units = tmp; char *end = tmp + strlen(tmp); errno = 0; freq = strtoul(tmp, &units, 0); if (errno) { msg_perr("Invalid frequency \"%s\", %s\n", tmp, strerror(errno)); free(tmp); return 1; } if ((units > tmp) && (units < end)) { bool units_valid = false; if (units < end - 3) { ; } else if (units == end - 2) { if (!strcasecmp(units, "hz")) units_valid = true; } else if (units == end - 3) { if (!strcasecmp(units, "khz")) { freq *= 1000; units_valid = true; } else if (!strcasecmp(units, "mhz")) { freq *= 1000000; units_valid = true; } } if (!units_valid) { msg_perr("Invalid units: %s\n", units); free(tmp); return 1; } } if (freq == 0) { msg_perr("%s: invalid value 0 for freq parameter\n", __func__); free(tmp); return 1; } /* Assume we only work with bytes and transfer at 1 bit/Hz */ data->delay_us = (1000000 * 8) / freq; } free(tmp); tmp = extract_programmer_param_str(cfg, "size"); if (tmp) { size = strtol(tmp, NULL, 10); if (size <= 0 || (size % 1024 != 0)) { msg_perr("%s: Chip size is not a multiple of 1024: %s\n", __func__, tmp); free(tmp); return 1; } free(tmp); } tmp = extract_programmer_param_str(cfg, "hwwp"); if (tmp) { if (!strcmp(tmp, "yes")) { msg_pdbg("Emulated chip will have hardware WP enabled\n"); data->hwwp = true; } else if (!strcmp(tmp, "no")) { msg_pdbg("Emulated chip will have hardware WP disabled\n"); } else { msg_perr("hwwp can be \"yes\" or \"no\"\n"); free(tmp); return 1; } free(tmp); } tmp = extract_programmer_param_str(cfg, "emulate"); if (!tmp) { if (size != -1) { msg_perr("%s: size parameter is only valid for VARIABLE_SIZE chip.\n", __func__); return 1; } msg_pdbg("Not emulating any flash chip.\n"); /* Nothing else to do. */ return 0; } if (!strcmp(tmp, "M25P10.RES")) { data->emu_chip = EMULATE_ST_M25P10_RES; data->emu_chip_size = 128 * 1024; data->emu_max_byteprogram_size = 128; data->emu_max_aai_size = 0; data->emu_status_len = 1; data->emu_jedec_se_size = 0; data->emu_jedec_be_52_size = 0; data->emu_jedec_be_d8_size = 32 * 1024; data->emu_jedec_ce_60_size = 0; data->emu_jedec_ce_c7_size = data->emu_chip_size; msg_pdbg("Emulating ST M25P10.RES SPI flash chip (RES, page " "write)\n"); } if (!strcmp(tmp, "SST25VF040.REMS")) { data->emu_chip = EMULATE_SST_SST25VF040_REMS; data->emu_chip_size = 512 * 1024; data->emu_max_byteprogram_size = 1; data->emu_max_aai_size = 0; data->emu_status_len = 1; data->emu_jedec_se_size = 4 * 1024; data->emu_jedec_be_52_size = 32 * 1024; data->emu_jedec_be_d8_size = 0; data->emu_jedec_ce_60_size = data->emu_chip_size; data->emu_jedec_ce_c7_size = 0; msg_pdbg("Emulating SST SST25VF040.REMS SPI flash chip (REMS, " "byte write)\n"); } if (!strcmp(tmp, "SST25VF032B")) { data->emu_chip = EMULATE_SST_SST25VF032B; data->emu_chip_size = 4 * 1024 * 1024; data->emu_max_byteprogram_size = 1; data->emu_max_aai_size = 2; data->emu_status_len = 1; data->emu_jedec_se_size = 4 * 1024; data->emu_jedec_be_52_size = 32 * 1024; data->emu_jedec_be_d8_size = 64 * 1024; data->emu_jedec_ce_60_size = data->emu_chip_size; data->emu_jedec_ce_c7_size = data->emu_chip_size; msg_pdbg("Emulating SST SST25VF032B SPI flash chip (RDID, AAI " "write)\n"); } if (!strcmp(tmp, "MX25L6436")) { data->emu_chip = EMULATE_MACRONIX_MX25L6436; data->emu_chip_size = 8 * 1024 * 1024; data->emu_max_byteprogram_size = 256; data->emu_max_aai_size = 0; data->emu_status_len = 1; data->emu_jedec_se_size = 4 * 1024; data->emu_jedec_be_52_size = 32 * 1024; data->emu_jedec_be_d8_size = 64 * 1024; data->emu_jedec_ce_60_size = data->emu_chip_size; data->emu_jedec_ce_c7_size = data->emu_chip_size; msg_pdbg("Emulating Macronix MX25L6436 SPI flash chip (RDID, " "SFDP)\n"); } if (!strcmp(tmp, "W25Q128FV")) { data->emu_chip = EMULATE_WINBOND_W25Q128FV; data->emu_wrsr_ext2 = true; data->emu_chip_size = 16 * 1024 * 1024; data->emu_max_byteprogram_size = 256; data->emu_max_aai_size = 0; data->emu_status_len = 3; data->emu_jedec_se_size = 4 * 1024; data->emu_jedec_be_52_size = 32 * 1024; data->emu_jedec_be_d8_size = 64 * 1024; data->emu_jedec_ce_60_size = data->emu_chip_size; data->emu_jedec_ce_c7_size = data->emu_chip_size; msg_pdbg("Emulating Winbond W25Q128FV SPI flash chip (RDID)\n"); } if (!strcmp(tmp, "S25FL128L")) { data->emu_chip = EMULATE_SPANSION_S25FL128L; data->emu_wrsr_ext2 = true; data->emu_wrsr_ext3 = true; data->emu_chip_size = 16 * 1024 * 1024; data->emu_max_byteprogram_size = 256; data->emu_max_aai_size = 0; data->emu_status_len = 3; data->emu_jedec_se_size = 4 * 1024; data->emu_jedec_be_52_size = 32 * 1024; data->emu_jedec_be_d8_size = 64 * 1024; data->emu_jedec_ce_60_size = data->emu_chip_size; data->emu_jedec_ce_c7_size = data->emu_chip_size; msg_pdbg("Emulating Spansion S25FL128L SPI flash chip (RES, RDID, WP)\n"); } /* The name of variable-size virtual chip. A 4 MiB flash example: * flashrom -p dummy:emulate=VARIABLE_SIZE,size=4194304 */ if (!strcmp(tmp, "VARIABLE_SIZE")) { if (size == -1) { msg_perr("%s: the size parameter is not given.\n", __func__); free(tmp); return 1; } data->emu_chip = EMULATE_VARIABLE_SIZE; data->emu_chip_size = size; msg_pdbg("Emulating generic SPI flash chip (size=%d bytes)\n", data->emu_chip_size); } else if (size != -1) { msg_perr("%s: size parameter is only valid for VARIABLE_SIZE chip.\n", __func__); free(tmp); return 1; } if (data->emu_chip == EMULATE_NONE) { msg_perr("Invalid chip specified for emulation: %s\n", tmp); free(tmp); return 1; } free(tmp); /* Should emulated flash erase to zero (yes/no)? */ tmp = extract_programmer_param_str(cfg, "erase_to_zero"); if (tmp) { if (data->emu_chip != EMULATE_VARIABLE_SIZE) { msg_perr("%s: erase_to_zero parameter is not valid for real chip.\n", __func__); free(tmp); return 1; } if (!strcmp(tmp, "yes")) { msg_pdbg("Emulated chip will erase to 0x00\n"); data->erase_to_zero = true; } else if (!strcmp(tmp, "no")) { msg_pdbg("Emulated chip will erase to 0xff\n"); } else { msg_perr("erase_to_zero can be \"yes\" or \"no\"\n"); free(tmp); return 1; } } free(tmp); status = extract_programmer_param_str(cfg, "spi_status"); if (status) { unsigned int emu_status; errno = 0; emu_status = strtoul(status, &endptr, 0); if (errno != 0 || status == endptr) { free(status); msg_perr("Error: initial status register specified, " "but the value could not be converted.