/* * Copyright (C) 2001-2011 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "libavutil/avassert.h" #include "libavutil/bswap.h" #include "libavutil/common.h" #include "libavutil/cpu.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem_internal.h" #include "libavutil/pixdesc.h" #include "config.h" #include "swscale_internal.h" #include "swscale.h" DECLARE_ALIGNED(8, const uint8_t, ff_dither_8x8_128)[9][8] = { { 36, 68, 60, 92, 34, 66, 58, 90, }, { 100, 4, 124, 28, 98, 2, 122, 26, }, { 52, 84, 44, 76, 50, 82, 42, 74, }, { 116, 20, 108, 12, 114, 18, 106, 10, }, { 32, 64, 56, 88, 38, 70, 62, 94, }, { 96, 0, 120, 24, 102, 6, 126, 30, }, { 48, 80, 40, 72, 54, 86, 46, 78, }, { 112, 16, 104, 8, 118, 22, 110, 14, }, { 36, 68, 60, 92, 34, 66, 58, 90, }, }; DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = { 64, 64, 64, 64, 64, 64, 64, 64 }; static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val) { int i; uint8_t *ptr = plane + stride * y; for (i = 0; i < height; i++) { memset(ptr, val, width); ptr += stride; } } static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat); int i; int32_t *dst = (int32_t *) _dst; const uint16_t *src = (const uint16_t *) _src; int bits = desc->comp[0].depth - 1; int sh = bits - 4; if ((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth<16) { sh = 9; } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */ sh = 16 - 1 - 4; } for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; int val = 0; for (j = 0; j < filterSize; j++) { val += src[srcPos + j] * filter[filterSize * i + j]; } // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit dst[i] = FFMIN(val >> sh, (1 << 19) - 1); } } static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat); int i; const uint16_t *src = (const uint16_t *) _src; int sh = desc->comp[0].depth - 1; if (sh<15) { sh = isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : (desc->comp[0].depth - 1); } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */ sh = 16 - 1; } for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; int val = 0; for (j = 0; j < filterSize; j++) { val += src[srcPos + j] * filter[filterSize * i + j]; } // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit dst[i] = FFMIN(val >> sh, (1 << 15) - 1); } } // bilinear / bicubic scaling static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize) { int i; for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; int val = 0; for (j = 0; j < filterSize; j++) { val += ((int)src[srcPos + j]) * filter[filterSize * i + j]; } dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ... } } static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize) { int i; int32_t *dst = (int32_t *) _dst; for (i = 0; i < dstW; i++) { int j; int srcPos = filterPos[i]; int val = 0; for (j = 0; j < filterSize; j++) { val += ((int)src[srcPos + j]) * filter[filterSize * i + j]; } dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ... } } // FIXME all pal and rgb srcFormats could do this conversion as well // FIXME all scalers more complex than bilinear could do half of this transform static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width) { int i; for (i = 0; i < width; i++) { dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264 dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264 } } static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width) { int i; for (i = 0; i < width; i++) { dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469 dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469 } } static void lumRangeToJpeg_c(int16_t *dst, int width) { int i; for (i = 0; i < width; i++) dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14; } static void lumRangeFromJpeg_c(int16_t *dst, int width) { int i; for (i = 0; i < width; i++) dst[i] = (dst[i] * 14071 + 33561947) >> 14; } static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width) { int i; int32_t *dstU = (int32_t *) _dstU; int32_t *dstV = (int32_t *) _dstV; for (i = 0; i < width; i++) { dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264 dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264 } } static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width) { int i; int32_t *dstU = (int32_t *) _dstU; int32_t *dstV = (int32_t *) _dstV; for (i = 0; i < width; i++) { dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469 dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469 } } static void lumRangeToJpeg16_c(int16_t *_dst, int width) { int i; int32_t *dst = (int32_t *) _dst; for (i = 0; i < width; i++) { dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12; } } static void lumRangeFromJpeg16_c(int16_t *_dst, int width) { int i; int32_t *dst = (int32_t *) _dst; for (i = 0; i < width; i++) dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12; } #define DEBUG_SWSCALE_BUFFERS 0 #define DEBUG_BUFFERS(...) \ if (DEBUG_SWSCALE_BUFFERS) \ av_log(c, AV_LOG_DEBUG, __VA_ARGS__) static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[], int dstSliceY, int dstSliceH) { const int scale_dst = dstSliceY > 0 || dstSliceH < c->dstH; /* load a few things into local vars to make the code more readable? * and faster */ const int dstW = c->dstW; int dstH = c->dstH; const enum AVPixelFormat dstFormat = c->dstFormat; const int flags = c->flags; int32_t *vLumFilterPos = c->vLumFilterPos; int32_t *vChrFilterPos = c->vChrFilterPos; const int vLumFilterSize = c->vLumFilterSize; const int vChrFilterSize = c->vChrFilterSize; yuv2planar1_fn yuv2plane1 = c->yuv2plane1; yuv2planarX_fn yuv2planeX = c->yuv2planeX; yuv2interleavedX_fn yuv2nv12cX = c->yuv2nv12cX; yuv2packed1_fn yuv2packed1 = c->yuv2packed1; yuv2packed2_fn yuv2packed2 = c->yuv2packed2; yuv2packedX_fn yuv2packedX = c->yuv2packedX; yuv2anyX_fn yuv2anyX = c->yuv2anyX; const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample; const int chrSrcSliceH = AV_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample); int should_dither = isNBPS(c->srcFormat) || is16BPS(c->srcFormat); int lastDstY; /* vars which will change and which we need to store back in the context */ int dstY = c->dstY; int lastInLumBuf = c->lastInLumBuf; int lastInChrBuf = c->lastInChrBuf; int lumStart = 0; int lumEnd = c->descIndex[0]; int chrStart = lumEnd; int chrEnd = c->descIndex[1]; int vStart = chrEnd; int vEnd = c->numDesc; SwsSlice *src_slice = &c->slice[lumStart]; SwsSlice *hout_slice = &c->slice[c->numSlice-2]; SwsSlice *vout_slice = &c->slice[c->numSlice-1]; SwsFilterDescriptor *desc = c->desc; int needAlpha = c->needAlpha; int hasLumHoles = 1; int hasChrHoles = 1; if (isPacked(c->srcFormat)) { src[1] = src[2] = src[3] = src[0]; srcStride[1] = srcStride[2] = srcStride[3] = srcStride[0]; } srcStride[1] *= 1 << c->vChrDrop; srcStride[2] *= 1 << c->vChrDrop; DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n", src[0], srcStride[0], src[1], srcStride[1], src[2], srcStride[2], src[3], srcStride[3], dst[0], dstStride[0], dst[1], dstStride[1], dst[2], dstStride[2], dst[3], dstStride[3]); DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n", srcSliceY, srcSliceH, dstY, dstH); DEBUG_BUFFERS("vLumFilterSize: %d vChrFilterSize: %d\n", vLumFilterSize, vChrFilterSize); if (dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15) { SwsContext *const ctx = c->parent ? c->parent : c; if (flags & SWS_PRINT_INFO && !atomic_exchange_explicit(&ctx->stride_unaligned_warned, 1, memory_order_relaxed)) { av_log(c, AV_LOG_WARNING, "Warning: dstStride is not aligned!