//===--- Diagnostic.cpp - Fortran Language Diagnostic Handling ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "flang/Basic/Diagnostic.h" #include "flang/Basic/IdentifierTable.h" #include "flang/AST/Type.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" namespace flang { bool DiagnosticsEngine::hadErrors() { return Client->getNumErrors() != 0; } bool DiagnosticsEngine::hadWarnings() { return Client->getNumWarnings() != 0; } void DiagnosticsEngine::Reset() { ErrorOccurred = false; UncompilableErrorOccurred = false; FatalErrorOccurred = false; UnrecoverableErrorOccurred = false; NumWarnings = 0; NumErrors = 0; NumErrorsSuppressed = 0; TrapNumErrorsOccurred = 0; TrapNumUnrecoverableErrorsOccurred = 0; CurDiagID = ~0U; LastDiagLevel = DiagnosticIDs::Ignored; DelayedDiagID = 0; // Clear state related to #pragma diagnostic. DiagStates.clear(); DiagStatePoints.clear(); DiagStateOnPushStack.clear(); // Create a DiagState and DiagStatePoint representing diagnostic changes // through command-line. DiagStates.push_back(DiagState()); DiagStatePoints.push_back(DiagStatePoint(&DiagStates.back(), SourceLocation())); } void DiagnosticsEngine::ReportDelayed() { Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2; DelayedDiagID = 0; DelayedDiagArg1.clear(); DelayedDiagArg2.clear(); } DiagnosticsEngine::DiagStatePointsTy::iterator DiagnosticsEngine::GetDiagStatePointForLoc(SourceLocation L) const { return DiagStatePoints.end() - 1; assert(!DiagStatePoints.empty()); assert(DiagStatePoints.front().Loc.isValid() && "Should have created a DiagStatePoint for command-line"); if (!SrcMgr) return DiagStatePoints.end() - 1; if (!L.isValid()) return DiagStatePoints.end() - 1; DiagStatePointsTy::iterator Pos = DiagStatePoints.end(); SourceLocation LastStateChangePos = DiagStatePoints.back().Loc; if (DiagStatePoints.back().Loc.isValid() && L.getPointer() < LastStateChangePos.getPointer()) Pos = std::upper_bound(DiagStatePoints.begin(), DiagStatePoints.end(), DiagStatePoint(0, L)); --Pos; return Pos; } void DiagnosticsEngine::setDiagnosticMapping(diag::kind Diag, diag::Mapping Map, SourceLocation L) { assert(Diag < diag::DIAG_UPPER_LIMIT && "Can only map builtin diagnostics"); assert((Diags->isBuiltinWarningOrExtension(Diag) || (Map == diag::MAP_FATAL || Map == diag::MAP_ERROR)) && "Cannot map errors into warnings!"); assert(!DiagStatePoints.empty()); assert((L.isValid() || SrcMgr) && "No SourceMgr for valid location"); SourceLocation Loc = L; SourceLocation LastStateChangePos = DiagStatePoints.back().Loc; // Don't allow a mapping to a warning override an error/fatal mapping. if (Map == diag::MAP_WARNING) { DiagnosticMappingInfo &Info = GetCurDiagState()->getOrAddMappingInfo(Diag); if (Info.getMapping() == diag::MAP_ERROR || Info.getMapping() == diag::MAP_FATAL) Map = Info.getMapping(); } DiagnosticMappingInfo MappingInfo = makeMappingInfo(Map, L); // Common case; setting all the diagnostics of a group in one place. if (!Loc.isValid() || Loc == LastStateChangePos) { GetCurDiagState()->setMappingInfo(Diag, MappingInfo); return; } // Another common case; modifying diagnostic state in a source location // after the previous one. if ((Loc.isValid() && !LastStateChangePos.isValid()) || LastStateChangePos.getPointer() < Loc.getPointer()) { // A diagnostic pragma occurred, create a new DiagState initialized with // the current one and a new DiagStatePoint to record at which location // the new state became active. DiagStates.push_back(*GetCurDiagState()); PushDiagStatePoint(&DiagStates.back(), Loc); GetCurDiagState()->setMappingInfo(Diag, MappingInfo); return; } // We allow setting the diagnostic state in random source order for // completeness but it should not be actually happening in normal practice. DiagStatePointsTy::iterator Pos = GetDiagStatePointForLoc(Loc); assert(Pos != DiagStatePoints.end()); // Update all diagnostic states that are active after the given location. for (DiagStatePointsTy::iterator I = Pos+1, E = DiagStatePoints.end(); I != E; ++I) { GetCurDiagState()->setMappingInfo(Diag, MappingInfo); } // If the location corresponds to an existing point, just update its state. if (Pos->Loc == Loc) { GetCurDiagState()->setMappingInfo(Diag, MappingInfo); return; } // Create a new state/point and fit it into the vector of DiagStatePoints // so that the vector is always ordered according to location. DiagStates.push_back(*Pos->State); DiagState *NewState = &DiagStates.back(); GetCurDiagState()->setMappingInfo(Diag, MappingInfo); DiagStatePoints.insert(Pos+1, DiagStatePoint(NewState, Loc)); } bool DiagnosticsEngine::EmitCurrentDiagnostic(bool Force) { assert(getClient() && "DiagnosticClient not set!"); bool Emitted; if (Force) { Diagnostic Info(this); // Figure out the diagnostic level of this message. DiagnosticIDs::Level DiagLevel = Diags->getDiagnosticLevel(Info.getID(), Info.getLocation(), *this); Emitted = (DiagLevel != DiagnosticIDs::Ignored); if (Emitted) { // Emit the diagnostic regardless of suppression level. Diags->EmitDiag(*this, DiagLevel); } } else { // Process the diagnostic, sending the accumulated information to the // DiagnosticConsumer. Emitted = ProcessDiag(); } // Clear out the current diagnostic object. unsigned DiagID = CurDiagID; Clear(); // If there was a delayed diagnostic, emit it now. if (!Force && DelayedDiagID && DelayedDiagID != DiagID) ReportDelayed(); return Emitted; } /// ReportError - Emit an error at the location \arg L, with the message \arg /// Msg. /// /// \return The return value is always true, as an idiomatic convenience to /// clients. bool DiagnosticsEngine::ReportError(SourceLocation L, const llvm::Twine &Msg) { Client->HandleDiagnostic(Error, L, Msg); return true; } /// ReportWarning - Emit a warning at the location \arg L, with the message \arg /// Msg. /// /// \return The return value is always true, as an idiomatic convenience to /// clients. bool DiagnosticsEngine::ReportWarning(SourceLocation L, const llvm::Twine &Msg) { Client->HandleDiagnostic(Warning, L, Msg); return true; } /// ReportNote - Emit a warning at the location \arg L, with the message \arg /// Msg. /// /// \return The return value is always true, as an idiomatic convenience to /// clients. bool DiagnosticsEngine::ReportNote(SourceLocation L, const llvm::Twine &Msg) { Client->HandleDiagnostic(Note, L, Msg); return true; } DiagnosticClient::~DiagnosticClient() {} void DiagnosticClient::HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, SourceLocation, const llvm::Twine &, llvm::ArrayRef, llvm::ArrayRef) { if (!IncludeInDiagnosticCounts()) return; if (DiagLevel == DiagnosticsEngine::Warning) ++NumWarnings; else if (DiagLevel >= DiagnosticsEngine::Error) ++NumErrors; } static inline bool isDigit(char c) { return c >= '0' && c <= '9'; } static inline bool isPunctuation(char c) { return c == '.' || c == ',' || c == ';' || c == ':' || c == '-' || c == '!' || c == '?'; } /// ModifierIs - Return true if the specified modifier matches specified string. template static bool ModifierIs(const char *Modifier, unsigned ModifierLen, const char (&Str)[StrLen]) { return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1); } /// ScanForward - Scans forward, looking for the given character, skipping /// nested clauses and escaped characters. static const char *ScanFormat(const char *I, const char *E, char Target) { unsigned Depth = 0; for ( ; I != E; ++I) { if (Depth == 0 && *I == Target) return I; if (Depth != 0 && *I == '}') Depth--; if (*I == '%') { I++; if (I == E) break; // Escaped characters get implicitly skipped here. // Format specifier. if (!isDigit(*I) && !isPunctuation(*I)) { for (I++; I != E && !isDigit(*I) && *I != '{'; I++) ; if (I == E) break; if (*I == '{') Depth++; } } } return E; } using llvm::SmallVectorImpl; using llvm::SmallVector; /// HandleSelectModifier - Handle the integer 'select' modifier. This is used /// like this: %select{foo|bar|baz}2. This means that the integer argument /// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'. /// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'. /// This is very useful for certain classes of variant diagnostics. static void HandleSelectModifier(const Diagnostic &DInfo, unsigned ValNo, const char *Argument, unsigned ArgumentLen, SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument+ArgumentLen; // Skip over 'ValNo' |'s. while (ValNo) { const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|'); assert(NextVal != ArgumentEnd && "Value for integer select modifier was" " larger than the number of options in the diagnostic string!"); Argument = NextVal+1; // Skip this string. --ValNo; } // Get the end of the value. This is either the } or the |. const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|'); // Recursively format the result of the select clause into the output string. DInfo.FormatDiagnostic(Argument, EndPtr, OutStr); } /// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the /// letter 's' to the string if the value is not 1. This is used in cases like /// this: "you idiot, you have %4 parameter%s4!". static void HandleIntegerSModifier(unsigned ValNo, SmallVectorImpl &OutStr) { if (ValNo != 1) OutStr.push_back('s'); } /// HandleOrdinalModifier - Handle the integer 'ord' modifier. This /// prints the ordinal form of the given integer, with 1 corresponding /// to the first ordinal. Currently this is hard-coded to use the /// English form. static void HandleOrdinalModifier(unsigned ValNo, SmallVectorImpl &OutStr) { assert(ValNo != 0 && "ValNo must be strictly positive!"); llvm::raw_svector_ostream Out(OutStr); // We could use text forms for the first N ordinals, but the numeric // forms are actually nicer in diagnostics because they stand out. Out << ValNo << llvm::getOrdinalSuffix(ValNo); } /// PluralNumber - Parse an unsigned integer and advance Start. static unsigned PluralNumber(const char *&Start, const char *End) { // Programming 101: Parse a decimal number :-) unsigned Val = 0; while (Start != End && *Start >= '0' && *Start <= '9') { Val *= 10; Val += *Start - '0'; ++Start; } return Val; } /// TestPluralRange - Test if Val is in the parsed range. Modifies Start. static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) { if (*Start != '[') { unsigned Ref = PluralNumber(Start, End); return Ref == Val; } ++Start; unsigned Low = PluralNumber(Start, End); assert(*Start == ',' && "Bad plural expression syntax: expected ,"); ++Start; unsigned High = PluralNumber(Start, End); assert(*Start == ']' && "Bad plural expression syntax: expected )"); ++Start; return Low <= Val && Val <= High; } /// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier. static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) { // Empty condition? if (*Start == ':') return true; while (1) { char C = *Start; if (C == '%') { // Modulo expression ++Start; unsigned Arg = PluralNumber(Start, End); assert(*Start == '=' && "Bad plural expression syntax: expected ="); ++Start; unsigned ValMod = ValNo % Arg; if (TestPluralRange(ValMod, Start, End)) return true; } else { assert((C == '[' || (C >= '0' && C <= '9')) && "Bad plural expression syntax: unexpected character"); // Range expression if (TestPluralRange(ValNo, Start, End)) return true; } // Scan for next or-expr part. Start = std::find(Start, End, ','); if (Start == End) break; ++Start; } return false; } /// HandlePluralModifier - Handle the integer 'plural' modifier. This