/* * MJPEG encoder * Copyright (c) 2000, 2001 Fabrice Bellard * Copyright (c) 2003 Alex Beregszaszi * Copyright (c) 2003-2004 Michael Niedermayer * * Support for external huffman table, various fixes (AVID workaround), * aspecting, new decode_frame mechanism and apple mjpeg-b support * by Alex Beregszaszi * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * MJPEG encoder. */ #include "libavutil/pixdesc.h" #include "avcodec.h" #include "jpegtables.h" #include "mjpegenc_common.h" #include "mjpegenc_huffman.h" #include "mpegvideo.h" #include "mjpeg.h" #include "mjpegenc.h" #include "profiles.h" static av_cold void init_uni_ac_vlc(const uint8_t huff_size_ac[256], uint8_t *uni_ac_vlc_len) { for (int i = 0; i < 128; i++) { int level = i - 64; if (!level) continue; for (int run = 0; run < 64; run++) { int len, code, nbits; int alevel = FFABS(level); len = (run >> 4) * huff_size_ac[0xf0]; nbits= av_log2_16bit(alevel) + 1; code = ((15&run) << 4) | nbits; len += huff_size_ac[code] + nbits; uni_ac_vlc_len[UNI_AC_ENC_INDEX(run, i)] = len; // We ignore EOB as its just a constant which does not change generally } } } /** * Encodes and outputs the entire frame in the JPEG format. * * @param s The MpegEncContext. */ static void mjpeg_encode_picture_frame(MpegEncContext *s) { int nbits, code, table_id; MJpegContext *m = s->mjpeg_ctx; uint8_t *huff_size[4] = { m->huff_size_dc_luminance, m->huff_size_dc_chrominance, m->huff_size_ac_luminance, m->huff_size_ac_chrominance }; uint16_t *huff_code[4] = { m->huff_code_dc_luminance, m->huff_code_dc_chrominance, m->huff_code_ac_luminance, m->huff_code_ac_chrominance }; size_t total_bits = 0; size_t bytes_needed; s->header_bits = get_bits_diff(s); // Estimate the total size first for (int i = 0; i < m->huff_ncode; i++) { table_id = m->huff_buffer[i].table_id; code = m->huff_buffer[i].code; nbits = code & 0xf; total_bits += huff_size[table_id][code] + nbits; } bytes_needed = (total_bits + 7) / 8; ff_mpv_reallocate_putbitbuffer(s, bytes_needed, bytes_needed); for (int i = 0; i < m->huff_ncode; i++) { table_id = m->huff_buffer[i].table_id; code = m->huff_buffer[i].code; nbits = code & 0xf; put_bits(&s->pb, huff_size[table_id][code], huff_code[table_id][code]); if (nbits != 0) { put_sbits(&s->pb, nbits, m->huff_buffer[i].mant); } } m->huff_ncode = 0; s->i_tex_bits = get_bits_diff(s); } /** * Builds all 4 optimal Huffman tables. * * Uses the data stored in the JPEG buffer to compute the tables. * Stores the Huffman tables in the bits_* and val_* arrays in the MJpegContext. * * @param m MJpegContext containing the JPEG buffer. */ static void mjpeg_build_optimal_huffman(MJpegContext *m) { MJpegEncHuffmanContext dc_luminance_ctx; MJpegEncHuffmanContext dc_chrominance_ctx; MJpegEncHuffmanContext ac_luminance_ctx; MJpegEncHuffmanContext ac_chrominance_ctx; MJpegEncHuffmanContext *ctx[4] = { &dc_luminance_ctx, &dc_chrominance_ctx, &ac_luminance_ctx, &ac_chrominance_ctx }; for (int i = 0; i < 4; i++) ff_mjpeg_encode_huffman_init(ctx[i]); for (int i = 0; i < m->huff_ncode; i++) { int table_id = m->huff_buffer[i].table_id; int code = m->huff_buffer[i].code; ff_mjpeg_encode_huffman_increment(ctx[table_id], code); } ff_mjpeg_encode_huffman_close(&dc_luminance_ctx, m->bits_dc_luminance, m->val_dc_luminance, 