/* * Copyright (c) 2018 Sergey Lavrushkin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DNN tensorflow backend implementation. */ #include "dnn_backend_tf.h" #include "dnn_backend_native.h" #include "libavformat/avio.h" #include typedef struct TFModel{ TF_Graph *graph; TF_Session *session; TF_Status *status; TF_Output input, output; TF_Tensor *input_tensor; DNNData *output_data; } TFModel; static void free_buffer(void *data, size_t length) { av_freep(&data); } static TF_Buffer *read_graph(const char *model_filename) { TF_Buffer *graph_buf; unsigned char *graph_data = NULL; AVIOContext *model_file_context; long size, bytes_read; if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ return NULL; } size = avio_size(model_file_context); graph_data = av_malloc(size); if (!graph_data){ avio_closep(&model_file_context); return NULL; } bytes_read = avio_read(model_file_context, graph_data, size); avio_closep(&model_file_context); if (bytes_read != size){ av_freep(&graph_data); return NULL; } graph_buf = TF_NewBuffer(); graph_buf->data = (void *)graph_data; graph_buf->length = size; graph_buf->data_deallocator = free_buffer; return graph_buf; } static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output) { TFModel *tf_model = (TFModel *)model; int64_t input_dims[] = {1, input->height, input->width, input->channels}; TF_SessionOptions *sess_opts; const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init"); TF_Tensor *output_tensor; // Input operation should be named 'x' tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x"); if (!tf_model->input.oper){ return DNN_ERROR; } tf_model->input.index = 0; if (tf_model->input_tensor){ TF_DeleteTensor(tf_model->input_tensor); } tf_model->input_tensor = TF_AllocateTensor(TF_FLOAT, input_dims, 4, input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float)); if (!tf_model->input_tensor){ return DNN_ERROR; } input->data = (float *)TF_TensorData(tf_model->input_tensor); // Output operation should be named 'y' tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y"); if (!tf_model->output.oper){ return DNN_ERROR; } tf_model->output.index = 0; if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } sess_opts = TF_NewSessionOptions(); tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); TF_DeleteSessionOptions(sess_opts); if (TF_GetCode(tf_model->status) != TF_OK) { return DNN_ERROR; } // Run initialization operation with name "init" if it is present in graph if (init_op){ TF_SessionRun(tf_model->session, NULL, NULL, NULL, 0, NULL, NULL, 0, &init_op, 1, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { return DNN_ERROR; } } // Execute network to get output height, width and number of channels TF_SessionRun(tf_model->session, NULL, &tf_model->input, &tf_model->input_tensor, 1, &tf_model->output, &output_tensor, 1, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } else{ output->height = TF_Dim(output_tensor, 1); output->width = TF_Dim(output_tensor, 2); output->channels = TF_Dim(output_tensor, 3); output->data = av_malloc(output->height * output->width * output->channels * sizeof(float)); if (!output->data){ return DNN_ERROR; } tf_model->output_data = output; TF_DeleteTensor(output_tensor); } return DNN_SUCCESS; } static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename) { TF_Buffer *graph_def; TF_ImportGraphDefOptions *graph_opts; graph_def = read_graph(model_filename); if (!graph_def){ return DNN_ERROR; } tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); graph_opts = TF_NewImportGraphDefOptions(); TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); TF_DeleteImportGraphDefOptions(graph_opts); TF_DeleteBuffer(graph_def); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); return DNN_ERROR; } return DNN_SUCCESS; } #define NAME_BUFFER_SIZE 256 static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, ConvolutionalParams* params, const int layer) { TF_Operation *op; TF_OperationDescription *op_desc; TF_Output input; int64_t strides[] = {1, 1, 1, 1}; TF_Tensor *tensor; int64_t dims[4]; int dims_len; char name_buffer[NAME_BUFFER_SIZE]; int32_t size; size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; input.index = 0; snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims[1] = params->kernel_size; dims[2] = params->kernel_size; dims[3] = params->input_num; dims_len = 4; tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); input.oper = op; TF_AddInput(op_desc, input); input.oper = transpose_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tperm", TF_INT32); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrIntList(op_desc, "strides", strides, 4); TF_SetAttrString(op_desc, "padding", "VALID", 5); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims_len = 1; tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float)); TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); switch (params->activation){ case RELU: op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); break; case TANH: op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); break; case SIGMOID: op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); break; default: return DNN_ERROR; } input.oper = *cur_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, DepthToSpaceParams *params, const int layer) { TF_OperationDescription *op_desc; TF_Output input; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrInt(op_desc, "block_size", params->block_size); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } return DNN_SUCCESS; } static int calculate_pad(const ConvolutionalNetwork *conv_network) { ConvolutionalParams *params; int32_t layer; int pad = 0; for (layer = 0; layer < conv_network->layers_num; ++layer){ if (conv_network->layers[layer].type == CONV){ params = (ConvolutionalParams *)conv_network->layers[layer].params; pad += params->kernel_size >> 1; } } return pad; } static DNNReturnType add_pad_op(TFModel *tf_model, TF_Operation **cur_op, const int32_t pad) { TF_Operation *op; TF_Tensor *tensor; TF_OperationDescription *op_desc; TF_Output input; int32_t *pads; int64_t pads_shape[] = {4, 2}; input.index = 0; op_desc = TF_NewOperation(tf_model->graph, "Const", "pads"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); pads = (int32_t *)TF_TensorData(tensor); pads[0] = 0; pads[1] = 0; pads[2] = pad; pads[3] = pad; pads[4] = pad; pads[5] = pad; pads[6] = 0; pads[7] = 0; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename) { int32_t layer; TF_OperationDescription *op_desc; TF_Operation *op; TF_Operation *transpose_op; TF_Tensor *tensor; TF_Output input; int32_t *transpose_perm; int64_t transpose_perm_shape[] = {4}; int64_t input_shape[] = {1, -1, -1, -1}; int32_t pad; DNNReturnType layer_add_res; DNNModel *native_model = NULL; ConvolutionalNetwork *conv_network; native_model = ff_dnn_load_model_native(model_filename); if (!native_model){ return DNN_ERROR; } conv_network = (ConvolutionalNetwork *)native_model->model; pad = calculate_pad(conv_network); tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); #define CLEANUP_ON_ERROR(tf_model) \ { \ TF_DeleteGraph(tf_model->graph); \ TF_DeleteStatus(tf_model->status); \ return DNN_ERROR; \ } op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); TF_SetAttrShape(op_desc, "shape", input_shape, 4); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } if (add_pad_op(tf_model, &op, pad) != DNN_SUCCESS){ CLEANUP_ON_ERROR(tf_model); } op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); transpose_perm = (int32_t *)TF_TensorData(tensor); transpose_perm[0] = 1; transpose_perm[1] = 2; transpose_perm[2] = 3; transpose_perm[3] = 0; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } transpose_op = TF_FinishOperation(op_desc, tf_model->status); for (layer = 0; layer < conv_network->layers_num; ++layer){ switch (conv_network->layers[layer].type){ case INPUT: break; case CONV: layer_add_res = add_conv_layer(tf_model, transpose_op, &op, (ConvolutionalParams *)conv_network->layers[layer].params, layer); break; case DEPTH_TO_SPACE: layer_add_res = add_depth_to_space_layer(tf_model, &op, (DepthToSpaceParams *)conv_network->layers[layer].params, layer); break; default: CLEANUP_ON_ERROR(tf_model); } if (layer_add_res != DNN_SUCCESS){ CLEANUP_ON_ERROR(tf_model); } } op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); input.oper = op; TF_AddInput(op_desc, input); TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } ff_dnn_free_model_native(&native_model); return DNN_SUCCESS; } DNNModel *ff_dnn_load_model_tf(const char *model_filename) { DNNModel *model = NULL; TFModel *tf_model = NULL; model = av_malloc(sizeof(DNNModel)); if (!model){ return NULL; } tf_model = av_malloc(sizeof(TFModel)); if (!tf_model){ av_freep(&model); return NULL; } tf_model->session = NULL; tf_model->input_tensor = NULL; tf_model->output_data = NULL; if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ av_freep(&tf_model); av_freep(&model); return NULL; } } model->model = (void *)tf_model; model->set_input_output = &set_input_output_tf; return model; } DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model) { TFModel *tf_model = (TFModel *)model->model; TF_Tensor *output_tensor; TF_SessionRun(tf_model->session, NULL, &tf_model->input, &tf_model->input_tensor, 1, &tf_model->output, &output_tensor, 1, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ return DNN_ERROR; } else{ memcpy(tf_model->output_data->data, TF_TensorData(output_tensor), tf_model->output_data->height * tf_model->output_data->width * tf_model->output_data->channels * sizeof(float)); TF_DeleteTensor(output_tensor); return DNN_SUCCESS; } } void ff_dnn_free_model_tf(DNNModel **model) { TFModel *tf_model; if (*model){ tf_model = (TFModel *)(*model)->model; if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } if (tf_model->status){ TF_DeleteStatus(tf_model->status); } if (tf_model->input_tensor){ TF_DeleteTensor(tf_model->input_tensor); } if (tf_model->output_data){ av_freep(&tf_model->output_data->data); } av_freep(&tf_model); av_freep(model); } }