is used /// for complex plural forms, or in languages where all plurals are complex. /// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are /// conditions that are tested in order, the form corresponding to the first /// that applies being emitted. The empty condition is always true, making the /// last form a default case. /// Conditions are simple boolean expressions, where n is the number argument. /// Here are the rules. /// condition := expression | empty /// empty := -> always true /// expression := numeric [',' expression] -> logical or /// numeric := range -> true if n in range /// | '%' number '=' range -> true if n % number in range /// range := number /// | '[' number ',' number ']' -> ranges are inclusive both ends /// /// Here are some examples from the GNU gettext manual written in this form: /// English: /// {1:form0|:form1} /// Latvian: /// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0} /// Gaeilge: /// {1:form0|2:form1|:form2} /// Romanian: /// {1:form0|0,%100=[1,19]:form1|:form2} /// Lithuanian: /// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1} /// Russian (requires repeated form): /// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2} /// Slovak /// {1:form0|[2,4]:form1|:form2} /// Polish (requires repeated form): /// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2} static void HandlePluralModifier(const Diagnostic &DInfo, unsigned ValNo, const char *Argument, unsigned ArgumentLen, SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument + ArgumentLen; while (1) { assert(Argument < ArgumentEnd && "Plural expression didn't match."); const char *ExprEnd = Argument; while (*ExprEnd != ':') { assert(ExprEnd != ArgumentEnd && "Plural missing expression end"); ++ExprEnd; } if (EvalPluralExpr(ValNo, Argument, ExprEnd)) { Argument = ExprEnd + 1; ExprEnd = ScanFormat(Argument, ArgumentEnd, '|'); // Recursively format the result of the plural clause into the // output string. DInfo.FormatDiagnostic(Argument, ExprEnd, OutStr); return; } Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1; } } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void Diagnostic:: FormatDiagnostic(SmallVectorImpl &OutStr) const { if (!StoredDiagMessage.empty()) { OutStr.append(StoredDiagMessage.begin(), StoredDiagMessage.end()); return; } llvm::StringRef Diag = getDiags()->getDiagnosticIDs()->getDescription(getID()); FormatDiagnostic(Diag.begin(), Diag.end(), OutStr); } void Diagnostic:: FormatDiagnostic(const char *DiagStr, const char *DiagEnd, SmallVectorImpl &OutStr) const { /// FormattedArgs - Keep track of all of the arguments formatted by /// ConvertArgToString and pass them into subsequent calls to /// ConvertArgToString, allowing the implementation to avoid redundancies in /// obvious cases. SmallVector FormattedArgs; /// QualTypeVals - Pass a vector of arrays so that QualType names can be /// compared to see if more information is needed to be printed. SmallVector QualTypeVals; SmallVector Tree; for (unsigned i = 0, e = getNumArgs(); i < e; ++i) if (getArgKind(i) == DiagnosticsEngine::ak_qualtype) QualTypeVals.push_back(getRawArg(i)); while (DiagStr != DiagEnd) { if (DiagStr[0] != '%') { // Append non-%0 substrings to Str if we have one. const char *StrEnd = std::find(DiagStr, DiagEnd, '%'); OutStr.append(DiagStr, StrEnd); DiagStr = StrEnd; continue; } else if (isPunctuation(DiagStr[1])) { OutStr.push_back(DiagStr[1]); // %% -> %. DiagStr += 2; continue; } // Skip the %. ++DiagStr; // This must be a placeholder for a diagnostic argument. The format for a // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0". // The digit is a number from 0-9 indicating which argument this comes from. // The modifier is a string of digits from the set [-a-z]+, arguments is a // brace enclosed string. const