12); ff_mjpeg_encode_huffman_close(&dc_chrominance_ctx, m->bits_dc_chrominance, m->val_dc_chrominance, 12); ff_mjpeg_encode_huffman_close(&ac_luminance_ctx, m->bits_ac_luminance, m->val_ac_luminance, 256); ff_mjpeg_encode_huffman_close(&ac_chrominance_ctx, m->bits_ac_chrominance, m->val_ac_chrominance, 256); ff_mjpeg_build_huffman_codes(m->huff_size_dc_luminance, m->huff_code_dc_luminance, m->bits_dc_luminance, m->val_dc_luminance); ff_mjpeg_build_huffman_codes(m->huff_size_dc_chrominance, m->huff_code_dc_chrominance, m->bits_dc_chrominance, m->val_dc_chrominance); ff_mjpeg_build_huffman_codes(m->huff_size_ac_luminance, m->huff_code_ac_luminance, m->bits_ac_luminance, m->val_ac_luminance); ff_mjpeg_build_huffman_codes(m->huff_size_ac_chrominance, m->huff_code_ac_chrominance, m->bits_ac_chrominance, m->val_ac_chrominance); } /** * Writes the complete JPEG frame when optimal huffman tables are enabled, * otherwise writes the stuffing. * * Header + values + stuffing. * * @param s The MpegEncContext. * @return int Error code, 0 if successful. */ int ff_mjpeg_encode_stuffing(MpegEncContext *s) { PutBitContext *pbc = &s->pb; int mb_y = s->mb_y - !s->mb_x; int ret; MJpegContext *m; m = s->mjpeg_ctx; if (s->huffman == HUFFMAN_TABLE_OPTIMAL) { mjpeg_build_optimal_huffman(m); // Replace the VLCs with the optimal ones. // The default ones may be used for trellis during quantization. init_uni_ac_vlc(m->huff_size_ac_luminance, m->uni_ac_vlc_len); init_uni_ac_vlc(m->huff_size_ac_chrominance, m->uni_chroma_ac_vlc_len); s->intra_ac_vlc_length = s->intra_ac_vlc_last_length = m->uni_ac_vlc_len; s->intra_chroma_ac_vlc_length = s->intra_chroma_ac_vlc_last_length = m->uni_chroma_ac_vlc_len; ff_mjpeg_encode_picture_header(s->avctx, &s->pb, &s->intra_scantable, s->pred, s->intra_matrix, s->chroma_intra_matrix); mjpeg_encode_picture_frame(s); } ret = ff_mpv_reallocate_putbitbuffer(s, put_bits_count(&s->pb) / 8 + 100, put_bits_count(&s->pb) / 4 + 1000); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Buffer reallocation failed\n"); goto fail; } ff_mjpeg_escape_FF(pbc, s->esc_pos); if ((s->avctx->active_thread_type & FF_THREAD_SLICE) && mb_y < s->mb_height - 1) put_marker(pbc, RST0 + (mb_y&7)); s->esc_pos = put_bits_count(pbc) >> 3; fail: for (int i = 0; i < 3; i++) s->last_dc[i] = 128 << s->intra_dc_precision; return ret; } static int alloc_huffman(MpegEncContext *s) { MJpegContext *m = s->mjpeg_ctx; size_t num_mbs, num_blocks, num_codes; int blocks_per_mb; // We need to init this here as the mjpeg init is called before the common init, s->mb_width = (s->width + 15) / 16; s->mb_height = (s->height + 15) / 16; switch (s->chroma_format) { case CHROMA_420: blocks_per_mb = 6; break; case CHROMA_422: blocks_per_mb = 8; break; case CHROMA_444: blocks_per_mb = 12; break; default: av_assert0(0); }; // Make sure we have enough space to hold this frame. num_mbs = s->mb_width * s->mb_height; num_blocks = num_mbs * blocks_per_mb; num_codes = num_blocks * 64; m->huff_buffer = av_malloc_array(num_codes, sizeof(MJpegHuffmanCode)); if (!m->huff_buffer) return AVERROR(ENOMEM); return 0; } av_cold int ff_mjpeg_encode_init(MpegEncContext *s) { MJpegContext *m; av_assert0(s->slice_context_count == 1); if (s->width > 65500 || s->height > 65500) { av_log(s, AV_LOG_ERROR, "JPEG does not support resolutions above 65500x65500\n"); return AVERROR(EINVAL); } m = av_mallocz(sizeof(MJpegContext)); if (!m) return AVERROR(ENOMEM); s->min_qcoeff=-1023; s->max_qcoeff= 1023; // Build default Huffman tables. // These may be overwritten later with more optimal Huffman tables, but // they are needed at least right now for some processes like trellis. ff_mjpeg_build_huffman_codes(m->huff_size_dc_luminance, m->huff_code_dc_luminance, avpriv_mjpeg_bits_dc_luminance, avpriv_mjpeg_val_dc); ff_mjpeg_build_huffman_codes(m->huff_size_dc_chrominance, m->huff_code_dc_chrominance, avpriv_mjpeg_bits_dc_chrominance, avpriv_mjpeg_val_dc); ff_mjpeg_build_huffman_codes(m->huff_size_ac_luminance, m->huff_code_ac_luminance, avpriv_mjpeg_bits_ac_luminance, avpriv_mjpeg_val_ac_luminance); ff_mjpeg_build_huffman_codes(m->huff_size_ac_chrominance, m->huff_code_ac_chrominance, avpriv_mjpeg_bits_ac_chrominance, avpriv_mjpeg_val_ac_chrominance); init_uni_ac_vlc(m->huff_size_ac_luminance, m->uni_ac_vlc_len); init_uni_ac_vlc(m->huff_size_ac_chrominance, m->uni_chroma_ac_vlc_len); s->intra_ac_vlc_length = s->intra_ac_vlc_last_length = m->uni_ac_vlc_len; s->intra_chroma_ac_vlc_length = s->intra_chroma_ac_vlc_last_length = m->uni_chroma_ac_vlc_len; // Buffers start out empty. m->huff_ncode = 0; s->mjpeg_ctx = m; if(s->huffman == HUFFMAN_TABLE_OPTIMAL) return alloc_huffman(s); return 0; } av_cold void ff_mjpeg_encode_close(MpegEncContext *s) { if (s->mjpeg_ctx) { av_freep(&s->mjpeg_ctx->huff_buffer); av_freep(&s->mjpeg_ctx); } } /** * Add code and table_id to the JPEG buffer. * * @param s The MJpegContext which contains the JPEG buffer. * @param table_id Which Huffman table the code belongs to. * @param code The encoded exponent of the coefficients and the run-bits. */ static inline void ff_mjpeg_encode_code(MJpegContext *s, uint8_t table_id, int code) { MJpegHuffmanCode *c = &s->huff_buffer[s->huff_ncode++]; c->table_id = table_id; c->code = code; } /** * Add the coefficient's data to the JPEG buffer. * * @param s The MJpegContext which contains the JPEG buffer. * @param table_id Which Huffman table the code belongs to. * @param val The coefficient. * @param run The run-bits. */ static void ff_mjpeg_encode_coef(MJpegContext *s, uint8_t table_id, int val, int run) { int mant, code; if (val == 0) { av_assert0(run == 0); ff_mjpeg_encode_code(s, table_id, 0); } else { mant = val; if (val < 0) { val = -val; mant--; } code = (run << 4) | (av_log2_16bit(val) + 1); s->huff_buffer[s->huff_ncode].mant = mant; ff_mjpeg_encode_code(s, table_id, code); } } /** * Add the block's data into the JPEG buffer. * * @param s The MJpegEncContext that contains the JPEG buffer. * @param block The block. * @param n The block's index or number. */ static void record_block(MpegEncContext *s, int16_t *block, int n) { int i, j, table_id; int component, dc, last_index, val, run; MJpegContext *m = s->mjpeg_ctx; /* DC coef */ component = (n <= 3 ? 0 : (n&1) + 1); table_id = (n <= 3 ? 