//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "flang/CodeGen/BackendUtil.h" #include "flang/Basic/Diagnostic.h" #include "flang/Basic/LangOptions.h" #include "flang/Basic/TargetOptions.h" #include "flang/Frontend/CodeGenOptions.h" #include "flang/Frontend/FrontendDiagnostic.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Module.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Scalar.h" using namespace flang; using namespace llvm; namespace { class EmitAssemblyHelper { DiagnosticsEngine &Diags; const CodeGenOptions &CodeGenOpts; const flang::TargetOptions &TargetOpts; const LangOptions &LangOpts; Module *TheModule; Timer CodeGenerationTime; mutable PassManager *CodeGenPasses; mutable PassManager *PerModulePasses; mutable FunctionPassManager *PerFunctionPasses; private: PassManager *getCodeGenPasses(TargetMachine *TM) const { if (!CodeGenPasses) { CodeGenPasses = new PassManager(); CodeGenPasses->add(new DataLayout(TheModule)); if (TM) TM->addAnalysisPasses(*CodeGenPasses); } return CodeGenPasses; } PassManager *getPerModulePasses(TargetMachine *TM) const { if (!PerModulePasses) { PerModulePasses = new PassManager(); PerModulePasses->add(new DataLayout(TheModule)); if (TM) TM->addAnalysisPasses(*PerModulePasses); } return PerModulePasses; } FunctionPassManager *getPerFunctionPasses(TargetMachine *TM) const { if (!PerFunctionPasses) { PerFunctionPasses = new FunctionPassManager(TheModule); PerFunctionPasses->add(new DataLayout(TheModule)); if (TM) TM->addAnalysisPasses(*PerFunctionPasses); } return PerFunctionPasses; } void CreatePasses(TargetMachine *TM); /// CreateTargetMachine - Generates the TargetMachine. /// Returns Null if it is unable to create the target machine. /// Some of our clang tests specify triples which are not built /// into clang. This is okay because these tests check the generated /// IR, and they require DataLayout which depends on the triple. /// In this case, we allow this method to fail and not report an error. /// When MustCreateTM is used, we print an error if we are unable to load /// the requested target. TargetMachine *CreateTargetMachine(bool MustCreateTM); /// AddEmitPasses - Add passes necessary to emit assembly or LLVM IR. /// /// \return True on success. bool AddEmitPasses(BackendAction Action, formatted_raw_ostream &OS, TargetMachine *TM); public: EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, const flang::TargetOptions &TOpts, const LangOptions &LOpts, Module *M) : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), CodeGenerationTime("Code Generation Time"), CodeGenPasses(0), PerModulePasses(0), PerFunctionPasses(0) {} ~EmitAssemblyHelper() { delete CodeGenPasses; delete PerModulePasses; delete PerFunctionPasses; } void EmitAssembly(BackendAction Action, raw_ostream *OS); }; // We need this wrapper to access LangOpts and CGOpts from extension functions // that we add to the PassManagerBuilder. class PassManagerBuilderWrapper : public PassManagerBuilder { public: PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, const LangOptions &LangOpts) : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} const CodeGenOptions &getCGOpts() const { return CGOpts; } const LangOptions &getLangOpts() const { return LangOpts; } private: const CodeGenOptions &CGOpts; const LangOptions &LangOpts; }; } static void addBoundsCheckingPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { PM.add(createBoundsCheckingPass()); } void EmitAssemblyHelper::CreatePasses(TargetMachine *TM) { unsigned OptLevel = CodeGenOpts.OptimizationLevel; CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); // Handle disabling of LLVM optimization, where we want to preserve the // internal module before any optimization. if (CodeGenOpts.DisableLLVMOpts) { OptLevel = 0; Inlining = CodeGenOpts.NoInlining; } PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); PMBuilder.OptLevel = OptLevel; PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; // Figure out TargetLibraryInfo. Triple TargetTriple(TheModule->getTargetTriple()); PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple); if (!CodeGenOpts.SimplifyLibCalls) PMBuilder.LibraryInfo->disableAllFunctions(); switch (Inlining) { case CodeGenOptions::NoInlining: break; case CodeGenOptions::NormalInlining: { // FIXME: Derive these constants in a principled fashion. unsigned Threshold = 225; if (CodeGenOpts.OptimizeSize == 1) // -Os Threshold = 75; else if (CodeGenOpts.OptimizeSize == 2) // -Oz Threshold = 25; else if (OptLevel > 2) Threshold = 275; PMBuilder.Inliner = createFunctionInliningPass(Threshold); break; } case CodeGenOptions::OnlyAlwaysInlining: // Respect always_inline. if (OptLevel == 0) // Do not insert lifetime intrinsics at -O0. PMBuilder.Inliner = createAlwaysInlinerPass(false); else PMBuilder.Inliner = createAlwaysInlinerPass(); break; } // Set up the per-function pass manager. FunctionPassManager *FPM = getPerFunctionPasses(TM); if (CodeGenOpts.VerifyModule) FPM->add(createVerifierPass()); PMBuilder.populateFunctionPassManager(*FPM); // Set up the per-module pass manager. PassManager *MPM = getPerModulePasses(TM); if (!CodeGenOpts.DisableGCov && (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if // LLVM's -default-gcov-version flag is set to something invalid. GCOVOptions Options; Options.EmitNotes = CodeGenOpts.EmitGcovNotes; Options.EmitData = CodeGenOpts.EmitGcovArcs; memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; Options.NoRedZone = CodeGenOpts.DisableRedZone; Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData; MPM->add(createGCOVProfilerPass(Options)); if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo) MPM->add(createStripSymbolsPass(true)); } PMBuilder.populateModulePassManager(*MPM); } TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { // Create the TargetMachine for generating code. std::string Error; std::string Triple = TheModule->getTargetTriple(); const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) { if (MustCreateTM) Diags.Report(diag::err_fe_unable_to_create_target) << Error; return 0; } // FIXME: Expose these capabilities via actual APIs!!!! Aside from just // being gross, this is also totally broken if we ever care about // concurrency. TargetMachine::setAsmVerbosityDefault(CodeGenOpts.AsmVerbose); TargetMachine::setFunctionSections(CodeGenOpts.FunctionSections); TargetMachine::setDataSections (CodeGenOpts.DataSections); // FIXME: Parse this earlier. llvm::CodeModel::Model CM; if (CodeGenOpts.CodeModel == "small") { CM = llvm::CodeModel::Small; } else if (CodeGenOpts.CodeModel == "kernel") { CM = llvm::CodeModel::Kernel; } else if (CodeGenOpts.CodeModel == "medium") { CM = llvm::CodeModel::Medium; } else if (CodeGenOpts.CodeModel == "large") { CM = llvm::CodeModel::Large; } else { assert(CodeGenOpts.CodeModel.empty() && "Invalid code model!"); CM = llvm::CodeModel::Default; } SmallVector BackendArgs; BackendArgs.push_back("clang"); // Fake program name. if (!CodeGenOpts.DebugPass.empty()) { BackendArgs.push_back("-debug-pass"); BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); } if (!CodeGenOpts.LimitFloatPrecision.empty()) { BackendArgs.push_back("-limit-float-precision"); BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); } if (llvm::TimePassesIsEnabled) BackendArgs.push_back("-time-passes"); for (unsigned i = 0, e = CodeGenOpts.BackendOptions.size(); i != e; ++i) BackendArgs.push_back(CodeGenOpts.BackendOptions[i].c_str()); if (CodeGenOpts.NoGlobalMerge) BackendArgs.push_back("-global-merge=false"); BackendArgs.push_back(0); llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, BackendArgs.data()); std::string FeaturesStr; if (TargetOpts.Features.size()) { SubtargetFeatures Features; for (std::vector::const_iterator it = TargetOpts.Features.begin(), ie = TargetOpts.Features.end(); it != ie; ++it) Features.AddFeature(*it); FeaturesStr = Features.getString(); } llvm::Reloc::Model RM = llvm::Reloc::Default; if (CodeGenOpts.RelocationModel == "static") { RM = llvm::Reloc::Static; } else if (CodeGenOpts.RelocationModel == "pic") { RM = llvm::Reloc::PIC_; } else { assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && "Invalid PIC model!"); RM = llvm::Reloc::DynamicNoPIC; } CodeGenOpt::Level OptLevel = CodeGenOpt::Default; switch (CodeGenOpts.OptimizationLevel) { default: break; case 0: OptLevel = CodeGenOpt::None; break; case 3: OptLevel = CodeGenOpt::Aggressive; break; } llvm::TargetOptions Options; // Set frame pointer elimination mode. if (!CodeGenOpts.DisableFPElim) { Options.NoFramePointerElim = false; Options.NoFramePointerElimNonLeaf = false; } else if (CodeGenOpts.OmitLeafFramePointer) { Options.NoFramePointerElim = false; Options.NoFramePointerElimNonLeaf = true; } else { Options.NoFramePointerElim = true; Options.NoFramePointerElimNonLeaf = true; } if (CodeGenOpts.UseInitArray) Options.UseInitArray = true; // Set float