char *Modifier = 0, *Argument = 0; unsigned ModifierLen = 0, ArgumentLen = 0; // Check to see if we have a modifier. If so eat it. if (!isDigit(DiagStr[0])) { Modifier = DiagStr; while (DiagStr[0] == '-' || (DiagStr[0] >= 'a' && DiagStr[0] <= 'z')) ++DiagStr; ModifierLen = DiagStr-Modifier; // If we have an argument, get it next. if (DiagStr[0] == '{') { ++DiagStr; // Skip {. Argument = DiagStr; DiagStr = ScanFormat(DiagStr, DiagEnd, '}'); assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!"); ArgumentLen = DiagStr-Argument; ++DiagStr; // Skip }. } } assert(isDigit(*DiagStr) && "Invalid format for argument in diagnostic"); unsigned ArgNo = *DiagStr++ - '0'; // Only used for type diffing. unsigned ArgNo2 = ArgNo; DiagnosticsEngine::ArgumentKind Kind = getArgKind(ArgNo); if (ModifierIs(Modifier, ModifierLen, "diff")) { assert(*DiagStr == ',' && isDigit(*(DiagStr + 1)) && "Invalid format for diff modifier"); ++DiagStr; // Comma. ArgNo2 = *DiagStr++ - '0'; DiagnosticsEngine::ArgumentKind Kind2 = getArgKind(ArgNo2); if (Kind == DiagnosticsEngine::ak_qualtype && Kind2 == DiagnosticsEngine::ak_qualtype) Kind = DiagnosticsEngine::ak_qualtype_pair; else { // %diff only supports QualTypes. For other kinds of arguments, // use the default printing. For example, if the modifier is: // "%diff{compare $ to $|other text}1,2" // treat it as: // "compare %1 to %2" const char *Pipe = ScanFormat(Argument, Argument + ArgumentLen, '|'); const char *FirstDollar = ScanFormat(Argument, Pipe, '$'); const char *SecondDollar = ScanFormat(FirstDollar + 1, Pipe, '$'); const char ArgStr1[] = { '%', static_cast('0' + ArgNo) }; const char ArgStr2[] = { '%', static_cast('0' + ArgNo2) }; FormatDiagnostic(Argument, FirstDollar, OutStr); FormatDiagnostic(ArgStr1, ArgStr1 + 2, OutStr); FormatDiagnostic(FirstDollar + 1, SecondDollar, OutStr); FormatDiagnostic(ArgStr2, ArgStr2 + 2, OutStr); FormatDiagnostic(SecondDollar + 1, Pipe, OutStr); continue; } } switch (Kind) { // ---- STRINGS ---- case DiagnosticsEngine::ak_std_string: { const std::string &S = getArgStdStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(S.begin(), S.end()); break; } case DiagnosticsEngine::ak_c_string: { const char *S = getArgCStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!S) S = "(null)"; OutStr.append(S, S + strlen(S)); break; } // ---- INTEGERS ---- case DiagnosticsEngine::ak_sint: { int Val = getArgSInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier((unsigned)Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } case DiagnosticsEngine::ak_uint: { unsigned Val = getArgUInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier(Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } // ---- NAMES and TYPES ---- case DiagnosticsEngine::ak_identifierinfo: { const IdentifierInfo *II = getArgIdentifier(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!II) { const char *S = "(null)"; OutStr.append(S, S + strlen(S)); continue; } llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\''; break; } case DiagnosticsEngine::ak_qualtype: { QualType T = QualType::getFromOpaquePtr((void*)getRawArg(ArgNo)); llvm::raw_svector_ostream Stream(OutStr); Stream << '\''; T.print(Stream); Stream << '\''; break; } } // Remember this argument info for subsequent formatting operations. Turn // std::strings into a null terminated string to make it be the same case as // all the other ones. if (Kind == DiagnosticsEngine::ak_qualtype_pair) continue; else if (Kind != DiagnosticsEngine::ak_std_string) FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo))); else FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_c_string, (intptr_t)getArgStdStr(ArgNo).c_str())); } // Append the type tree to the end of the diagnostics. OutStr.append(Tree.begin(), Tree.end()); } } //namespace flang