0 : 1); dc = block[0]; /* overflow is impossible */ val = dc - s->last_dc[component]; ff_mjpeg_encode_coef(m, table_id, val, 0); s->last_dc[component] = dc; /* AC coefs */ run = 0; last_index = s->block_last_index[n]; table_id |= 2; for(i=1;i<=last_index;i++) { j = s->intra_scantable.permutated[i]; val = block[j]; if (val == 0) { run++; } else { while (run >= 16) { ff_mjpeg_encode_code(m, table_id, 0xf0); run -= 16; } ff_mjpeg_encode_coef(m, table_id, val, run); run = 0; } } /* output EOB only if not already 64 values */ if (last_index < 63 || run != 0) ff_mjpeg_encode_code(m, table_id, 0); } static void encode_block(MpegEncContext *s, int16_t *block, int n) { int mant, nbits, code, i, j; int component, dc, run, last_index, val; MJpegContext *m = s->mjpeg_ctx; uint8_t *huff_size_ac; uint16_t *huff_code_ac; /* DC coef */ component = (n <= 3 ? 0 : (n&1) + 1); dc = block[0]; /* overflow is impossible */ val = dc - s->last_dc[component]; if (n < 4) { ff_mjpeg_encode_dc(&s->pb, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance); huff_size_ac = m->huff_size_ac_luminance; huff_code_ac = m->huff_code_ac_luminance; } else { ff_mjpeg_encode_dc(&s->pb, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance); huff_size_ac = m->huff_size_ac_chrominance; huff_code_ac = m->huff_code_ac_chrominance; } s->last_dc[component] = dc; /* AC coefs */ run = 0; last_index = s->block_last_index[n]; for(i=1;i<=last_index;i++) { j = s->intra_scantable.permutated[i]; val = block[j]; if (val == 0) { run++; } else { while (run >= 16) { put_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]); run -= 16; } mant = val; if (val < 0) { val = -val; mant--; } nbits= av_log2_16bit(val) + 1; code = (run << 4) | nbits; put_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]); put_sbits(&s->pb, nbits, mant); run = 0; } } /* output EOB only if not already 64 values */ if (last_index < 63 || run != 0) put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]); } void ff_mjpeg_encode_mb(MpegEncContext *s, int16_t block[12][64]) { int i; if (s->huffman == HUFFMAN_TABLE_OPTIMAL) { if (s->chroma_format == CHROMA_444) { record_block(s, block[0], 0); record_block(s, block[2], 2); record_block(s, block[4], 4); record_block(s, block[8], 8); record_block(s, block[5], 5); record_block(s, block[9], 9); if (16*s->mb_x+8 < s->width) { record_block(s, block[1], 1); record_block(s, block[3], 3); record_block(s, block[6], 6); record_block(s, block[10], 10); record_block(s, block[7], 7); record_block(s, block[11], 11); } } else { for(i=0;i<5;i++) { record_block(s, block[i], i); } if (s->chroma_format == CHROMA_420) { record_block(s, block[5], 5); } else { record_block(s, block[6], 6); record_block(s, block[5], 5); record_block(s, block[7], 7); } } } else { if (s->chroma_format == CHROMA_444) { encode_block(s, block[0], 0); encode_block(s, block[2], 2); encode_block(s, block[4], 4); encode_block(s, block[8], 8); encode_block(s, block[5], 5); encode_block(s, block[9], 9); if (16*s->mb_x+8 < s->width) { encode_block(s, block[1], 1); encode_block(s, block[3], 3); encode_block(s, block[6], 6); encode_block(s, block[10], 10); encode_block(s, block[7], 7); encode_block(s, block[11], 11); } } else { for(i=0;i<5;i++) { encode_block(s, block[i], i); } if (s->chroma_format == CHROMA_420) { encode_block(s, block[5], 5); } else { encode_block(s, block[6], 