ABI type. if (CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp") Options.FloatABIType = llvm::FloatABI::Soft; else if (CodeGenOpts.FloatABI == "hard") Options.FloatABIType = llvm::FloatABI::Hard; else { assert(CodeGenOpts.FloatABI.empty() && "Invalid float abi!"); Options.FloatABIType = llvm::FloatABI::Default; } // Set FP fusion mode. switch (CodeGenOpts.getFPContractMode()) { case CodeGenOptions::FPC_Off: Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; break; case CodeGenOptions::FPC_On: Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; break; case CodeGenOptions::FPC_Fast: Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; break; } Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; Options.UseSoftFloat = CodeGenOpts.SoftFloat; Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; Options.RealignStack = CodeGenOpts.StackRealignment; Options.DisableTailCalls = CodeGenOpts.DisableTailCalls; Options.TrapFuncName = CodeGenOpts.TrapFuncName; //Options.PositionIndependentExecutable = LangOpts.PIELevel != 0; Options.EnableSegmentedStacks = CodeGenOpts.EnableSegmentedStacks; TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, Options, RM, CM, OptLevel); if (CodeGenOpts.RelaxAll) TM->setMCRelaxAll(true); if (CodeGenOpts.SaveTempLabels) TM->setMCSaveTempLabels(true); if (CodeGenOpts.NoDwarf2CFIAsm) TM->setMCUseCFI(false); if (!CodeGenOpts.NoDwarfDirectoryAsm) TM->setMCUseDwarfDirectory(true); if (CodeGenOpts.NoExecStack) TM->setMCNoExecStack(true); return TM; } bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, formatted_raw_ostream &OS, TargetMachine *TM) { // Create the code generator passes. PassManager *PM = getCodeGenPasses(TM); // Add LibraryInfo. llvm::Triple TargetTriple(TheModule->getTargetTriple()); TargetLibraryInfo *TLI = new TargetLibraryInfo(TargetTriple); if (!CodeGenOpts.SimplifyLibCalls) TLI->disableAllFunctions(); PM->add(TLI); // Add Target specific analysis passes. TM->addAnalysisPasses(*PM); // Normal mode, emit a .s or .o file by running the code generator. Note, // this also adds codegenerator level optimization passes. TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; if (Action == Backend_EmitObj) CGFT = TargetMachine::CGFT_ObjectFile; else if (Action == Backend_EmitMCNull) CGFT = TargetMachine::CGFT_Null; else assert(Action == Backend_EmitAssembly && "Invalid action!"); if (TM->addPassesToEmitFile(*PM, OS, CGFT, /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { Diags.Report(diag::err_fe_unable_to_interface_with_target); return false; } return true; } void EmitAssemblyHelper::EmitAssembly(BackendAction Action, raw_ostream *OS) { TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : 0); llvm::formatted_raw_ostream FormattedOS; bool UsesCodeGen = (Action != Backend_EmitNothing && Action != Backend_EmitBC && Action != Backend_EmitLL); TargetMachine *TM = CreateTargetMachine(UsesCodeGen); if (UsesCodeGen && !TM) return; llvm::OwningPtr TMOwner(CodeGenOpts.DisableFree ? 0 : TM); CreatePasses(TM); switch (Action) { case Backend_EmitNothing: break; case Backend_EmitBC: getPerModulePasses(TM)->add(createBitcodeWriterPass(*OS)); break; case Backend_EmitLL: FormattedOS.setStream(*OS, formatted_raw_ostream::PRESERVE_STREAM); getPerModulePasses(TM)->add(createPrintModulePass(&FormattedOS)); break; default: FormattedOS.setStream(*OS, formatted_raw_ostream::PRESERVE_STREAM); if (!AddEmitPasses(Action, FormattedOS, TM)) return; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Run passes. For now we do all passes at once, but eventually we // would like to have the option of streaming code generation. if (PerFunctionPasses) { PrettyStackTraceString CrashInfo("Per-function optimization"); PerFunctionPasses->doInitialization(); for (Module::iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) if (!I->isDeclaration()) PerFunctionPasses->run(*I); PerFunctionPasses->doFinalization(); } if (PerModulePasses) { PrettyStackTraceString CrashInfo("Per-module optimization passes"); PerModulePasses->run(*TheModule); } if (CodeGenPasses) { PrettyStackTraceString CrashInfo("Code generation"); CodeGenPasses->run(*TheModule); } } void flang::EmitBackendOutput(DiagnosticsEngine &Diags, const CodeGenOptions &CGOpts, const flang::TargetOptions &TOpts, const LangOptions &LOpts, Module *M, BackendAction Action, raw_ostream *OS) { EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); AsmHelper.EmitAssembly(Action, OS); }