/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "buffer.h" #include "common.h" #include "hwcontext.h" #include "hwcontext_internal.h" #include "hwcontext_cuda_internal.h" #if CONFIG_VULKAN #include "hwcontext_vulkan.h" #endif #include "cuda_check.h" #include "mem.h" #include "pixdesc.h" #include "pixfmt.h" #include "imgutils.h" typedef struct CUDAFramesContext { int shift_width, shift_height; int tex_alignment; } CUDAFramesContext; static const enum AVPixelFormat supported_formats[] = { AV_PIX_FMT_NV12, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_P010, AV_PIX_FMT_P016, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_0RGB32, AV_PIX_FMT_0BGR32, #if CONFIG_VULKAN AV_PIX_FMT_VULKAN, #endif }; #define CHECK_CU(x) FF_CUDA_CHECK_DL(device_ctx, cu, x) static int cuda_frames_get_constraints(AVHWDeviceContext *ctx, const void *hwconfig, AVHWFramesConstraints *constraints) { int i; constraints->valid_sw_formats = av_malloc_array(FF_ARRAY_ELEMS(supported_formats) + 1, sizeof(*constraints->valid_sw_formats)); if (!constraints->valid_sw_formats) return AVERROR(ENOMEM); for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++) constraints->valid_sw_formats[i] = supported_formats[i]; constraints->valid_sw_formats[FF_ARRAY_ELEMS(supported_formats)] = AV_PIX_FMT_NONE; constraints->valid_hw_formats = av_malloc_array(2, sizeof(*constraints->valid_hw_formats)); if (!constraints->valid_hw_formats) return AVERROR(ENOMEM); constraints->valid_hw_formats[0] = AV_PIX_FMT_CUDA; constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE; return 0; } static void cuda_buffer_free(void *opaque, uint8_t *data) { AVHWFramesContext *ctx = opaque; AVHWDeviceContext *device_ctx = ctx->device_ctx; AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu = hwctx->internal->cuda_dl; CUcontext dummy; CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx)); CHECK_CU(cu->cuMemFree((CUdeviceptr)data)); CHECK_CU(cu->cuCtxPopCurrent(&dummy)); } static AVBufferRef *cuda_pool_alloc(void *opaque, size_t size) { AVHWFramesContext *ctx = opaque; AVHWDeviceContext *device_ctx = ctx->device_ctx; AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu = hwctx->internal->cuda_dl; AVBufferRef *ret = NULL; CUcontext dummy = NULL; CUdeviceptr data; int err; err = CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx)); if (err < 0) return NULL; err = CHECK_CU(cu->cuMemAlloc(&data, size)); if (err < 0) goto fail; ret = av_buffer_create((uint8_t*)data, size, cuda_buffer_free, ctx, 0); if (!ret) { CHECK_CU(cu->cuMemFree(data)); goto fail; } fail: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); return ret; } static int cuda_frames_init(AVHWFramesContext *ctx) { AVHWDeviceContext *device_ctx = ctx->device_ctx; AVCUDADeviceContext *hwctx = device_ctx->hwctx; CUDAFramesContext *priv = ctx->internal->priv; CudaFunctions *cu = hwctx->internal->cuda_dl; int err, i; for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++) { if (ctx->sw_format == supported_formats[i]) break; } if (i == FF_ARRAY_ELEMS(supported_formats)) { av_log(ctx, AV_LOG_ERROR, "Pixel format '%s' is not supported\n", av_get_pix_fmt_name(ctx->sw_format)); return AVERROR(ENOSYS); } err = CHECK_CU(cu->cuDeviceGetAttribute(&priv->tex_alignment, 14 /* CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT */, hwctx->internal->cuda_device)); if (err < 0) return err; av_log(ctx, AV_LOG_DEBUG, "CUDA texture alignment: %d\n", priv->tex_alignment); // YUV420P is a special case. // Since nvenc expects the U/V planes to have half the linesize of the Y plane // alignment has to be doubled to ensure the U/V planes still end up aligned. if (ctx->sw_format == AV_PIX_FMT_YUV420P) priv->tex_alignment *= 2; av_pix_fmt_get_chroma_sub_sample(ctx->sw_format, &priv->shift_width, &priv->shift_height); if (!ctx->pool) { int size = av_image_get_buffer_size(ctx->sw_format, ctx->width, ctx->height, priv->tex_alignment); if (size < 0) return size; ctx->internal->pool_internal = av_buffer_pool_init2(size, ctx, cuda_pool_alloc, NULL); if (!ctx->internal->pool_internal) return AVERROR(ENOMEM); } return 0; } static int cuda_get_buffer(AVHWFramesContext *ctx, AVFrame *frame) { CUDAFramesContext *priv = ctx->internal->priv; int res; frame->buf[0] = av_buffer_pool_get(ctx->pool); if (!frame->buf[0]) return AVERROR(ENOMEM); res = av_image_fill_arrays(frame->data, frame->linesize, frame->buf[0]->data, ctx->sw_format, ctx->width, ctx->height, priv->tex_alignment); if (res < 0) return res; // YUV420P is a special case. // Nvenc expects the U/V planes in swapped order from how ffmpeg expects them, also chroma is half-aligned if (ctx->sw_format == AV_PIX_FMT_YUV420P) { frame->linesize[1] = frame->linesize[2] = frame->linesize[0] / 2; frame->data[2] = frame->data[1]; frame->data[1] = frame->data[2] + frame->linesize[2] * (ctx->height / 2); } frame->format = AV_PIX_FMT_CUDA; frame->width = ctx->width; frame->height = ctx->height; return 0; } static int cuda_transfer_get_formats(AVHWFramesContext *ctx, enum AVHWFrameTransferDirection dir, enum AVPixelFormat **formats) { enum AVPixelFormat *fmts; fmts = av_malloc_array(2, sizeof(*fmts)); if (!fmts) return AVERROR(ENOMEM); fmts[0] = ctx->sw_format; fmts[1] = AV_PIX_FMT_NONE; *formats = fmts; return 0; } static int cuda_transfer_data(AVHWFramesContext *ctx, AVFrame *dst, const AVFrame *src) { CUDAFramesContext *priv = ctx->internal->priv; AVHWDeviceContext *device_ctx = ctx->device_ctx; AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu = hwctx->internal->cuda_dl; CUcontext dummy; int i, ret; if ((src->hw_frames_ctx && ((AVHWFramesContext*)src->hw_frames_ctx->data)->format != AV_PIX_FMT_CUDA) || (dst->hw_frames_ctx && ((AVHWFramesContext*)dst->hw_frames_ctx->data)->format != AV_PIX_FMT_CUDA)) return AVERROR(ENOSYS); ret = CHECK_CU(cu->cuCtxPushCurrent(hwctx->cuda_ctx)); if (ret < 0) return ret; for (i = 0; i < FF_ARRAY_ELEMS(src->data) && src->data[i]; i++) { CUDA_MEMCPY2D cpy = { .srcPitch = src->linesize[i], .dstPitch = dst->linesize[i], .WidthInBytes = FFMIN(src->linesize[i], dst->linesize[i]), .Height = src->height >> ((i == 0 || i == 3) ? 