6); encode_block(s, block[5], 5); encode_block(s, block[7], 7); } } s->i_tex_bits += get_bits_diff(s); } } #if CONFIG_AMV_ENCODER // maximum over s->mjpeg_vsample[i] #define V_MAX 2 static int amv_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic_arg, int *got_packet) { MpegEncContext *s = avctx->priv_data; AVFrame *pic; int i, ret; int chroma_h_shift, chroma_v_shift; av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_h_shift, &chroma_v_shift); if ((avctx->height & 15) && avctx->strict_std_compliance > FF_COMPLIANCE_UNOFFICIAL) { av_log(avctx, AV_LOG_ERROR, "Heights which are not a multiple of 16 might fail with some decoders, " "use vstrict=-1 / -strict -1 to use %d anyway.\n", avctx->height); av_log(avctx, AV_LOG_WARNING, "If you have a device that plays AMV videos, please test if videos " "with such heights work with it and report your findings to ffmpeg-devel@ffmpeg.org\n"); return AVERROR_EXPERIMENTAL; } pic = av_frame_clone(pic_arg); if (!pic) return AVERROR(ENOMEM); //picture should be flipped upside-down for(i=0; i < 3; i++) { int vsample = i ? 2 >> chroma_v_shift : 2; pic->data[i] += pic->linesize[i] * (vsample * s->height / V_MAX - 1); pic->linesize[i] *= -1; } ret = ff_mpv_encode_picture(avctx, pkt, pic, got_packet); av_frame_free(&pic); return ret; } #endif #define OFFSET(x) offsetof(MpegEncContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { FF_MPV_COMMON_OPTS { "pred", "Prediction method", OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 1 }, 1, 3, VE, "pred" }, { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" }, { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, INT_MIN, INT_MAX, VE, "pred" }, { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 3 }, INT_MIN, INT_MAX, VE, "pred" }, { "huffman", "Huffman table strategy", OFFSET(huffman), AV_OPT_TYPE_INT, { .i64 = HUFFMAN_TABLE_OPTIMAL }, 0, NB_HUFFMAN_TABLE_OPTION - 1, VE, "huffman" }, { "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = HUFFMAN_TABLE_DEFAULT }, INT_MIN, INT_MAX, VE, "huffman" }, { "optimal", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = HUFFMAN_TABLE_OPTIMAL }, INT_MIN, INT_MAX, VE, "huffman" }, { NULL}, }; #if CONFIG_MJPEG_ENCODER static const AVClass mjpeg_class = { .class_name = "mjpeg encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_mjpeg_encoder = { .name = "mjpeg", .long_name = NULL_IF_CONFIG_SMALL("MJPEG (Motion JPEG)"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_MJPEG, .priv_data_size = sizeof(MpegEncContext), .init = ff_mpv_encode_init, .encode2 = ff_mpv_encode_picture, .close = ff_mpv_encode_end, .capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE }, .priv_class = &mjpeg_class, .profiles = NULL_IF_CONFIG_SMALL(ff_mjpeg_profiles), }; #endif #if CONFIG_AMV_ENCODER static const AVClass amv_class = { .class_name = "amv encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_amv_encoder = { .name = "amv", .long_name = NULL_IF_CONFIG_SMALL("AMV Video"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_AMV, .priv_data_size = sizeof(MpegEncContext), .init = ff_mpv_encode_init, .encode2 = amv_encode_picture, .close = ff_mpv_encode_end, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_NONE }, .priv_class = &amv_class, }; #endif