\n" " ->cannot do aligned memory accesses anymore\n"); } } #if ARCH_X86 if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15 || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15 || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15 ) { SwsContext *const ctx = c->parent ? c->parent : c; int cpu_flags = av_get_cpu_flags(); if (flags & SWS_PRINT_INFO && HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !atomic_exchange_explicit(&ctx->stride_unaligned_warned,1, memory_order_relaxed)) { av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speed loss\n"); } } #endif if (scale_dst) { dstY = dstSliceY; dstH = dstY + dstSliceH; lastInLumBuf = -1; lastInChrBuf = -1; } else if (srcSliceY == 0) { /* Note the user might start scaling the picture in the middle so this * will not get executed. This is not really intended but works * currently, so people might do it. */ dstY = 0; lastInLumBuf = -1; lastInChrBuf = -1; } if (!should_dither) { c->chrDither8 = c->lumDither8 = sws_pb_64; } lastDstY = dstY; ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX, yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, c->use_mmx_vfilter); ff_init_slice_from_src(src_slice, (uint8_t**)src, srcStride, c->srcW, srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1); ff_init_slice_from_src(vout_slice, (uint8_t**)dst, dstStride, c->dstW, dstY, dstSliceH, dstY >> c->chrDstVSubSample, AV_CEIL_RSHIFT(dstSliceH, c->chrDstVSubSample), scale_dst); if (srcSliceY == 0) { hout_slice->plane[0].sliceY = lastInLumBuf + 1; hout_slice->plane[1].sliceY = lastInChrBuf + 1; hout_slice->plane[2].sliceY = lastInChrBuf + 1; hout_slice->plane[3].sliceY = lastInLumBuf + 1; hout_slice->plane[0].sliceH = hout_slice->plane[1].sliceH = hout_slice->plane[2].sliceH = hout_slice->plane[3].sliceH = 0; hout_slice->width = dstW; } for (; dstY < dstH; dstY++) { const int chrDstY = dstY >> c->chrDstVSubSample; int use_mmx_vfilter= c->use_mmx_vfilter; // First line needed as input const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]); const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), c->dstH - 1)]); // First line needed as input const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]); // Last line needed as input int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1; int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1; int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1; int enough_lines; int i; int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY; // handle holes (FAST_BILINEAR & weird filters) if (firstLumSrcY > lastInLumBuf) { hasLumHoles = lastInLumBuf != firstLumSrcY - 1; if (hasLumHoles) { hout_slice->plane[0].sliceY = firstLumSrcY; hout_slice->plane[3].sliceY = firstLumSrcY; hout_slice->plane[0].sliceH = hout_slice->plane[3].sliceH = 0; } lastInLumBuf = firstLumSrcY - 1; } if (firstChrSrcY > lastInChrBuf) { hasChrHoles = lastInChrBuf != firstChrSrcY - 1; if (hasChrHoles) { hout_slice->plane[1].sliceY = firstChrSrcY; hout_slice->plane[2].sliceY = firstChrSrcY; hout_slice->plane[1].sliceH = hout_slice->plane[2].sliceH = 0; } lastInChrBuf = firstChrSrcY - 1; } DEBUG_BUFFERS("dstY: %d\n", dstY); DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n", firstLumSrcY, lastLumSrcY, lastInLumBuf); DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n", firstChrSrcY, lastChrSrcY, lastInChrBuf); // Do we have enough lines in this slice to output the dstY line enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH && lastChrSrcY < AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample); if (!enough_lines) { lastLumSrcY = srcSliceY + srcSliceH - 1; lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1; DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n", lastLumSrcY, lastChrSrcY); } av_assert0((lastLumSrcY - firstLumSrcY + 1) <= hout_slice->plane[0].available_lines); av_assert0((lastChrSrcY - firstChrSrcY + 1) <= hout_slice->plane[1].available_lines); posY = hout_slice->plane[0].sliceY + hout_slice->plane[0].sliceH; if (posY <= lastLumSrcY && !hasLumHoles) { firstPosY = FFMAX(firstLumSrcY, posY); lastPosY = FFMIN(firstLumSrcY + hout_slice->plane[0].available_lines - 1, srcSliceY + srcSliceH - 1); } else { firstPosY = posY; lastPosY = lastLumSrcY; } cPosY = hout_slice->plane[1].sliceY + hout_slice->plane[1].sliceH; if (cPosY <= lastChrSrcY && !hasChrHoles) { firstCPosY = FFMAX(firstChrSrcY, cPosY); lastCPosY = FFMIN(firstChrSrcY + hout_slice->plane[1].available_lines - 1, AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample) - 1); } else { firstCPosY = cPosY; lastCPosY = lastChrSrcY; } ff_rotate_slice(hout_slice, lastPosY, lastCPosY); if (posY < lastLumSrcY + 1) { for (i = lumStart; i < lumEnd; ++i) desc[i].process(c, &desc[i], firstPosY, lastPosY - firstPosY + 1); } lastInLumBuf = lastLumSrcY; if (cPosY < lastChrSrcY + 1) { for (i = chrStart; i < chrEnd; ++i) desc[i].process(c, &desc[i], firstCPosY, lastCPosY - firstCPosY + 1); } lastInChrBuf = lastChrSrcY; if (!enough_lines) break; // we can't output a dstY line so let's try with the next slice #if HAVE_MMX_INLINE ff_updateMMXDitherTables(c, dstY); #endif if (should_dither) { c->chrDither8 = ff_dither_8x8_128[chrDstY & 7]; c->lumDither8 = ff_dither_8x8_128[dstY & 7]; } if (dstY >= c->dstH - 2) { /* hmm looks like we can't use MMX here without overwriting * this array's tail */ ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX, &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX); use_mmx_vfilter= 0; ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX, yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter); } for (i = vStart; i < vEnd; ++i) desc[i].process(c, &desc[i], dstY, 1); } if (isPlanar(dstFormat) && isALPHA(dstFormat) && !needAlpha) { int offset = lastDstY - dstSliceY; int length = dstW; int height = dstY - lastDstY; if (is16BPS(dstFormat) || isNBPS(dstFormat)) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat); fillPlane16(dst[3], dstStride[3], length, height, offset, 1, desc->comp[3].depth, isBE(dstFormat)); } else if (is32BPS(dstFormat)) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat); fillPlane32(dst[3], dstStride[3], length, height, offset, 1, desc->comp[3].depth, isBE(dstFormat), desc->flags & AV_PIX_FMT_FLAG_FLOAT); } else fillPlane(dst[3], dstStride[3], length, height, offset, 255); } #if HAVE_MMXEXT_INLINE if (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT) __asm__ volatile ("sfence" ::: "memory"); #endif emms_c(); /* store changed local vars back in the context */ c->dstY = dstY; c->lastInLumBuf = lastInLumBuf; c->lastInChrBuf = lastInChrBuf; return dstY - lastDstY; } av_cold void ff_sws_init_range_convert(SwsContext *c) { c->lumConvertRange = NULL; c->chrConvertRange = NULL; if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) { if (c->dstBpc <= 14) { if (c->srcRange) { c->lumConvertRange = lumRangeFromJpeg_c; c->chrConvertRange = chrRangeFromJpeg_c; } else { c->lumConvertRange = lumRangeToJpeg_c; c->chrConvertRange = chrRangeToJpeg_c; } } else { if (c->srcRange) { c->lumConvertRange = lumRangeFromJpeg16_c; c->chrConvertRange = chrRangeFromJpeg16_c; } else { c->lumConvertRange = lumRangeToJpeg16_c; c->chrConvertRange = chrRangeToJpeg16_c; } } } } static av_cold void sws_init_swscale(SwsContext *c) { enum AVPixelFormat srcFormat = c->srcFormat; ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX, &c->yuv2nv12cX, &c->yuv2packed1, &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX); ff_sws_init_input_funcs(c); if (c->srcBpc == 8) { if (c->dstBpc <= 14) { c->hyScale = c->hcScale = hScale8To15_c; if (c->flags & SWS_FAST_BILINEAR) { c->hyscale_fast = ff_hyscale_fast_c; c->hcscale_fast = ff_hcscale_fast_c; } } else { c->hyScale = c->hcScale = hScale8To19_c; } } else { c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c : hScale16To15_c; } ff_sws_init_range_convert(c); if (!