0 : priv->shift_height), }; if (src->hw_frames_ctx) { cpy.srcMemoryType = CU_MEMORYTYPE_DEVICE; cpy.srcDevice = (CUdeviceptr)src->data[i]; } else { cpy.srcMemoryType = CU_MEMORYTYPE_HOST; cpy.srcHost = src->data[i]; } if (dst->hw_frames_ctx) { cpy.dstMemoryType = CU_MEMORYTYPE_DEVICE; cpy.dstDevice = (CUdeviceptr)dst->data[i]; } else { cpy.dstMemoryType = CU_MEMORYTYPE_HOST; cpy.dstHost = dst->data[i]; } ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, hwctx->stream)); if (ret < 0) goto exit; } if (!dst->hw_frames_ctx) { ret = CHECK_CU(cu->cuStreamSynchronize(hwctx->stream)); if (ret < 0) goto exit; } exit: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); return 0; } static void cuda_device_uninit(AVHWDeviceContext *device_ctx) { AVCUDADeviceContext *hwctx = device_ctx->hwctx; if (hwctx->internal) { CudaFunctions *cu = hwctx->internal->cuda_dl; if (hwctx->internal->is_allocated && hwctx->cuda_ctx) { if (hwctx->internal->flags & AV_CUDA_USE_PRIMARY_CONTEXT) CHECK_CU(cu->cuDevicePrimaryCtxRelease(hwctx->internal->cuda_device)); else CHECK_CU(cu->cuCtxDestroy(hwctx->cuda_ctx)); hwctx->cuda_ctx = NULL; } cuda_free_functions(&hwctx->internal->cuda_dl); } av_freep(&hwctx->internal); } static int cuda_device_init(AVHWDeviceContext *ctx) { AVCUDADeviceContext *hwctx = ctx->hwctx; int ret; if (!hwctx->internal) { hwctx->internal = av_mallocz(sizeof(*hwctx->internal)); if (!hwctx->internal) return AVERROR(ENOMEM); } if (!hwctx->internal->cuda_dl) { ret = cuda_load_functions(&hwctx->internal->cuda_dl, ctx); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Could not dynamically load CUDA\n"); goto error; } } return 0; error: cuda_device_uninit(ctx); return ret; } static int cuda_context_init(AVHWDeviceContext *device_ctx, int flags) { AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu; CUcontext dummy; int ret, dev_active = 0; unsigned int dev_flags = 0; const unsigned int desired_flags = CU_CTX_SCHED_BLOCKING_SYNC; cu = hwctx->internal->cuda_dl; hwctx->internal->flags = flags; if (flags & AV_CUDA_USE_PRIMARY_CONTEXT) { ret = CHECK_CU(cu->cuDevicePrimaryCtxGetState(hwctx->internal->cuda_device, &dev_flags, &dev_active)); if (ret < 0) return ret; if (dev_active && dev_flags != desired_flags) { av_log(device_ctx, AV_LOG_ERROR, "Primary context already active with incompatible flags.\n"); return AVERROR(ENOTSUP); } else if (dev_flags != desired_flags) { ret = CHECK_CU(cu->cuDevicePrimaryCtxSetFlags(hwctx->internal->cuda_device, desired_flags)); if (ret < 0) return ret; } ret = CHECK_CU(cu->cuDevicePrimaryCtxRetain(&hwctx->cuda_ctx, hwctx->internal->cuda_device)); if (ret < 0) return ret; } else { ret = CHECK_CU(cu->cuCtxCreate(&hwctx->cuda_ctx, desired_flags, hwctx->internal->cuda_device)); if (ret < 0) return ret; CHECK_CU(cu->cuCtxPopCurrent(&dummy)); } hwctx->internal->is_allocated = 1; // Setting stream to NULL will make functions automatically use the default CUstream hwctx->stream = NULL; return 0; } static int cuda_flags_from_opts(AVHWDeviceContext *device_ctx, AVDictionary *opts, int *flags) { AVDictionaryEntry *primary_ctx_opt = av_dict_get(opts, "primary_ctx", NULL, 0); if (primary_ctx_opt && strtol(primary_ctx_opt->value, NULL, 10)) { av_log(device_ctx, AV_LOG_VERBOSE, "Using CUDA primary device context\n"); *flags |= AV_CUDA_USE_PRIMARY_CONTEXT; } else if (primary_ctx_opt) { av_log(device_ctx, AV_LOG_VERBOSE, "Disabling use of CUDA primary device context\n"); *flags &= ~AV_CUDA_USE_PRIMARY_CONTEXT; } return 0; } static int cuda_device_create(AVHWDeviceContext *device_ctx, const char *device, AVDictionary *opts, int