\n"); return 1; } free(status); data->emu_status[0] = emu_status; data->emu_status[1] = emu_status >> 8; data->emu_status[2] = emu_status >> 16; if (data->emu_status_len == 3) { msg_pdbg("Initial status registers:\n" "\tSR1 is set to 0x%02x\n" "\tSR2 is set to 0x%02x\n" "\tSR3 is set to 0x%02x\n", data->emu_status[0], data->emu_status[1], data->emu_status[2]); } else if (data->emu_status_len == 2) { msg_pdbg("Initial status registers:\n" "\tSR1 is set to 0x%02x\n" "\tSR2 is set to 0x%02x\n", data->emu_status[0], data->emu_status[1]); } else { msg_pdbg("Initial status register is set to 0x%02x.\n", data->emu_status[0]); } } data->flashchip_contents = malloc(data->emu_chip_size); if (!data->flashchip_contents) { msg_perr("Out of memory!\n"); return 1; } return 0; } static int dummy_init(const struct programmer_cfg *cfg) { int ret = 0; struct stat image_stat; struct emu_data *data = calloc(1, sizeof(*data)); if (!data) { msg_perr("Out of memory!\n"); return 1; } data->emu_chip = EMULATE_NONE; data->delay_us = 0; data->spi_write_256_chunksize = 256; msg_pspew("%s\n", __func__); enum chipbustype dummy_buses_supported; if (init_data(cfg, data, &dummy_buses_supported)) { free(data); return 1; } if (data->emu_chip == EMULATE_NONE) { msg_pdbg("Not emulating any flash chip.\n"); /* Nothing else to do. */ goto dummy_init_out; } msg_pdbg("Filling fake flash chip with 0x%02x, size %i\n", data->erase_to_zero ? 0x00 : 0xff, data->emu_chip_size); memset(data->flashchip_contents, data->erase_to_zero ? 0x00 : 0xff, data->emu_chip_size); /* Will be freed by shutdown function if necessary. */ data->emu_persistent_image = extract_programmer_param_str(cfg, "image"); if (!data->emu_persistent_image) { /* Nothing else to do. */ goto dummy_init_out; } /* We will silently (in default verbosity) ignore the file if it does not exist (yet) or the size does * not match the emulated chip. */ if (!stat(data->emu_persistent_image, &image_stat)) { msg_pdbg("Found persistent image %s, %jd B ", data->emu_persistent_image, (intmax_t)image_stat.st_size); if ((uintmax_t)image_stat.st_size == data->emu_chip_size) { msg_pdbg("matches.\n"); msg_pdbg("Reading %s\n", data->emu_persistent_image); if (read_buf_from_file(data->flashchip_contents, data->emu_chip_size, data->emu_persistent_image)) { msg_perr("Unable to read %s\n", data->emu_persistent_image); free(data->emu_persistent_image); free(data->flashchip_contents); free(data); return 1; } } else { msg_pdbg("doesn't match.\n"); } } dummy_init_out: if (dummy_buses_supported & BUS_PROG) { data->refs_cnt++; ret |= register_opaque_master(&opaque_master_dummyflasher, data); } if ((dummy_buses_supported & BUS_NONSPI) && !ret) { data->refs_cnt++; ret |= register_par_master(&par_master_dummyflasher, dummy_buses_supported & BUS_NONSPI, data); } if ((dummy_buses_supported & BUS_SPI) && !ret) { data->refs_cnt++; ret |= register_spi_master(&spi_master_dummyflasher, data); } return ret; } const struct programmer_entry programmer_dummy = { .name = "dummy", .type = OTHER, /* FIXME */ .devs.note = "Dummy device, does nothing and logs all accesses\n", .init = dummy_init, };