(isGray(srcFormat) || isGray(c->dstFormat) || srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE)) c->needs_hcscale = 1; } void ff_sws_init_scale(SwsContext *c) { sws_init_swscale(c); #if ARCH_PPC ff_sws_init_swscale_ppc(c); #elif ARCH_X86 ff_sws_init_swscale_x86(c); #elif ARCH_AARCH64 ff_sws_init_swscale_aarch64(c); #elif ARCH_ARM ff_sws_init_swscale_arm(c); #elif ARCH_LOONGARCH64 ff_sws_init_swscale_loongarch(c); #endif } static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format) { if (!isALPHA(format)) src[3] = NULL; if (!isPlanar(format)) { src[3] = src[2] = NULL; if (!usePal(format)) src[1] = NULL; } } static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4]) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); int i; av_assert2(desc); for (i = 0; i < 4; i++) { int plane = desc->comp[i].plane; if (!data[plane] || !linesizes[plane]) return 0; } return 1; } static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h) { int xp,yp; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat); for (yp=0; ypflags & AV_PIX_FMT_FLAG_BE) { x = AV_RB16(src + xp + 0); y = AV_RB16(src + xp + 1); z = AV_RB16(src + xp + 2); } else { x = AV_RL16(src + xp + 0); y = AV_RL16(src + xp + 1); z = AV_RL16(src + xp + 2); } x = c->xyzgamma[x>>4]; y = c->xyzgamma[y>>4]; z = c->xyzgamma[z>>4]; // convert from XYZlinear to sRGBlinear r = c->xyz2rgb_matrix[0][0] * x + c->xyz2rgb_matrix[0][1] * y + c->xyz2rgb_matrix[0][2] * z >> 12; g = c->xyz2rgb_matrix[1][0] * x + c->xyz2rgb_matrix[1][1] * y + c->xyz2rgb_matrix[1][2] * z >> 12; b = c->xyz2rgb_matrix[2][0] * x + c->xyz2rgb_matrix[2][1] * y + c->xyz2rgb_matrix[2][2] * z >> 12; // limit values to 12-bit depth r = av_clip_uintp2(r, 12); g = av_clip_uintp2(g, 12); b = av_clip_uintp2(b, 12); // convert from sRGBlinear to RGB and scale from 12bit to 16bit if (desc->flags & AV_PIX_FMT_FLAG_BE) { AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4); AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4); AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4); } else { AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4); AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4); AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4); } } src += stride; dst += stride; } } static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h) { int xp,yp; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->dstFormat); for (yp=0; ypflags & AV_PIX_FMT_FLAG_BE) { r = AV_RB16(src + xp + 0); g = AV_RB16(src + xp + 1); b = AV_RB16(src + xp + 2); } else { r = AV_RL16(src + xp + 0); g = AV_RL16(src + xp + 1); b = AV_RL16(src + xp + 2); } r = c->rgbgammainv[r>>4]; g = c->rgbgammainv[g>>4]; b = c->rgbgammainv[b>>4]; // convert from sRGBlinear to XYZlinear x = c->rgb2xyz_matrix[0][0] * r + c->rgb2xyz_matrix[0][1] * g + c->rgb2xyz_matrix[0][2] * b >> 12; y = c->rgb2xyz_matrix[1][0] * r + c->rgb2xyz_matrix[1][1] * g + c->rgb2xyz_matrix[1][2] * b >> 12; z = c->rgb2xyz_matrix[2][0] * r + c->rgb2xyz_matrix[2][1] * g + c->rgb2xyz_matrix[2][2] * b >> 12; // limit values to 12-bit depth x = av_clip_uintp2(x, 12); y = av_clip_uintp2(y, 12); z = av_clip_uintp2(z, 12); // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit if (desc->flags & AV_PIX_FMT_FLAG_BE) { AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4); AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4); AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4); } else { AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4); AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4); AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4); } } src += stride; dst += stride; } } static void update_palette(SwsContext *c, const uint32_t *pal) { for (int i = 0; i < 256; i++) { int r, g, b, y, u, v, a = 0xff; if (c->srcFormat == AV_PIX_FMT_PAL8) { uint32_t p = pal[i]; a = (p >> 24) & 0xFF; r = (p >> 16) & 0xFF; g = (p >> 8) & 0xFF; b = p & 0xFF; } else if (c->srcFormat == AV_PIX_FMT_RGB8) { r = ( i >> 5 ) * 36; g = ((i >> 2) & 7) * 36; b = ( i & 3) * 85; } else if (c->srcFormat == AV_PIX_FMT_BGR8) { b = ( i >> 6 ) * 85; g = ((i >> 3) & 7) * 36; r = ( i & 7) * 36; } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) { r = ( i >> 3 ) * 255; g = ((i >> 1) & 3) * 85; b = ( i & 1) * 255; } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) { r = g = b = i; } else { av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE); b = ( i >> 3 ) * 255; g = ((i >> 1) & 3) * 85; r = ( i & 1) * 255; } #define RGB2YUV_SHIFT 15 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)) y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT); c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24); switch (c->dstFormat) { case AV_PIX_FMT_BGR32: #if !HAVE_BIGENDIAN case AV_PIX_FMT_RGB24: #endif c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24); break; case AV_PIX_FMT_BGR32_1: #if HAVE_BIGENDIAN case AV_PIX_FMT_BGR24: #endif c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24); break; case AV_PIX_FMT_RGB32_1: #if HAVE_BIGENDIAN case AV_PIX_FMT_RGB24: #endif c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24); break; case AV_PIX_FMT_RGB32: #if !HAVE_BIGENDIAN case AV_PIX_FMT_BGR24: #endif default: c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24); } } } static int scale_internal(SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH); static int scale_gamma(SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t * const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH) { int ret = scale_internal(c->cascaded_context[0], srcSlice, srcStride, srcSliceY, srcSliceH, c->cascaded_tmp, c->cascaded_tmpStride, 0, c->srcH); if (ret < 0) return ret; if (c->cascaded_context[2]) ret = scale_internal(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, c->cascaded1_tmp, c->cascaded1_tmpStride, 0, c->dstH); else ret = scale_internal(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, dstSlice, dstStride, dstSliceY, dstSliceH); if (ret < 0) return ret; if (c->cascaded_context[2]) { ret = scale_internal(c->cascaded_context[2], (const uint8_t * const *)c->cascaded1_tmp, c->cascaded1_tmpStride, c->cascaded_context[1]->dstY - ret, c->cascaded_context[1]->dstY, dstSlice, dstStride, dstSliceY, dstSliceH); } return ret; } static int scale_cascaded(SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t * const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH) { int ret = scale_internal(c->cascaded_context[0], srcSlice, srcStride, srcSliceY, srcSliceH, c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH); if (ret < 0) return ret; ret = scale_internal(c->cascaded_context[1], (const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH, dstSlice, dstStride, dstSliceY, dstSliceH); return ret; } static int scale_internal(SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH) { const int scale_dst = dstSliceY > 0 || dstSliceH < c->dstH; const int frame_start = scale_dst || !c->sliceDir; int i, ret; const uint8_t *src2[4]; uint8_t *dst2[4]; int macro_height_src = isBayer(c->srcFormat) ? 2 : (1 << c->chrSrcVSubSample); int macro_height_dst = isBayer(c->dstFormat) ? 2 : (1 << c->chrDstVSubSample); // copy strides, so they can safely be modified int srcStride2[4]; int dstStride2[4]; int srcSliceY_internal = srcSliceY; if (!srcStride || !dstStride || !dstSlice || !srcSlice) { av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n"); return AVERROR(EINVAL); } if ((srcSliceY & (macro_height_src - 1)) || ((srcSliceH & (macro_height_src - 1)) && srcSliceY + srcSliceH != c->srcH) || srcSliceY + srcSliceH > c->srcH) { av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", srcSliceY, srcSliceH); return AVERROR(EINVAL); } if ((dstSliceY & (macro_height_dst - 1)) || ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH != c->dstH) || dstSliceY + dstSliceH > c->dstH) { av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", dstSliceY, dstSliceH); return AVERROR(EINVAL); } if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) { av_log(c, AV_LOG_ERROR, "bad src image pointers\n"); return AVERROR(EINVAL); } if (!check_image_pointers((const uint8_t* const*)dstSlice, c->dstFormat, dstStride)) { av_log(c, AV_LOG_ERROR, "bad dst image pointers\n"); return AVERROR(EINVAL); } // do not mess up sliceDir if we have a "trailing" 0-size slice if (srcSliceH == 0) return 0; if (c->gamma_flag && c->cascaded_context[0]) return scale_gamma(c, srcSlice, srcStride, srcSliceY, srcSliceH, dstSlice, dstStride, dstSliceY, dstSliceH); if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) return scale_cascaded(c, srcSlice, srcStride, srcSliceY, srcSliceH, dstSlice, dstStride, dstSliceY, dstSliceH); if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0]) for (i = 0; i < 4; i++) memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2)); if (usePal(c->srcFormat)) update_palette(c, (const uint32_t *)srcSlice[1]); memcpy(src2, srcSlice, sizeof(src2)); memcpy(dst2, dstSlice, sizeof(dst2)); memcpy(srcStride2, srcStride, sizeof(srcStride2)); memcpy(dstStride2, dstStride, sizeof(dstStride2)); if (frame_start && !scale_dst) { if (srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) { av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n"); return AVERROR(EINVAL); } c->sliceDir = (srcSliceY == 0) ? 1 : -1; } else if (scale_dst) c->sliceDir = 1; if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) { uint8_t *base; int x,y; av_fast_malloc(&c->rgb0_scratch, &c->rgb0_scratch_allocated, FFABS(srcStride[0]) * srcSliceH + 32); if (!c->rgb0_scratch) return AVERROR(ENOMEM); base = srcStride[0] < 0 ? c->rgb0_scratch - srcStride[0] * (srcSliceH-1) : c->rgb0_scratch; for (y=0; ysrcW); for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) { base[ srcStride[0]*y + x] = 0xFF; } } src2[0] = base; } if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) { uint8_t *base; av_fast_malloc(&c->xyz_scratch, &c->xyz_scratch_allocated, FFABS(srcStride[0]) * srcSliceH + 32); if (!c->xyz_scratch) return AVERROR(ENOMEM); base = srcStride[0] < 0 ? c->xyz_scratch - srcStride[0] * (srcSliceH-1) : c->xyz_scratch; xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH); src2[0] = base; } if (c->sliceDir != 1) { // slices go from bottom to top => we flip the image internally for (i=0; i<4; i++) { srcStride2[i] *= -1; dstStride2[i] *= -1; } src2[0] += (srcSliceH - 1) * srcStride[0]; if (!usePal(c->srcFormat)) src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1]; src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2]; src2[3] += (srcSliceH - 1) * srcStride[3]; dst2[0] += ( c->dstH - 1) * dstStride[0]; dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1]; dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2]; dst2[3] += ( c->dstH - 1) * dstStride[3]; srcSliceY_internal = c->srcH-srcSliceY-srcSliceH; } reset_ptr(src2, c->srcFormat); reset_ptr((void*)dst2, c->dstFormat); if (c->convert_unscaled) { int offset = srcSliceY_internal; int slice_h = srcSliceH; // for dst slice scaling, offset the pointers to match the unscaled API if (scale_dst) { av_assert0(offset == 0); for (i = 0; i < 4 && src2[i]; i++) { if (!src2[i] || (i > 0 && usePal(c->srcFormat))) break; src2[i] += (dstSliceY >> ((i == 1 || i == 2) ? c->chrSrcVSubSample : 0)) * srcStride2[i]; } for (i = 0; i < 4 && dst2[i]; i++) { if (!dst2[i] || (i > 0 && usePal(c->dstFormat))) break; dst2[i] -= (dstSliceY >> ((i == 1 || i == 2) ? c->chrDstVSubSample : 0)) * dstStride2[i]; } offset = dstSliceY; slice_h = dstSliceH; } ret = c->convert_unscaled(c, src2, srcStride2, offset, slice_h, dst2, dstStride2); if (scale_dst) dst2[0] += dstSliceY * dstStride2[0]; } else { ret = swscale(c, src2, srcStride2, srcSliceY_internal, srcSliceH, dst2, dstStride2, dstSliceY, dstSliceH); } if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) { uint16_t *dst16; if (scale_dst) { dst16 = (uint16_t *)dst2[0]; } else { int dstY = c->dstY ? c->dstY : srcSliceY + srcSliceH; av_assert0(dstY >= ret); av_assert0(ret >= 0); av_assert0(c->dstH >= dstY); dst16 = (uint16_t*)(dst2[0] + (dstY - ret) * dstStride2[0]); } /* replace on the same data */ rgb48Toxyz12(c, dst16, dst16, dstStride2[0]/2, ret); } /* reset slice direction at end of frame */ if ((srcSliceY_internal + srcSliceH == c->srcH) || scale_dst) c->sliceDir = 0; return