flags) { AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu; int ret, device_idx = 0; ret = cuda_flags_from_opts(device_ctx, opts, &flags); if (ret < 0) goto error; if (device) device_idx = strtol(device, NULL, 0); ret = cuda_device_init(device_ctx); if (ret < 0) goto error; cu = hwctx->internal->cuda_dl; ret = CHECK_CU(cu->cuInit(0)); if (ret < 0) goto error; ret = CHECK_CU(cu->cuDeviceGet(&hwctx->internal->cuda_device, device_idx)); if (ret < 0) goto error; ret = cuda_context_init(device_ctx, flags); if (ret < 0) goto error; return 0; error: cuda_device_uninit(device_ctx); return ret; } static int cuda_device_derive(AVHWDeviceContext *device_ctx, AVHWDeviceContext *src_ctx, AVDictionary *opts, int flags) { AVCUDADeviceContext *hwctx = device_ctx->hwctx; CudaFunctions *cu; const char *src_uuid = NULL; #if CONFIG_VULKAN VkPhysicalDeviceIDProperties vk_idp; #endif int ret, i, device_count; ret = cuda_flags_from_opts(device_ctx, opts, &flags); if (ret < 0) goto error; #if CONFIG_VULKAN vk_idp = (VkPhysicalDeviceIDProperties) { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES, }; #endif switch (src_ctx->type) { #if CONFIG_VULKAN #define TYPE PFN_vkGetPhysicalDeviceProperties2 case AV_HWDEVICE_TYPE_VULKAN: { AVVulkanDeviceContext *vkctx = src_ctx->hwctx; TYPE prop_fn = (TYPE)vkctx->get_proc_addr(vkctx->inst, "vkGetPhysicalDeviceProperties2"); VkPhysicalDeviceProperties2 vk_dev_props = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, .pNext = &vk_idp, }; prop_fn(vkctx->phys_dev, &vk_dev_props); src_uuid = vk_idp.deviceUUID; break; } #undef TYPE #endif default: ret = AVERROR(ENOSYS); goto error; } if (!src_uuid) { av_log(device_ctx, AV_LOG_ERROR, "Failed to get UUID of source device.\n"); ret = AVERROR(EINVAL); goto error; } ret = cuda_device_init(device_ctx); if (ret < 0) goto error; cu = hwctx->internal->cuda_dl; ret = CHECK_CU(cu->cuInit(0)); if (ret < 0) goto error; ret = CHECK_CU(cu->cuDeviceGetCount(&device_count)); if (ret < 0) goto error; hwctx->internal->cuda_device = -1; for (i = 0; i < device_count; i++) { CUdevice dev; CUuuid uuid; ret = CHECK_CU(cu->cuDeviceGet(&dev, i)); if (ret < 0) goto error; ret = CHECK_CU(cu->cuDeviceGetUuid(&uuid, dev)); if (ret < 0) goto error; if (memcmp(src_uuid, uuid.bytes, sizeof (uuid.bytes)) == 0) { hwctx->internal->cuda_device = dev; break; } } if (hwctx->internal->cuda_device == -1) { av_log(device_ctx, AV_LOG_ERROR, "Could not derive CUDA device.\n"); goto error; } ret = cuda_context_init(device_ctx, flags); if (ret < 0) goto error; return 0; error: cuda_device_uninit(device_ctx); return ret; } const HWContextType ff_hwcontext_type_cuda = { .type = AV_HWDEVICE_TYPE_CUDA, .name = "CUDA", .device_hwctx_size = sizeof(AVCUDADeviceContext), .frames_priv_size = sizeof(CUDAFramesContext), .device_create = cuda_device_create, .device_derive = cuda_device_derive, .device_init = cuda_device_init, .device_uninit = cuda_device_uninit, .frames_get_constraints = cuda_frames_get_constraints, .frames_init = cuda_frames_init, .frames_get_buffer = cuda_get_buffer, .transfer_get_formats = cuda_transfer_get_formats, .transfer_data_to = cuda_transfer_data, .transfer_data_from = cuda_transfer_data, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_CUDA, AV_PIX_FMT_NONE }, };