ret; } void sws_frame_end(struct SwsContext *c) { av_frame_unref(c->frame_src); av_frame_unref(c->frame_dst); c->src_ranges.nb_ranges = 0; } int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src) { int ret, allocated = 0; ret = av_frame_ref(c->frame_src, src); if (ret < 0) return ret; if (!dst->buf[0]) { dst->width = c->dstW; dst->height = c->dstH; dst->format = c->dstFormat; ret = av_frame_get_buffer(dst, 0); if (ret < 0) return ret; allocated = 1; } ret = av_frame_ref(c->frame_dst, dst); if (ret < 0) { if (allocated) av_frame_unref(dst); return ret; } return 0; } int sws_send_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height) { int ret; ret = ff_range_add(&c->src_ranges, slice_start, slice_height); if (ret < 0) return ret; return 0; } unsigned int sws_receive_slice_alignment(const struct SwsContext *c) { if (c->slice_ctx) return c->slice_ctx[0]->dst_slice_align; return c->dst_slice_align; } int sws_receive_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height) { unsigned int align = sws_receive_slice_alignment(c); uint8_t *dst[4]; /* wait until complete input has been received */ if (!(c->src_ranges.nb_ranges == 1 && c->src_ranges.ranges[0].start == 0 && c->src_ranges.ranges[0].len == c->srcH)) return AVERROR(EAGAIN); if ((slice_start > 0 || slice_height < c->dstH) && (slice_start % align || slice_height % align)) { av_log(c, AV_LOG_ERROR, "Incorrectly aligned output: %u/%u not multiples of %u\n", slice_start, slice_height, align); return AVERROR(EINVAL); } if (c->slicethread) { int nb_jobs = c->slice_ctx[0]->dither == SWS_DITHER_ED ? 1 : c->nb_slice_ctx; int ret = 0; c->dst_slice_start = slice_start; c->dst_slice_height = slice_height; avpriv_slicethread_execute(c->slicethread, nb_jobs, 0); for (int i = 0; i < c->nb_slice_ctx; i++) { if (c->slice_err[i] < 0) { ret = c->slice_err[i]; break; } } memset(c->slice_err, 0, c->nb_slice_ctx * sizeof(*c->slice_err)); return ret; } for (int i = 0; i < FF_ARRAY_ELEMS(dst); i++) { ptrdiff_t offset = c->frame_dst->linesize[i] * (slice_start >> c->chrDstVSubSample); dst[i] = FF_PTR_ADD(c->frame_dst->data[i], offset); } return scale_internal(c, (const uint8_t * const *)c->frame_src->data, c->frame_src->linesize, 0, c->srcH, dst, c->frame_dst->linesize, slice_start, slice_height); } int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src) { int ret; ret = sws_frame_start(c, dst, src); if (ret < 0) return ret; ret = sws_send_slice(c, 0, src->height); if (ret >= 0) ret = sws_receive_slice(c, 0, dst->height); sws_frame_end(c); return ret; } /** * swscale wrapper, so we don't need to export the SwsContext. * Assumes planar YUV to be in YUV order instead of YVU. */ int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t * const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[]) { if (c->nb_slice_ctx) c = c->slice_ctx[0]; return scale_internal(c, srcSlice, srcStride, srcSliceY, srcSliceH, dst, dstStride, 0, c->dstH); } void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads) { SwsContext *parent = priv; SwsContext *c = parent->slice_ctx[threadnr]; const int slice_height = FFALIGN(FFMAX((parent->dst_slice_height + nb_jobs - 1) / nb_jobs, 1), c->dst_slice_align); const int slice_start = jobnr * slice_height; const int slice_end = FFMIN((jobnr + 1) * slice_height, parent->dst_slice_height); int err = 0; if (slice_end > slice_start) { uint8_t *dst[4] = { NULL }; for (int i = 0; i < FF_ARRAY_ELEMS(dst) && parent->frame_dst->data[i]; i++) { const int vshift = (i == 1 || i == 2) ? c->chrDstVSubSample : 0; const ptrdiff_t offset = parent->frame_dst->linesize[i] * ((slice_start + parent->dst_slice_start) >> vshift); dst[i] = parent->frame_dst->data[i] + offset; } err = scale_internal(c, (const uint8_t * const *)parent->frame_src->data, parent->frame_src->linesize, 0, c->srcH, dst, parent->frame_dst->linesize, parent->dst_slice_start + slice_start, slice_end - slice_start); } parent->slice_err[threadnr] = err; }